Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 27 kwietnia 2025 19:52
  • Data zakończenia: 27 kwietnia 2025 20:14

Egzamin zdany!

Wynik: 24/40 punktów (60,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Reagent, który reaguje wyłącznie z jednym konkretnym jonem lub związkiem, nazywamy reagente

A. grupowy
B. specyficzny
C. selektywny
D. maskujący
W analizach chemicznych używa się różnych rodzajów odczynników, a niektóre z nazewnictwa mogą być mylące. Odczynniki selektywne, choć mogą wydawać się podobne do specyficznych, mają inną charakterystykę. Selektywność odnosi się do zdolności odczynnika do wykrywania określonego jonu w obecności innych, ale nie oznacza to, że reaguje on wyłącznie z jednym konkretnym jonem. Z tego powodu, odczynniki selektywne mogą reagować z kilkoma rodzajami jonów, co utrudnia interpretację wyników analizy. Z kolei odczynniki grupowe są projektowane tak, aby reagować z grupą jonów, co również nie spełnia wymagań dotyczących specyficzności. Przykładem może być odczynnik reagujący z kationami metali alkalicznych, który nie jest w stanie zidentyfikować konkretnego metalu. Dodatkowo, odczynniki maskujące są używane do blokowania reakcji z pewnymi jonami, a ich zastosowanie nie ma związku z wykrywaniem specyficznych jonów. Dlatego kluczowe jest zrozumienie tych różnic, aby unikać typowych błędów myślowych, które mogą prowadzić do mylnego klasyfikowania odczynników. W praktyce, każdy z tych typów odczynników ma swoje miejsce w analizach chemicznych, ale ich właściwe zrozumienie jest niezbędne dla uzyskania precyzyjnych wyników.

Pytanie 2

Jakie urządzenie służy do pomiaru temperatury topnienia substancji chemicznych?

A. Thiel.
B. Soxleth.
C. Kipp.
D. Engler.
Zrozumienie, jak działają różne aparaty laboratoryjne, jest kluczowe w kontekście chemii analitycznej. Odpowiedzi takie jak Soxletha, Englera czy Kipp są często mylone z aparatem Thielego, co prowadzi do nieporozumień. Soxleth jest używany do ekstrakcji substancji rozpuszczalnych w cieczy, co jest zupełnie inną funkcją niż pomiar temperatury topnienia. Engler to aparat służący do oznaczania temperatury wrzenia cieczy, co również nie ma związku z topnieniem. Z kolei aparat Kippa jest stosowany do wytwarzania gazów w reakcjach chemicznych, co zupełnie nie odnosi się do określania temperatury topnienia. Problemy te wynikają z mylnej koncepcji, że wszystkie aparaty mają podobne zastosowania. Kluczowe jest zrozumienie, że każdy z tych aparatów ma swoją specyfikę i przeznaczenie. Właściwe przypisanie urządzenia do zadania jest istotne dla uzyskania prawidłowych wyników i unikania błędów w analizach chemicznych. Niezrozumienie tych różnic może prowadzić do niskiej jakości wyników oraz niepoprawnych wniosków dotyczących badanych substancji. Dlatego ważne jest, aby podczas nauki chemii zwracać uwagę na funkcje poszczególnych urządzeń i ich zastosowanie w praktyce laboratoryjnej.

Pytanie 3

W jakiej standardowej temperaturze są kalibrowane szklane naczynia pomiarowe?

A. 19°C
B. 25°C
C. 20°C
D. 21°C
Odpowiedzi 19°C, 25°C oraz 21°C są niepoprawne w kontekście standardowych praktyk kalibracji szklanych naczyń miarowych. Kalibracja w temperaturze 19°C może wydawać się logiczna, jednak nie jest zgodna z powszechnie przyjętymi normami. Podobnie, 25°C, chociaż często stosowane w niektórych aplikacjach, prowadzi do nieścisłości, ponieważ cieczy w temperaturze 25°C mogą wykazywać różnice w objętości w porównaniu do standardowych pomiarów. Wysoka temperatura może również wpływać na zachowanie niektórych materiałów, co dodatkowo komplikuje pomiary. Z kolei 21°C, mimo że znajduje się blisko wartości standardowej, nie spełnia wymogów precyzyjnych pomiarów wymaganych w laboratoriach, gdzie każdy stopień Celsjusza może prowadzić do błędów w obliczeniach. Typowym błędem myślowym jest założenie, że niewielkie odchylenie od standardu nie ma znaczenia. W praktyce, nawet małe różnice w temperaturze mogą prowadzić do poważnych nieścisłości, co podkreśla konieczność stosowania kalibracji w 20°C dla zapewnienia dokładności i powtarzalności wyników. Warto zauważyć, że standardy ISO oraz normy branżowe jednoznacznie wskazują na 20°C jako optymalną temperaturę dla kalibracji, co jest kluczowe dla osiągnięcia wiarygodnych wyników w pomiarach laboratoryjnych.

Pytanie 4

Jak przebiega procedura unieszkodliwiania rozlanego kwasu siarkowego(VI)?

A. dokładnym spłukaniu miejsc z kwasem roztworem węglanu sodu
B. spłukaniu miejsc z kwasem gorącą wodą
C. zbieraniu kwasu tlenkiem wapnia w celu późniejszej utylizacji
D. dokładnym spłukaniu miejsc z kwasem roztworem wodorotlenku sodu
Spłukiwanie plam kwasu siarkowego roztworem węglanu sodu może wydawać się atrakcyjną opcją, ponieważ węglan sodu neutralizuje kwasy, jednak w praktyce ta metoda jest mało skuteczna w przypadku silnych kwasów, takich jak kwas siarkowy(VI). W wyniku reakcji może powstać dwutlenek węgla, co generuje dodatkowe ryzyko, zwłaszcza w pomieszczeniach zamkniętych, gdzie gromadzenie się gazu może prowadzić do niebezpiecznych warunków. Z kolei spłukiwanie roztworem wodorotlenku sodu, mimo że również jest techniką neutralizacji, może prowadzić do powstania niebezpiecznych odpadów alkalicznych. Takie podejście może spowodować dalsze zanieczyszczenie środowiska i zwiększenie ryzyka dla zdrowia ludzi i zwierząt. Ponadto, spłukiwanie gorącą wodą nie ma sensu, ponieważ ciepło może przyspieszyć proces parowania, co prowadzi do uwolnienia szkodliwych oparów kwasu siarkowego do atmosfery. Ważne jest, aby zrozumieć, że każda technika unieszkodliwiania substancji niebezpiecznych musi być oparta na solidnych podstawach chemicznych oraz najlepszych praktykach, takich jak stosowanie odpowiednich reagentów do neutralizacji oraz zapewnienie bezpieczeństwa operacji.

Pytanie 5

Do kolby destylacyjnej wprowadzono 200 cm3 zanieczyszczonego acetonu o gęstości d = 0,9604 g/cm3 oraz czystości 90% masowych. W celu oczyszczenia przeprowadzono proces destylacji, w wyniku czego uzyskano 113,74 g czystego acetonu. Jakie były straty acetonu podczas destylacji?

A. 18,33%
B. 81,77%
C. 34,20%
D. 65,80%
Aby obliczyć straty acetonu w procesie destylacji, najpierw musimy zrozumieć, ile acetonu faktycznie było w zanieczyszczonym surowcu. Wprowadzone 200 cm³ zanieczyszczonego acetonu o gęstości 0,9604 g/cm³ zawiera 90% masowych czystego acetonu. Obliczamy masę całkowitą zanieczyszczonego acetonu: 200 cm³ * 0,9604 g/cm³ = 192,08 g. Następnie obliczamy masę czystego acetonu: 192,08 g * 90% = 172,872 g. Po procesie destylacji otrzymano 113,74 g czystego acetonu. Straty acetonu można obliczyć, odejmując masę uzyskaną od masy początkowej: 172,872 g - 113,74 g = 59,132 g. Następnie obliczamy procent strat: (59,132 g / 172,872 g) * 100% = 34,20%. Taki sposób analizy jest zgodny z dobrymi praktykami w przemyśle chemicznym, gdzie kontrola strat substancji jest kluczowa dla efektywności procesów produkcyjnych i ekonomiki operacji.

Pytanie 6

Połączono równe ilości cynku i bromu, a następnie poddano je reakcji Zn + Br2 → ZnBr2. W tych warunkach stopień reakcji cynku wynosi (masy atomowe: Zn – 65u, Br – 80u)?

A. 0,8
B. 0,4
C. 0,6
D. 1,0
Wybór odpowiedzi, który nie uwzględnia właściwych proporcji reagentów w reakcji, prowadzi do błędnych wniosków. W przypadku reakcji Zn + Br2 → ZnBr2 należy zaznaczyć, że reakcja zachodzi w idealnych warunkach stechiometrycznych, w których reagenty są w równych ilościach molowych. Osoby, które odpowiedziały inaczej, często popełniają błąd w obliczeniach molowych lub mylą się w ocenie, który reagent jest ograniczający. Warto zwrócić uwagę, że jeśli reagent jest w nadmiarze, to nie wpływa na stopień przereagowania reagentu ograniczającego. Dlatego też, niezależnie od ilości bromu, cynk w tej reakcji ogranicza, co oznacza, że tylko część bromu zareaguje. Obliczenia powinny bazować na masach atomowych oraz na przeliczeniu ich na mole, co jest kluczowym elementem analizy chemicznej. Zazwyczaj błędy te wynikają z zbyt ogólnego podejścia do kwestii stechiometrii, a także braku zrozumienia, jak molowość reagentów wpływa na wynik reakcji. Aby zminimalizować takie błędy, ważne jest praktykowanie obliczeń stechiometrycznych oraz znajomość zasad dotyczących ilości molowych reagentów i ich wpływu na reakcję. Wiedza ta jest fundamentalna, ponieważ w przemyśle chemicznym należy precyzyjnie kontrolować proporcje reagentów, aby zapewnić efektywność procesów chemicznych.

Pytanie 7

Butle gazowe (czasy butli) napełnione wodorem są oznaczone kolorem

A. jasnozielonym
B. czerwonym
C. niebieskim
D. żółtym
Zrozumienie systemu oznaczania butli gazowych jest kluczowe dla bezpieczeństwa pracy z substancjami chemicznymi. Kolorystyka oznaczeń butli gazowych jest ściśle określona przez normy. Odpowiedzi sugerujące żółty, jasnozielony lub niebieski kolor są błędne, ponieważ nie odzwierciedlają one aktualnych praktyk w branży. Żółty kolor często kojarzony jest z gazami toksycznymi, a jasnozielony z gazami szlachetnymi, natomiast niebieski stosuje się zazwyczaj do azotu lub innych gazów obojętnych. Wybierając niepoprawne kolory, można narazić się na poważne konsekwencje, takie jak błędna identyfikacja gazu, co prowadzi do niebezpiecznych sytuacji. W przemyśle, gdzie obsługiwane są różne rodzaje gazów, znajomość i przestrzeganie norm dotyczących oznaczania butli gazowych jest niezbędne. Typowe błędy myślowe prowadzące do takich wniosków to ignorowanie standardów branżowych oraz brak świadomości na temat zagrożeń związanych z niewłaściwym oznaczeniem gazów. Warto pamiętać, że bezpieczeństwo w pracy z niebezpiecznymi substancjami chemicznymi opiera się na dokładnym przestrzeganiu procedur oraz systemów oznaczania, co bezpośrednio wpływa na zdrowie i życie pracowników oraz osób postronnych.

Pytanie 8

Odpady, które w przeważającej mierze składają się z osadów siarczków metali ciężkich, nazywa się

A. stałe, niepalne
B. stałe, palne
C. bardzo toksyczne, niepalne
D. toksyczne, palne
Odpady zawierające głównie osady siarczków metali ciężkich klasyfikowane są jako bardzo toksyczne i niepalne z uwagi na ich właściwości chemiczne oraz potencjalne zagrożenie dla środowiska i zdrowia ludzkiego. Siarczki metali ciężkich, takie jak arsen, kadm, czy ołów, są substancjami, które mogą powodować poważne skutki zdrowotne, w tym choroby układu oddechowego, nowotwory czy uszkodzenia układu nerwowego. Odpady te, z racji swojej toksyczności, wymagają szczególnego traktowania i muszą być przechowywane oraz transportowane zgodnie z obowiązującymi normami ochrony środowiska, takimi jak dyrektywy unijne dotyczące odpadowej gospodarki (np. Dyrektywa 2008/98/WE). W praktyce, odpady tego typu często są składowane w wyspecjalizowanych składowiskach, które są zaprojektowane tak, aby zminimalizować ryzyko uwolnienia toksycznych substancji do gleby i wód gruntowych. Przykładem może być klasyfikacja takich odpadów w systemie zarządzania odpadami niebezpiecznymi, co daje możliwość ich dalszego przetwarzania lub unieszkodliwienia zgodnie z najlepszymi praktykami branżowymi.

Pytanie 9

Roztwór, który jest dodawany z biurety w formie kropli do roztworu substancji, którą analizujemy, określamy mianem

A. analitem
B. substratem
C. produktem
D. titrantem
Termin 'titant' odnosi się do substancji, która jest dodawana z biurety do roztworu analizowanej substancji, czyli analitu, w trakcie procesu titracji. Titracja jest kluczową techniką analityczną wykorzystywaną w chemii do określenia stężenia substancji w roztworze poprzez stopniowe dodawanie titranta do analitu aż do osiągnięcia punktu końcowego, który zwykle jest sygnalizowany poprzez zmianę koloru lub inny wskaźnik. Przykładem może być titracja kwasu solnego (HCl) w celu określenia jego stężenia poprzez dodawanie roztworu wodorotlenku sodu (NaOH) jako titranta. W praktyce, zgodnie z zaleceniami norm ISO oraz metodami opisanymi w dokumentach takich jak ASTM, ważne jest, aby dokładnie znać stężenie titranta oraz stosować odpowiednie wskaźniki, co zapewnia uzyskanie dokładnych i powtarzalnych wyników. Znajomość tego pojęcia jest niezbędna dla chemików zajmujących się analizą chemiczną, co podkreśla jego praktyczne zastosowanie w laboratoriach analitycznych.

Pytanie 10

Czego brakuje w zestawie pokazanym na ilustracji?

A. stojak, termometr oraz siatka
B. stojak, łącznik oraz termometr
C. stojak, łącznik i łapa
D. bagietka, termometr oraz siatka
Wybór innych odpowiedzi często wiąże się z niepełnym zrozumieniem roli, jaką poszczególne elementy odgrywają w laboratoriach. Bagietka, będąca elementem używanym w kuchni, nie ma zastosowania w kontekście laboratoryjnym. Jej obecność w zestawie nie tylko nie pasuje do środowiska laboratorium, ale także wskazuje na brak wiedzy o standardowych narzędziach wykorzystywanych w procesach eksperymentalnych. Termometr, choć ważny w wielu pomiarach, nie jest elementem strukturalnym, który wspierałby stabilność zestawów montażowych. Odpowiedzi zawierające termometr pomijają kluczowe komponenty, takie jak statyw i łącznik, które są nieodzowne w każdym eksperymencie wymagającym precyzyjnego pomiaru. Z kolei łącznik i łapa, będące istotnymi elementami w laboratoriach, są fundamentalne dla łączenia i stabilizacji, co jest kluczowe dla uniknięcia wypadków w trakcie doświadczeń. Często popełnianym błędem jest skupianie się na pojedynczych narzędziach, zamiast na całościowej konfiguracji sprzętu, co prowadzi do nieporozumień. Właściwe zrozumienie komplementarności elementów sprzętu laboratoryjnego jest kluczowe dla ich efektywnego wykorzystania w praktyce.

Pytanie 11

Jaką masę siarczanu(VI) miedzi(II)-woda(1/5) należy poddać suszeniu, aby otrzymać 300 g soli bezwodnej?

CuSO4 · 5H2O → CuSO4 + 5H2O
(MCuSO4·5H2O = 249,5 g/mol, MCuSO4 = 159,5 g/mol, MH2O = 18,0 g/mol)

A. 210,0 g
B. 469,3 g
C. 584,1 g
D. 390,5 g
Odpowiedź 469,3 g jest prawidłowa, ponieważ obliczenia opierają się na stosunku mas molowych soli bezwodnej i uwodnionej. Siarczan(VI) miedzi(II) w postaci uwodnionej (CuSO4·5H2O) zawiera cząsteczki wody, które muszą zostać usunięte podczas procesu suszenia, aby uzyskać sól bezwodną (CuSO4). Masy molowe: CuSO4 wynoszą około 159,61 g/mol, a CuSO4·5H2O to 249,68 g/mol. Stosując proporcje, można ustalić, że masa siarczanu(VI) miedzi(II)-woda, potrzebna do uzyskania 300 g soli bezwodnej, wynosi około 469,3 g. Praktyczne zastosowanie tej wiedzy jest istotne w laboratoriach chemicznych, gdzie precyzyjne przygotowanie roztworów i soli jest kluczowe dla uzyskania wiarygodnych wyników badań. Dobre praktyki laboratoryjne sugerują, aby zawsze przeprowadzać obliczenia masy przed rozpoczęciem doświadczenia, co pozwala uniknąć błędów i strat materiałowych.

Pytanie 12

Woda, która została poddana dwukrotnej destylacji, to woda

A. ultra czysta
B. odejonizowana
C. odmineralizowana
D. redestylowana
Woda dwukrotnie destylowana to woda, która została poddana procesowi destylacji dwa razy, co pozwala na usunięcie znacznej większości zanieczyszczeń i rozpuszczonych substancji chemicznych. Dzięki temu uzyskuje się wodę o wysokiej czystości, często określaną mianem wody redestylowanej. Woda redestylowana jest szczególnie cenna w zastosowaniach laboratoryjnych i przemysłowych, gdzie wymagana jest wysoka jakość wody, np. w analizach chemicznych, w produkcji farmaceutyków, czy w zastosowaniach technologicznych, takich jak chłodzenie urządzeń. W kontekście standardów, woda redestylowana spełnia wymagania norm dotyczących czystości wody, takich jak te ustalone przez Farmakopeę. Przykładem jej zastosowania może być przygotowanie roztworów do badań, gdzie obecność nawet minimalnych zanieczyszczeń może wpłynąć na wyniki. Dlatego jej produkcja i wykorzystanie powinny odbywać się zgodnie z najlepszymi praktykami, aby zapewnić najwyższą jakość.

Pytanie 13

Jakie procedury powinny być stosowane podczas ustalania miana roztworu?

A. Ustalanie miana roztworu polega na starannym zagęszczeniu roztworu, aby osiągnąć wcześniej ustalone stężenie
B. Ustalanie miana roztworu polega na dokładnym określeniu stężenia roztworu, w reakcji z roztworem substancji podstawowej o precyzyjnie znanym stężeniu
C. Ustalanie miana roztworu polega na dokładnym rozcieńczeniu roztworu, aby uzyskać wcześniej zaplanowane stężenie
D. Ustalanie miana każdego roztworu powinno być wykonane natychmiast po jego przygotowaniu
Nastawianie miana roztworu to kluczowy proces w chemii analitycznej, który polega na dokładnym ustaleniu stężenia roztworu przez reakcję z roztworem substancji podstawowej o znanym stężeniu. Ta metoda jest niezwykle istotna, ponieważ precyzyjne określenie miana roztworu pozwala na uzyskanie wiarygodnych wyników analitycznych. Na przykład, w przypadku titracji, przy użyciu roztworu wzorcowego o znanym stężeniu, możemy ustalić stężenie substancji analitowanej, co ma kluczowe znaczenie w laboratoriach chemicznych oraz w badaniach jakościowych i ilościowych. Zgodnie z dobrą praktyką laboratoryjną, należy zapewnić, aby roztwory wzorcowe były przygotowane i przechowywane w odpowiednich warunkach, aby ich stężenie pozostało niezmienne. Ważne jest także wykonywanie pomiarów pod kontrolą określonych protokołów i standardów, jak np. ISO 17025, które zapewniają wysoką jakość i dokładność wyników pomiarów.

Pytanie 14

Roztwór o dokładnej masie z odważki analitycznej powinien być sporządzony

A. w kolbie miarowej
B. w zlewce
C. w kolbie stożkowej
D. w cylindrze miarowym
Roztwór mianowany z odważki analitycznej należy przygotować w kolbie miarowej, ponieważ ta szklana naczynie jest zaprojektowane do precyzyjnego przygotowywania roztworów o określonych objętościach. Kolby miarowe są wyposażone w wyraźne oznaczenia, które pozwalają na dokładne odmierzenie objętości cieczy, co jest kluczowe w chemii analitycznej. Przygotowując roztwór, należy najpierw rozpuścić odważoną ilość substancji w niewielkiej objętości rozpuszczalnika, a następnie uzupełnić do oznaczonej objętości. Dzięki temu otrzymujemy roztwór o znanym stężeniu, co jest niezbędne w różnych analizach chemicznych. Przykładem praktycznym jest przygotowanie roztworu buforowego, gdzie precyzyjne stężenie reagentów wpływa na efektywność reakcji chemicznych. Standardy przygotowania roztworów, takie jak ISO 8655, podkreślają znaczenie stosowania odpowiednich naczyń do uzyskania wiarygodnych wyników.

Pytanie 15

Jakie urządzenie jest wykorzystywane do oczyszczania próbki gazowej?

A. zestaw sit
B. rozdzielacz
C. chłodnica
D. płuczka
Płuczka jest urządzeniem stosowanym do oczyszczania gazów, które działa na zasadzie przepływu gazu przez ciecz. Proces ten pozwala na usunięcie zanieczyszczeń, takich jak pyły, drobne cząstki stałe oraz różne substancje chemiczne, które mogą być rozpuszczalne w cieczy. W praktyce płuczki wykorzystywane są w różnych gałęziach przemysłu, w tym w energetyce, przemyśle chemicznym oraz w procesach oczyszczania spalin. Standardy branżowe, takie jak ISO 14001 dotyczące zarządzania środowiskowego, podkreślają znaczenie redukcji emisji szkodliwych substancji do atmosfery, co czyni płuczki kluczowym elementem w systemach kontroli zanieczyszczeń. Przykładowo, w elektrowniach węglowych płuczki są używane do oczyszczania spalin przed ich emisją do atmosfery, co przyczynia się do ochrony środowiska oraz spełnienia norm prawnych dotyczących jakości powietrza.

Pytanie 16

Etykiety chemikaliów zawierają zwroty H, które informują o rodzaju zagrożenia. Cyfra "3" pojawiająca się po literze "H" w oznaczeniu, definiuje rodzaj zagrożenia?

A. dla człowieka
B. dla środowiska
C. chemiczne
D. fizyczne
Odpowiedź "dla człowieka" jest prawidłowa, ponieważ etykiety substancji chemicznych zawierają zwroty H (H-phrases), które odnoszą się do zagrożeń, jakie dany związek chemiczny może stanowić dla zdrowia ludzi. Na przykład, oznaczenie H3 mówi o tym, że substancja może być szkodliwa w przypadku wdychania, połknięcia lub kontaktu ze skórą. W praktyce, znajomość tych oznaczeń jest kluczowa dla pracowników w laboratorach, przemysłach chemicznych oraz w obszarach zajmujących się transportem substancji chemicznych. Dlatego w ramach BHP oraz oceny ryzyka, pracownicy powinni być odpowiednio przeszkoleni w zakresie interpretacji tych etykiet oraz stosowania odpowiednich środków ochrony osobistej. Standardy takie jak GHS (Globalnie Zharmonizowany System Klasyfikacji i Oznakowania Chemikaliów) wyznaczają wytyczne dotyczące klasyfikacji zagrożeń, co pozwala na skuteczniejsze zarządzanie bezpieczeństwem w miejscu pracy.

Pytanie 17

Podczas rozkładu chloranu(V) potasu powstają chlorek potasu oraz tlen. Ile gramów tlenu zostanie wydzielonych w trakcie rozkładu 24,5 g chloranu(V) potasu, jeśli jednocześnie uzyskano 14,9 g chlorku potasu? Masy molowe pierwiastków: K = 39 g/mol, Cl = 35,5 g/mol, O=16 g/mol?

A. 39,4 g
B. 24,5 g
C. 9,6 g
D. 14,5 g
Jak chcesz obliczyć masę tlenu, który się wydziela podczas rozkładu chloranu(V) potasu, to najpierw musisz spisać równanie reakcji. Wytwarza się 2 KClO3, a potem 2 KCl i 3 O2. To z tego równania widać, że z dwóch moli chloranu dostajemy dwa mole chlorku potasu i trzy mole tlenu. Jeśli chodzi o masy molowe, to mamy KClO3 - 122,5 g/mol, KCl - 74,5 g/mol i O2 - 32 g/mol. Jeśli weźmiemy 24,5 g KClO3, to obliczamy, że mamy około 0,2 mola. Z równania wychodzi, że z 0,2 mola KClO3 dostaniemy 0,3 mola O2, więc po policzeniu masy tlenu wyjdzie nam 9,6 g. Fajnie jest wiedzieć, jak ważne są te obliczenia, szczególnie w laboratoriach, gdzie precyzja ma znaczenie.

Pytanie 18

Fosfor biały, z uwagi na swoje właściwości, powinien być przechowywany

A. w nafcie
B. w wodzie
C. w benzenie
D. w benzynie
Przechowywanie fosforu białego w nafcie, benzynie lub innym rozpuszczalniku organicznym jest nie tylko nieefektywne, ale także bardzo niebezpieczne. Te substancje charakteryzują się łatwopalnością, co w połączeniu z właściwościami fosforu białego stwarza wysokie ryzyko pożaru. Fosfor biały w kontakcie z naftą może prowadzić do nieprzewidywalnych reakcji chemicznych, w tym zapłonu, co stanowi poważne zagrożenie dla zdrowia i bezpieczeństwa. Często występującym błędem jest mylenie nafty z wodą, co wynika z niewłaściwego zrozumienia właściwości chemicznych tych substancji. Woda jest substancją niepalną, która stabilizuje fosfor biały, podczas gdy nafta jest substancją łatwopalną, która mogłaby spowodować pożar. Podobnie, zarówno benzyna, jak i benzen są substancjami organicznymi, które mogą sprzyjać wybuchom oraz są szkodliwe dla zdrowia. W kontekście najlepszych praktyk, takie podejście do przechowywania fosforu białego jest absolutnie niewłaściwe i sprzeczne z zaleceniami instytucji zajmujących się bezpieczeństwem chemicznym. W przemyśle chemicznym oraz laboratoriach stosowane są ściśle określone procedury, które eliminują możliwość przechowywania substancji niebezpiecznych w niewłaściwy sposób, co dodatkowo podkreśla nieodpowiedzialność takich wyborów.

Pytanie 19

Proces wydobywania składnika z cieczy lub ciała stałego w mieszance wieloskładnikowej poprzez jego rozpuszczenie w odpowiednim rozpuszczalniku to

A. ekstrakcja
B. destylacja
C. saturacja
D. dekantacja
Ekstrakcja to proces inżynierii chemicznej, który polega na wydobywaniu jednego lub więcej składników z mieszaniny za pomocą odpowiedniego rozpuszczalnika. Kluczowym aspektem ekstrakcji jest wybór właściwego rozpuszczalnika, który powinien selektywnie rozpuszczać substancje pożądane, pozostawiając inne składniki nietknięte. Przykładowo, w przemyśle farmaceutycznym wykorzystuje się ekstrakcję do oddzielania aktywnych składników z roślin, co pozwala na produkcję leków. W branży spożywczej ekstrakcja jest stosowana do uzyskiwania olejków eterycznych z roślin, co znajduje zastosowanie w aromaterapii i produkcji żywności. Dobór rozpuszczalnika może być determinowany przez takie czynniki jak rozpuszczalność składników, pH oraz temperatura. Dobre praktyki w ekstrakcji obejmują także optymalizację warunków procesu, co może znacząco zwiększyć wydajność i jakość uzyskiwanych produktów. W standardach branżowych, takich jak ISO 9001, podkreśla się znaczenie kontrolowania procesów, aby zapewnić ich efektywność i zgodność z wymaganiami jakościowymi.

Pytanie 20

Nie należy używać gorącej wody do mycia

A. szkiełka zegarkowego
B. kolby stożkowej
C. zlewki
D. kolby miarowej
Kolba miarowa jest szklanym naczyniem laboratoryjnym, które służy do dokładnego pomiaru objętości cieczy. Z uwagi na jej konstrukcję, nagłe zmiany temperatury mogą prowadzić do uszkodzeń, takich jak pęknięcia czy odkształcenia. Gorąca woda może powodować, że szkło stanie się bardziej podatne na stres termiczny, co jest niebezpieczne, zwłaszcza w przypadku kolb miarowych, które są projektowane z myślą o precyzyjnych pomiarach. W standardach laboratoryjnych, takich jak normy ISO, zaleca się, aby naczynia wykonane ze szkła boro-krzemowego, wykorzystywane w laboratoriach, nie były narażane na nagłe zmiany temperatury. Dobrą praktyką jest mycie ich w letniej wodzie z detergentem, a następnie dokładne płukanie w wodzie destylowanej, aby zminimalizować ryzyko uszkodzenia i zapewnić dokładność pomiarów. Przy odpowiedniej konserwacji, kolby miarowe mogą służyć przez wiele lat, jednak ich właściwe użytkowanie jest kluczowe dla utrzymania ich funkcjonalności.

Pytanie 21

Korzystając z wykresu wskaż, w jakiej postaci występuje woda w temperaturze 10°C i pod ciśnieniem 100 barów.

Ilustracja do pytania
A. Ciecz.
B. Lód.
C. Sublimat
D. Gaz.
Wybór odpowiedzi innej niż "Ciecz" wskazuje na pewne nieporozumienia dotyczące zachowania się wody w różnych warunkach ciśnienia i temperatury. Odpowiedzi takie jak "Sublimat" czy "Gaz" wskazują na stan, w którym woda przekształca się w parę. W rzeczywistości, aby woda stała się gazem w tych warunkach, temperatura musiałaby być znacznie wyższa lub ciśnienie znacznie niższe. Woda w stanie sublimacji, czyli bezpośredniego przemiany z lodu w parę, występuje tylko w specyficznych warunkach, które nie są spełnione w przypadku 10°C i 100 barów. W odpowiedzi "Lód" również pojawia się błąd, ponieważ lód występuje w temperaturach poniżej 0°C w standardowym ciśnieniu atmosferycznym. Takie niepoprawne wybory mogą wynikać z niepełnego zrozumienia wykresu fazowego, który jasno określa, w jakim stanie skupienia znajduje się substancja w danym punkcie. Przy ocenie stanów skupienia wody, istotne jest uwzględnienie zarówno ciśnienia, jak i temperatury, co jest kluczowe w inżynierii oraz naukach przyrodniczych. Dlatego zaleca się staranne zapoznanie się z zasadami funkcjonowania wykresów fazowych i ich zastosowaniem w praktyce.

Pytanie 22

Waga przedstawiona na rysunku umożliwia ważenie substancji z dokładnością do

Ilustracja do pytania
A. 0,01 mg
B. 10 mg
C. 10 g
D. 1,00 g
Wybór innej odpowiedzi niż 10 mg może wynikać z nieporozumienia dotyczącego możliwości pomiarowych wag laboratoryjnych. Odpowiedź 1,00 g jest zbyt dużą wartością, ponieważ wskazuje na możliwość pomiaru masy z dokładnością, która jest znacznie niższa niż ta oferowana przez precyzyjną wagę. W praktyce, wagi o takiej dokładności mogą nie być wystarczające do zastosowań wymagających wysokiej precyzji, co jest istotne w chemii analitycznej, lecz bardziej w codziennym użytkowaniu. Wybór 0,01 mg jest niewłaściwy, ponieważ przekracza możliwości typowych wag laboratoryjnych, które nie osiągają tak wysokiej precyzji w standardowych zastosowaniach, co może prowadzić do niepomiaru lub błędów w analizach. Odpowiedź 10 g również jest nieadekwatna, ponieważ wagi precyzyjne mają na celu dokładne ważenie niewielkich ilości substancji, a nie większych próbek, które mogą być ważone na wagach analitycznych o innej specyfikacji. W związku z tym, każdy z wybranych błędnych odpowiedzi ilustruje typowe błędy myślowe, które mogą wynikać z braku zrozumienia charakterystyki wag laboratoryjnych oraz ich zastosowań w praktyce. Kluczowe jest, aby przy wyborze odpowiedzi na pytania dotyczące pomiarów masy kierować się zrozumieniem dokładności urządzeń oraz ich przeznaczenia w kontekście laboratoryjnym.

Pytanie 23

Na etykiecie kwasu siarkowego(VI) znajduje się piktogram pokazany na rysunku. Oznacza to, że substancja ta jest

Ilustracja do pytania
A. rakotwórcza.
B. mutagenna.
C. nieszkodliwa.
D. żrąca.
Odpowiedź "żrąca" jest poprawna, ponieważ piktogram na etykiecie kwasu siarkowego(VI) jednoznacznie oznacza substancje, które mogą powodować ciężkie uszkodzenia tkanek. W systemie GHS (Globalnie Zharmonizowany System Klasyfikacji i Oznakowania Chemikaliów) substancje żrące są klasyfikowane na podstawie ich zdolności do uszkadzania skóry oraz innych tkanek. Kwas siarkowy(VI) jest silnym kwasem, który ma zdolność do reagowania z wodą, co dodatkowo potęguje jego żrące właściwości. W praktyce, kontakt z kwasem siarkowym(VI) może prowadzić do poważnych oparzeń chemicznych, które wymagają natychmiastowej interwencji medycznej. W laboratoriach i przemyśle chemicznym niezwykle istotne jest przestrzeganie zasad bezpieczeństwa związanych z obsługą substancji żrących, takich jak stosowanie odpowiednich środków ochrony osobistej (PPE), w tym rękawic, okularów ochronnych oraz odzieży odpornych na działanie chemikaliów. Zgodność z normami bezpieczeństwa, takimi jak OSHA i CLP, jest kluczowa dla minimalizacji ryzyka związanego z narażeniem na substancje żrące.

Pytanie 24

W karcie charakterystyki chemikaliów znajduje się informacja o przechowywaniu dichromianu(VI) potasu: .. powinien być przechowywany w odpowiednio oznakowanych, szczelnie zamkniętych pojemnikach, w chłodnym, suchym i dobrze wentylowanym magazynie, który posiada instalację elektryczną i wentylacyjną. Z tego opisu wynika, że ten chemikal może być przechowywany

A. w szczelnie zamkniętych słoikach, umieszczonych w wentylowanym pomieszczeniu
B. w workach papierowych umieszczonych w wentylowanym magazynie
C. w workach jutowych umieszczonych w wentylowanym pomieszczeniu
D. w drewnianych skrzyniach umieszczonych w wentylowanym pomieszczeniu
Odpowiedź wskazująca na magazynowanie dichromianu(VI) potasu w szczelnie zamkniętych słoikach w wentylowanym pomieszczeniu jest poprawna, ponieważ spełnia wszystkie wymagania określone w karcie charakterystyki substancji chemicznych. Przechowywanie substancji chemicznych w odpowiednich opakowaniach jest kluczowe dla zapewnienia ich stabilności oraz minimalizacji ryzyka kontaktu z czynnikami zewnętrznymi. Szczelne zamknięcie słoików zapobiega uwolnieniu substancji do atmosfery oraz chroni je przed wilgocią, co jest istotne w kontekście ich właściwości chemicznych. Ponadto, zapewnienie odpowiedniej wentylacji w pomieszczeniu magazynowym jest niezbędne dla redukcji potencjalnych zagrożeń związanych z kumulacją par lub oparów. W praktyce, przechowywanie substancji w takich warunkach jest zgodne z zasadami GHS (Globalnie Zharmonizowany System Klasyfikacji i Oznakowania Chemikaliów), który zaleca stosowanie odpowiednich środków ostrożności przy składowaniu substancji niebezpiecznych, a także przestrzeganie lokalnych regulacji dotyczących składowania chemikaliów. Przykładowo, w laboratoriach chemicznych często stosuje się podobne procedury do zapewnienia bezpieczeństwa i ochrony środowiska.

Pytanie 25

Próbkę laboratoryjną dzieli się na dwie części, ponieważ

A. jedna część jest przeznaczona do potencjalnego przeprowadzenia analizy rozjemczej
B. jedna część jest skierowana do dostawcy, a druga do odbiorcy produktu
C. analizę produktu zawsze realizuje się dwiema różnymi metodami
D. przeprowadza się dwie analizy badanego produktu i przyjmuje wartość średnią z wyników
Kiedy dzielimy średnią próbkę na dwie części, to chcemy mieć pewność, że wyniki są rzetelne i analizy wiarygodne. Jak jedna z próbek idzie do analizy rozjemczej, to mamy możliwość sprawdzenia wyników, gdy coś jest nie tak. To ważne zwłaszcza, gdy są jakieś spory między dostawcą a odbiorcą. Na przykład, wyobraź sobie sytuację, gdzie obie strony mają inne zdanie na temat jakości produktu. Analiza próbki może wtedy pomóc w rozwiązaniu konfliktu. W zgodzie z normami ISO i dobrymi praktykami w laboratoriach, każda próbka powinna być traktowana z najwyższą starannością. A jak są niezgodności, analiza rozjemcza robi się kluczowa. Taki podział próbek też jest ważny, żeby zachować transparentność w badaniach, bo to buduje zaufanie w relacjach handlowych oraz przy certyfikacji produktów.

Pytanie 26

Z partii materiału należy pobrać ogólną próbkę w ilości odpowiadającej promilowi całej partii. Na podstawie podanej informacji określ, ile pierwotnych próbek, każda ważąca 10 g, trzeba pobrać z partii cukru o masie 0,5 t, aby uzyskać reprezentatywną próbkę ogólną?

A. 100
B. 50
C. 10
D. 5
Aby uzyskać reprezentatywną próbkę ogólną z partii cukru o masie 0,5 t (czyli 500 kg), należy zastosować zasadę pobierania próbek o odpowiedniej masie. Zgodnie z normami i wytycznymi, w przypadku materiałów takich jak cukier, zaleca się, aby próbka ogólna stanowiła co najmniej 0,1% całkowitej masy partii. W przypadku 500 kg, 0,1% wynosi 0,5 kg, co odpowiada 500 g. Jeśli każda próbka pierwotna ma masę 10 g, to aby uzyskać 500 g, potrzebujemy 50 próbek (500 g / 10 g = 50). Takie podejście zapewnia, że próbka ogólna będzie odzwierciedlać rzeczywistą homogeniczność partii, co jest kluczowe w kontekście zapewnienia jakości i zgodności z normami bezpieczeństwa żywności. W praktyce, odpowiednie pobieranie próbek ma kluczowe znaczenie w procesach kontroli jakości, analizy i certyfikacji produktów spożywczych.

Pytanie 27

W wyniku reakcji 20 g tlenku magnezu z wodą uzyskano 20 g wodorotlenku magnezu. Oblicz efektywność reakcji.
MMg = 24 g/mol, MO = 16 g/mol, MH = 1 g/mol?

A. 48,2%
B. 79,2%
C. 68,9%
D. 20%
Aby obliczyć wydajność reakcji, musimy najpierw ustalić teoretyczną ilość wodorotlenku magnezu (Mg(OH)₂) uzyskaną z 20 g tlenku magnezu (MgO). Reakcja między tlenkiem magnezu a wodą opisuje równanie: MgO + H₂O → Mg(OH)₂. W celu wyliczenia teoretycznej masy Mg(OH)₂, najpierw obliczamy liczbę moli MgO: 20 g / (24 g/mol + 16 g/mol) = 0,833 mol. Reakcja ta wskazuje, że 1 mol MgO daje 1 mol Mg(OH)₂, więc teoretycznie otrzymamy 0,833 mol Mg(OH)₂. Teraz przeliczamy liczbę moli na masę: 0,833 mol × (24 g/mol + 2 × 1 g/mol + 16 g/mol) = 0,833 mol × 58 g/mol = 48,3 g. Wydajność reakcji obliczamy, dzieląc masę uzyskanego produktu (20 g) przez masę teoretyczną (48,3 g) i mnożąc przez 100%: (20 g / 48,3 g) × 100% = 41,5%. Procent wydajności obliczany na podstawie początkowych danych o masach różni się od obliczeń teoretycznych, a w praktyce wydajność może być niższa z powodu strat w procesie. Wydajność 68,9% jest osiągalna, biorąc pod uwagę czynniki wpływające na efektywność reakcji, takie jak czystość reagentów oraz warunki reakcji. W praktyce chemicznej dążenie do jak najwyższej wydajności jest kluczowe, co wiąże się z koniecznością optymalizacji procesów technologicznych.

Pytanie 28

Jakie jest stężenie molowe kwasu siarkowego(VI) o zawartości 96% i gęstości 1,84 g/cm3?

A. 1,80 mol/dm3 (H — 1 g/mol, S — 32 g/mol, O — 16 g/mol)
B. 18,02 mol/cm3
C. 0,18 mol/dm3
D. 18,02 mol/dm3
Niepoprawne odpowiedzi wynikają z błędów w obliczeniach oraz niepoprawnych założeń dotyczących stężenia molowego. Odpowiedzi 0,18 mol/dm3 i 1,80 mol/dm3 mogą sugerować, że obliczenia nie uwzględniają odpowiednio masy molowej kwasu siarkowego lub gęstości roztworu. W przypadku 0,18 mol/dm3 można zauważyć, że odpowiada ona zbyt niskiej wartości, co może sugerować, że założono zbyt małą masę kwasu w roztworze. Z kolei 1,80 mol/dm3 może być wynikiem nieprawidłowych obliczeń, w których pominięto dokładne określenie objętości roztworu. Odpowiedź 18,02 mol/dm3 jest znacznie wyższa, co wskazuje na to, że w obliczeniach użyto właściwych wartości masy molowej i stężenia. Typowym błędem myślowym jest mylenie jednostek objętości i masy oraz pomijanie gęstości roztworu, co prowadzi do niepoprawnych wyników. W kontekście chemii, niezwykle ważne jest zrozumienie, że stężenie molowe to stosunek moli substancji do objętości roztworu, a nie tylko masa kwasu w danym roztworze. Dlatego kluczowe jest stosowanie właściwych jednostek oraz umiejętność ich konwersji, co jest podstawą w obliczeniach chemicznych.

Pytanie 29

Intensywna reakcja z FeCl3 jest wykorzystywana do identyfikacji

A. alkenów
B. amin
C. fenoli
D. aldehydów
Barwna reakcja z chlorkiem żelaza(III) jest dobrze znanym testem stosowanym do wykrywania fenoli, które wykazują zdolność do tworzenia kompleksów z tym związkiem. Fenole posiadają grupę hydroksylową (-OH) połączoną z pierścieniem aromatycznym, co umożliwia im reagowanie z chlorkiem żelaza(III), prowadząc do powstania charakterystycznego zabarwienia, zazwyczaj fioletowego lub purpurowego. Przykładem zastosowania tej reakcji w laboratoriach chemicznych jest analiza składu substancji organicznych, gdzie obecność fenoli może wskazywać na zanieczyszczenia lub naturalne składniki aktywne. Test ten jest często wykorzystywany w przemyśle kosmetycznym oraz farmaceutycznym, gdzie fenole mogą pełnić rolę konserwantów lub substancji czynnych. Zastosowanie tej metody jest zgodne z normami laboratoryjnymi, które zalecają stosowanie reakcji z chlorkiem żelaza(III) jako jednego z podstawowych sposobów na identyfikację związków fenolowych, co jest uznawane za dobrą praktykę w chemii analitycznej.

Pytanie 30

Aby przyspieszyć reakcję, należy zwiększyć stężenie substratów

A. zwiększyć, a temperaturę zmniejszyć
B. zmniejszyć, a temperaturę obniżyć
C. zwiększyć, a temperaturę podnieść
D. zmniejszyć, a temperaturę podnieść
Zwiększenie szybkości reakcji chemicznych trochę się sprowadza do tego, jak ważne są substraty i temperatura. Kiedy podnosisz stężenie substratów, to więcej cząsteczek jest dostępnych do reakcji, więc mają większe szanse na zderzenie. Z drugiej strony, wyższa temperatura podkręca energię kinetyczną cząsteczek, co sprawia, że zderzają się częściej i mocniej, co pomaga im pokonać energię aktywacji. Na przykład w biochemii, jak mamy reakcje enzymatyczne, zwiększenie stężenia substratu może pomóc osiągnąć maksymalną prędkość reakcji, co jest zgodne z zasadą Vmax. W praktyce w przemyśle chemicznym, dobrze jest dostosować stężenie i temperaturę, żeby zoptymalizować wydajność i rentowność. Ciekawe jest to, że czasami, jak w reakcjach równowagi, podwyższenie stężenia reagentów może przesunąć równowagę w stronę produktów, co też jest korzystne dla wydajności reakcji.

Pytanie 31

Jakiego odczynnika chemicznego, oprócz Na2Cr2O7, należy użyć do sporządzenia mieszaniny chromowej do czyszczenia sprzętu szklarskiego w laboratorium?

A. K2CrO4
B. H2SO4
C. HCI
D. H2CrO4
Wybór HCl lub K2CrO4 jako alternatywnych reagentów do przygotowania mieszaniny chromowej wykazuje kilka istotnych nieporozumień dotyczących zasad działania tych substancji i ich zastosowania w kontekście czyszczenia szkła laboratoryjnego. Kwas solny (HCl), będący mocnym kwasem, nie ma wystarczających właściwości utleniających, aby efektywnie wspomagać proces usuwania zanieczyszczeń z powierzchni szkła. Jego zastosowanie w tym kontekście może prowadzić do nieefektywnego czyszczenia, a w niektórych przypadkach może nawet powodować uszkodzenia szkła, zwłaszcza w obecności metali ciężkich. W przypadku K2CrO4, mimo że jest to źródło chromu, jego działanie w czyszczeniu szkła jest ograniczone w porównaniu do H2SO4. K2CrO4 jest stosunkowo mało reaktywny, a w połączeniu z kwasami nie tworzy tak aktywnych kompleksów, jak w przypadku H2SO4. Niewłaściwe podejście do wyboru reagentu może prowadzić do nieporozumień w laboratoriach, a także do niewłaściwego interpretowania skuteczności czyszczenia. Często błędne myślenie o roli poszczególnych reagentów w reakcjach chemicznych prowadzi do wyboru substancji, które nie są optymalne dla zamierzonego celu. Wiedza na temat chemicznych właściwości substancji oraz ich interakcji jest kluczowa dla prawidłowego doboru reagentów, co powinno być zgodne z najlepszymi praktykami w laboratoriach chemicznych.

Pytanie 32

Podczas pobierania skoncentrowanego roztworu kwasu solnego konieczne jest pracowanie w włączonym dygestorium oraz zastosowanie

A. fartucha, okularów ochronnych, maski ochronnej, rękawic lateksowych
B. okularów ochronnych, rękawic lateksowych, maski ochronnej
C. rękawic odpornych na kwasy, maski ochronnej
D. fartucha, okularów ochronnych, rękawic odpornych na kwasy
Wybór fartucha, okularów ochronnych i rękawic kwasoodpornych podczas pracy z kwasem solnym to naprawdę dobry ruch. Fartuch to podstawa, bo chroni skórę przed kontaktem z tym żrącym cudem. Nie chciałbym, żebyś miał jakieś poparzenia... Okulary ochronne też są super ważne, bo jak coś się rozprysknie, to lepiej mieć oczy w bezpieczeństwie, a kwas solny może być naprawdę niebezpieczny dla wzroku. Rękawice, zwłaszcza te kwasoodporne, są konieczne, bo zwykłe lateksowe mogą nie wytrzymać kontaktu z tak mocnymi kwasami. W laboratoriach chemicznych zawsze korzysta się z takich zasad, żeby ograniczyć ryzyko wypadków. I pamiętaj, że dobre jest też pracować pod dygestorium – to dodatkowo chroni przed szkodliwymi oparami.

Pytanie 33

Aby przygotować miano kwasu solnego, konieczne jest odważenie węglanu sodu o masie wynoszącej około 400 mg. Jaką precyzję powinna mieć waga używana do odważenia węglanu sodu?

A. 0,001 g
B. 0,1 g
C. 1 g
D. 0,01 g
Wybór wagi o dokładności 0,001 g (1 mg) jest uzasadniony, gdyż do przygotowania miany kwasu solnego potrzebna jest odważka węglanu sodu o masie około 400 mg. Wymagana dokładność przy ważeniu substanacji chemicznych jest kluczowa dla uzyskania precyzyjnych wyników analitycznych. W analityce chemicznej, zwłaszcza w titracji, precyzyjne ważenie reagentów jest niezbędne, aby uniknąć błędów pomiarowych, które mogą prowadzić do fałszywych wniosków. Przyjęcie dokładności na poziomie 0,001 g pozwala na dokładniejsze przygotowanie roztworu, co jest istotne w kontekście późniejszych obliczeń i analiz. Stosowanie wag analitycznych jest standardem w laboratoriach chemicznych, ponieważ umożliwiają one kontrolowanie jakości analizowanego materiału i zapewniają zgodność z zasadami dobrej praktyki laboratoryjnej (GLP). Przykładowo, w przypadku przygotowywania roztworów wzorcowych, dokładność ważenia jest kluczowa dla uzyskania odpowiednich stężeń, co jest niezbędne w dalszych etapach analizy.

Pytanie 34

Aby przygotować zestaw do filtracji, należy zebrać

A. bagietkę, zlewkę, łapę metalową, statyw metalowy
B. lejek szklany, statyw metalowy, kółko metalowe, zlewkę
C. szkiełko zegarkowe, tryskawkę, kolbę stożkową
D. biuretę, statyw metalowy, zlewkę
Aby przygotować zestaw do sączenia, niezbędne jest skompletowanie odpowiednich narzędzi laboratoryjnych, które umożliwią przeprowadzenie tego procesu w sposób efektywny i bezpieczny. Lejek szklany jest kluczowym elementem, ponieważ jego zadaniem jest kierowanie cieczy do zlewki, co minimalizuje ryzyko rozlania oraz zapewnia precyzyjne dozowanie. Statyw metalowy jest istotny, ponieważ stabilizuje lejek, co jest niezbędne do uzyskania prawidłowego kąta nachylenia, zapewniając tym samym efektywność procesu sączenia. Kółko metalowe, często używane jako podstawa dla lejka, zwiększa stabilność całej konstrukcji, zmniejszając ryzyko przypadkowego przewrócenia się. Zlewka, jako naczynie odbierające substancję, jest niezbędna do zbierania przefiltrowanego płynu. Wszystkie te elementy współpracują, tworząc funkcjonalny zestaw, który spełnia standardy bezpieczeństwa i efektywności w pracach laboratoryjnych.

Pytanie 35

W trakcie kalibracji stężenia roztworu kwasu solnego na przynajmniej przygotowany roztwór zasady sodowej ma miejsce reakcja

A. redoks
B. zobojętniania
C. wytrącania osadu
D. hydrolizy
Wybór odpowiedzi związanej z redoks może wynikać z nieporozumienia dotyczącego mechanizmu reakcji. Reakcje redoks dotyczą transferu elektronów między reagentami, co jest charakterystyczne dla reakcji, w których zmiana stopnia utlenienia jest kluczowa. W przypadku reakcji kwasu solnego z zasadowym roztworem sodowym nie mamy do czynienia z takim transferem, ponieważ nie zachodzi zmiana stopnia utlenienia żadnego z reagentów. Kolejnym błędnym podejściem jest sugestia, że proces ten może być klasyfikowany jako hydroliza. Hydroliza to proces, w którym cząsteczki wody reagują z substancjami chemicznymi, prowadząc do ich rozkładu lub przekształcenia. Zobojętnienie kwasu przez zasadę nie jest hydrolizą, lecz specyficzną reakcją neutralizacji, gdzie produkty są wodą i solą. Ponadto, odpowiedź dotycząca wytrącania osadu jest nieadekwatna w kontekście tej reakcji, ponieważ w przypadku neutralizacji nie tworzy się osad, chyba że na przykład poprzez dodanie innego reagentu w określonych warunkach, co nie jest istotą tej konkretnej reakcji. Właściwe zrozumienie różnic pomiędzy tymi procesami chemicznymi jest kluczowe dla prawidłowego przewidywania wyników reakcji i ich zastosowań w praktyce laboratoryjnej. Dlatego ważne jest, aby pamiętać, że reakcje zobojętniania są nie tylko podstawą chemii analitycznej, ale również mają szerokie zastosowanie w przemyśle i badaniach naukowych.

Pytanie 36

Etykieta roztworu kwasu azotowego(V) o koncentracji 6 mol/dm3 powinna zawierać nazwę substancji oraz

A. koncentrację, ostrzeżenia H oraz datę przygotowania
B. koncentrację, producenta i wykaz zanieczyszczeń
C. masę, koncentrację i numer katalogowy
D. masę, datę przygotowania i numer katalogowy
Poprawna odpowiedź wskazuje, że etykieta roztworu kwasu azotowego(V) o stężeniu 6 mol/dm3 powinna zawierać stężenie, zwroty zagrożeń H oraz datę sporządzenia. Umożliwia to nie tylko identyfikację substancji, ale także informuje użytkownika o potencjalnych zagrożeniach związanych z jej stosowaniem. Zwroty zagrożeń H (Hazard statements) są kluczowym elementem, który świadczy o ryzyku związanym z kontaktami, na przykład: H290 - może być żrący dla metali, H314 - powoduje poważne oparzenia skóry oraz uszkodzenia oczu. Podawanie stężenia kwasu jest istotne dla oceny jego reaktywności oraz właściwego postępowania ze substancją. Data sporządzenia pozwala na śledzenie ważności roztworu oraz jego stabilności. Przykładem zastosowania jest laboratorium chemiczne, gdzie precyzyjne etykiety pomagają utrzymać bezpieczeństwo i zgodność z przepisami BHP. W branży laboratoryjnej standardy takie jak GHS (Globalnie Zharmonizowany System Klasyfikacji i Oznakowania Chemikaliów) dostarczają wytycznych dotyczących etykietowania substancji chemicznych, co znacząco zwiększa bezpieczeństwo pracy.

Pytanie 37

Jakie urządzenie wykorzystuje się do pobierania próbek gazów?

A. barometr
B. pojemnik
C. aspirator
D. czerpak
Aspirator jest urządzeniem zaprojektowanym do pobierania próbek gazów w sposób kontrolowany i skuteczny. Jego działanie opiera się na zasadzie podciśnienia, które umożliwia pobieranie gazów bez narażania ich na zanieczyszczenia czy straty. W praktyce, aspiratory są wykorzystywane w laboratoriach analitycznych, przemyśle chemicznym oraz w monitorowaniu jakości powietrza. Użycie aspiratora pozwala na precyzyjne pobieranie próbek z określonych lokalizacji, co jest kluczowe w analizach, takich jak badanie emisji z kominów, czy ocena stężenia substancji szkodliwych w atmosferze. Standardy, takie jak ISO 17025, podkreślają znaczenie urządzeń do pobierania próbek w kontekście wiarygodności wyników badań. Należy również pamiętać, że aspiratory są często stosowane w połączeniu z odpowiednimi filtrami, co dodatkowo zwiększa jakość pobieranych próbek. Takie podejście zapewnia integrację metod analitycznych z procedurami zapewnienia jakości.

Pytanie 38

Aby poprawić efektywność reakcji opisanej równaniem: HCOOH + C2H5OH ⇄ HCOOC2H5 + H2O, należy

A. wprowadzić wodę
B. dodać etylowy ester kwasu mrówkowego
C. zmniejszyć stężenie kwasu mrówkowego
D. oddestylować etylowy ester kwasu mrówkowego
Dodawanie wody do reakcji esterifikacji nie tylko nie zwiększa wydajności, ale może wręcz prowadzić do jej spadku. Woda jest produktem reakcji, a jej zwiększenie przesuwa równowagę reakcji w stronę substratów, co jest zgodne z zasadą Le Chateliera. W praktyce, dodawanie wody może prowadzić do rozcieńczenia reagentów, co w konsekwencji osłabia szybkość reakcji oraz zmniejsza ilość powstającego estera. Z kolei dodanie mrówczanu etylu do układu reakcyjnego również ma swoje ograniczenia; jego nadmiar może skutkować nadmiernym obciążeniem układu, prowadząc do reakcji niepełnych i niepożądanych skutków ubocznych. Zmniejszanie stężenia kwasu mrówkowego, jako kolejna strategia, w praktyce nie przynosi oczekiwanych rezultatów, ponieważ to właśnie kwas sprzyja protonowaniu alkoholu, co jest kluczowe w procesie esterifikacji. Wszelkie zmiany stężenia reagentów powinny być przemyślane, a ich wpływ na równowagę reakcji wziąć pod uwagę w kontekście całego procesu. Dlatego też, aby osiągnąć wysoką wydajność reakcji esterifikacji, kluczowe jest usunięcie produktów reakcji, co potwierdza, iż oddestylowanie mrówczanu etylu stanowi najlepsze rozwiązanie w tej sytuacji.

Pytanie 39

Który z wskaźników nie jest używany w alkacymetrii?

A. Fenoloftaleina
B. Błękit tymolowy
C. Skrobia
D. Oranż metylowy
Oranż metylowy, fenoloftaleina oraz błękit tymolowy to wskaźniki, które odgrywają kluczową rolę w alkacymetrii, a ich zastosowanie jest oparte na ich zdolności do zmiany koloru w odpowiedzi na zmiany pH roztworu. Oranż metylowy, zmieniający kolor przy pH 3,1 - 4,4, jest szczególnie użyteczny w reakcjach, gdzie dominują kwasy. Fenoloftaleina, zmieniająca barwę z bezbarwnej na różową w zakresie pH 8,2 - 10,0, znajduje zastosowanie w titracji zasadowej, gdzie istotne jest ustalenie momentu, w którym zasadowość roztworu jest wystarczająca do neutralizacji kwasu. Błękit tymolowy, zmieniający kolor w pH 6,0 - 7,6, jest często wykorzystywany w analizach, gdzie pH roztworu zbliża się do neutralności. W związku z tym, mylenie skrobi z tymi wskaźnikami może wynikać z nieporozumienia dotyczącego ich funkcji. Skrobia, będąca naturalnym polisacharydem, nie działa jako wskaźnik pH, lecz jest używana jako reagent do wykrywania jodu, co pokazuje różnice w ich zastosowaniach. Zrozumienie różnic w zastosowaniach tych substancji jest kluczowe, aby uniknąć błędnych wniosków w praktyce laboratoryjnej.

Pytanie 40

Podczas oznaczania kwasu siarkowego zachodzi reakcja:

H2SO4 + 2NaOH → Na2SO4 + 2H2O 
Zgodnie z zamieszczoną instrukcją, roztwór poreakcyjny należy

Fragmenty instrukcji zbierania, utylizacji i eliminacji odpadów chemicznych
Lista substancji, które mogą być usunięte z odpadami komunalnymi w postaci stałej, lub wprowadzone do systemu kanalizacyjnego w postaci rozcieńczonych roztworów wodnych, o ile ich ilość nie przekracza jednorazowo 100 g.
Związki nieorganiczne
Siarczany sodu, potasu, magnezu, wapnia, amonu
Kwasy nieorganiczne
Stężone kwasy ostrożnie rozcieńczyć przez wkroplenie z równoczesnym mieszaniem do wody z lodem, a następnie zneutralizować roztworem wodorotlenku sodowego. Po neutralizacji doprowadzić pH roztworu do zakresu 6-8 przelać do pojemnika S. Małe ilości kwasów takich jak siarkowy, solny, azotowy czy fosforowy (nie więcej niż 10 g) po rozcieńczeniu wodą i neutralizacji roztworem wodorotlenku sodowego oraz doprowadzeniu pH takiego roztworu do zakresu 6-8 można wylać do zlewu i obficie spłukać wodą.
Sole nieorganiczne
Stałe sole nieorganiczne – pojemnik N.
Obojętne roztwory soli nieorganicznych pojemnik S. Sole metali ciężkich, sole o właściwościach toksycznych – pojemnik TN.

A. zobojętnić i usunąć z odpadami komunalnymi.
B. wylać do zlewu i spłukać bieżącą wodą.
C. umieścić w pojemniku S.
D. umieścić w pojemniku TN.
Wybór niewłaściwej metody utylizacji roztworu po reakcji kwasu siarkowego z wodorotlenkiem sodu może prowadzić do poważnych konsekwencji zarówno dla środowiska, jak i dla bezpieczeństwa osób pracujących w laboratoriach. Umieszczanie roztworów w pojemnikach przeznaczonych dla odpadów niebezpiecznych, jak sugeruje jedna z odpowiedzi, jest nieadekwatne, ponieważ powstały siarczan sodu jest substancją neutralną i nie stwarza zagrożenia, co jest sprzeczne z zasadami efektywnej gospodarki odpadami. Ponadto, niewłaściwe wylewanie takich roztworów do zlewu bez wcześniejszego rozcieńczenia wodą może prowadzić do lokalnych zanieczyszczeń, a także może być niezgodne z lokalnymi przepisami dotyczącymi utylizacji odpadów chemicznych. Kwestia zobojętniania przed usunięciem jest również problematyczna, ponieważ w większości przypadków neutralizacja nie jest wymagana dla substancji obojętnych i może wprowadzać dodatkowe reakcje chemiczne, które generują odpady, zamiast ich minimalizować. Takie błędne podejścia pokazują, jak ważne jest posiadanie wiedzy na temat właściwego zarządzania odpadami oraz umiejętność rozpoznawania potencjalnych zagrożeń w praktyce laboratoryjnej. Właściwe postępowanie z odpadami chemicznymi powinno być zgodne z normami ochrony środowiska oraz wewnętrznymi procedurami bezpieczeństwa w laboratoriach, co jest kluczowe dla zapewnienia bezpieczeństwa osób oraz minimalizacji wpływu na środowisko.