Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 19 maja 2025 06:35
  • Data zakończenia: 19 maja 2025 06:48

Egzamin niezdany

Wynik: 18/40 punktów (45,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Który kolor izolacji przewodu w instalacjach elektrycznych jest przypisany do przewodu neutralnego?

A. Niebieski
B. Zielony
C. Żółty
D. Czerwony
Kolor niebieski jest zastrzeżony dla przewodu neutralnego w instalacjach elektrycznych, zgodnie z międzynarodowymi standardami, takimi jak IEC 60446. Przewód neutralny pełni kluczową rolę w systemach elektrycznych, ponieważ służy do zamykania obwodu i umożliwia przepływ prądu z powrotem do źródła. Użycie koloru niebieskiego dla przewodów neutralnych pozwala na ich łatwe zidentyfikowanie, co jest istotne w kontekście bezpieczeństwa oraz efektywności pracy elektryków. W praktyce, podczas instalacji systemów elektrycznych, korzystanie z ustalonych kolorów przewodów ma na celu minimalizację ryzyka błędów przy podłączaniu urządzeń, co jest kluczowe dla zapewnienia ich prawidłowego funkcjonowania oraz ochrony przed porażeniem prądem. Dodatkowo, w przypadku konserwacji lub naprawy, wyraźne oznaczenie przewodów neutralnych znacząco ułatwia pracę elektryków, co podkreśla znaczenie standardyzacji w branży elektrycznej.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

Na rysunku przedstawiono schemat układu sterowania oświetleniem oraz diagram działania zastosowanego przekaźnika. Który opis działania układu jest prawidłowy?

A.B.
SekwencjaEfekt działania układuSekwencjaEfekt działania układu
0Zgaszone są obie żarówki0Zgaszone są obie żarówki
1Świeci tylko żarówka R11Świeci tylko żarówka R1
2Świeci tylko żarówka R22Świeci tylko żarówka R2
3Świeci tylko żarówka R13Świeci tylko żarówka R1
4Zgaszone są obie żarówki4Świecą obie żarówki
C.D.
SekwencjaEfekt działania układuSekwencjaEfekt działania układu
0Zgaszone są obie żarówki0Świecą obie żarówki
1Świeci tylko żarówka R11Świeci tylko żarówka R1
2Świeci tylko żarówka R22Świeci tylko żarówka R2
3Świecą obie żarówki3Zgaszone są obie żarówki
4Zgaszone są obie żarówki4Świecą obie żarówki

Ilustracja do pytania
A. B.
B. C.
C. D.
D. A.
Wybór innej odpowiedzi wynika z nieporozumienia dotyczącego działania przekaźników oraz ich zastosowania w układach oświetleniowych. Kluczowym błędem w rozumieniu tego schematu jest pominięcie sekwencji aktywacji styków przekaźnika. Przykładowo, w przypadku odpowiedzi A, mogło wystąpić przekonanie, że aktywne są inne styki, co prowadziłoby do błędnych wniosków na temat stanu żarówek. W rzeczywistości, w analizowanym układzie, każdy styk odpowiada za inny stan żarówki, co jest istotnym aspektem przy projektowaniu systemów automatyki. Inne odpowiedzi mogą sugerować, że obie żarówki świecą w różnych sekwencjach bez uwzględnienia niezależności ich działania, co jest błędem w zrozumieniu funkcji przekaźnika. Prowadzi to do nieprawidłowego wyobrażenia o możliwości jednoczesnego sterowania wieloma obwodami, co nie jest zgodne z rzeczywistym działaniem układu. Dodatkowo, błędne odpowiedzi mogą wynikać z nieadekwatnego pojmowania cyklicznego charakteru pracy układów sterujących. W praktyce, zrozumienie schematów i działania przekaźników jest kluczowe dla efektywnej automatyzacji, a także dla przestrzegania dobrych praktyk inżynieryjnych. Dlatego ważne jest, aby dokładnie analizować każdy element układu przed podjęciem decyzji, co pozwoli na eliminację pomyłek i lepsze zrozumienie jego funkcji.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Który z podanych łączników instalacyjnych dysponuje dwoma klawiszami i trzema zaciskami przyłączeniowymi?

A. Łącznik schodowy podwójny
B. Łącznik krzyżowy
C. Łącznik świecznikowy
D. Łącznik schodowy pojedynczy
Łącznik świecznikowy to element instalacji elektrycznej, który rzeczywiście ma dwa klawisze i trzy zaciski przyłączeniowe. Jest to kluczowy komponent w systemach oświetleniowych, który umożliwia włączenie i wyłączenie oświetlenia z jednego miejsca. Dzięki posiadaniu dwóch klawiszy, użytkownik może kontrolować dwa różne źródła światła z jednego łącznika, co jest szczególnie przydatne w pomieszczeniach, gdzie zastosowane są różne rodzaje oświetlenia. W praktyce, łącznik świecznikowy często stosuje się w salonach, gdzie można regulować intensywność światła przy użyciu dwóch różnych żarówek lub opraw. Dodatkowo, zgodnie z normami IEC, instalacje elektryczne powinny być projektowane w sposób umożliwiający ich późniejsze rozszerzanie lub modyfikacje. Użycie łącznika świecznikowego w połączeniu z innymi typami łączników, takimi jak schodowe czy krzyżowe, pozwala na stworzenie bardziej elastycznego systemu oświetleniowego, dostosowanego do indywidualnych potrzeb użytkowników.

Pytanie 11

Jaką rolę odgrywa wyzwalacz elektromagnetyczny w wyłączniku nadprądowym?

A. Napina sprężynę napędu
B. Rozpoznaje zwarcia
C. Rozpoznaje przeciążenia
D. Zatrzymuje łuk elektryczny
Wykrywanie przeciążenia przez wyzwalacz elektromagnetyczny w wyłączniku nadprądowym to często mylony temat. Chociaż wyzwalacz elektromagnetyczny jest kluczowym elementem w systemach zabezpieczeń, jego główną funkcją nie jest identyfikacja przeciążenia, lecz detekcja zwarć, które następują przy znacznie większych prądach. Przeciążenie oznacza, że prąd roboczy jest wyższy od nominalnego, ale wciąż niższy od wartości, która spowodowałaby bezpośrednie uszkodzenie obwodu. W takich sytuacjach wyzwalacze termiczne, a nie elektromagnetyczne, są odpowiedzialne za monitorowanie długotrwałego wzrostu temperatury, co związane jest z przeciążeniem. Z kolei gasi łuk elektryczny i naciąga sprężynę napędu to funkcje, które również nie są charakterystyczne dla wyzwalacza elektromagnetycznego. Gasi łuk elektryczny w wyłącznikach nadprądowych jest realizowane zazwyczaj przez specjalne mechanizmy, takie jak komory gaszenia, które mają na celu zminimalizowanie ryzyka powstania łuku podczas rozłączenia obwodu. Naciąganie sprężyny napędu dotyczy mechanizmów działania wyłączników, ale nie jest jednym z zadań wyzwalacza elektromagnetycznego. Stąd wynika, że pomylenie funkcji różnych komponentów wyłącznika nadprądowego może prowadzić do niewłaściwego zrozumienia ich roli w systemach elektrycznych.

Pytanie 12

Którego z wymienionych urządzeń pomiarowych powinno się użyć do przeprowadzenia pomiarów rezystancji izolacji w domowej instalacji elektrycznej?

A. Omomierza szeregowego
B. Megaomomierza induktorowego
C. Amperomierza cęgowego
D. Mostka prądu zmiennego
Jak wybierzesz złe urządzenie do mierzenia rezystancji izolacji, to może to prowadzić do błędnych wyników i braku zidentyfikowania problemów. Na przykład mostek prądu przemiennego, mimo że jest używany do pomiarów impedancji, nie nadaje się do oceny izolacji, bo nie daje wystarczającego napięcia, żeby pokazać ewentualne uszkodzenia. Użycie go w takich pomiarach może prowadzić do fałszywych pozytywnych wyników, co z kolei jest niebezpieczne dla ludzi. Amperomierz cęgowy też jest do pomiaru prądu, a nie rezystancji, więc to kompletnie się nie sprawdzi w tym kontekście. W tym przypadku omomierz szeregowy również odpada, bo bada rezystancję przy niskim napięciu, co nie pozwala dobrze ocenić jakości izolacji. Korzystanie z takich urządzeń może sprawić, że nie dostrzegasz ryzyka związanego z niewłaściwą izolacją, a to może prowadzić do poważnych zagrożeń dla zdrowia i życia. Dlatego lepiej używać odpowiednich narzędzi, jak megaomomierz induktorowy, żeby zapewnić bezpieczeństwo i trzymać się norm w branży.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Jakie rury instalacyjne powinny być używane do kładzenia przewodów na łatwopalnym podłożu?

A. Tylko z PVC
B. Tylko metalowe
C. Z PVC lub gumowe
D. Metalowe lub gumowe
Kiedy stosujemy metalowe rury do układania przewodów na podłożu palnym, to tak naprawdę działamy zgodnie z normami bezpieczeństwa, które mówią, że musimy chronić instalacje elektryczne przed ryzykiem pożaru. Metalowe rury, na przykład stalowe, są odporne na wysokie temperatury i są niepalne, co czyni je super opcją w miejscach, gdzie mogą mieć kontakt z materiałami palnymi. Dodatkowo te rury lepiej chronią przewody przed mechanicznymi uszkodzeniami, co jest bardzo ważne, gdy instalacje eksploatowane są w trudnych warunkach. Wiele budynków przemysłowych i publicznych korzysta z metalowych rur, bo to nie tylko podnosi bezpieczeństwo, ale także spełnia różne przepisy budowlane i normy, jak PN-IEC 60364 dla instalacji elektrycznych. Co więcej, w razie awarii metalowe rury mogą być łatwiejsze do naprawy niż te z plastiku.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

Jak często powinny być wykonywane konserwacje urządzeń w instalacji elektrycznej w budynkach mieszkalnych?

A. Co najmniej raz na dwa lata
B. Zgodnie z instrukcją obsługi danego odbiornika
C. Przed każdym uruchomieniem urządzenia
D. Każdorazowo podczas badań okresowych instalacji
Odpowiedź 'Zgodnie z instrukcją obsługi danego odbiornika' jest prawidłowa, ponieważ każda instalacja elektryczna oraz jej komponenty, takie jak odbiorniki, mają specyficzne wymagania dotyczące konserwacji określone przez producenta. Instrukcje obsługi zawierają zalecenia dotyczące częstotliwości przeglądów, które są dostosowane do charakterystyki danego urządzenia, jego zastosowania oraz warunków eksploatacyjnych. Na przykład, urządzenia używane w warunkach dużej wilgotności, jak np. piece elektryczne w łazienkach, mogą wymagać częstszych przeglądów. Regularna konserwacja pozwala na wczesne wykrywanie ewentualnych usterek, co wpływa na bezpieczeństwo użytkowania i niezawodność działania odbiorników. Ponadto, stosowanie się do zaleceń producenta związanych z konserwacją jest również zgodne z przepisami prawa, co może być istotne w przypadku inspekcji technicznych. Warto przy tym pamiętać, że w razie braku dostępu do instrukcji, należy zwrócić się o pomoc do specjalistów, którzy mogą ocenić stan techniczny urządzeń oraz zalecić odpowiednie działania.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Które z oznaczeń posiada trzonek źródła światła przedstawiony na ilustracji?

Ilustracja do pytania
A. MR16
B. G9
C. E27
D. GU10
Odpowiedź GU10 jest prawidłowa, ponieważ trzonek źródła światła przedstawiony na ilustracji ma charakterystyczne cechy, które są typowe dla tego rodzaju gniazda. Trzonki GU10 mają dwie wypustki po bokach, które umożliwiają łatwe i pewne mocowanie w oprawach oświetleniowych poprzez system 'push and twist'. Jest to szczególnie przydatne w zastosowaniach, gdzie wymagana jest wysoka stabilność i łatwość wymiany źródła światła, jak w przypadku halogenów oraz niektórych modeli lamp LED. W praktyce trzonki GU10 są często wykorzystywane w oświetleniu wnętrz, takich jak sufitowe lampy halogenowe czy reflektory. Używanie trzonków zgodnych z normą GU10 jest zalecane, aby zapewnić bezpieczeństwo oraz efektywność energetyczną, co jest zgodne z najlepszymi praktykami branżowymi w oświetleniu. Dodatkowo, trzonki te często pozwalają na korzystanie z energooszczędnych rozwiązań, co jest istotne w kontekście ochrony środowiska i redukcji kosztów energii.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Jaka jest maksymalna wartość napięcia dotykowego bezpiecznego dla człowieka przy normalnych warunkach eksploatacji?

A. 230 V
B. 50 V
C. 12 V
D. 100 V
Wartość 230 V jest typowym napięciem używanym w domowych instalacjach elektrycznych, ale nie jest to wartość bezpieczna dla dotyku. To napięcie jest wystarczająco wysokie, aby spowodować poważne obrażenia lub nawet śmierć w przypadku kontaktu fizycznego. Z tego powodu instalacje muszą być odpowiednio zabezpieczone, a użytkownicy świadomi zagrożeń. 100 V to wartość, która również przekracza bezpieczny poziom napięcia dotykowego. Choć niższa niż 230 V, nadal pozostaje niebezpieczna i wymaga podobnych środków ostrożności. Przy takim napięciu może dojść do poważnych obrażeń w przypadku jego kontaktu z ciałem ludzkim. 12 V jest napięciem często używanym w niskonapięciowych systemach zasilania, jak np. w elektronice użytkowej czy oświetleniu LED. Jest to wartość uznawana za bezpieczną do dotyku, ale nie spełnia definicji napięcia dotykowego bezpiecznego, które wynosi 50 V, właśnie z uwagi na jego zastosowanie do określenia pewnych standardów ochrony. Bezpieczeństwo w kontekście elektryki nie ogranicza się jedynie do samego napięcia, ale także do warunków, w jakich jest stosowane, co podkreśla wagę przestrzegania norm i standardów branżowych w celu minimalizacji ryzyka.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Ogranicznik przepięć klasy D, który można zainstalować w systemie elektrycznym o maksymalnym napięciu 1000 V, instaluje się w

A. niskonapięciowych liniach elektroenergetycznych.
B. rozgałęzieniach systemu elektrycznego w budynku oraz w rozdzielnicach dla mieszkań.
C. złączach oraz miejscach, gdzie instalacja wchodzi do budynku z systemem piorunochronnym, zasilanego z linii napowietrznej.
D. gniazdach elektrycznych, puszkach w instalacji oraz bezpośrednio w urządzeniach.
Wybór montażu ogranicznika przepięć w rozgałęzieniach instalacji elektrycznej czy w rozdzielnicach nie jest optymalnym rozwiązaniem, gdyż te miejsca są zbyt daleko od rzeczywistych punktów użycia urządzeń, które wymagają ochrony. Oczywiście, ważne jest zabezpieczenie całej instalacji, ale ograniczniki powinny być stosowane tam, gdzie mogą efektywnie działać, czyli blisko urządzeń. Linia elektroenergetyczna niskiego napięcia to również niewłaściwe miejsce dla ograniczników klasy D, ponieważ ich zadaniem jest ochrona konkretnych urządzeń, a nie samej infrastruktury zasilającej. Wprowadzenie ich do gniazd wtyczkowych, puszek w instalacji czy urządzeń bezpośrednio zapewnia ochronę przed przepięciami w momencie ich wystąpienia, co jest kluczowe w kontekście współczesnych instalacji elektrycznych, które często zasilają wrażliwe na zakłócenia elektroniki. Instalowanie ograniczników w złączach i miejscach wprowadzenia instalacji do budynku, szczególnie w obiektach z instalacją piorunochronną, może nie zapewnić wystarczającej ochrony, gdyż wyładowania atmosferyczne mogą zjawiskowo obciążać instalację. Z tego względu przy planowaniu i wykonaniu instalacji elektrycznych kluczowe jest dobre rozumienie zasad działania ograniczników przepięć oraz ich prawidłowe umiejscowienie zgodnie z normami i zaleceniami branżowymi.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

Aby podłączyć metalowe rury gazowe do uziemionej instalacji ochronnej w budynku jednorodzinnym, konieczne jest

A. bezpośrednie podłączenie rur gazowych do systemu połączeń wyrównawczych
B. zainstalowanie wstawki izolacyjnej na przyłączu gazowym w odległości co najmniej 10 m od obiektu
C. zamontowanie odpowiedniej wstawki izolacyjnej pomiędzy miejscem przyłączenia przewodu wyrównawczego a miejscem wprowadzenia rurociągu do obiektu
D. nałożenie na rurę gazową przyłączeniową otuliny izolacyjnej na długości co najmniej 15 m od obiektu
Zainstalowanie wstawki izolacyjnej na przyłączu gazowym w odległości co najmniej 10 m od budynku jest podejściem, które nie uwzględnia specyfiki instalacji gazowych i ich interakcji z innymi systemami budowlanymi. Przede wszystkim, odległość 10 m nie ma uzasadnienia w kontekście ochrony przed porażeniem prądem elektrycznym, ponieważ izolacja powinna być stosowana bezpośrednio w miejscu, gdzie istnieje ryzyko pojawienia się napięcia na rurach gazowych. Instalowanie wstawki izolacyjnej zbyt daleko od punktu przyłączenia może prowadzić do niekontrolowanego przewodzenia prądu do systemu gazowego, co stwarza poważne zagrożenie. Przyłączenie bezpośrednio rur gazowych do systemu połączeń wyrównawczych jest również błędnym podejściem, ponieważ metalowe rury gazowe są przewodnikami prądu i ich bezpośrednie połączenie z systemem mogą prowadzić do niebezpiecznych sytuacji, takich jak korozja elektrochemiczna, co osłabia integralność strukturalną rur. Podobnie, zakładanie otuliny izolacyjnej na rurę gazową bez odpowiedniej wstawki izolacyjnej również nie zapewnia koniecznej ochrony, ponieważ sama otulina nie jest wystarczająca do eliminacji ryzyka przewodzenia prądu. W kontekście bezpieczeństwa instalacji gazowych, kluczowe jest przestrzeganie aktualnych norm i standardów, które podkreślają znaczenie właściwych praktyk w zakresie podłączeń i izolacji.

Pytanie 27

Jaką klasę ochronności przypisuje się oprawie oświetleniowej, która nie ma zacisku ochronnego i jest zasilana ze źródła napięcia SELV?

A. III
B. II
C. 0
D. I
Klasy ochronności urządzeń elektrycznych mają kluczowe znaczenie dla zapewnienia bezpieczeństwa ich użytkowania. Odpowiedzi I, 0 oraz II nie są poprawne w kontekście oprawy zasilanej niskonapięciowym źródłem SELV. Klasa I odnosi się do urządzeń, które posiadają zacisk ochronny i wymagają podłączenia do uziemienia, co nie jest spełnione w przypadku oprawy bez zacisku ochronnego. Klasa 0 dotyczy urządzeń, które nie mają ochrony przeciwporażeniowej i są niebezpieczne w użytkowaniu, ponieważ nie oferują żadnego zabezpieczenia przed zwarciem. Z kolei klasa II odnosi się do urządzeń, które mają podwójną izolację i nie wymagają uziemienia. Odpowiedź na to pytanie wymaga zrozumienia różnic między tymi klasami oraz ich zastosowania w praktyce. Większość błędów w wyborze odpowiedzi wynika z nieznajomości zasad dotyczących bezpieczeństwa elektrycznego oraz z mylenia klasyfikacji opraw w kontekście ich konstrukcji i zastosowania. Ważne jest, aby zwracać uwagę na oznaczenia na urządzeniach oraz stosować się do norm i standardów, które regulują te kwestie. W kontekście opraw oświetleniowych klasa ochronności III to gwarancja, że użytkownik nie będzie narażony na niebezpieczeństwo, a projektanci oświetlenia mogą skutecznie wykorzystywać takie oprawy w różnych środowiskach.

Pytanie 28

Który z urządzeń elektrycznych, zainstalowany w obwodzie systemu zasilania elektrycznego kuchenki trójfazowej, jest w stanie zidentyfikować przerwę w ciągłości przewodów jednej z faz?

A. Odgromnik
B. Przekaźnik priorytetowy
C. Czujnik zaniku fazy
D. Stycznik elektromagnetyczny
Czujnik zaniku fazy to urządzenie, którego głównym zadaniem jest monitorowanie i wykrywanie ewentualnych przerw w zasilaniu w poszczególnych fazach obwodu elektrycznego. W kontekście kuchenek trójfazowych, które wymagają stabilnego zasilania z trzech faz, czujnik ten odgrywa kluczową rolę w zapewnieniu bezpieczeństwa oraz sprawnego funkcjonowania urządzenia. Gdy zachodzi przerwa w jednej z faz, czujnik natychmiast wykrywa ten stan i może zainicjować odpowiednie działania, takie jak odłączenie urządzenia od zasilania, co zapobiega jego uszkodzeniu. Przykładowo, w kuchniach przemysłowych, gdzie kuchenki trójfazowe są wykorzystywane na dużą skalę, zastosowanie czujników zaniku fazy jest standardem, co wpływa na zwiększenie niezawodności i bezpieczeństwa operacji. Zgodnie z normami branżowymi, takie jak PN-EN 61439, zaleca się stosowanie czujników do monitorowania ciągłości zasilania w instalacjach elektrycznych, co w praktyce przekłada się na wyższą efektywność i minimalizację ryzyka awarii.

Pytanie 29

Który z wymienionych czynników wpływa na częstotliwość, z jaką powinno się przeprowadzać okresowe kontrole instalacji elektrycznej?

A. Kształt budynku w przestrzeni
B. Liczba urządzeń zasilanych z tej instalacji
C. Metoda montażu instalacji
D. Warunki zewnętrzne, którym instalacja jest poddawana
Warunki zewnętrzne, na jakie jest narażona instalacja, mają kluczowe znaczenie dla określenia częstotliwości okresowych kontroli instalacji elektrycznej. W praktyce oznacza to, że instalacje znajdujące się w trudnych warunkach, takich jak znaczne zmiany temperatur, wilgotność, zanieczyszczenia chemiczne czy fizyczne uszkodzenia, wymagają częstszej inspekcji. Na przykład, instalacje elektryczne w zakładach przemysłowych, gdzie mogą występować agresywne substancje chemiczne, powinny być sprawdzane regularnie, aby zminimalizować ryzyko awarii i zapewnić bezpieczeństwo pracowników. Ponadto, normy branżowe, takie jak PN-EN 60364, zaznaczają, że różne środowiska pracy mają różne wymagania dotyczące przeglądów. Przykładowo, instalacje w budynkach użyteczności publicznej powinny być kontrolowane co najmniej raz w roku, ale w warunkach ekstremalnych, takich jak miejsca o dużym natężeniu ruchu lub narażone na czynniki zewnętrzne, kontrole powinny być dokonywane jeszcze częściej. Dbanie o regularne przeglądy pozwala na identyfikację potencjalnych zagrożeń i utrzymanie wysokiego poziomu bezpieczeństwa.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Jakie typy przewodów instaluje się na izolatorach wspornikowych?

A. Kabelkowe
B. Uzbrojone
C. Szynowe
D. Rdzeniowe
Odpowiedzi 'uzbrojone', 'kabelkowe' oraz 'rdzeniowe' są niewłaściwe w kontekście montażu na izolatorach wsporczych, ponieważ każda z tych opcji odnosi się do innego rodzaju przewodów, które nie są projektowane do takiego zastosowania. Uzbrojone przewody, na przykład, są zazwyczaj stosowane w instalacjach, gdzie wymagana jest dodatkowa ochrona mechaniczna, jednak ich montaż polega na umieszczaniu w rurkach lub osłonach, a nie na izolatorach. Kabelkowe to przewody, które są z reguły używane w systemach o niskim napięciu, gdzie ich budowa i sposób prowadzenia nie wymagają izolatorów wsporczych w tradycyjnym sensie. Rdzeniowe przewody są natomiast konstrukcjami, które można spotkać w aplikacjach zasilających, jednak nie są one mocowane na izolatorach. Typowe błędy myślowe związane z tymi odpowiedziami to mylenie różnych typów przewodów oraz nieznajomość ich podstawowych zastosowań. Właściwe zrozumienie różnic między tymi rodzajami przewodów jest kluczowe dla prawidłowego projektowania systemów elektroenergetycznych oraz ich bezpiecznej eksploatacji.

Pytanie 33

Przed zainstalowaniem uzwojenia wsypywanego stojana w silniku indukcyjnym, należy odpowiednio przygotować jego żłobki przez

A. wyłożenie izolacją żłobkową
B. zabezpieczenie klinami ochronnymi
C. nałożenie oleju elektroizolacyjnego
D. nałożenie lakieru elektroizolacyjnego
Wybór nieprawidłowego podejścia do zabezpieczenia żłobków w silniku indukcyjnym wiąże się z fundamentalnymi błędami myślowymi. Smarowanie olejem elektroizolacyjnym jest niewłaściwe, ponieważ olej nie tworzy stałej warstwy izolacyjnej, a jego właściwości mogą się zmieniać w wyniku temperatury oraz obecności zanieczyszczeń. Taki stan rzeczy może prowadzić do zwarcia między uzwojenia a żłobkami, co z kolei może skutkować uszkodzeniem silnika. Smarowanie lakierem elektroizolacyjnym, choć nieco lepsze, nie zastępuje solidnej izolacji żłobkowej. Lakier nie jest w stanie zapewnić odpowiedniej grubości izolacji oraz odporności na mechaniczne uszkodzenia, które mogą wystąpić w trakcie eksploatacji. Zabezpieczenie klinami również nie rozwiązuje problemu, ponieważ ma na celu jedynie stabilizację uzwojenia, a nie ochronę przed skutkami zwarć czy degradacją materiału izolacyjnego. Dlatego kluczowe jest, aby podczas montażu silników indukcyjnych stosować sprawdzone metody izolacji, które są zgodne z obowiązującymi normami branżowymi, co zapewni nie tylko bezpieczeństwo, ale również długotrwałą i efektywną pracę urządzenia. Fail w zastosowaniu niewłaściwych metod może prowadzić do awarii, co w konsekwencji generuje znaczne koszty napraw oraz przestoju produkcji.

Pytanie 34

Jakie uszkodzenie mogło wystąpić w instalacji elektrycznej, dla której wyniki pomiarów rezystancji izolacji przedstawiono w tabeli?

Rezystancja izolacji, MΩ
Zmierzona międzyWymagana
L1–L2L2–L3L1–L3L1–PENL2–PENL3–PEN
2,101,051,101,401,300,991,00

A. Przeciążenie jednej z faz.
B. Zwarcie międzyfazowe.
C. Zawilgocenie izolacji jednej z faz.
D. Jednofazowe zwarcie doziemne.
Zawilgocenie izolacji jednej z faz jest kluczowym problemem, który może prowadzić do poważnych awarii w instalacji elektrycznej. Wartości rezystancji izolacji w podanej tabeli wskazują, że rezystancja między L3 a przewodem ochronno-neutralnym (PEN) wynosi 0,99 MΩ, co jest zaledwie poniżej wymaganej wartości 1 MΩ. Taki wynik sugeruje, że izolacja L3 może być narażona na działanie wilgoci, co zmniejsza jej zdolność do skutecznego izolowania przewodów elektrycznych. W praktyce, jeżeli wilgoć dostaje się do izolacji, może to prowadzić do korozji, uszkodzeń mechanicznych oraz zwiększonego ryzyka porażenia prądem. Dlatego niezwykle istotne jest regularne monitorowanie stanu izolacji przy użyciu odpowiednich narzędzi pomiarowych, takich jak megger, oraz przestrzeganie standardów, takich jak normy IEC 60364 i PN-EN 60204-1, które zalecają minimalne rezystancje dla bezpieczeństwa instalacji. W przypadku wykrycia zawilgocenia, należy przeprowadzić dokładną inspekcję i, jeżeli to konieczne, wymienić uszkodzone fragmenty układu. Zrozumienie tych zjawisk jest kluczowe dla zachowania bezpieczeństwa i niezawodności instalacji elektrycznej.

Pytanie 35

Do jakiej kategorii zaliczają się kable współosiowe?

A. Kabelkowych
B. Telekomunikacyjnych
C. Oponowych
D. Grzewczych
Przewody współosiowe, znane również jako kable koncentryczne, są kluczowym elementem w systemach telekomunikacyjnych. Ich budowa składa się z centralnego przewodu, który jest otoczony dielektrykiem, a następnie metalową osłoną. Taka konstrukcja pozwala na przesyłanie sygnałów radiowych i telewizyjnych z minimalnymi zakłóceniami, co jest szczególnie ważne w telekomunikacji. Przewody współosiowe są powszechnie wykorzystywane w instalacjach telewizyjnych, sieciach komputerowych oraz w systemach audio, gdzie istotna jest jakość przesyłanych danych. Zgodnie z normami branżowymi, takie jak ANSI/TIA-568, przewody te muszą spełniać określone standardy dotyczące tłumienia sygnału i zakłóceń elektromagnetycznych, co gwarantuje ich niezawodność. Stosowanie przewodów współosiowych w telekomunikacji jest także uzasadnione ich łatwością w instalacji oraz dużą odpornością na uszkodzenia mechaniczne, co czyni je preferowanym rozwiązaniem w wielu aplikacjach.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

Jakie urządzenia elektryczne są częścią instalacji przyłączeniowej obiektu budowlanego?

A. Zabezpieczenia przedlicznikowe oraz licznik energii elektrycznej
B. Wyłącznik różnicowoprądowy oraz ograniczniki przepięć
C. Zabezpieczenia nadprądowe poszczególnych obwodów
D. Transformator słupowy z rozłącznikiem
Zabezpieczenia przedlicznikowe i licznik energii to naprawdę ważne elementy, które wchodzą w skład przyłącza budynku. Te zabezpieczenia, jak wyłączniki nadprądowe i różnicowoprądowe, mają za zadanie chronić zarówno instalację, jak i nas samych przed przeciążeniem czy porażeniem prądem. Licznik energii z kolei pozwala nam śledzić, ile energii zużywamy, co jest potrzebne przy rozliczeniach z dostawcą prądu. Jeśli dobrze dobierzemy te zabezpieczenia, to zgodnie z normami PN-IEC 60364, będziemy w lepszej sytuacji. W razie awarii, zabezpieczenia powinny odciąć zasilanie, co chroni sprzęt i nas, ludzi, w budynku. Wszystko sprowadza się do tego, żeby dobrze zamontować i dobrać te elementy, bo to klucz do bezpieczeństwa i sprawności energetycznej budynku. Dlatego ważne, żeby wartości prądowe były dopasowane tak, by instalacja działała optymalnie i uniknęła nagłych przerw w dostawie energii.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.