Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 25 maja 2025 23:46
  • Data zakończenia: 26 maja 2025 00:02

Egzamin zdany!

Wynik: 25/40 punktów (62,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Wprowadzenie przewodu do zacisku, delikatne wygięcia oraz wykonanie oczka na końcu przewodu z żyłą z drutu miedzianego, realizuje się cęgami

A. spiczastymi
B. do cięcia bocznymi
C. uniwersalnymi
D. do cięcia czołowymi
Cęgi spiczaste, znane też jako cęgi z długimi końcówkami, to narzędzie, które świetnie sprawdza się przy precyzyjnym wkładaniu przewodów do zacisków i robieniu oczek na końcówkach. Ich budowa pozwala na łatwe manewrowanie w ciasnych miejscach, co naprawdę jest ważne, gdy pracujesz z małymi elementami elektronicznymi. W praktyce, dzięki użyciu cęgów spiczastych, możesz dokładnie wygiąć przewody, co zapobiegnie ich uszkodzeniu i sprawi, że połączenia będą nie tylko estetyczne, ale i funkcjonalne. W branży często podkreśla się, jak istotne jest dobieranie odpowiednich narzędzi do konkretnych zadań, a cęgi spiczaste pasują tutaj idealnie. A jeśli chodzi o robienie oczek, to też zwiększa bezpieczeństwo połączeń, bo dobrze zrobione oczka zmniejszają ryzyko przetarcia izolacji i zwarć. Pamiętaj, że przy pracy z miedzianymi przewodami warto stosować właściwe techniki, żeby nie wykrzywiać ich i zapewnić trwałość połączeń.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Zwiększenie wartości częstotliwości wyjściowej falownika zasilającego silnik indukcyjny, przy niezmiennym obciążeniu silnika, prowadzi do

A. wzrostu rezystancji uzwojeń
B. zwiększenia prędkości obrotowej
C. zmniejszenia prędkości obrotowej
D. spadku rezystancji uzwojeń
Wzrost wartości częstotliwości wyjściowej falownika zasilającego silnik indukcyjny prowadzi do zwiększenia prędkości obrotowej silnika. Wynika to z faktu, że prędkość obrotowa silnika indukcyjnego jest bezpośrednio proporcjonalna do częstotliwości zasilania, co jest opisane równaniem: n = (120 * f) / p, gdzie n to prędkość obrotowa w obrotach na minutę (RPM), f to częstotliwość w hercach (Hz), a p to liczba par biegunów silnika. W praktyce oznacza to, że zmiana częstotliwości zasilania pozwala na precyzyjne sterowanie prędkością obrotową silnika, co jest kluczowe w wielu aplikacjach przemysłowych, takich jak napędy wentylatorów, pomp czy przenośników taśmowych. Wzrost prędkości obrotowej może również skutkować zwiększeniem wydajności procesu produkcyjnego oraz optymalizacją zużycia energii, ponieważ falowniki pozwalają na dostosowanie parametrów pracy silnika w zależności od aktualnych potrzeb. Współczesne standardy w automatyce przemysłowej promują wykorzystanie falowników jako najbardziej efektywnego sposobu zarządzania napędami elektrycznymi, co przekłada się na większą elastyczność i oszczędności energetyczne.

Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Aby dokręcić śrubowe połączenie z momentem obrotowym 6 Nm, należy użyć klucza

A. oczkowego
B. dynamometrycznego
C. imbusowego
D. nasadkowego
Odpowiedź 'dynamometrycznego' jest prawidłowa, ponieważ klucz dynamometryczny jest narzędziem zaprojektowanym do dokręcania śrub z określonym momentem obrotowym. Umożliwia on precyzyjne ustawienie momentu, co jest kluczowe w wielu zastosowaniach inżynieryjnych, aby uniknąć uszkodzeń komponentów, które mogą wyniknąć z nadmiernego dokręcenia. W praktyce klucze dynamometryczne są szeroko stosowane w motoryzacji, budownictwie oraz przy montażu wszelkiego rodzaju maszyn i urządzeń. Przykładowo, w przypadku dokręcania śrub w silniku samochodowym, zastosowanie momentu 6 Nm może być wymagane do zapewnienia odpowiedniej kompresji oraz szczelności, co jest kluczowe dla prawidłowego działania silnika. Ponadto, stosując klucz dynamometryczny, inżynierowie mogą dostosować moment obrotowy do specyfikacji producenta, co jest zgodne z najlepszymi praktykami inżynieryjnymi i standardami branżowymi. W ten sposób, narzędzie to nie tylko zwiększa efektywność pracy, ale również wpływa na bezpieczeństwo i trwałość montowanych elementów.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Ciecze hydrauliczne, które przekazują energię, lecz nie oferują ochrony przed korozją ani smarowania, to ciecze klasy

A. HG
B. HL
C. HR
D. HH
Ciecze hydrauliczne typu HH to tak naprawdę te, które przenoszą energię, ale nie chronią przed korozją ani się nie smarują. Używa się ich głównie w hydraulice, gdzie priorytetem jest efektywne przenoszenie mocy, bez potrzeby dodatkowej ochrony. Przykłady? Proste układy hydrauliczne w maszynach budowlanych, które raczej nie są narażone na dużą korozję czy duże obciążenia. W takich sytuacjach można zbudować układ hydrauliczny z materiałów odpornych na rdzewienie, więc nie ma potrzeby dodawania dodatkowych środków ochronnych do płynów. W branży można spotkać standardy jak ISO 6743, które definiują różne klasy cieczy hydraulicznych na podstawie ich cech. Zrozumienie klasyfikacji cieczy hydraulicznych, w tym typu HH, to klucz do tego, by inżynierowie i technicy mogli wybierać odpowiednie materiały do konkretnych zastosowań, co jest ważne, żeby systemy hydrauliczne działały efektywnie i były niezawodne.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Którego urządzenia dotyczą podane w tabeli parametry?

Ilość wejść 24 VDC
Ilość wyjść przekaźnikowych
Rozszerzenie we/wyMaksymalna ilość
Maksymalna ilość we/wy
Pojemność programu
Czas przetwarzaniaInstrukcji podstawowych
systemowych
Pamięć danychWewnętrznych bajtów
Słów wewnętrznych
Timery
Liczniki
ZasilanieZnamionowe napięcie zasilania

A. Czujnika optycznego.
B. Sterownika PLC.
C. Falownika.
D. Silnika.
Sterownik PLC, czyli Programmable Logic Controller, jest kluczowym elementem w automatyzacji procesów przemysłowych. Parametry takie jak liczba wejść i wyjść, możliwość rozszerzenia tych wejść i wyjść, pojemność programu oraz czas przetwarzania instrukcji są typowe dla tego urządzenia. Sterowniki PLC są programowalne i umożliwiają realizację złożonych algorytmów sterujących, co jest niezbędne w nowoczesnych liniach produkcyjnych. Na przykład, w przemyśle motoryzacyjnym, sterowniki PLC mogą być używane do kontrolowania procesów montażowych, synchronizując pracę robotów i maszyn. Dodatkowo, możliwość monitorowania danych w czasie rzeczywistym oraz implementacji logiki sekwencyjnej dostosowuje je do różnych zastosowań, co potwierdza ich wszechstronność. Warto również podkreślić, że zastosowanie sterowników PLC zgodnie z zasadami automatyzacji, jak IEC 61131-3, zapewnia efektywność i zgodność z międzynarodowymi standardami.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

W celu kontroli siłowników jednostronnego działania wykorzystuje się zawory rozdzielające

A. 5/2
B. 3/2
C. 4/3
D. 4/2
Zawór rozdzielający 3/2 jest odpowiednim elementem do sterowania siłownikami jednostronnego działania, ponieważ ten typ zaworu ma trzy porty i dwa stany robocze. W konfiguracji 3/2, jeden z portów jest podłączony do źródła zasilania, a dwa pozostałe porty mogą być podłączone do siłownika oraz do otoczenia. W przypadku siłownika jednostronnego działania, który działa w jednym kierunku, zawór 3/2 jest odpowiedni, ponieważ umożliwia wprowadzenie ciśnienia do siłownika, a następnie jego odprowadzenie do atmosfery przy powrocie. Przykładem zastosowania zaworu 3/2 może być system pneumatyczny w maszynach produkcyjnych, gdzie siłowniki są używane do podnoszenia lub opuszczania komponentów. Warto również zauważyć, że w praktyce przemysłowej stosowanie zaworów powinno być zgodne z normami, takimi jak ISO 1219, które definiują symbole i oznaczenia dla urządzeń pneumatycznych, co ułatwia ich identyfikację oraz integrację w systemach automatyki.

Pytanie 16

W miarę wzrostu współczynnika lepkości oleju używanego w systemach hydraulicznych, jakie zmiany zachodzą w lepkości oleju?

A. w mniejszym zakresie przy zmianach ciśnienia
B. w szerszym zakresie przy zmianach ciśnienia
C. w szerszym zakresie przy zmianach temperatury
D. w mniejszym zakresie przy zmianach temperatury
Wybór odpowiedzi wskazujących na szerszy zakres zmian lepkości przy zmianach ciśnienia czy temperatury jest związany z nieporozumieniami na temat działania olejów hydraulicznych i ich właściwości. Wysoki współczynnik lepkości oznacza, że olej jest bardziej oporny na zmiany, co w kontekście temperatury oznacza, że jego lepkość nie zmienia się znacząco, gdy temperatura wzrasta lub maleje. Z kolei przy niskim współczynniku lepkości, olej jest bardziej podatny na te zmiany. W związku z tym, sugerowanie, że olej o wysokiej lepkości może zmieniać swoje właściwości w szerszym zakresie przy zmianach temperatury, jest niezgodne z zasadami fizyki płynów. W układach hydraulicznych, oleje muszą charakteryzować się stabilnością lepkości w określonych warunkach eksploatacyjnych, co jest kluczowe dla efektywności działania. Warto zwrócić uwagę, że nieprawidłowe podejście do doboru oleju może prowadzić do nieefektywności systemu, zwiększonego zużycia energii, a nawet do uszkodzeń komponentów. Dlatego tak ważne jest zrozumienie, jak właściwości oleju wpływają na jego działanie w praktycznych zastosowaniach hydraulicznych.

Pytanie 17

Jakie jest moment obrotowy na wale silnika synchronicznego o mocy 3,14 kW przy prędkości obrotowej 3000 obr/min?

A. 1 Nm
B. 986 Nm
C. 9 420 Nm
D. 10 Nm
W przypadku momentu obrotowego na wale silnika synchronicznego, istnieje kilka kluczowych koncepcji, które mogą prowadzić do błędnych odpowiedzi. Moment obrotowy jest miarą siły, która powoduje obrót ciała wokół osi. Odpowiedzi takie jak 986 Nm, 1 Nm, czy 9 420 Nm nie uwzględniają prawidłowego przeliczenia mocy na moment obrotowy. Często mylnie przyjmuje się, że moc silnika bezpośrednio przekłada się na moment obrotowy, co jest nieprawidłowe. Prawidłowe obliczenie wymaga uwzględnienia zarówno mocy, jak i prędkości obrotowej. Typowym błędem jest także mylenie jednostek, zwłaszcza przy konwersji mocy z kilowatów na waty, co może prowadzić do znacznych niedoszacowań lub przeszacowań momentu obrotowego. Przykładowo, odpowiedź 986 Nm sugeruje, że silnik jest znacznie bardziej mocny niż to wynika z podanych danych. Z drugiej strony, odpowiedzi takie jak 1 Nm czy 10 Nm również nie oddają rzeczywistej wartości momentu, co może wpłynąć na niewłaściwy dobór napędu w praktycznych zastosowaniach przemysłowych. Dokładne zrozumienie tych zasad jest kluczowe dla inżynierów i techników, aby unikać potencjalnych problemów w projektowaniu układów napędowych.

Pytanie 18

Do spawania metali za pomocą łuku elektrycznego wykorzystuje się zasilacz o

A. niskim napięciu i dużym prądzie
B. wysokim napięciu i małym prądzie
C. wysokim napięciu i dużym prądzie
D. niskim napięciu i małym prądzie
Rozumienie, jakie parametry prądu są właściwe do spawania metali, to mega ważna sprawa, jeśli chcesz dobrze wykonywać swoją robotę. Odpowiedzi, które sugerują niskie napięcie i mały prąd, są zwykle błędne, bo mały prąd po prostu nie da rady stopić materiału. Efekt? Możesz mieć niepełne spoiny i kłopoty z całą konstrukcją. A z wysokim napięciem i dużym prądem to już w ogóle trzeba uważać, bo można przegrzać materiał, co wprowadzi deformacje i pogorszy właściwości mechaniczne. Czasem są też problemy przy wysokim napięciu i małym prądzie, bo nie uzyskasz wystarczającej temperatury do skutecznego spawania. Niestety, dużo ludzi myśli, że wyższe napięcie zawsze jest lepsze, ale tak nie jest. Różne metody spawania wymagają różnych ustawień, które powinny być dostosowane do konkretnych warunków i materiałów. To jest zgodne z najlepszymi praktykami w branży, takimi jak normy AWS czy ISO. Dobrze dobrane parametry prądowe są kluczem do osiągnięcia jakości spoiny i jej długowieczności, co w przemyśle ma ogromne znaczenie.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

Aby poprawić efektywność montażu połączeń gwintowych, wykorzystuje się klucze

A. uniwersalne
B. zapadkowe
C. oczko
D. płaskie
Klucze zapadkowe są specjalizowanymi narzędziami, które pozwalają na szybkie i efektywne dokręcanie oraz odkręcanie połączeń gwintowych, co znacznie zwiększa wydajność montażu. Ich konstrukcja pozwala na ciągłe obracanie klucza w jednym kierunku bez konieczności jego wyjmowania z miejsca pracy. Działa to na zasadzie mechanizmu zapadkowego, gdzie przekręcenie klucza w jedną stronę powoduje, że zapadka przeskakuje, umożliwiając kolejne ruchy. W praktyce oznacza to, że praca z kluczem zapadkowym jest znacznie szybsza i mniej męcząca, co ma kluczowe znaczenie w środowiskach przemysłowych, gdzie czas i efektywność są na wagę złota. Użycie kluczy zapadkowych jest zgodne z normami ergonomii oraz efektywności pracy, co czyni je bardzo popularnym rozwiązaniem w mechanice i montażu. Warto również zauważyć, że klucze zapadkowe są dostępne w różnych rozmiarach i konfiguracjach, co pozwala na ich stosowanie w różnorodnych zastosowaniach, od napraw samochodowych po prace w przemyśle budowlanym.

Pytanie 21

Jakie rozszerzenie nazwy pliku w systemie Windows wskazuje na pliki wykonywalne?

A. bmp
B. exe
C. ini
D. sys
Rozszerzenia .ini, .sys i .bmp nie mają nic wspólnego z plikami, które uruchamiają programy, więc łatwo można się w tym pogubić. Pliki .ini za to są do ustawień aplikacji – tam programy zapisują różne preferencje, takie jak rozmiar okna czy inne opcje. Natomiast pliki .sys to sterowniki urządzeń, które łączą sprzęt z systemem, ale nie służą do uruchamiania aplikacji. A pliki .bmp? To format obrazów używany do grafiki, a nie do wykonywania kodu. Często występują błędy w myśleniu o plikach wykonywalnych – można pomylić .sys z .exe, myśląc, że mają takie same funkcje, ale to nieprawda. Musimy zrozumieć, że tylko pliki .exe mogą być uruchamiane, a inne mają swoje specyficzne zastosowania. Dobrze jest wiedzieć, jakie rozszerzenia istnieją, żeby móc sprawnie korzystać z komputera.

Pytanie 22

Jaką metodę należy wykorzystać do połączenia szkła z metalem?

A. Zgrzewanie
B. Spawanie
C. Klejenie
D. Nitowanie
Klejenie to najskuteczniejsza metoda łączenia szkła z metalem ze względu na różnice w ich właściwościach fizycznych i chemicznych. Szkło jest materiałem kruchym, a metal - plastycznym, co sprawia, że tradycyjne metody, takie jak zgrzewanie czy spawanie, mogą prowadzić do uszkodzenia szkła. Klejenie wykorzystuje specjalistyczne kleje, które tworzą mocne, elastyczne połączenie, a także mogą dostosować się do różnic w rozszerzalności cieplnej obu materiałów. W praktyce, odpowiednie kleje epoksydowe lub akrylowe są często stosowane do takich aplikacji, umożliwiając trwałe i estetyczne łączenie. W branży budowlanej i w przemyśle, klejenie szkła do metalowych elementów jest powszechnie stosowane w oknach strukturalnych, elewacjach oraz w produkcji mebli. Dobrą praktyką jest również stosowanie gruntów, które poprawiają adhezję kleju do powierzchni, co zwiększa trwałość i odporność połączenia na różne czynniki zewnętrzne. Takie podejście jest zgodne z normami ISO dotyczących klejenia i pozwala na uzyskanie wysokiej jakości połączeń.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

W systemie mechatronicznym interfejs komunikacyjny ma na celu łączenie

A. programatora ze sterownikiem
B. grupy siłowników z modułem rozszerzającym
C. programatora z siłownikiem
D. silnika z pompą hydrauliczną
Interfejs komunikacyjny w systemie mechatronicznym pełni kluczową rolę w umożliwieniu wymiany informacji pomiędzy różnymi komponentami systemu. W przypadku poprawnej odpowiedzi, czyli połączenia sterownika z programatorem, mamy do czynienia z fundamentalnym aspektem integracji i automatyzacji. Sterownik, jako serce systemu mechatronicznego, interpretuje dane z czujników i generuje sygnały sterujące do różnych elementów wykonawczych, takich jak siłowniki czy pompy. Programator natomiast dostarcza odpowiednie algorytmy i logikę działania, co pozwala na precyzyjne sterowanie procesami. Przykładem zastosowania może być system automatyzacji w zakładzie produkcyjnym, gdzie sterownik komunikuje się z programatorem, aby precyzyjnie kontrolować cykl pracy maszyn. Tego typu komunikacja opiera się na standardach, takich jak CAN, Modbus czy Profibus, które zapewniają niezawodność i skalowalność systemów mechatronicznych. Przy odpowiedniej konfiguracji interfejsu komunikacyjnego możliwe jest również zdalne monitorowanie i diagnostyka, co podnosi efektywność operacyjną.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Zamiana tranzystorów BC109 na płytce kontrolera PLC może być przeprowadzona poprzez

A. wyjęcie tranzystora z gniazda
B. odkręcenie tranzystora
C. wycięcie tranzystora
D. wylutowanie tranzystora
Odkręcenie tranzystora sugeruje, że tranzystor jest zamocowany za pomocą śrub, co jest rzadkością w przypadku tranzystorów montowanych na płytkach PCB. Większość tranzystorów jest lutowana bezpośrednio do obwodu, co eliminuje możliwość ich odkręcenia. Ponadto, ten sposób wprowadza ryzyko uszkodzenia nie tylko tranzystora, ale także samej płytki PCB, co jest niepożądane w profesjonalnych naprawach. Wyjęcie tranzystora z podstawy również nie jest poprawnym podejściem, ponieważ tranzystory montowane bezpośrednio na płytce nie mają podstaw, jak w przypadku niektórych innych komponentów, takich jak układy scalone. Dodatkowo, wycięcie tranzystora jest ekstremalnym i niewłaściwym rozwiązaniem, które mogłoby prowadzić do poważnych uszkodzeń płytki oraz pozostałych komponentów elektronicznych na niej umieszczonych. Takie podejście nie tylko jest niepraktyczne, ale również niezgodne z ogólnymi zasadami naprawy i konserwacji sprzętu elektronicznego. Należy unikać takich mylnych koncepcji, aby zapewnić skuteczność napraw i bezpieczeństwo w pracy z elektroniką. Właściwa wiedza o metodach wylutowania i lutowania jest kluczowa dla każdego, kto chce zajmować się naprawą i serwisowaniem urządzeń elektronicznych.

Pytanie 39

Najważniejszym parametrem opisującym kondensator jest

A. indukcyjność
B. pojemność
C. rezystancja
D. ładunek
Pojemność jest podstawowym parametrem charakteryzującym kondensator, który określa zdolność tego elementu do magazynowania ładunku elektrycznego. Pojemność kondensatora, oznaczana symbolem C, wyrażana jest w faradach (F) i definiowana jest jako stosunek zgromadzonego ładunku (Q) do przyłożonego napięcia (U). W praktycznych zastosowaniach kondensatory odgrywają kluczową rolę w różnych dziedzinach, takich jak filtry, układy zasilania, czy obwody rezonansowe. Na przykład w zasilaczach impulsowych kondensatory stabilizują napięcie wyjściowe, a w obwodach audio są używane do odfiltrowania niepożądanych częstotliwości. W związku z tym, znajomość pojemności kondensatora jest niezbędna dla inżynierów i techników pracujących w elektronice. Dodatkowo, standardy takie jak IEC 60384 określają wymagania dotyczące kondensatorów, co potwierdza ich istotność w projektowaniu oraz produkcji urządzeń elektronicznych.

Pytanie 40

W trakcie serwisowania urządzenia mechatronicznego, w którym istnieje ryzyko wystąpienia napięcia elektrycznego, technik mechatronik powinien stosować

A. nienaruszonych narzędzi izolowanych
B. rękawic ochronnych i fartucha ochronnego
C. okularów ochronnych i fartucha ochronnego
D. szczypiec oraz zestawu wkrętaków
Używanie nieuszkodzonych narzędzi izolowanych jest kluczowym elementem zapewnienia bezpieczeństwa podczas pracy z urządzeniami mechatronicznymi, w których może występować niebezpieczne napięcie elektryczne. Narzędzia izolowane, takie jak śrubokręty, szczypce czy klucze, są zaprojektowane z myślą o minimalizacji ryzyka porażenia prądem elektrycznym. Izolacja narzędzi powinna spełniać odpowiednie normy, takie jak IEC 60900, które określają wymagania dotyczące narzędzi używanych w obszarach narażonych na wysokie napięcia. Przykładem zastosowania izolowanych narzędzi może być naprawa elektrycznych systemów sterowania w robotach przemysłowych, gdzie dostęp do napięciowych elementów urządzenia wiąże się z ryzykiem. W praktyce, stosowanie tych narzędzi powinno być rutyną w codziennej pracy mechatronika, a przed każdym użyciem należy upewnić się, że nie ma widocznych uszkodzeń izolacji. Regularne kontrole i konserwacja narzędzi izolowanych są również niezbędne, aby zapewnić ich niezawodność i skuteczność.