Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 8 maja 2025 12:28
  • Data zakończenia: 8 maja 2025 13:00

Egzamin zdany!

Wynik: 28/40 punktów (70,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jednym z komponentów urządzenia elektronicznego jest rezystor o wartości rezystancji 1 kΩ i mocy 1 W. Jeśli brakuje elementu o tych parametrach, można go zastąpić rezystorem

A. o niższej rezystancji i tej samej mocy
B. o identycznej rezystancji i niższej mocy
C. o wyższej rezystancji i tej samej mocy
D. o identycznej rezystancji i wyższej mocy
Wybór rezystora o mniejszej rezystancji i tej samej mocy jest nieprawidłowy, ponieważ zmiana rezystancji w obwodzie wprowadza inne parametry do działania układu. Zmniejszenie rezystancji spowoduje wzrost prądu zgodnie z prawem Ohma, co może prowadzić do przeciążenia pozostałych elementów obwodu, a także spalić nowy rezystor, jeśli nie jest on odpowiednio dobrany do wymagań. Wybór rezystora o takiej samej rezystancji, ale mniejszej mocy, również jest błędny, ponieważ rezystor o mniejszej mocy nie będzie w stanie pracować w warunkach, które byłyby akceptowane dla oryginalnego elementu. Może to prowadzić do przegrzania i uszkodzenia rezystora. Wybór rezystora o większej rezystancji i tej samej mocy jest także niewłaściwy, gdyż zwiększenie rezystancji zmieni całkowity prąd w obwodzie, co z kolei wpłynie na działanie pozostałych komponentów. Takie podejście często wynika z niepełnego zrozumienia zasad działania obwodów elektrycznych oraz mechanizmów odpowiedzialnych za prąd i napięcie. Dlatego ważne jest, aby przy wyborze komponentów zawsze kierować się nie tylko ich rezystancją, ale także mocą, aby zapewnić pełną kompatybilność w obwodzie.

Pytanie 2

Jakie urządzenia należy wykorzystać do strojenia toru pośredniej częstotliwości w radiowych odbiornikach?

A. multimetr cyfrowy
B. miernik magnetoelektryczny
C. mostek pomiarowy
D. wobulator i oscyloskop
Miernik magnetoelektryczny, mostek pomiarowy i multimetr cyfrowy to urządzenia, które mają swoje zastosowania w pomiarach elektrycznych, ale do strojenia toru pośredniej częstotliwości w radiu się nie nadają. Miernik magnetoelektryczny jest głównie do pomiaru prądu i napięcia, więc jest przydatny w prostych pomiarach, ale nie pokaże nam, co dzieje się z sygnałami częstotliwościowymi. Mostek pomiarowy przydaje się do sprawdzania impedancji, ale to też nie jest narzędzie do strojenia toru IF, gdzie kluczowa jest analiza dynamiki sygnału. Multimetr cyfrowy jest wszechstronny, ale robi tylko podstawowe pomiary elektryczne, jak napięcie, prąd, czy rezystancja, a to za mało, by dokładnie dostroić parametry częstotliwościowe odbiornika. Więc pomysł, że te urządzenia mogą być zastępstwem dla wobulatora czy oscyloskopu, wynika z braku zrozumienia różnicy pomiędzy pomiarami statycznymi a analizą sygnałów w czasie rzeczywistym. Efektywne strojenie toru wymaga specjalistycznych narzędzi, które potrafią jednocześnie generować sygnały i je wizualizować, co jest kluczowe dla dobrego odbioru radiowego.

Pytanie 3

W tabeli przedstawiono fragment danych technicznych bezprzewodowego czujnika temperatury. Określ, który z czynników może wpływać na niewłaściwą pracę czujnika.

DANE TECHNICZNE
Pasmo częstotliwości pracy868,0 MHz ÷ 868,6 MHz
Zasięg komunikacji radiowej (w terenie otwartym)do 500 m
Zasilaniebateria litowa CR123A 3 V
Czas pracy na bateriiokoło 3 lata
Pobór prądu w stanie gotowości50 μA
Maksymalny pobór prądu16 mA
Dokładność pomiaru temperatury±2%
Zakres temperatur pracy-10 °C...+55 °C
Maksymalna wilgotność93±3%
Wymiary obudowy24 x 110 x 27 mm
Waga56 g

A. Odbiornik słuchawek bezprzewodowych 433 MHz.
B. Obce źródło fal radiowych 868 MHz.
C. Zakres zmian temperatury 15°C÷30°C.
D. Napięcie zasilania czujnika 2,9 V.
Obce źródło fal radiowych 868 MHz jest kluczowym czynnikiem, który może wpływać na niewłaściwą pracę czujnika temperatury. Czujniki bezprzewodowe komunikują się za pomocą fal radiowych, a ich prawidłowe działanie zależy od braku zakłóceń w paśmie częstotliwości, na którym operują. W przypadku tego czujnika, który działa na częstotliwości 868 MHz, każde zewnętrzne źródło fal radiowych w tym samym zakresie może prowadzić do interferencji. Przykładem zastosowania tego czujnika może być monitorowanie temperatury w różnych środowiskach, np. w inteligentnych domach lub w przemyśle. W takich zastosowaniach istotne jest, aby czujniki były odporne na zakłócenia, co można osiągnąć poprzez zastosowanie technologii komunikacji, takich jak LoRa czy Zigbee. Standardy te przewidują odpowiednie protokoły, które minimalizują ryzyko zakłóceń ze strony innych urządzeń. W związku z tym, projektując systemy monitorowania, warto zwracać uwagę na dobór odpowiednich częstotliwości oraz na obecność potencjalnych źródeł zakłóceń, co pozwoli na zapewnienie stabilności i dokładności pomiarów.

Pytanie 4

Jakiego typu czujkę powinno się wykorzystać w pomieszczeniu, gdzie występują intensywne ruchy powietrza spowodowane działaniem pieca lub klimatyzatora?

A. Bezprzewodową pasywną czujkę podczerwieni
B. Przewodową pasywną czujkę podczerwieni typu PET
C. Dualną czujkę ruchu
D. Przewodową pasywną czujkę podczerwieni
Wybieranie pasywnych czujek podczerwieni, jak te przewodowe czy bezprzewodowe, w pomieszczeniach, gdzie ruch powietrza jest dość intensywny, może być na dłuższą metę problematyczne. One działają na zmianach temperatury, więc w takich warunkach mogą fałszywie uznać, że coś się dzieje. Z moich doświadczeń wynika, że w biurach z klimatyzacją takie czujki mogą wprowadzać w błąd i wywoływać alarmy, gdzie ich nie ma. Złe dobranie czujki może sprawić, że cały system będzie działał słabo, co wiąże się z kosztami z fałszywych alarmów i może obniżyć zaufanie w systemie bezpieczeństwa. Nie zapominajmy też o standardach, jak PN-EN 50131-2-2, które mówią, że musimy dobrze dobrać czujki do konkretnego miejsca, a czujki dualne w takich warunkach wydają się znacznie lepsze.

Pytanie 5

Ile przewodów potrzeba do standardowego podłączenia czujnika ruchu z antysabotażowym wejściem?

A. 2
B. 6
C. 4
D. 8
Wybór niewłaściwej liczby żył do podłączenia czujnika ruchu jest powszechnym problemem, który wynika z misunderstandingu dotyczącego funkcji poszczególnych żył. Wiele osób myśli, że czujnik ruchu może działać na dwóch lub czterech żyłach, co jest nieprawidłowe w kontekście urządzeń z wejściem antysabotażowym. Odpowiedzi sugerujące mniejszą liczbę żył nie uwzględniają kluczowych funkcji, takich jak zasilanie oraz monitorowanie sabotażu, które są niezbędne do zapewnienia pełnej funkcjonalności. Użycie tylko dwóch żył ogranicza możliwości czujnika do prostego zasilania, co uniemożliwia mu komunikację z systemem alarmowym oraz nie pozwala na wykrywanie prób jego usunięcia lub manipulacji. Natomiast wybór czterech żył nie pokrywa się z wymaganiami dla urządzeń z antysabotem, które wymagają dodatkowych obwodów zabezpieczających. Warto podkreślić, że standardy branżowe, takie jak EN 50131, wyraźnie wskazują na potrzebę stosowania odpowiedniej liczby żył, aby zapewnić niezawodność systemów zabezpieczeń. W związku z tym, wybierając niewłaściwą liczbę żył, można narażać system na poważne luki w bezpieczeństwie, co w praktyce może prowadzić do nieefektywnej ochrony obiektów.

Pytanie 6

Osoba doznała poparzenia dłoni substancją żrącą. Udzielając pierwszej pomocy poszkodowanemu, należy jak najszybciej

A. nałożyć maść.
B. obmyć strumieniem zimnej wody.
C. oczyścić jałową gazą.
D. nałożyć krem.
Spłukanie oparzonej dłoni strumieniem zimnej wody jest kluczowym krokiem w udzielaniu pierwszej pomocy osobom, które doznały oparzenia substancją żrącą. Ten proces powinien trwać co najmniej 10-20 minut, co pozwala na usunięcie substancji chemicznej z powierzchni skóry oraz schłodzenie tkanek, co w efekcie ogranicza rozprzestrzenianie się uszkodzeń. Zimna woda działa także jako środek chłodzący, co zmniejsza ból i zapobiega dalszym uszkodzeniom skóry. Ważne jest, aby nie stosować lodu bezpośrednio na oparzenie, ponieważ może to prowadzić do dodatkowych uszkodzeń skóry. Ponadto, pierwsza pomoc w przypadku oparzeń chemicznych powinna być zgodna z wytycznymi lokalnych instytucji zdrowotnych oraz międzynarodowych standardów, takich jak wytyczne Światowej Organizacji Zdrowia. W przypadku oparzeń chemicznych, należy również niezwłocznie skontaktować się z profesjonalną pomocą medyczną, zwłaszcza w przypadku dużych powierzchni uszkodzenia lub specyficznych substancji chemicznych, aby zminimalizować ryzyko poważnych komplikacji zdrowotnych."

Pytanie 7

Router to urządzenie wykorzystywane w warstwie

A. prezentacji
B. sieci
C. sesji
D. aplikacji
Router to urządzenie, które operuje w warstwie sieci modelu OSI. Jego główną funkcją jest przesyłanie pakietów danych pomiędzy różnymi sieciami, co umożliwia komunikację między urządzeniami pracującymi w różnych lokalizacjach. Routery analizują adresy IP zawarte w pakietach, a następnie podejmują decyzje o najlepszej trasie przesyłania tych pakietów, korzystając z tablic routingu. Routery są kluczowe w budowie sieci lokalnych oraz szerokopasmowych, a ich zastosowanie można znaleźć w domowych sieciach Wi-Fi, centrach danych oraz w infrastrukturze internetowej. Dobre praktyki w konfiguracji routerów obejmują zabezpieczanie ich poprzez zastosowanie silnych haseł, aktualizację oprogramowania oraz konfigurowanie zapór sieciowych, aby minimalizować ryzyko ataków. Zrozumienie roli routera w architekturze sieciowej jest istotne dla zapewnienia efektywnej komunikacji oraz bezpieczeństwa danych.

Pytanie 8

Aby poprawić jakość obrazu w trudnych warunkach oświetleniowych, należy zwiększyć odstęp S/N generowany przez układy elektroniczne kamery?

A. zwiększyć
B. wyzerować
C. zmniejszyć
D. wyrównać
Odpowiedzi sugerujące wyrównanie, zmniejszenie lub wyzerowanie odstępu S/N wskazują na niezrozumienie tego, jak funkcjonuje proces przetwarzania obrazu w trudnych warunkach oświetleniowych. Wyrównanie odstępu S/N nie przynosi realnych korzyści, ponieważ nie poprawia on efektywności przetwarzania sygnału. W rzeczywistości, aby uzyskać lepsze rezultaty w warunkach niskiego oświetlenia, odstęp S/N musi być zwiększony, co oznacza, że sygnał musi być wyraźnie silniejszy od szumów. Zmniejszenie S/N prowadziłoby do jeszcze większych zakłóceń w obrazie, co skutkowałoby jego pogorszeniem. W przypadku wyzerowania S/N mówimy o całkowitym braku użytecznego sygnału, co jest całkowicie nieakceptowalne w kontekście tworzenia obrazów. Często pojawiające się błędne myślenie polega na założeniu, że można obejść niską jakość obrazu poprzez jakiekolwiek inne działania, co jest mylne. W rzeczywistości podstawową techniką w poprawie jakości obrazu jest optymalizacja sygnału, co jasno wskazuje, że wysokie wartości S/N są niezbędne do uzyskania jakości, która jest akceptowalna w zastosowaniach profesjonalnych.

Pytanie 9

Monter realizuje montaż instalacji telewizji satelitarnej dla 6 mieszkańców w czasie 8 godzin. Koszt materiałów to 2 080 zł, a stawka za roboczogodzinę wynosi 40 zł. Jaka suma przypada na instalację dla jednego lokatora?

A. 450 zł
B. 333 zł
C. 350 zł
D. 400 zł
Koszt instalacji telewizji satelitarnej dla jednego lokatora wynosi 400 zł. Aby to obliczyć, należy uwzględnić zarówno koszt materiałów, jak i robocizny. Koszt materiałów dla całej instalacji wynosi 2080 zł, co przy sześciu lokatorach daje 346,67 zł na lokatora. Następnie, monter pracuje przez 8 godzin, a stawka za roboczogodzinę wynosi 40 zł, co daje całkowity koszt robocizny równy 320 zł (8 godzin x 40 zł). Koszt robocizny również dzielimy przez sześciu lokatorów, co daje 53,33 zł na lokatora. Suma tych dwóch wartości (346,67 zł + 53,33 zł) daje 400 zł za instalację dla jednego lokatora. W praktyce, przy planowaniu kosztów instalacji telewizyjnych, ważne jest uwzględnienie zarówno materiałów, jak i pracy, aby odpowiednio zrozumieć całkowite wydatki. Przykładowo, w branży telekomunikacyjnej często stosuje się kalkulacje kosztów jednostkowych, aby optymalizować wydatki oraz zapewnić konkurencyjność usług.

Pytanie 10

Aby połączyć dwa styki alarmowe z dwóch czujników PIR typu NC w jedno wejście centrali, należy je podłączyć

A. równolegle
B. w trójkąt
C. w gwiazdę
D. szeregowo
Łączenie czujek w sposób równoległy, trójkątny czy w gwiazdę to kiepski pomysł dla czujek PIR typu NC. Przy połączeniu równoległym każda czujka działa osobno, co może sprawić, że tylko jedna z nich włączy alarm. To może osłabić bezpieczeństwo, bo jeśli jedna czujka nie działa, to może się zdarzyć, że nie wyczuje ruchu. Metoda trójkątna zupełnie nie pasuje do alarmów i może być trudna w diagnozowaniu problemów. A jak dodasz połączenie w gwiazdę, to jeszcze więcej połączeń, co z kolei może sprawić, że system częściej się psuje. Błędne łączenie czujek bierze się często z niezrozumienia działania obwodów alarmowych. Ważne jest, żeby system działał tak, żeby alarm włączał się przy wykryciu intruza, a to można osiągnąć tylko przez połączenie szeregowe.

Pytanie 11

Elementy i podzespoły elektroniczne, które są uszkodzone lub zużyte, powinny być

A. oddane do najbliższego punktu skupu złomu
B. przechowywane z zamiarem ich przyszłego wykorzystania
C. przekazane do odpowiednich firm w celu ich utylizacji
D. wyrzucone do najbliższego pojemnika na odpady
Przekazywanie uszkodzonych lub zużytych elementów oraz podzespołów elektronicznych do odpowiednich firm zajmujących się utylizacją jest kluczowym działaniem w kontekście ochrony środowiska i zgodności z przepisami prawa. Takie firmy są wyspecjalizowane w odpowiednim przetwarzaniu odpadów elektronicznych, co pozwala na odzysk surowców wtórnych oraz minimalizowanie negatywnego wpływu na środowisko. Przykładowo, w procesie utylizacji urządzeń elektronicznych, takich jak telewizory czy komputery, przeprowadza się demontaż, segregację oraz recykling materiałów, dzięki czemu metale, szkło czy tworzywa sztuczne mogą być ponownie wykorzystane w produkcji nowych wyrobów. Dodatkowo, przekazywanie odpadów do wyspecjalizowanych firm pozwala na właściwe zarządzanie substancjami niebezpiecznymi, takimi jak rtęć czy ołów, co jest zgodne z dyrektywami Unii Europejskiej, takimi jak RoHS czy WEEE. W związku z tym, odpowiedzialne postępowanie z odpadami elektronicznymi jest nie tylko kwestią etyczną, ale także prawną, a jego znajomość jest niezbędna w dzisiejszym zglobalizowanym świecie.

Pytanie 12

Podstawowym zadaniem zastosowania optoizolacji pomiędzy obwodami elektronicznymi jest

A. zwiększenie wydolności wyjściowej obwodu elektronicznego
B. dopasowanie poziomów napięć między obwodami elektronicznymi
C. dopasowanie impedancji obwodów elektronicznych
D. galwaniczne oddzielenie obwodów elektronicznych
Głównym powodem, dla którego używamy optoizolacji w układach elektronicznych, jest to, żeby odseparować je galwanicznie. To naprawdę podnosi bezpieczeństwo i niezawodność naszych systemów. Optoizolatory, jak fotodiody czy fototranzystory, umożliwiają przesyłanie sygnałów bez fizycznego połączenia elektrycznego, co jest super praktyczne. Dzięki temu, różnice w napięciu i prądzie w poszczególnych układach mogą być skutecznie izolowane. Dobrym przykładem może być użycie optoizolacji w interfejsach między mikrokontrolerami a zewnętrznymi urządzeniami, na przykład przekaźnikami - one często działają na wyższych napięciach. Możemy też zauważyć, że normy, takie jak IEC 61131-2, mówią, że optoizolacja powinna być stosowana w systemach automatyki przemysłowej, żeby chronić przed przepięciami i minimalizować ryzyko uszkodzeń delikatnych podzespołów. A co najważniejsze, optoizolacja pomaga też wyeliminować pętlę masy, co chroni przed zakłóceniami i błędami w przesyłaniu sygnałów. Dlatego jest to naprawdę ważne przy projektowaniu niezawodnych układów elektronicznych.

Pytanie 13

Który z parametrów nie dotyczy monitorów LCD?

A. Czas reakcji piksela
B. Luminancja
C. Kąt widzenia
D. Napięcie katody kineskopu
Napięcie katody kineskopu jest parametrem związanym z technologią CRT (Cathode Ray Tube), a nie z monitorami LCD (Liquid Crystal Display). Monitory LCD operują na zupełnie innej zasadzie działania, która nie wymaga katody ani kineskopu. W technologii LCD światło generowane jest przez diody LED lub świetlówki, które podświetlają ciekłe kryształy. Czas reakcji piksela, kąt widzenia oraz luminancja to kluczowe parametry dla monitorów LCD, które wpływają na jakość obrazu. Czas reakcji piksela określa, jak szybko piksel może zmieniać swoją barwę, co jest istotne w kontekście dynamicznych obrazów, np. w grach komputerowych. Kąt widzenia odnosi się do maksymalnego kąta, pod jakim obraz zachowuje swoją jakość, a luminancja mierzy jasność wyświetlanego obrazu. Zrozumienie tych parametrów jest kluczowe dla wyboru odpowiedniego monitora do konkretnego zastosowania, czy to do pracy biurowej, gier, czy obróbki grafiki.

Pytanie 14

Do jakiego złącza podłącza się sygnał: wizji zespolony, kolor R, kolor G, kolor B, luminancji i chrominancji oraz sygnał audio kanału lewego i prawego?

A. S-VHS
B. EUROSCART
C. JACK
D. DIN 5
Odpowiedź EUROSCART jest poprawna, ponieważ to złącze zostało zaprojektowane z myślą o przesyłaniu sygnałów wideo oraz audio w zintegrowanej formie. Złącze to obsługuje wiele formatów sygnałowych, w tym zespolony sygnał wizji, kolory RGB (czerwony, zielony, niebieski), a także luminancję i chrominancję. Dzięki temu, EUROSCART jest często stosowane w sprzęcie audio-wideo, takim jak telewizory, odtwarzacze DVD oraz konsole do gier. Złącze EUROSCART zapewnia także przesyłanie sygnału audio dla lewego i prawego kanału, co czyni je wszechstronnym rozwiązaniem w domowych systemach multimedialnych. W praktyce, korzystając z EUROSCART, użytkownicy mogą podłączyć różne urządzenia, co ułatwia konfigurację sprzętu i zwiększa jego funkcjonalność. Warto również zauważyć, że złącze to spełnia odpowiednie normy branżowe, co gwarantuje wysoką jakość przesyłanego sygnału oraz zgodność z różnymi urządzeniami.

Pytanie 15

Aby przesłać sygnał telewizyjny z anteny zbiorczej w budynku wielorodzinnym, należy zastosować kabel

A. koncentryczny o impedancji falowej 300 Ω
B. symetryczny o impedancji falowej 300 Ω
C. koncentryczny o impedancji falowej 75 Ω
D. symetryczny o impedancji falowej 75 Ω
Wybór innych rodzajów kabli, takich jak kabel symetryczny o impedancji falowej 300 Ω, jest nieprawidłowy w kontekście transmisji sygnałów telewizyjnych. Kable te, chociaż mogą być stosowane w innych zastosowaniach, takich jak w telekomunikacji czy w systemach audio, nie odpowiadają wymaganiom dla sygnałów telewizyjnych. Impedancja 300 Ω jest typowa dla kabli symetrycznych, używanych w aplikacjach, gdzie ważna jest ich zdolność do eliminacji zakłóceń, ale nie jest to właściwy wybór dla sygnałów telewizyjnych, które wymagają kabla o impedancji 75 Ω. Użycie kabli koncentrycznych o impedancji 300 Ω mogłoby prowadzić do znacznych strat sygnału oraz problemów z odbiorem z powodu niewłaściwego dopasowania impedancji. Ponadto, kable koncentryczne o impedancji 75 Ω charakteryzują się wyższą odpornością na zakłócenia i lepszym tłumieniem, co jest niezbędne w gęsto zabudowanych obszarach, gdzie sygnał telewizyjny musi być przesyłany na dużą odległość. Wybór niewłaściwego typu kabla może prowadzić do poważnych problemów z jakością obrazu oraz stabilnością sygnału, co jest krytyczne w systemach telewizyjnych, zwłaszcza w kontekście rosnącej liczby transmisji w wysokiej rozdzielczości.

Pytanie 16

Na podstawie informacji zawartych w tabeli pomiarowej, oszacuj wzmocnienie napięciowe KUMAX dla częstotliwości środkowej fO=260 Hz? Uwej=200mV

f[Hz]4080100140180220260
Uwyj
[V]
0,410,821,21,411,922,12,40
f[Hz]300340380420460500540
Uwyj
[V]
2,21,921,431,20,820,420,22

A. KUMAX = 12 V/V
B. KUMAX = 260 V/V
C. KUMAX = 24 V/V
D. KUMAX = 2,4 V/V
Wybór odpowiedzi innej niż KUMAX = 12 V/V może wynikać z kilku nieporozumień dotyczących pomiarów wzmocnienia napięciowego. Na przykład, jeżeli ktoś obliczał wzmocnienie na podstawie niewłaściwych wartości napięcia, mógł dojść do błędnych wniosków. W przypadku pomiaru wzmocnienia ważne jest, aby korzystać z dokładnych danych, w tym właściwych wartości napięcia wejściowego i wyjściowego. Użycie napięcia wyjściowego 2,4 V w połączeniu z napięciem wejściowym 200 mV jest kluczowe, a błędne wartości mogą prowadzić do znaczących różnic w obliczeniach. Przykładowe pomyłki to mylenie jednostek – np. przeliczenie napięcia z miliwoltów na wolty lub odwrotnie, co może prowadzić do znacznych błędów w obliczeniach. Ważne jest również zrozumienie, że wzmocnienie napięciowe nie jest stałe dla wszystkich częstotliwości; może się zmieniać w zależności od charakterystyki układu oraz zastosowanych komponentów. Niekiedy osoby oceniające wzmocnienie mogą również zapominać, że wzmocnienie napięciowe jest wartością bezwymiarową, co oznacza, że nie wiąże się z jednostkami, a jego interpretacja wymaga starannego podejścia do analizy sygnałów. Dlatego kluczowe jest przeanalizowanie wszystkich danych i zastosowanie odpowiednich metod obliczeniowych, aby uzyskać prawidłowy wynik.

Pytanie 17

Jakie zabezpieczenie przed uszkodzeniem lutowanego elementu powinno być użyte podczas przyłączenia tranzystora CMOS do płyty głównej telewizora?

A. Noszenie okularów ochronnych
B. Wykorzystanie spoiwa o niższej temperaturze topnienia do lutowania
C. Założenie opaski uziemiającej na rękę
D. Pokrycie końcówek tranzystora pastą termoprzewodzącą
Założenie opaski uziemiającej na rękę to naprawdę ważna sprawa, kiedy lutujemy tranzystory CMOS. Te elementy są mega wrażliwe na wyładowania elektrostatyczne, więc lepiej nie ryzykować. Użycie opaski zmniejsza ryzyko zgromadzenia ładunku, który może zniszczyć układy scalone. Nawet małe ładunki mogą spowodować ESD i to zazwyczaj kończy się zniszczeniem tranzystora lub sprawia, że działa on nie tak, jak powinien. W branży mówi się o standardach, takich jak IEC 61340-5-1, które podkreślają, jak ważna jest ochrona przed ESD w miejscach, gdzie mamy do czynienia z wrażliwymi komponentami. Takie opaski powinny być na stałe w procedurach roboczych w laboratoriach i na liniach produkcyjnych, żeby zapewnić bezpieczeństwo sprzętu i sprawność pracy. A no i jeszcze warto pamiętać o matach ESD oraz odpowiedniej odzieży roboczej – to wszystko razem tworzy system ochronny przed złymi ładunkami.

Pytanie 18

Jakie elementy urządzeń elektronicznych opisuje termin LCD?

A. Wyświetlaczy ciekłokrystalicznych
B. Sygnalizatorów akustycznych
C. Barier podczerwieni
D. Czujników zbliżeniowych
Wyświetlacze ciekłokrystaliczne, znane również jako LCD (ang. Liquid Crystal Display), to technologie wykorzystywane do wyświetlania informacji w urządzeniach elektronicznych, takich jak telewizory, monitory komputerowe, smartfony oraz wiele innych. LCDs działają na zasadzie modulacji światła przez ciekłe kryształy, co pozwala na uzyskanie wyraźnego obrazu przy stosunkowo niskim zużyciu energii. Przykładowo, w telewizorach LCD stosowane są podświetlenia LED, które w połączeniu z matrycą ciekłokrystaliczną tworzą obraz o wysokiej jakości. Zastosowanie LCD w codziennych urządzeniach elektronicznych uczyniło je standardem w branży, zwłaszcza w kontekście wysokiej rozdzielczości i efektywności energetycznej. Standardy takie jak ISO 9241 dotyczące ergonomii wyświetlaczy potwierdzają efektywność LCD w kontekście komfortu użytkowania. Ponadto, w ostatnich latach technologia LCD została znacznie rozwinięta, wprowadzając innowacje takie jak technologie IPS, które poprawiają kąty widzenia oraz odwzorowanie kolorów.

Pytanie 19

Jak nazywa się układ elektroniczny określany jako wtórnik emiterowy?

A. Wzmacniacz z tranzystorem bipolarnym w układzie OC
B. Wzmacniacz z tranzystorem bipolarnym w układzie OB
C. Ogranicznik prądowy zrealizowany w technologii bipolarnej
D. Źródło prądowe oparte na tranzystorze bipolarnym
Wzmacniacz na tranzystorze bipolarnym w konfiguracji OB (otwarty kolektor) to odpowiedź, która nie odzwierciedla natury wtórnika emiterowego. W konfiguracji OB sygnał wyjściowy jest zazwyczaj bezpośrednio podłączony do kolektora tranzystora, co ogranicza możliwości wzmacniania sygnału. Dodatkowo, ta konfiguracja charakteryzuje się niską impedancją wejściową, co czyni ją nieefektywną w zastosowaniach wymagających wysokiej impedancji. Z kolei źródło prądowe zbudowane na tranzystorze bipolarnym nie ma nic wspólnego z charakterystyką wtórnika emiterowego, ponieważ służy do utrzymywania stałego poziomu prądu niezależnie od obciążenia, co jest zupełnie innym zastosowaniem. Ogranicznik prądowy wykonany w technice bipolarnej również nie jest odpowiedni, gdyż koncentruje się na ograniczeniu prądu, a nie na wzmacnianiu sygnału. Typowe błędy, które prowadzą do takich nieprawidłowych odpowiedzi, to niepełne zrozumienie konfiguracji tranzystorów oraz ich funkcji w różnych układach. Zrozumienie różnicy między tymi różnymi konfiguracjami jest kluczowe dla poprawnego doboru komponentów w projektach elektronicznych. Wiedza ta jest fundamentalna dla inżynierów elektroniki oraz osób zajmujących się projektowaniem układów elektronicznych.

Pytanie 20

Jakiego koloru powinien być przewód ochronny PE w elektrycznej instalacji zasilającej urządzenia elektroniczne?

A. Żółto-zielony.
B. Czerwony.
C. Czarny.
D. Jasnoniebieski.
Przewód ochronny PE (Protection Earth) w instalacjach elektrycznych zasilających urządzenia elektroniczne powinien mieć kolor żółto-zielony. Taki kolor jest zgodny z międzynarodowymi standardami, w tym normą IEC 60446, która określa oznaczenia kolorów przewodów elektrycznych. Żółto-zielony przewód pełni kluczową rolę w zapewnieniu bezpieczeństwa, ponieważ jego zadaniem jest odprowadzenie prądu doziemnego w przypadku awarii, co minimalizuje ryzyko porażenia prądem elektrycznym. Przykładem zastosowania przewodu PE może być podłączanie urządzeń, takich jak komputery, drukarki czy serwery, gdzie zapewnienie odpowiedniego uziemienia chroni nie tylko użytkowników, ale również sam sprzęt przed uszkodzeniami. Nieprzestrzeganie tych norm może prowadzić do poważnych zagrożeń, takich jak zwarcia czy pożary, dlatego istotne jest stosowanie się do wytycznych branżowych w zakresie instalacji elektrycznych.

Pytanie 21

W dokumentach technicznych dotyczących magnetofonów kasetowych często można znaleźć terminy "Dolby", "Dolby C". Co to oznacza w kontekście zastosowanego w urządzeniu systemu?

A. redukcji szumów
B. podbicia niskich tonów w urządzeniu
C. wzmocnienia sygnałów o małej amplitudzie
D. korekcji amplitudowej dźwięku
Systemy Dolby, takie jak Dolby B, Dolby C i inne, są powszechnie stosowane w magnetofonach kasetowych w celu redukcji szumów towarzyszących nagraniom dźwiękowym. Działają one na zasadzie kompresji i dekompresji sygnału audio, co pozwala na zminimalizowanie wpływu niepożądanych szumów podczas odtwarzania kaset. W szczególności Dolby C, wprowadzony w latach 80., oferuje poprawioną efektywność w porównaniu do wcześniejszych wersji, umożliwiając lepszą jakość dźwięku w szerszym zakresie dynamiki. Przykładowo, w zastosowaniach studiów nagraniowych, zastosowanie systemu Dolby C może znacząco poprawić jakość nagrań, zachowując jednocześnie ich naturalność i klarowność. Standardy Dolby są uznawane w branży audio jako jedne z najlepszych praktyk w zakresie redukcji szumów, co czyni je istotnym elementem zarówno w produkcji muzycznej, jak i w domowych systemach audio.

Pytanie 22

Skrót ADSL odnosi się do technologii, która pozwala na

A. szerokopasmowy asymetryczny dostęp do sieci teleinformatycznych
B. transmisję informacji cyfrowych za pośrednictwem fal radiowych
C. odbieranie cyfrowej telewizji naziemnej
D. kompresję materiałów audio i wideo
ADSL, czyli Asymmetrical Digital Subscriber Line, to technologia szerokopasmowego dostępu do internetu, która wykorzystuje istniejące linie telefoniczne do przesyłania danych cyfrowych. Jej główną cechą jest asymetryczność, co oznacza, że prędkość pobierania danych (downstream) jest znacznie wyższa niż prędkość wysyłania danych (upstream). Dzięki temu ADSL jest szczególnie przystosowane do typowego użytkowania, gdzie użytkownicy częściej pobierają dane (np. przeglądanie stron internetowych, oglądanie filmów) niż je wysyłają. Przykładem zastosowania ADSL jest domowe lub biurowe łącze internetowe, które umożliwia korzystanie z szerokopasmowego dostępu bez potrzeby instalacji kosztownych infrastrukturalnych rozwiązań. ADSL jest zgodne z międzynarodowymi standardami ITU-T G.992.1, co zapewnia interoperacyjność między różnymi urządzeniami i dostawcami usług. Ponadto, ADSL jest często wykorzystywane w kontekście usług Triple Play, które integrują dostęp do internetu, telewizji i telefonii w jedną ofertę.

Pytanie 23

Podczas instalacji kabla krosowego w przyłączach gniazd nie można pozwolić na rozkręcenie par przewodów na odcinku większym niż 13 mm, ponieważ

A. kabel stanie się źródłem intensywniejszego pola elektromagnetycznego
B. może to prowadzić do obniżenia odporności na zakłócenia
C. nastąpi wzrost jego impedancji
D. zredukowana zostanie jego impedancja
Odpowiedź prawidłowa wskazuje, że rozkręcanie par przewodów na odcinku większym niż 13 mm może doprowadzić do zmniejszenia odporności na zakłócenia. W przypadku kabli krosowych, które są stosowane w systemach telekomunikacyjnych i sieciach komputerowych, ważne jest, aby zachować odpowiednią długość skręcenia przewodów w parze. Skręcenie przewodów w parze ma na celu zminimalizowanie wpływu zakłóceń elektromagnetycznych, które mogą pochodzić z otoczenia lub innych urządzeń. Dobre praktyki zalecają, aby długość rozkręcenia nie przekraczała 13 mm, ponieważ dłuższe odcinki mogą prowadzić do zwiększenia indukcyjności i zmniejszenia zdolności do tłumienia zakłóceń. W kontekście standardów, takich jak TIA/EIA-568, istotne jest, aby stosować się do takich wytycznych, aby zapewnić wysoką jakość transmisji danych i zminimalizować ryzyko utraty sygnału. Przykładem zastosowania tych zasad jest instalacja sieci LAN w biurze, gdzie właściwe skręcenie przewodów zapewnia stabilny i szybki transfer danych.

Pytanie 24

Firma zajmująca się pomiarami wydaje każdego roku 12 000 zł na legalizację sprzętu pomiarowego. Jaką kwotę zaoszczędzono, jeśli w drugim półroczu uzyskano 30% zniżki?

A. 1 800 zł
B. 1 200 zł
C. 1 000 zł
D. 3 600 zł
Aby obliczyć oszczędność wynikającą z uzyskanego rabatu na legalizację przyrządów pomiarowych, należy najpierw ustalić, ile wydatków przypada na drugie półrocze. Przedsiębiorstwo wydaje rocznie 12 000 zł, co oznacza, że w drugim półroczu wydaje 6 000 zł. Następnie, obliczamy rabat, który wynosi 30% z tej kwoty. 30% z 6 000 zł to 1 800 zł (0,30 * 6 000 zł = 1 800 zł). Odpowiedź 1 800 zł jest poprawna, ponieważ odzwierciedla realne oszczędności, jakie przedsiębiorstwo uzyskuje dzięki korzystaniu z rabatu. W praktyce, takie podejście do analizy kosztów jest zgodne z zasadami zarządzania finansami, które podkreślają znaczenie efektywności kosztowej. Oprócz bezpośrednich oszczędności, wartość ta może wpłynąć na dalsze inwestycje w rozwój technologii pomiarowych, a tym samym poprawić jakość usług oferowanych przez przedsiębiorstwo, co jest kluczowe w kontekście utrzymania konkurencyjności na rynku.

Pytanie 25

Jaką rolę w systemie antenowym w budynku mieszkalnym odgrywa zwrotnica antenowa?

A. Pozwala na podłączenie anteny z wyjściem symetrycznym do asymetrycznego wejścia w telewizorze
B. Przesuwa zakres częstotliwości sygnału telewizji satelitarnej
C. Dzieli sygnał telewizyjny na kilka urządzeń odbiorczych
D. Wprowadza sygnał telewizyjny z kilku anten do jednego kabla antenowego
Zwrotnica antenowa pełni kluczową rolę w instalacji antenowej w budynkach wielorodzinnych, umożliwiając integrację sygnałów telewizyjnych z różnych źródeł. Dzięki jej zastosowaniu, sygnały z kilku anten mogą być wprowadzone do jednego przewodu antenowego, co pozwala na efektywne zarządzanie sygnałem i ogranicza ilość kabli w budynku. Przykładem może być budynek z instalacją odbierającą sygnał z anteny naziemnej oraz anteny satelitarnej – zwrotnica pozwala na przesyłanie tych sygnałów do jednego odbiornika. W praktyce, stosowanie zwrotnic zgodnych z obowiązującymi normami, takimi jak EN 50083, zapewnia ich wysoką jakość i minimalizację strat sygnału. Dobrze zaprojektowana instalacja z wykorzystaniem zwrotnic przyczynia się do uzyskania lepszego odbioru sygnału, co jest szczególnie istotne w budynkach o dużej liczbie mieszkańców, gdzie każdy chce mieć dostęp do wysokiej jakości transmisji telewizyjnej.

Pytanie 26

Który z niżej wymienionych elementów nie wpływa na jakość odbioru sygnału telewizji cyfrowej?

A. Zjawisko burzy
B. Temperatura otoczenia
C. Odległość od stacji nadawczej
D. Stan kabla antenowego
Temperatura zewnętrzna rzeczywiście nie ma wpływu na odbiór sygnału telewizji naziemnej, ponieważ sygnał telewizyjny jest transmitowany na określonych częstotliwościach radiowych, które są stosunkowo odporne na zmiany temperatury. W praktyce, czynniki takie jak odległość od nadajnika oraz stan przewodu antenowego mają kluczowe znaczenie dla jakości odbioru. Na przykład, im większa odległość od nadajnika, tym sygnał staje się słabszy z powodu rozpraszania i tłumienia w atmosferze. Z tego powodu, odpowiednia lokalizacja anteny oraz jej ustawienie są kluczowe dla uzyskania optymalnej jakości odbioru. Warto również pamiętać, że podczas instalacji systemów antenowych, stosuje się różne techniki i technologie, takie jak wzmacniacze sygnału, aby zminimalizować problemy związane z odległością. Dodatkowo, dobre praktyki branżowe zalecają regularne sprawdzanie stanu przewodów i złączy, aby zredukować potencjalne straty sygnału. W związku z tym, zrozumienie, że temperatura zewnętrzna nie wpływa na odbiór, pozwala skupić się na istotnych aspektach zapewniających właściwą jakość sygnału.

Pytanie 27

Nieprawidłowa impedancja falowa kabla koncentrycznego wskazuje na uszkodzenie

A. ekranu.
B. izolacji wewnętrznej.
C. żyły.
D. izolacji zewnętrznej.
Wybór odpowiedzi dotyczącej ekranu kabla koncentrycznego jako źródła problemów z impedancją falową może wynikać z błędnego zrozumienia funkcji poszczególnych elementów konstrukcyjnych kabla. Ekran pełni rolę ochronną, zabezpieczając przed zakłóceniami elektromagnetycznymi, jednak jego uszkodzenie rzadziej skutkuje bezpośrednią zmianą impedancji falowej. Przypadek uszkodzenia ekranu mógłby prowadzić do problemów z ekranowaniem, co w konsekwencji może wpłynąć na jakość sygnału, ale nie ma to bezpośredniego wpływu na impedancję falową. Wybór odpowiedzi dotyczącej uszkodzenia izolacji zewnętrznej również jest mylny, ponieważ ta warstwa ma głównie na celu ochronę kabla przed uszkodzeniami mechanicznymi i warunkami atmosferycznymi, a nie bezpośrednio wpływa na parametry elektryczne. Z kolei uszkodzenie żyły kabla, czyli przewodnika, również nie jest bezpośrednim powodem zmian w impedancji, chociaż mogłoby spowodować przerwy w sygnale. W związku z tym, wybierając te odpowiedzi, można popaść w pułapkę myślową, koncentrując się na zewnętrznych aspektach konstrukcji kabla, zamiast na kluczowej roli izolacji wewnętrznej, która jest odpowiedzialna za stabilność parametrów elektrycznych i jakości sygnału. W praktyce, prawidłowa ocena stanu kabla koncentrycznego wymaga znajomości ogólnych zasad jego działania, a także umiejętności diagnozowania specyficznych uszkodzeń i ich wpływu na funkcjonalność systemów komunikacyjnych.

Pytanie 28

Jakie urządzenie jest odpowiedzialne za rozdzielanie tonów niskich, średnich i wysokich do głośników?

A. equalizer
B. komparator głośnikowy
C. zwrotnica głośnikowa
D. limiter
Komparator głośnikowy, equalizer oraz limiter pełnią inne role w systemach audio i nie są odpowiednie do rozdzielania tonów niskich, średnich i wysokich. Komparator głośnikowy jest urządzeniem, które zazwyczaj służy do porównywania sygnałów audio, jednak nie jest zaprojektowany do efektywnego zarządzania częstotliwościami w systemach głośnikowych. Jego zastosowanie w kontekście rozdzielania tonów jest mylące, ponieważ nie oferuje funkcji filtracji i nie wpływa na kierowanie sygnału do odpowiednich głośników. Również equalizer, mimo że dostosowuje poziomy częstotliwości, nie dzieli sygnału na różne pasma w sposób, który jest wymagany do efektywnego używania głośników tonów niskich, średnich i wysokich. Equalizer jedynie pozwala na regulację głośności poszczególnych częstotliwości, co może poprawić brzmienie, ale nie rozdziela sygnału. Z kolei limiter służy do ograniczania maksymalnego poziomu sygnału audio, co ma na celu zapobieganie przesterowaniom. Ograniczanie sygnału nie jest związane z filtrowaniem częstotliwości i nie ma zastosowania w kontekście kierowania sygnałów do odpowiednich głośników. Zrozumienie tych różnic jest kluczowe, aby nie wprowadzać się w błąd podczas projektowania lub optymalizacji systemów audio. Fikcyjne przypisanie tych funkcji do zwrotnic prowadzi do niewłaściwego wykorzystania sprzętu, co negatywnie wpływa na jakość dźwięku oraz efektywność nagłośnienia.

Pytanie 29

W elektromagnetycznych zaczepach można wyróżnić dwa główne tryby funkcjonowania: normalnie zamknięty (NC) oraz normalnie otwarty (NO). Jaką standardową konfigurację elektrozaczepu wykorzystuje się w systemie blokowania przejścia oraz w systemach domofonowych?

A. Systemy blokowania przejścia – NO, systemy domofonowe – NC
B. Systemy blokowania przejścia – NC, systemy domofonowe – NO
C. Systemy blokowania przejścia – NO, systemy domofonowe – NO
D. Systemy blokowania przejścia – NC, systemy domofonowe – NC
Poprawna odpowiedź to 'Systemy blokowania przejścia – NO, systemy domofonowe – NC'. W systemach blokowania przejścia, stosowanie elektrozaczepów normalnie otwartych (NO) jest powszechną praktyką, ponieważ umożliwiają one natychmiastowe otwarcie zamka w momencie podania sygnału, co jest kluczowe w sytuacjach, gdy wymagane jest szybkie zwolnienie blokady, na przykład w obiektach o dużym natężeniu ruchu. Z kolei w systemach domofonowych, elektrozaczepy normalnie zamknięte (NC) są preferowane, ponieważ zapewniają większe bezpieczeństwo poprzez stałe blokowanie drzwi, które można otworzyć jedynie po aktywacji systemu, na przykład poprzez naciśnięcie przycisku na panelu domofonowym. Takie rozwiązanie minimalizuje ryzyko nieautoryzowanego dostępu, co jest zgodne z najlepszymi praktykami w zakresie zabezpieczeń budynków. Zrozumienie funkcji obu typów zaczepów i ich zastosowań jest kluczowe dla skutecznego projektowania systemów dostępu oraz zwiększania bezpieczeństwa budynków.

Pytanie 30

Jaką jednostką określa się moc czynną?

A. W
B. var
C. VA
D. V
Jednostką mocy czynnej jest wat (W), który jest powszechnie stosowaną jednostką w elektrotechnice i energetyce. Moc czynna to ta część mocy, która jest rzeczywiście wykorzystana do wykonania pracy w obwodach elektrycznych, a jej wartość można obliczyć jako iloczyn napięcia, natężenia prądu oraz cosinusa kąta fazowego między nimi (P = U * I * cos(φ)). W praktyce oznacza to, że moc czynna odzwierciedla efektywność działania urządzeń elektrycznych, takich jak silniki, grzejniki czy oświetlenie. Wyższa moc czynna oznacza lepsze wykorzystanie energii elektrycznej. Przykładem jest silnik elektryczny, który może mieć moc podaną w watach – informuje to użytkownika o maksymalnej mocy, jaką może dostarczyć. Standardy takie jak IEC 60038 definiują wartości nominalne dla mocy w różnych zastosowaniach, co jest kluczowe w projektowaniu instalacji elektrycznych, zapewniając ich bezpieczeństwo i efektywność działania.

Pytanie 31

Jakie urządzenie jest przeznaczone do bezdotykowego pomiaru temperatury?

A. pirometru
B. kalorymetru
C. luksomierza
D. multimetru
Pirometr jest urządzeniem służącym do bezdotykowego pomiaru temperatury obiektów. Działa na zasadzie rejestrowania promieniowania podczerwonego emitowanego przez ciało, co pozwala na określenie jego temperatury bez konieczności bezpośredniego kontaktu. Pirometry są niezwykle przydatne w sytuacjach, gdzie tradycyjne metody pomiaru, takie jak termometry, mogą być niepraktyczne lub niebezpieczne, na przykład w przypadku gorących powierzchni, elementów w ruchu lub materiałów szkodliwych. W przemyśle, medycynie, a także w laboratoriach, użycie pirometrów pozwala na szybkie i dokładne pomiary, co jest zgodne z najlepszymi praktykami w zakresie monitorowania procesów technologicznych oraz zapewnienia bezpieczeństwa. Warto również zaznaczyć, że wiele pirometrów jest wyposażonych w funkcje, które umożliwiają zapisywanie danych oraz ich analizę, co zwiększa efektywność monitorowania temperatury w dłuższym okresie czasu.

Pytanie 32

Jakie jest zastosowanie symetryzatora antenowego?

A. do przesyłania sygnałów z kilku anten do jednego odbiornika
B. w celu zmiany charakterystyki kierunkowej anteny
C. do dopasowania impedancyjnego anteny i odbiornika
D. aby zwiększyć zysk energetyczny anteny
Symetryzator antenowy, znany również jako transformator impedancji, jest kluczowym elementem w systemach komunikacji radiowej, który zapewnia odpowiednie dopasowanie impedancyjne między anteną a odbiornikiem. Główna funkcja symetryzatora polega na minimalizowaniu strat energii, co jest niezbędne do uzyskania optymalnej wydajności systemu. Impedancja anteny i odbiornika powinna być zgodna, aby zapewnić maksymalny transfer energii, co jest zgodne z zasadami dotyczących projektowania systemów RF (Radio Frequency). Przykładowo, w zastosowaniach takich jak radioamatorstwo, stosowanie symetryzatora może prowadzić do znacznego zwiększenia jakości sygnału i zasięgu, zwłaszcza w przypadku anten o różnej impedancji. Standardy takie jak IEC 62232 wskazują na znaczenie dopasowania impedancji w kontekście efektywności energetycznej i jakości sygnału. W praktyce, nieprawidłowe dopasowanie może skutkować odbiciem sygnału i stratami, które negatywnie wpływają na działanie całego systemu. Dlatego symetryzatory są niezbędne w profesjonalnych zastosowaniach oraz w systemach amatorskich, gdzie właściwe dopasowanie jest kluczowe dla osiągnięcia satysfakcjonujących wyników.

Pytanie 33

Aby zbadać ciągłość żył w przewodzie teletechnicznym, należy zastosować

A. woltomierz
B. częstościomierz
C. galwanometr
D. omomierz
Omomierz to super przyrząd do mierzenia oporu elektrycznego, a to znaczy, że jest świetny do sprawdzania, czy żyły w przewodzie teletechnicznym działają tak, jak powinny. Z mojego doświadczenia, sprawdzanie ciągłości żył jest naprawdę ważne, bo jak będą jakieś przerwy, to cała instalacja teletechniczna może po prostu nie działać. Kiedy używasz omomierza, możesz zmierzyć opór między końcami przewodów; jeśli wartość jest bliska zeru, to wiadomo, że przewód działa jak trzeba. Warto też pamiętać, że standardy takie jak IEC 61010 mówią, jak istotny jest pomiar oporu dla bezpieczeństwa instalacji elektrycznych. Dobrze jest też robić takie pomiary przed włączeniem systemu oraz regularnie je kontrolować, żeby uniknąć problemów później. Ogólnie mówiąc, omomierz to jedno z tych narzędzi, które naprawdę szybko pomogą zdiagnozować problemy z ciągłością, a to może zaoszczędzić czas i kasę na przyszłość.

Pytanie 34

Jakie cechy ma przewód U/UTP 4×2×0,5?

A. nieekranowany czterożyłowy o przekroju 0,5 mm2
B. ekranowany czterożyłowy o przekroju 0,5 mm2
C. ekranowany o czterech żyłach w podwójnej izolacji o długości 0,5 m
D. nieekranowany o czterech żyłach w podwójnej izolacji o długości 0,5 m
Przewód U/UTP 4×2×0,5 oznacza, że mamy do czynienia z nieekranowanym przewodem, który składa się z czterech par żył, gdzie każda para składa się z dwóch żył o przekroju 0,5 mm². Tego rodzaju przewody są powszechnie stosowane w sieciach telekomunikacyjnych, w tym w systemach lokalnych LAN. Nieekranowane przewody U/UTP są popularne ze względu na ich elastyczność oraz odpowiednią wydajność w transmisji danych w typowych warunkach. Standardy, takie jak ANSI/TIA-568, definiują wymagania dotyczące przewodów i ich instalacji, co sprawia, że U/UTP jest często używany w biurach i domach, gdzie nie ma silnych zakłóceń elektromagnetycznych. Przykłady zastosowania to instalacje Ethernetowe, gdzie przewody U/UTP mogą obsługiwać prędkości transmisji do 1 Gbps na odległości do 100 metrów, co czyni je idealnym wyborem dla większości zastosowań domowych i biurowych.

Pytanie 35

Jaką funkcję pełni PTY w radiu?

A. Wybieranie i przeszukiwanie typu programu
B. Automatyczną "regulację głośności"
C. Odbiór informacji drogowych
D. Odbiór wiadomości tekstowych
Wybór odpowiedzi dotyczącej automatycznej regulacji siły głosu, odbioru komunikatów tekstowych czy komunikatów drogowych wskazuje na pewne nieporozumienia związane z rolą i funkcjonalnością systemu RDS. Automatyczna regulacja siły głosu dotyczy zarządzania poziomem głośności sygnału audio w odbiorniku, ale nie ma związku z PTY, które koncentruje się na klasyfikacji programów. Odbiór komunikatów tekstowych, chociaż jest funkcją RDS, nie jest bezpośrednio związany z PTY. System RDS rzeczywiście umożliwia przesyłanie tekstowych informacji, ale PTY ma zupełnie inny cel - identyfikację rodzaju programów. Podobnie, komunikaty drogowe to osobna funkcjonalność, często związana z inną specyfikacją RDS, taką jak TMC (Traffic Message Channel), a nie z PTY. Typowe błędy myślowe to mylenie różnych funkcji systemu RDS, co może prowadzić do nieporozumień przy wyborze odpowiednich stacji radiowych. Ważne jest zrozumienie, że PTY to narzędzie do klasyfikacji programów, a nie do regulacji dźwięku czy przesyłania tekstów, co jest kluczowe dla prawidłowego odbioru i używania technologii radiowej.

Pytanie 36

Podczas naprawy telewizora technik serwisowy doznał porażenia prądem. Po jego uwolnieniu z kontaktu stwierdzono, że jest nieprzytomny, oddycha i ma prawidłową pracę serca. W jaki sposób powinno się ułożyć poszkodowanego?

A. W pozycji bocznej ustalonej
B. Na plecach z uniesionymi nogami
C. W pozycji siedzącej z podparciem głowy
D. Na brzuchu z głową odchyloną na bok
Wybór pozycji bocznej ustalonej dla poszkodowanego jest kluczowy w sytuacji, gdy osoba jest nieprzytomna, ale oddycha, a praca serca jest w normie. Ta pozycja pozwala na zapewnienie drożności dróg oddechowych, co jest fundamentalne w sytuacjach medycznych. Ułożenie na boku ogranicza ryzyko zachłyśnięcia się, co może nastąpić, jeśli pacjent w tej sytuacji wymiotuje. Dodatkowo, w pozycji bocznej ustalonej, osoba jest mniej narażona na urazy w przypadku utraty równowagi czy dodatkowych kontuzji. Przy zastosowaniu tej pozycji ważne jest, aby głowa poszkodowanego była ustawiona w sposób, który umożliwia swobodny przepływ powietrza, a nogi były lekko zgięte w kolanach, co stabilizuje jego ciało. Tego typu postępowanie jest zgodne z wytycznymi Europejskiej Rady Resuscytacji oraz innymi uznawanymi standardami w pierwszej pomocy, co podkreśla znaczenie edukacji w zakresie reagowania na sytuacje nagłe.

Pytanie 37

Aby zidentyfikować przerwę w obwodzie systemu alarmowego, należy użyć

A. bramki
B. manometru
C. generatora
D. multimetru
Multimetr jest kluczowym narzędziem w diagnostyce elektrycznej i elektronice, pozwalającym na pomiar napięcia, prądu oraz oporu w obwodach. W przypadku lokalizacji przerwy w obwodzie instalacji alarmowej, multimetr umożliwia szybkie zidentyfikowanie, czy obwód jest zamknięty, czy otwarty. Przykładowo, można ustawić multimetr na pomiar oporu (Ω) i sprawdzić, czy zasilany obwód wykazuje wartość bliską zeru (co wskazywałoby na zamknięcie obwodu) czy nieskończoności (co sugerowałoby przerwę). Dobrą praktyką jest również użycie funkcji pomiaru napięcia, aby upewnić się, że zasilanie dociera do wszystkich istotnych punktów obwodu. Warto również zwrócić uwagę na standardy bezpieczeństwa podczas pracy z urządzeniami elektrycznymi, takie jak odpowiednie uziemienie multimetru oraz przestrzeganie instrukcji producenta, co znacząco zmniejsza ryzyko uszkodzenia sprzętu oraz zapewnia bezpieczeństwo użytkownika w trakcie diagnostyki.

Pytanie 38

Który z wymienionych standardów nie opiera się na komunikacji radiowej?

A. Bluetooth
B. WiFi
C. NFC
D. IrDA
IrDA (Infrared Data Association) to standard komunikacyjny, który wykorzystuje podczerwień do przesyłania danych pomiędzy urządzeniami. W odróżnieniu od pozostałych standardów wymienionych w pytaniu, takich jak WiFi, NFC i Bluetooth, które operują na falach radiowych, IrDA działa w zakresie podczerwieni, co oznacza, że wymaga bezpośredniej linii wzroku między nadajnikiem a odbiornikiem. Przykładem zastosowania IrDA mogą być połączenia między urządzeniami mobilnymi a drukarkami, gdzie dane są przesyłane bezprzewodowo, ale w sposób wymagający precyzyjnego ustawienia obu urządzeń. IrDA była powszechnie stosowana w starszych telefonach komórkowych oraz laptopach do przesyłania plików. Ze względu na swoje ograniczenia, takie jak krótki zasięg oraz konieczność utrzymania linii wzroku, IrDA nie zdołała utrzymać konkurencyjnej pozycji wobec technologii radiowych, które oferują większą wszechstronność i wygodę. Warto również zauważyć, że IrDA była jednym z pierwszych standardów w zakresie bezprzewodowej komunikacji, co czyni ją przykładem historycznym w kontekście rozwoju technologii transmisji danych.

Pytanie 39

Aby zrealizować nierozłączne połączenie włókien światłowodowych, jakie urządzenie jest niezbędne?

A. spawarka.
B. zgrzewarka.
C. lutownica.
D. klamry.
Spawarka jest kluczowym narzędziem używanym do wykonania nierozłącznych połączeń włókien światłowodowych. Proces spawania polega na precyzyjnym połączeniu końcówek włókien za pomocą wysokotemperaturowego łuku elektrycznego, co pozwala na uzyskanie minimalnych strat sygnału i maksymalnej integralności optycznej. Użycie spawarki zapewnia, że włókna są idealnie wyrównane i połączone, co jest niezbędne dla zachowania jakości transmisji danych. Przykłady zastosowania spawarki obejmują instalacje sieci telekomunikacyjnych, systemy CCTV oraz wszelkie inne aplikacje, gdzie niezawodność i jakość połączeń są kluczowe. Zgodnie z normami IEC 61300-3-34, które definiują metody testowania i oceny połączeń włókien, należy stosować techniki spawania w celu osiągnięcia wysokiej wydajności systemu. Dobrze przeprowadzony proces spawania nie tylko eliminuje błąd w transmisji sygnału, ale także zwiększa odporność na czynniki zewnętrzne, co jest niezbędne w trudnych warunkach eksploatacyjnych.

Pytanie 40

Podczas wymiany uszkodzonych części elektronicznych w systemie automatyki przemysłowej, technik korzysta z narzędzi z uchwytami pokrytymi izolacją, aby zabezpieczyć się przed

A. porażeniem prądem elektrycznym
B. niską wilgotnością
C. wysoką temperaturą
D. uszkodzeniami mechanicznymi
Izolacja uchwytów narzędzi stosowanych w instalacjach automatyki przemysłowej jest kluczowym środkiem ochrony przed porażeniem prądem elektrycznym. Prąd elektryczny, w przypadku kontaktu z nagimi metalowymi częściami narzędzi, może prowadzić do poważnych obrażeń, a nawet śmierci. Dlatego odpowiednie zastosowanie narzędzi z izolowanymi uchwytami jest niezbędne, aby zminimalizować ryzyko takich zdarzeń. W takich środowiskach, jak przemysł, gdzie występują wysokie napięcia, izolacja jest nie tylko zalecana, ale wręcz wymagana przez normy bezpieczeństwa, takie jak IEC 60900, która określa wymagania dotyczące narzędzi izolowanych do pracy pod napięciem. Przykładem zastosowania mogą być wkrętaki, szczypce czy klucze, które są używane w instalacjach elektrycznych. Używając narzędzi z izolacją, instalatorzy mogą bezpiecznie pracować w obszarach potencjalnego ryzyka, co przyczynia się do poprawy bezpieczeństwa w miejscu pracy oraz zwiększa efektywność wykonywanych zadań.