Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 2 maja 2025 15:26
  • Data zakończenia: 2 maja 2025 15:44

Egzamin niezdany

Wynik: 19/40 punktów (47,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

Który z wymienionych symptomów wskazuje na zanieczyszczenie hydraulicznego filtra?

A. Wzrost ciśnienia oleju za filtrem
B. Wzrost ciśnienia oleju przed filtrem
C. Spadek temperatury oleju przed filtrem
D. Spadek temperatury oleju za filtrem
Zrozumienie objawów zanieczyszczenia filtra hydraulicznego wymaga analizy mechanizmów, które rządzą przepływem oleju w systemie. Wzrost ciśnienia oleju za filtrem nie świadczy o zanieczyszczeniu, ponieważ w zdrowym układzie ciśnienie za filtrem powinno być niższe niż przed filtrem, co wynika z oporu, jaki filtr stawia przepływającemu olejowi. Zjawisko to może być mylnie interpretowane jako wskaźnik problemu. Również spadek temperatury oleju przed filtrem nie jest związany z zanieczyszczeniem, ponieważ temperatura oleju może być wpływana przez inne czynniki, takie jak warunki atmosferyczne czy obciążenie pracy. Spadek temperatury za filtrem również nie jest wskaźnikiem zanieczyszczenia, ponieważ filtr działa jako element, który może obniżać temperaturę oleju, usuwając z niego zanieczyszczenia, które mogą prowadzić do wzrostu temperatury. Chociaż na pierwszy rzut oka te objawy mogą wydawać się logiczne, są one przykładem nieprawidłowego rozumienia procesów hydraulicznych, które wymaga gruntownej wiedzy na temat działania systemów hydraulicznych oraz ich komponentów. W praktyce, monitorowanie ciśnienia i temperatury oleju w systemie to kluczowe aspekty utrzymania sprawności hydrauliki, które powinny być ściśle powiązane z regularną konserwacją i kontrolą filtrów.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

W normalnych warunkach działania wyłącznika różnicowoprądowego wektorowa suma natężeń prądów sinusoidalnych przepływających w przewodach fazowych oraz neutralnym wynosi

A. 2 A
B. 0 A
C. 1 A
D. 3 A
Odpowiedzi 1 A, 2 A i 3 A sugerują istnienie różnicy prądów w obwodzie, co w przypadku prawidłowego działania wyłącznika różnicowoprądowego jest niepoprawne. Wyłącznik ten działa na zasadzie pomiaru różnicy między prądem wpływającym a wypływającym, a w warunkach normalnych te dwa prądy powinny być równe, co prowadzi do zera. W przypadku podania wartości 1 A, 2 A czy 3 A można by błędnie wnioskować, że w obwodzie występuje jakaś forma upływu prądu, co jest mylące. Typowym błędem w myśleniu jest założenie, że każdy prąd płynący przez obwód musi generować różnice natężeń, co nie jest zgodne z zasadami zachowania energii. W praktyce, w instalacjach elektrycznych, sumowanie prądów sinusoidalnych w obwodzie powinno zawsze prowadzić do zera, co jest warunkiem stabilności i bezpieczeństwa systemu. Warto pamiętać, że niewłaściwe zrozumienie działania wyłączników różnicowoprądowych może prowadzić do błędnych decyzji w projektowaniu i eksploatacji instalacji elektrycznych, co w skrajnych przypadkach może zagrażać życiu i zdrowiu użytkowników.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Jakie są etapy podstawowych cykli działania sterownika PLC?

A. Aktualizacja stanu wyjść, inicjalizacja sterownika, wykonanie programu, uaktualnianie stanu wejść
B. Inicjalizacja sterownika, aktualizacja stanu wyjść, aktualizacja stanu wejść, wykonanie programu
C. Aktualizacja stanu wejść, inicjalizacja sterownika, aktualizacja stanu wyjść, wykonanie programu
D. Inicjalizacja sterownika, aktualizacja stanu wejść, wykonanie programu, aktualizacja stanu wyjść
Wybór niewłaściwych sekwencji cykli pracy sterownika PLC może prowadzić do licznych błędów w działaniu systemu, co ma bezpośredni wpływ na efektywność procesów automatyki. W przypadku pierwszej z niepoprawnych odpowiedzi, sekwencja zaczyna się od aktualizacji stanu wyjść przed odczytem stanu wejść, co jest fundamentalnym błędem. Sterownik PLC powinien najpierw poznać aktualny stan otoczenia (wejść), zanim podejmie decyzje, które wyjścia należy aktywować. W drugim przykładzie, sekwencja rozpoczyna się od aktualizacji stanu wejść, co jest poprawne, ale inicjalizacja sterownika powinna zająć miejsce przed tym krokiem, aby zapewnić, że wszystkie parametry są odpowiednio ustawione. Trzecia odpowiedź pokazuje, że aktualizacja stanu wyjść następuje przed wykonaniem programu, co jest sprzeczne z zasadą logiki sterowania, gdyż decyzje dotyczące wyjść powinny być oparte na obliczeniach i analizach przeprowadzonych w trakcie wykonania programu. Wreszcie, ostatnia odpowiedź wprowadza dodatkowy chaos, gdyż zaczyna się od aktualizacji stanu wyjść oraz nie uwzględnia sekwencji wykonania programu. Takie podejścia mogą prowadzić do nieprzewidywalnych rezultatów, błędów w automatyce oraz problemów z bezpieczeństwem. Kluczowe jest, aby zrozumieć, że każdy z tych kroków jest od siebie zależny, a ich odpowiednia sekwencja jest fundamentem prawidłowego działania systemów sterowania.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

Falownik to urządzenie przetwarzające moc, które konwertuje prąd

A. zmienny o regulowanej częstotliwości na prąd zmienny 50 Hz
B. zmienny o częstotliwości 50 Hz na prąd stały
C. stały na prąd zmienny o regulowanej częstotliwości
D. trój fazowy na prąd jednofazowy
Wszystkie podane niepoprawne odpowiedzi zawierają nieporozumienia dotyczące funkcji falownika. Falownik nie przekształca prądu zmiennego o częstotliwości 50 Hz na prąd stały, ponieważ jego podstawowym zadaniem jest konwersja prądu stałego na prąd zmienny. Wskazanie, że falownik zamienia prąd trójfazowy na jednofazowy, również jest błędne, ponieważ falownik nie zmienia liczby faz, a raczej generuje prąd zmienny z dostępnego prądu stałego. Co więcej, sugestia, że falownik przekształca zmienny prąd o regulowanej częstotliwości na prąd zmienny 50 Hz, jest myląca – falownik działa w odwrotnym kierunku, regulując częstotliwość wyjściowego prądu zmiennego. Zrozumienie funkcji falownika wymaga znajomości jego roli w kontekście systemów zasilania oraz zastosowań w automatyzacji. Dodatkowo, często popełnianym błędem jest mylenie różnych rodzajów przetworników, takich jak prostowniki, które zamieniają prąd zmienny na stały. W praktyce, aby uniknąć takich nieporozumień, ważne jest zapoznanie się z właściwościami technicznymi falowników oraz ich zastosowaniem w różnych sektorach przemysłowych, co pozwala na skuteczniejsze projektowanie i wdrażanie systemów zasilania.

Pytanie 17

Która z wymienionych nieprawidłowości może powodować zbyt częste uruchamianie się silnika sprężarki tłokowej?

A. Defekt silnika sprężarki
B. Nieszczelność w przewodach pneumatycznych
C. Zabrudzony filtr powietrza
D. Brak smarowania powietrza
Nieszczelność przewodów pneumatycznych jest jedną z kluczowych przyczyn zbyt częstego załączania się silnika sprężarki tłokowej. Tego rodzaju nieszczelności prowadzą do nieefektywnego przesyłu powietrza, co zmusza sprężarkę do częstszego działania w celu utrzymania wymaganego ciśnienia. W praktyce, jeśli przewody pneumatyczne są uszkodzone lub źle połączone, powietrze może uciekać na zewnątrz, co skutkuje ciągłym włączaniem się silnika sprężarki, aby zrekompensować utratę ciśnienia. Ważne jest, aby regularnie kontrolować stan przewodów i połączeń, co powinno być częścią rutynowego serwisowania urządzenia. Dobrą praktyką jest również stosowanie detektorów nieszczelności, które mogą pomóc w szybkiej identyfikacji problemów. W kontekście norm branżowych, należy przestrzegać zaleceń dotyczących konserwacji systemów pneumatycznych, co zazwyczaj obejmuje kontrolę szczelności oraz wymianę uszkodzonych przewodów.

Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

Proces oceny stanu technicznego elementu mechanicznego zaczyna się od

A. montażu
B. pomiarów
C. obróbki
D. oględzin
Oględziny są pierwszym krokiem w ocenie stanu technicznego podzespołów mechanicznych, ponieważ pozwalają na wstępną identyfikację ewentualnych uszkodzeń, zużycia czy nieprawidłowości. W trakcie oględzin należy zwrócić uwagę na widoczne oznaki uszkodzeń, takie jak pęknięcia, wgniecenia, korozja czy nieszczelności. Dobrą praktyką jest stosowanie standardów takich jak ISO 9001, które podkreślają znaczenie systematycznego podejścia do oceny stanu technicznego. W praktyce inżynierskiej, oględziny są często wspierane narzędziami wizualnymi, takimi jak mikroskopy, kamery inspekcyjne czy oświetlenie UV, co umożliwia dokładniejsze zidentyfikowanie problemów. Na przykład, w przypadku oceny stanu łożysk, oględziny mogą ujawnić wyciek smaru lub oznaki przegrzania, co jest kluczowe dla dalszych działań, takich jak pomiary czy planowanie konserwacji.

Pytanie 20

Przekładnie, które umożliwiają ruch posuwowy w tokarkach CNC, to

A. cierne pośrednie
B. korbowe
C. śrubowe toczne
D. jarzmowe
Wybór odpowiedzi związanych z przekładniami korbowymi, jarzmowymi oraz ciernymi pośrednimi wskazuje na pewne nieporozumienia dotyczące mechanizmów stosowanych w tokarkach CNC. Przekładnie korbowe, choć używane w niektórych maszynach, nie są odpowiednie do precyzyjnego ruchu posuwowego, ponieważ charakteryzują się większymi luzami i mniejszą powtarzalnością, co prowadzi do niedokładności w obróbce. Z kolei przekładnie jarzmowe są zazwyczaj stosowane w mechanizmach przekształcających ruch obrotowy w ruch liniowy, ale ich skomplikowana budowa i większe opory tarcia sprawiają, że nie są one efektywne w kontekście tokarek CNC, gdzie kluczowa jest szybkość i dokładność. Przekładnie cierne pośrednie, choć mogą być stosowane w różnych aplikacjach, nie oferują odpowiedniego poziomu precyzji wymaganej w obróbce skrawaniem. Wymagane parametry obróbcze, takie jak dokładność wymiarowa, są trudne do osiągnięcia przy użyciu tych mechanizmów, co może prowadzić do błędów i odchyleń w finalnym produkcie. Kluczowym aspektem jest to, że w technice CNC, każdy ruch musi być ściśle kontrolowany, a wybór odpowiednich mechanizmów jest niezbędny do zapewnienia wysokiej jakości produkcji. Wybór niewłaściwego typu przekładni może prowadzić do zwiększonej awaryjności maszyn oraz wyższych kosztów eksploatacji.

Pytanie 21

Jaką wartość można zarejestrować korzystając z enkodera absolutnego jednoobrotowego?

A. Przesunięcie kątowe
B. Ciśnienie
C. Moment obrotowy
D. Przyspieszenie
Przyspieszenie, moment obrotowy oraz ciśnienie to wielkości, które nie są bezpośrednio mierzone przez enkodery absolutne jednoobrotowe, co może prowadzić do nieporozumień w kontekście ich zastosowań. Przyspieszenie odnosi się do zmiany prędkości obiektu w czasie i jest mierzonym parametrem, który można określić przy użyciu akcelerometrów, a nie enkoderów. Chociaż enkodery mogą być używane w systemach, które również mierzą przyspieszenie, same w sobie nie są w stanie tego dokonać. Moment obrotowy jest wielkością, która opisuje siłę działającą na obiekt w celu jego obrotu. Enkodery mogą dostarczać informacji o położeniu, ale ich funkcja nie obejmuje bezpośredniego pomiaru momentu obrotowego, który wymaga pomiaru siły oraz promienia działania. Z kolei ciśnienie jest parametrem fizycznym, mierzonym za pomocą czujników ciśnienia, a nie enkoderów. Typowe błędy myślowe w tym kontekście obejmują mylenie funkcji pomiarowych różnych urządzeń oraz niewłaściwe przypisanie ich do różnych zastosowań w automatyce. Kluczowym zrozumieniem jest to, że enkodery absolutne jednoobrotowe są projektowane z myślą o pomiarze kąta, a nie innych wielkości fizycznych, co jest fundamentalnym aspektem ich technologii i zastosowania.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Jakim przyrządem pomiarowym można zmierzyć wartość napięcia zasilającego cewkę elektrozaworu?

A. Miernik mocy
B. Miernik oporności
C. Miernik prądu
D. Woltomierz
Woltomierz jest przyrządem pomiarowym, który służy do pomiaru napięcia elektrycznego w obwodach. W przypadku cewki elektrozaworu, której działanie zależy od odpowiedniego napięcia zasilającego, użycie woltomierza pozwala na precyzyjne określenie wartości tego napięcia. Prawidłowy pomiar napięcia jest kluczowy, ponieważ zbyt niskie napięcie może prowadzić do nieprawidłowego działania cewki, a w konsekwencji do awarii systemu. W praktyce, aby zmierzyć napięcie na cewce elektrozaworu, należy podłączyć woltomierz równolegle do cewki, co pozwala na odczyt wartości napięcia, które w danym momencie jest dostarczane do cewki. Standardowe woltomierze cyfrowe, zgodne z normami IEC 61010, charakteryzują się wysoką dokładnością i bezpieczeństwem użytkowania, co czyni je niezastąpionym narzędziem w pracy technika. Użycie woltomierza powinno być wykonywane zgodnie z dobrymi praktykami, takimi jak zapewnienie, że urządzenie jest odpowiednio skalibrowane i że przewody pomiarowe są w dobrym stanie, aby uniknąć błędów pomiarowych.

Pytanie 24

Jakie medium powinno być użyte do łączenia systemów komunikacyjnych w obiekcie przemysłowym, gdzie występują znaczące zakłócenia elektromagnetyczne?

A. Sygnał radiowy
B. Kabel UTP
C. Światłowód
D. Kabel telefoniczny
Światłowód to najskuteczniejsze medium wykorzystywane do komunikacji w środowiskach, gdzie występują silne zakłócenia elektromagnetyczne. Jego konstrukcja oparta na szkle lub tworzywie sztucznym pozwala na przesyłanie sygnałów świetlnych, co eliminuje problemy związane z zakłóceniami elektromagnetycznymi, które mogą wpływać na inne media transmisyjne, takie jak kable miedziane. W praktyce, zastosowanie światłowodów w halach przemysłowych, w pobliżu dużych maszyn czy urządzeń generujących pole elektromagnetyczne, zapewnia stabilną i niezawodną komunikację. Przykładem może być wdrożenie infrastruktury światłowodowej w fabrykach produkcyjnych, gdzie precyzyjna i szybka wymiana danych pomiędzy różnymi sekcjami jest kluczowa dla efektywności procesów produkcyjnych. Światłowody są także zgodne z wieloma normami, takimi jak ISO/IEC 11801, które definiują standardy kablowe i zapewniają wysoką jakość sygnału oraz bezpieczeństwo w instalacjach telekomunikacyjnych. Dodatkowo, światłowody są odporne na działanie wysokich temperatur oraz chemikaliów, co czyni je idealnym rozwiązaniem w trudnych warunkach przemysłowych.

Pytanie 25

Jakie zjawisko fizyczne wyróżnia przetwornik piezoelektryczny?

A. Modyfikacja rezystancji przewodnika w reakcji na przyłożoną siłę rozciągającą
B. Wytwarzanie ładunku elektrycznego na powierzchni elementu pod wpływem zastosowanej siły kompresyjnej lub rozciągającej
C. Wytwarzanie siły elektromotorycznej na granicy dwóch metali
D. Zmiana napięcia na końcach elementu przewodzącego prąd w wyniku działania pola magnetycznego
Zjawiska opisane w niepoprawnych odpowiedziach nie są zgodne z zasadami działania przetworników piezoelektrycznych i mogą prowadzić do nieporozumień w zrozumieniu ich funkcji. Pierwsza z błędnych opcji sugeruje, że zmiana rezystancji przewodnika pod wpływem siły rozciągającej jest zjawiskiem charakterystycznym dla przetworników piezoelektrycznych. W rzeczywistości, przetworniki te nie operują na zasadzie zmiany rezystancji, lecz na generowaniu ładunku elektrycznego, co jest zupełnie innym procesem fizycznym. Zmiana rezystancji związana jest z zjawiskiem piezorezystancyjnym, które występuje w niektórych materiałach, ale nie stanowi mechanizmu działania piezoelektryczności. Kolejna błędna koncepcja odnosi się do zmiany różnicy potencjałów pod wpływem pola magnetycznego. Przetworniki piezoelektryczne nie są bezpośrednio związane z efektami magnetycznymi, a ich działanie polega na mechanicznym wytwarzaniu ładunku elektrycznego, a nie na interakcji z polem magnetycznym. Ostatnia niepoprawna odpowiedź sugeruje generowanie siły elektromotorycznej na złączu dwóch metali, co dotyczy efektu Seebecka, a nie piezoelektryczności. To zjawisko jest związane z różnicą temperatur między dwoma różnymi metalami, co prowadzi do powstania napięcia, jednak nie ma związku z mechanizmem działania przetworników piezoelektrycznych. Zrozumienie tych różnic jest kluczowe dla prawidłowej interpretacji funkcji przetworników w kontekście szerokiego spektrum zastosowań technologicznych.

Pytanie 26

W siłowniku działającym w obie strony o średnicy tłoka D = 20 mm oraz efektywności 0,8, zasilanym ciśnieniem p = 0,6 MPa, teoretyczna siła przy wysunięciu siłownika wynosi około

A. 130 N
B. 150 N
C. 160 N
D. 140 N
Aby obliczyć teoretyczną siłę wysunięcia siłownika dwustronnego działania, możemy skorzystać z następującego wzoru: F = p * A, gdzie F to siła, p to ciśnienie, a A to pole powierzchni tłoka. Pole powierzchni tłoka można obliczyć ze wzoru A = π * (D/2)², gdzie D to średnica tłoka. Dla D = 20 mm, A wynosi około 3,14 * (0,02/2)² = 3,14 * 0,01 = 0,0314 m². Przy ciśnieniu p = 0,6 MPa (czyli 600 kPa), obliczamy siłę: F = 600 kPa * 0,0314 m² = 18,84 kN. Jednakże ze względu na sprawność siłownika, musimy pomnożyć tę wartość przez 0,8. Ostatecznie otrzymujemy F = 18,84 kN * 0,8 = 15,07 kN, co w przeliczeniu na jednostki N daje 150 N. Tego rodzaju obliczenia są niezbędne w projektowaniu i analizie systemów pneumatycznych i hydraulicznych, a znajomość wzorów i jednostek jest kluczowa w praktyce inżynieryjnej.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Z czego składa się pneumohydrauliczny wzmacniacz ciśnienia?

A. siłownik pneumatyczny połączony szeregowo z siłownikiem hydraulicznym
B. przemiennik pneumohydrauliczny oraz siłownik hydrauliczny
C. akumulator hydrauliczny połączony szeregowo z pneumatycznym siłownikiem
D. przemiennik pneumohydrauliczny oraz siłownik pneumatyczny
Wskazane odpowiedzi nieprawidłowo definiują pojęcie pneumohydraulicznego wzmacniacza ciśnienia, co może prowadzić do mylnych wniosków. Propozycje takie jak akumulator hydrauliczny połączony szeregowo z siłownikiem pneumatycznym czy przemiennik pneumohydrauliczny w zestawieniu z siłownikiem hydraulicznym nie uwzględniają fundamentalnych zasad działania tych urządzeń. Akumulator hydrauliczny, będący elementem systemów hydraulicznych, przechowuje energię w postaci ciśnienia cieczy, lecz samodzielnie nie przekształca energii pneumatycznej w hydrauliczną, co jest kluczowym zjawiskiem w pneumohydraulicznych wzmacniaczach ciśnienia. Z kolei przemiennik pneumohydrauliczny jest urządzeniem, które może być wykorzystywane w kontekście różnych systemów, lecz jego rola nie jest związana z połączeniem siłowników w wymieniony sposób. Typowym błędem w myśleniu jest mylenie ról poszczególnych elementów układu oraz niewłaściwe łączenie różnych technologii, co prowadzi do nieefektywności systemu. Aby zrozumieć, jak prawidłowo konstruować tego typu systemy, ważne jest przyswojenie zasad funkcjonowania zarówno hydrauliki, jak i pneumatyki, oraz zapoznanie się z odpowiednimi normami branżowymi, które regulują ich stosowanie.

Pytanie 29

Podaj właściwą sekwencję montażu składników w układzie przygotowania sprężonego powietrza, zaczynając od strony złożonego systemu pneumatycznego.

A. Reduktor, manometr, filtr powietrza, smarownica
B. Filtr powietrza, manometr, reduktor, smarownica
C. Smarownica, manometr, reduktor, filtr powietrza
D. Manometr, reduktor, smarownica, filtr powietrza
Wybór innej kolejności montażu elementów składowych w zespole przygotowania sprężonego powietrza prowadzi do wielu problemów funkcjonalnych oraz technicznych. Na przykład, umieszczając manometr przed reduktorem, możemy wprowadzać odczyty ciśnienia, które nie będą odzwierciedlały rzeczywistego ciśnienia roboczego w systemie, ponieważ nie uwzględniają one redukcji ciśnienia, jaką wprowadza reduktor. Taki błąd może prowadzić do nieprawidłowych ustawień, które w rezultacie obniżają efektywność pracy narzędzi pneumatycznych. Ponadto montaż filtra powietrza na początku układu, jak sugerują niektóre odpowiedzi, może spowodować, że zanieczyszczenia będą wprowadzane do smarownicy, co może negatywnie wpłynąć na jej działanie oraz na jakość smarowania. To z kolei może prowadzić do szybszego zużycia narzędzi i komponentów. Kluczowym aspektem jest również zrozumienie, że każdy z elementów ma swoje specyficzne funkcje i powinien być zamontowany w odpowiedniej kolejności, aby system działał optymalnie. Nieprzemyślana kolejność montażu elementów składowych może skutkować także zwiększeniem kosztów serwisowania i napraw, a także obniżeniem efektywności energetycznej całego systemu. Dlatego tak ważne jest, aby stosować się do ustalonych standardów i dobrych praktyk w zakresie instalacji systemów sprężonego powietrza.

Pytanie 30

Który z wymienionych parametrów nie odnosi się do frezarki CNC?

A. Dokładność pozycjonowania.
B. Gramatura wtrysku.
C. Liczba wrzecion.
D. Najwyższa prędkość ruchu dla poszczególnych osi.
Gramatura wtrysku to parametr odnoszący się głównie do procesów wtrysku tworzyw sztucznych, a nie frezowania. Frezarki numeryczne są urządzeniami przeznaczonymi do obróbki skrawaniem, a ich kluczowe parametry dotyczą precyzji i wydajności obróbczej. Liczba wrzecion, powtarzalność pozycjonowania oraz maksymalna prędkość ruchu dla poszczególnych osi to istotne wskaźniki efektywności operacyjnej frezarek. Na przykład, liczba wrzecion określa, ile narzędzi może być jednocześnie używanych do obróbki, co wpływa na zwiększenie wydajności procesu. Powtarzalność pozycjonowania definiuje zdolność maszyny do powtarzania tych samych operacji z dokładnością, co jest kluczowe w produkcji seryjnej. Maksymalna prędkość ruchu osi wpływa na szybkość realizacji zleceń, co ma bezpośrednie przełożenie na czas produkcji oraz koszty. Zrozumienie tych parametrów jest niezbędne dla efektywnego planowania procesów produkcyjnych oraz optymalizacji pracy frezarek numerycznych.

Pytanie 31

Efektor umieszczony na końcu ramienia robota pełni przede wszystkim funkcję

A. chwytania elementu z odpowiednią siłą
B. ochrony ramienia robota przed zderzeniem z operatorem
C. ochrony ramienia robota przed przeciążeniem
D. umieszczania elementu w odpowiedniej lokalizacji
Wybór odpowiedzi dotyczącej zabezpieczania ramienia robota przed kolizją z operatorem jest nieprawidłowy, ponieważ główną funkcją efektora jest manipulacja obiektami, a nie zapewnianie bezpieczeństwa użytkowników. Choć bezpieczeństwo jest kluczowe w kontekście pracy z robotami, to odpowiedzialność ta leży w gestii innych komponentów systemu, takich jak czujniki i urządzenia zabezpieczające. Ustawianie elementu we właściwej pozycji również nie jest zadaniem efektora, lecz wynikiem programowania robota i jego algorytmów ruchu. Efektor działa w oparciu o informacje dostarczane przez system kontrolny, a jego rola koncentruje się na chwytaniu i manipulacji, a nie na precyzyjnym pozycjonowaniu. Zabezpieczanie ramienia robota przed przeciążeniem jest również nieadekwatne, ponieważ ten aspekt jest regulowany przez systemy monitorowania obciążenia i kontroli siły. Efektory są projektowane tak, aby dostarczać odpowiednią siłę chwytu w zależności od materiału, co sprawia, że zabezpieczenie przed przeciążeniem nie jest ich podstawową funkcją. Typowe błędy myślowe prowadzące do takich niepoprawnych wniosków obejmują mylenie roli efektora z innymi systemami zabezpieczeń oraz niedostateczne zrozumienie jego funkcji w kontekście całości systemu automatyzacji.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Instalacje pneumatyczne powinny być montowane pod lekkim kątem wznoszącym, aby ułatwić

A. rozbijanie kropli oleju strumieniem sprężonego powietrza
B. spływ kondensatu wodnego do najniższego punktu instalacji
C. rozchodzenie się mgły olejowej w instalacji
D. odfiltrowanie cząstek stałych z powietrza
Zrozumienie roli nachylenia w instalacjach pneumatycznych jest kluczowe, jednak niepoprawne odpowiedzi sugerują różne koncepcje dotyczące funkcji kondensatu i jego zarządzania. Odpowiedź wskazująca na rozbijanie kropel oleju strumieniem sprężonego powietrza nie uwzględnia faktu, że olej wchodzi w interakcję z kondensatem, co może prowadzić do powstawania szkodliwych emulsji, które są trudne do usunięcia. Ponadto, rozchodzenie się mgły olejowej w instalacji nie jest celem nachylenia rur; pożądane jest, aby olej był skutecznie odfiltrowywany, a nie rozprzestrzeniany w instalacji. W kontekście odfiltrowania cząstek stałych, nachylenie nie ma bezpośredniego wpływu na proces filtracji, który zależy od użycia odpowiednich filtrów i separatorów. W praktyce, błędne myślenie dotyczące tych koncepcji może prowadzić do nieefektywności w systemie, co w dłuższej perspektywie może skutkować zwiększonymi kosztami eksploatacji i ryzykiem uszkodzeń instalacji. Zgodnie z zasadami dobrych praktyk, należy regularnie monitorować i konserwować systemy pneumatyczne, aby zapewnić ich prawidłowe funkcjonowanie i uniknąć problemów związanych z kondensatem.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Wprowadzenie przewodu do zacisku, delikatne wygięcia oraz wykonanie oczka na końcu przewodu z żyłą z drutu miedzianego, realizuje się cęgami

A. uniwersalnymi
B. do cięcia czołowymi
C. spiczastymi
D. do cięcia bocznymi
Cęgi spiczaste, znane też jako cęgi z długimi końcówkami, to narzędzie, które świetnie sprawdza się przy precyzyjnym wkładaniu przewodów do zacisków i robieniu oczek na końcówkach. Ich budowa pozwala na łatwe manewrowanie w ciasnych miejscach, co naprawdę jest ważne, gdy pracujesz z małymi elementami elektronicznymi. W praktyce, dzięki użyciu cęgów spiczastych, możesz dokładnie wygiąć przewody, co zapobiegnie ich uszkodzeniu i sprawi, że połączenia będą nie tylko estetyczne, ale i funkcjonalne. W branży często podkreśla się, jak istotne jest dobieranie odpowiednich narzędzi do konkretnych zadań, a cęgi spiczaste pasują tutaj idealnie. A jeśli chodzi o robienie oczek, to też zwiększa bezpieczeństwo połączeń, bo dobrze zrobione oczka zmniejszają ryzyko przetarcia izolacji i zwarć. Pamiętaj, że przy pracy z miedzianymi przewodami warto stosować właściwe techniki, żeby nie wykrzywiać ich i zapewnić trwałość połączeń.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

Jakie narzędzia powinno się zastosować do montażu przewlekanego komponentów elektronicznych na płytce PCB?

A. Stacja lutownicza
B. Lutownica na gorące powietrze z dyszą w kształcie 7x7
C. Lutownica z końcówką 'minifala'
D. Rozlutownica
Stacja lutownicza to narzędzie, które zapewnia precyzyjne i stabilne warunki pracy, co jest kluczowe podczas lutowania przewlekanego elementów elektronicznych na płytkach drukowanych. Dzięki regulowanej temperaturze i możliwości dostosowania przepływu powietrza, stacja lutownicza umożliwia skuteczne lutowanie, minimalizując ryzyko przegrzewania komponentów. Na przykład, w przypadku lutowania małych elementów, takich jak kondensatory czy oporniki, stacja lutownicza pozwala na dokładne ustawienie temperatury, co jest niezbędne do uzyskania mocnych połączeń bez uszkodzenia wrażliwych elementów. Dobre praktyki branżowe sugerują użycie stacji z technologią podgrzewania, co umożliwia równomierne rozgrzanie obszaru lutowanego, co jest szczególnie przydatne w przypadku złożonych układów. Stacje lutownicze są także wyposażone w różnorodne końcówki, co zwiększa ich wszechstronność i umożliwia pracę z różnymi rodzajami elementów elektronicznych. W kontekście standardów IPC (Institute of Printed Circuits), stosowanie stacji lutowniczych w procesie montażu jest zalecane, ponieważ pozwala na osiągnięcie wyższej jakości połączeń lutowanych oraz dłuższej żywotności urządzeń elektronicznych.

Pytanie 40

Jakie wymiary biorą pod uwagę dopuszczalne odchylenia w realizacji elementu mechanicznego?

A. Graniczne
B. Rzeczywiste
C. Nominalne
D. Jednostronne
Odpowiedź "Graniczne" jest poprawna, ponieważ wymiary graniczne definiują maksymalne i minimalne wartości dopuszczalne dla wymiarów elementów mechanicznych. W praktyce inżynieryjnej, wymiary graniczne są kluczowe w procesie projektowania, produkcji oraz kontroli jakości, ponieważ określają, w jakim zakresie wymiaru elementu można tolerować błędy wykonania. W projektowaniu przyjmuje się nominalny wymiar, natomiast granice wymiarowe wyznaczają zakres, w którym element może być produkowany, co jest istotne dla zapewnienia odpowiednich właściwości funkcjonalnych oraz interoperacyjności z innymi komponentami. Na przykład, w przemyśle motoryzacyjnym, wymiary graniczne są istotne dla zapewnienia, że wszystkie części pasują ze sobą w pojazdach, co ma wpływ na bezpieczeństwo oraz wydajność. W praktyce, stosowanie norm takich jak ISO 286, które definiują systemy wymiarów granicznych, jest kluczowe dla efektywności procesów produkcyjnych oraz redukcji kosztów związanych z błędami wykonawczymi.