Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 16 maja 2025 17:12
  • Data zakończenia: 16 maja 2025 17:22

Egzamin zdany!

Wynik: 28/40 punktów (70,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

W tabeli przedstawiono fragment danych technicznych bezprzewodowego czujnika temperatury. Określ, który z czynników może wpływać na niewłaściwą pracę czujnika.

DANE TECHNICZNE
Pasmo częstotliwości pracy868,0 MHz ÷ 868,6 MHz
Zasięg komunikacji radiowej (w terenie otwartym)do 500 m
Zasilaniebateria litowa CR123A 3 V
Czas pracy na bateriiokoło 3 lata
Pobór prądu w stanie gotowości50 μA
Maksymalny pobór prądu16 mA
Dokładność pomiaru temperatury±2%
Zakres temperatur pracy-10 °C...+55 °C
Maksymalna wilgotność93±3%
Wymiary obudowy24 x 110 x 27 mm
Waga56 g

A. Napięcie zasilania czujnika 2,9 V.
B. Odbiornik słuchawek bezprzewodowych 433 MHz.
C. Obce źródło fal radiowych 868 MHz.
D. Zakres zmian temperatury 15°C÷30°C.
Obce źródło fal radiowych 868 MHz jest kluczowym czynnikiem, który może wpływać na niewłaściwą pracę czujnika temperatury. Czujniki bezprzewodowe komunikują się za pomocą fal radiowych, a ich prawidłowe działanie zależy od braku zakłóceń w paśmie częstotliwości, na którym operują. W przypadku tego czujnika, który działa na częstotliwości 868 MHz, każde zewnętrzne źródło fal radiowych w tym samym zakresie może prowadzić do interferencji. Przykładem zastosowania tego czujnika może być monitorowanie temperatury w różnych środowiskach, np. w inteligentnych domach lub w przemyśle. W takich zastosowaniach istotne jest, aby czujniki były odporne na zakłócenia, co można osiągnąć poprzez zastosowanie technologii komunikacji, takich jak LoRa czy Zigbee. Standardy te przewidują odpowiednie protokoły, które minimalizują ryzyko zakłóceń ze strony innych urządzeń. W związku z tym, projektując systemy monitorowania, warto zwracać uwagę na dobór odpowiednich częstotliwości oraz na obecność potencjalnych źródeł zakłóceń, co pozwoli na zapewnienie stabilności i dokładności pomiarów.

Pytanie 2

Który układ scalony, po podłączeniu odpowiednich elementów zewnętrznych, staje się generatorem impulsów prostokątnych?

A. NE555
B. UL7805
C. SN74151
D. Z80
Układ scalony NE555 jest niezwykle popularnym generatorem impulsów prostokątnych, szeroko stosowanym w różnych aplikacjach elektronicznych. Po dołączeniu odpowiednich elementów zewnętrznych, takich jak rezystory i kondensatory, NE555 może pracować w trybie astabilnym, co oznacza, że generuje ciąg impulsów prostokątnych o określonej częstotliwości. Przykładem zastosowania tego układu jest tworzenie sygnałów zegarowych w systemach cyfrowych, a także w aplikacjach związanych z automatyzacją, gdzie wymagana jest synchronizacja procesów. NE555 jest także wykorzystywany w projektach hobbystycznych, takich jak generatory tonów w zabawkach lub alarmach. Warto zauważyć, że NE555 jest zgodny z wieloma standardami branżowymi, co czyni go wszechstronnym narzędziem w inżynierii elektroniki. Prawidłowe dobieranie wartości elementów zewnętrznych pozwala na precyzyjne dostosowanie parametrów pracy układu, co jest kluczowe w projektowaniu systemów elektronicznych.

Pytanie 3

Co należy zrobić, gdy pracownik, który został odizolowany od źródła prądu, jest nieprzytomny, ale zachowuje prawidłowy oddech oraz funkcje serca?

A. układa się go w ustalonej pozycji bocznej i obserwuje
B. układa się go na plecach i unosi nogi
C. przystępuje się do natychmiastowego zewnętrznego masażu serca
D. należy udrożnić jego górne drogi oddechowe
W przypadku osoby nieprzytomnej, ale z zachowanym oddechem i pracą serca, kluczowe jest zapewnienie drożności dróg oddechowych oraz monitorowanie stanu pacjenta. Ułożenie w pozycji bocznej ustalonej (PBU) ma na celu zapobieganie ewentualnemu zadławieniu się w przypadku wymiotów oraz ułatwienie swobodnego przepływu powietrza. Pozycja ta jest rekomendowana przez wiele organizacji zajmujących się pierwszą pomocą, w tym przez Europejską Radę Resuscytacji (ERC). PBU pozwala również na łatwiejsze obserwowanie pacjenta, co jest istotne w kontekście szybkiego reagowania na ewentualne zmiany w jego stanie zdrowia. Ułożenie w tej pozycji powinno być wykonywane ostrożnie, aby uniknąć urazów kręgosłupa, szczególnie w przypadku potencjalnych urazów spowodowanych wypadkami elektrycznymi. Dlatego istotne jest, aby każdy, kto udziela pierwszej pomocy, był świadomy tej procedury oraz znał jej zastosowanie w praktyce.

Pytanie 4

Co oznacza skrót DISEqC?

A. modulator jedno wstęgowy używany w zbiorczych systemach telewizyjnych
B. konwerter satelitarny przeznaczony do hybrydowych sieci kablowych
C. adapter sieciowy do przesyłania sygnałów satelitarnych
D. protokół komunikacyjny do zarządzania urządzeniami satelitarnymi
DISEqC, czyli Digital Satellite Equipment Control, to taki protokół, który pozwala na łatwiejsze zarządzanie urządzeniami satelitarnymi, jak konwertery i przełączniki. Dzięki temu, co wymyślono w DISEqC, możemy zdalnie sterować tymi urządzeniami za pomocą sygnałów przez kabel współosiowy, co naprawdę ułatwia życie przy konfigurowaniu i używaniu systemów satelitarnych. to nie jest może coś super skomplikowanego, ale żeby korzystać z różnych sygnałów z wielu satelitów, no to DISEqC staje się mega przydatne, bo pozwala nam przełączać się między różnymi kanałami telewizyjnymi czy radiowymi bez potrzeby manualnego grzebania w konwerterach. Co ciekawe, ten standard jest dość powszechny w branży telekomunikacyjnej, więc warto go znać, jeśli chce się działać w tej dziedzinie. Poza tym, DISEqC działa razem z innymi standardami jak DVB-S, co oznacza, że można go używać z wieloma różnymi urządzeniami. Znajomość DISEqC i tego, jak to działa, zdecydowanie ułatwia projektowanie i korzystanie z systemów satelitarnych, według mnie to naprawdę ważne.

Pytanie 5

Jakie znaczenie ma oznaczenie CE umieszczone w dokumentacji technicznej produktu?

A. To oznacza, że wyrób uzyskał zgodę na użytkowanie w krajach Europy Środkowej (ang. CE - Central Europe)
B. To oznacza, że producent zadeklarował, iż oznakowany wyrób powstał w krajach Europy Środkowej (ang. CE - Central Europe)
C. To jest deklaracją producenta, że wyrób spełnia normy opisane w odpowiednich dyrektywach Unii Europejskiej dotyczących kwestii związanych w szczególności z bezpieczeństwem użytkowania
D. To sugeruje, że wyrób został tymczasowo dopuszczony do użytku (CE - Czasowa Eksploatacja)
Symbol CE, umieszczany na produktach, jest oznaczeniem świadczącym o tym, że dany wyrób spełnia wymagania określone w dyrektywach Unii Europejskiej, dotyczących bezpieczeństwa, zdrowia oraz ochrony środowiska. Oznakowanie to jest szczególnie ważne w kontekście produktów, które mogą wpływać na bezpieczeństwo użytkowników. Przykładem mogą być urządzenia elektryczne, które muszą spełniać normy dotyczące ochrony przed porażeniem prądem. Przed wprowadzeniem produktu na rynek, producent musi przeprowadzić odpowiednie badania i oceny, aby zagwarantować, że wyrób jest zgodny z obowiązującymi regulacjami. Niezbędne jest również posiadanie dokumentacji technicznej, która potwierdza zgodność produktu z dyrektywami. Oznaczenie CE nie tylko umożliwia producentom swobodny handel w ramach jednolitego rynku europejskiego, ale również buduje zaufanie konsumentów do bezpieczeństwa i jakości produktów, których używają.

Pytanie 6

Antena paraboliczna jest używana do odbioru sygnałów

A. telewizji naziemnej
B. telewizji satelitarnej
C. radiowych w zakresie fal długich i średnich
D. radiowych w paśmie UKF
Odpowiedzi sugerujące, że antena paraboliczna służy do odbioru sygnałów telewizji naziemnej lub radiowych w paśmie UKF oraz fal długich i średnich są błędne z kilku powodów. Telewizja naziemna wykorzystuje inny typ anten, zazwyczaj anteny dipolowe lub szerokopasmowe, które są zaprojektowane do odbioru sygnałów nadawanych z wież telewizyjnych w bliskiej odległości. Anteny te nie są w stanie skoncentrować sygnału w taki sposób, jak antena paraboliczna, co ogranicza ich zasięg i jakość odbioru. Użycie anten parabolicznych do odbioru fal radiowych w zakresach UKF, długich czy średnich nie jest również uzasadnione. Fale te mają zupełnie inne właściwości fizyczne, a ich odbiór wymaga innych typów anten, które są w stanie efektywnie reagować na odpowiednią długość fali. Przykładowo, fale długie i średnie są odbierane poprzez anteny ferrytowe lub teleskopowe, które mają zdolność do odbioru sygnałów o znacznie większej długości fali. Typowym błędem myślowym jest zakładanie, że jedna antena może spełniać wszystkie funkcje odbiorcze, co prowadzi do nieporozumień dotyczących technologii radiowej i telewizyjnej. Każdy rodzaj sygnału wymaga dostosowanego rozwiązania antenowego, co jest kluczowe dla zapewnienia jakości i stabilności odbioru.

Pytanie 7

Który z czynników wpływa na zasięg sieci WLAN w obrębie budynku?

A. Temperatura otoczenia
B. Liczba użytkowników
C. Poziom wilgotności powietrza
D. Grubość ścian oraz stropów
Grubość ścian i stropów jest kluczowym czynnikiem wpływającym na zasięg sieci WLAN w budynkach. Materiały budowlane, z których wykonane są ściany i stropy, mogą znacząco tłumić sygnał radiowy. Na przykład, ściany z betonu, cegły czy metalu posiadają większą gęstość, co powoduje, że sygnał radiowy ma trudności z ich przenikaniem. W praktyce oznacza to, że sieć bezprzewodowa może mieć ograniczony zasięg w obszarach oddzielonych grubymi ścianami. Standardy takie jak IEEE 802.11 określają parametry wydajności sieci WLAN, które powinny być brane pod uwagę przy projektowaniu instalacji. Warto również pamiętać o zastosowaniach praktycznych, takich jak użycie wzmacniaczy sygnału (repeaters) lub punktów dostępowych (access points) w celu zwiększenia zasięgu w trudnych warunkach. Dobrze zaprojektowana sieć WLAN powinna uwzględniać układ budynku oraz zastosowane materiały, aby zapewnić optymalne pokrycie sygnałem.

Pytanie 8

Jaką rolę odgrywa urządzenie kontrolno-pomiarowe w systemie automatyki przemysłowej?

A. przetwornik
B. kontroler
C. zawór elektromagnetyczny
D. zawór regulacyjny
Przepustnica, będąca urządzeniem stosowanym w systemach wentylacyjnych i cieplnych, pełni funkcję regulacji przepływu powietrza lub cieczy. Choć istotna w kontekście zarządzania mediami, nie ma ona zdolności pomiarowych, co czyni ją niewłaściwym wyborem w kontekście funkcji kontrolno-pomiarowych. Sterownik, będący centralnym elementem systemów automatyki, działa na podstawie dostarczanych mu sygnałów, jednak jego rola nie polega na bezpośrednim pomiarze parametrów fizycznych. Zamiast tego, sterownik interpretuje dane z przetworników i podejmuje decyzje operacyjne w oparciu o algorytmy. Elektrozawór, z drugiej strony, steruje przepływem cieczy lub gazów w systemach, ale również nie zajmuje się bezpośrednim pomiarem. Typowym błędem myślowym jest mylenie funkcji urządzeń pomiarowych z urządzeniami wykonawczymi i regulacyjnymi. W kontekście automatyki przemysłowej kluczowe jest rozróżnienie pomiędzy pomiarem a kontrolą, ponieważ każde z tych urządzeń pełni odmienną rolę w systemie. Aby systemy były efektywne, konieczne jest zastosowanie przetworników, które dostarczają dokładne dane, niezbędne dla prawidłowego funkcjonowania sterowników oraz elementów wykonawczych.

Pytanie 9

W jakiej kolejności należy wykonać czynności związane z wymianą kamery w systemie telewizji dozorowej?

A.B.
archiwizacja nagrań,
odłączenie rejestratora od zasilania,
odłączenie przewodów od kamery,
wymiana kamery,
podłączenie przewodów do kamery,
podłączenie rejestratora do zasilania,
rozpoczęcie rejestracji.
odłączenie rejestratora od zasilania,
archiwizacja nagrań,
odłączenie przewodów od kamery,
wymiana kamery,
podłączenie przewodów do kamery,
podłączenie rejestratora do zasilania,
rozpoczęcie rejestracji.
C.D.
archiwizacja nagrań,
odłączenie przewodów od kamery,
odłączenie rejestratora od zasilania,
wymiana kamery,
podłączenie przewodów do kamery,
rozpoczęcie rejestracji,
podłączenie rejestratora do zasilania.
archiwizacja nagrań,
odłączenie rejestratora od zasilania,
odłączenie przewodów od kamery,
wymiana kamery,
podłączenie rejestratora do zasilania,
podłączenie przewodów do kamery,
rozpoczęcie rejestracji.

A. C.
B. B.
C. D.
D. A.
Wybór niewłaściwej odpowiedzi wynika z niepełnego zrozumienia procesu wymiany kamery w systemie telewizji dozorowej. Ważne jest, aby zrozumieć, że podczas takich operacji kluczowe jest zachowanie kolejności, która zapewnia zarówno bezpieczeństwo sprzętu, jak i integritet danych. Niewłaściwe podejście do wymiany kamery, takie jak pominięcie archiwizacji nagrań, może prowadzić do ich utraty, co w przypadkach krytycznych może być katastrofalne. Również, jeśli rejestrator nie zostanie odłączony od zasilania, istnieje ryzyko zwarcia, które może uszkodzić zarówno rejestrator, jak i nową kamerę. Często błędne odpowiedzi opierają się na założeniu, że można działać w sposób ad-hoc, co jest niebezpieczne w kontekście pracy z elektroniką. Niedostateczna uwaga nad właściwym odłączeniem przewodów może prowadzić do nadwyrężenia kabli lub uszkodzenia gniazd, co skutkuje kosztownymi naprawami. Należy również pamiętać, że po każdej wymianie sprzętu należy przeprowadzić testy w celu weryfikacji poprawności działania systemu. Właściwa kolejność działań nie jest kwestią przypadkową, lecz opiera się na standardach branżowych, które mają na celu ochronę zarówno użytkowników, jak i sprzętu.

Pytanie 10

Podczas pomiaru rezystancji przy użyciu metody technicznej, woltomierz oraz amperomierz wskazują odpowiednio 40 V i 20 mA. Jaką wartość ma mierzona rezystancja?

A. 20 kΩ
B. 200 kΩ
C. 2 kΩ
D. 0,2 kΩ
Wartość mierzonej rezystancji można obliczyć korzystając z prawa Ohma, które stanowi, że rezystancja (R) jest równa napięciu (U) podzielonemu przez natężenie prądu (I). W naszym przypadku napięcie wynosi 40 V, a natężenie prądu 20 mA (co odpowiada 0,02 A). Zatem, stosując wzór R = U / I, otrzymujemy R = 40 V / 0,02 A = 2000 Ω, co można przeliczyć na kiloomy: 2000 Ω = 2 kΩ. Ta metoda pomiaru rezystancji jest szeroko stosowana w praktyce, zwłaszcza w elektronice i elektrotechnice, gdzie precyzyjne pomiary są kluczowe dla prawidłowego działania obwodów. Przykładowe zastosowanie można znaleźć w diagnostyce układów elektronicznych, gdzie pomiar rezystancji pozwala na identyfikację uszkodzeń komponentów. W branży stosuje się również tę technikę w różnych standardach pomiarowych, podkreślając jej znaczenie i niezawodność w praktyce.

Pytanie 11

Aby połączyć segmenty sieci LAN za pomocą kabla Ethernet w jedną większą sieć, należy wykorzystać

A. modem.
B. bramkę.
C. router.
D. switch.
Switch, czyli przełącznik, jest urządzeniem sieciowym, które umożliwia łączenie segmentów sieci LAN w jedną większą sieć. Działa na warstwie drugiej modelu OSI, co oznacza, że przesyła dane na podstawie adresów MAC. Głównym zadaniem switcha jest inteligentne kierowanie ruchu sieciowego, co pozwala na efektywne zarządzanie pasmem i minimalizację kolizji. Dzięki temu każdy podłączony do switcha komputer może komunikować się z innymi urządzeniami w sieci w sposób bezpieczny i szybki. Przykładem zastosowania switcha jest mała firma, w której kilka komputerów, drukarek i serwerów jest połączonych w jedną sieć. Switch umożliwia im współdzielenie zasobów oraz komunikację bez potrzeby wysyłania niepotrzebnych danych do wszystkich urządzeń. W branży standardem jest stosowanie switchy zarządzanych, które oferują zaawansowane funkcje, takie jak VLAN, QoS i monitorowanie ruchu, co pozwala administratorom na lepsze zarządzanie siecią.

Pytanie 12

Pomiar temperatury radiatora służącego do chłodzenia mikroprocesora w urządzeniu elektronicznym można przeprowadzić przy użyciu

A. tensometru
B. manometru
C. rotametru
D. pirometru
Rotametr to urządzenie mierzące przepływ cieczy lub gazu, a jego działanie opiera się na mechanizmie przepływu przez rurkę o zmiennym przekroju. Rotametry są używane w różnych aplikacjach hydraulicznych i pneumatycznych, ale nie mają zastosowania w pomiarze temperatury. Użytkownicy mogą mylnie sądzić, że pomiar przepływu jest równoważny pomiarowi temperatury, co jest błędnym podejściem. Manometr, z kolei, jest narzędziem do pomiaru ciśnienia, zarówno wewnątrz, jak i na zewnątrz systemów zamkniętych. Pomiar ciśnienia jest istotny w wielu procesach inżynieryjnych, jednak nie odnosi się bezpośrednio do pomiaru temperatury radiatora. Z kolei tensometr służy do pomiaru odkształceń materiałów, co ma zastosowanie w analizie mechaniki ciała stałego, ale nie dostarcza informacji o temperaturze. Powszechny błąd w myśleniu polega na stosowaniu niewłaściwych przyrządów pomiarowych w kontekście specyficznych wymagań aplikacji. W elektronice, gdzie efektywność chłodzenia jest kluczowa dla wydajności procesorów, ważne jest, aby stosować odpowiednie metody pomiarowe, takie jak pirometry, które oferują bezkontaktowe i dokładne pomiary temperatury, a tym samym przyczyniają się do optymalizacji działań związanych z zarządzaniem ciepłem.

Pytanie 13

Odbiornik cyfrowy DVB-C jest zaprojektowany do przyjmowania sygnałów telewizyjnych

A. z internetu
B. satelitarnych
C. kablowych
D. naziemnych
Odbiornik DVB-C to sprzęt stworzony właśnie do telewizji kablowej. Działa dzięki standardowi DVB-C, czyli Digital Video Broadcasting - Cable. Co to oznacza? Że sygnał jest przesyłany przez kable koncentryczne. Dzięki temu, jakość obrazu i dźwięku jest na naprawdę dobrym poziomie, a do tego można oglądać więcej kanałów niż w tradycyjny sposób. Telewizje kablowe, które korzystają z DVB-C, oferują różne pakiety programowe, co daje użytkownikom dostęp do masy kanałów, w tym tych w jakości HD czy VOD, czyli video na żądanie. To fajne, bo nie tylko można oglądać ulubione programy, ale także korzystać z EPG, czyli elektronicznego przewodnika po programach, oraz interaktywnych usług, co znacząco ułatwia korzystanie z telewizji.

Pytanie 14

Aby zmierzyć tłumienie w światłowodzie jednomodowym, które urządzenie powinno zostać użyte?

A. wobuloskop
B. reflektometr
C. oscyloskop
D. fotometr
Reflektometria optyczna to technika pomiarowa, która jest kluczowa w ocenie tłumienności światłowodów jednomodowych. Reflektometr, wykorzystujący metodę czasu przelotu (OTDR), umożliwia dokładne pomiary strat sygnału w światłowodzie, co jest istotne dla zapewnienia jakości transmisji danych. Dzięki tej metodzie można identyfikować miejsca uszkodzeń, zagięć i innych anomalii, które mogą wpływać na wydajność sieci. Przykładowo, w trakcie instalacji nowych światłowodów, reflektometr pozwala na szybkie zlokalizowanie ewentualnych problemów, co przyspiesza proces serwisowania i minimalizuje przestoje w komunikacji. Dobre praktyki w branży telekomunikacyjnej zalecają regularne korzystanie z reflektometrów podczas konserwacji sieci, aby utrzymać optymalną jakość sygnału oraz spełniać standardy branżowe, takie jak ITU-T G.652. Reflektometr jest więc niezbędnym narzędziem w pracy techników zajmujących się sieciami optycznymi.

Pytanie 15

Aby podłączyć dysk twardy do płyty głównej komputera, jaki interfejs należy zastosować?

A. RS 232
B. SATA
C. LPT
D. D-SUB 15
Odpowiedź SATA jest prawidłowa, ponieważ jest to jeden z najpopularniejszych interfejsów stosowanych do podłączania dysków twardych i napędów SSD do płyt głównych komputerów. Standard SATA (Serial ATA) został wprowadzony, aby zastąpić starszy interfejs PATA (Parallel ATA) i oferuje znacznie wyższą prędkość transferu danych, co jest kluczowe w kontekście wydajności nowoczesnych systemów komputerowych. SATA obsługuje prędkości transferu do 6 Gb/s w wersji III, co pozwala na szybki dostęp do danych i efektywne wykonywanie operacji na plikach. Zastosowanie SATA umożliwia również łatwiejsze podłączanie i wymianę dysków, co jest istotne w kontekście modernizacji sprzętu. Warto również zauważyć, że złącza SATA mają charakterystyczny kształt i orientację, co ułatwia ich prawidłowe podłączenie. Przykładowo, podłączając dysk SSD do płyty głównej, użytkownik powinien zwrócić uwagę na odpowiednie złącze SATA, aby uniknąć problemów z wydajnością oraz kompatybilnością.

Pytanie 16

Aby zidentyfikować miejsce uszkodzenia w 100-metrowym kablu telekomunikacyjnym umieszczonym w ziemi, należy zastosować

A. reflektometr.
B. spektrometr.
C. multimetr.
D. dalmiar.
Reflektometr to narzędzie stosowane w telekomunikacji, które umożliwia lokalizację uszkodzeń w kablach przez analizę odbicia sygnału. W przypadku kabla telekomunikacyjnego, reflektometr wykorzystuje zjawisko odbicia fali elektromagnetycznej, która jest wysyłana w kierunku kabla. Kiedy fala napotyka na przerwę lub uszkodzenie, część sygnału odbija się z powrotem do reflektometru, co pozwala na określenie miejsca przerwy. Przykładem zastosowania reflektometru może być lokalizacja uszkodzenia w kablu zainstalowanym w terenie, co jest kluczowe dla minimalizacji przestojów w pracy sieci. Standardy branżowe, takie jak ITU-T G.657, podkreślają znaczenie monitorowania i konserwacji kabli optycznych, a reflektometr jest nieocenionym narzędziem w tym kontekście. Dzięki jego zastosowaniu technicy mogą szybko i skutecznie zidentyfikować problem, co zwiększa efektywność operacyjną oraz zadowolenie klientów.

Pytanie 17

Którą z poniższych czynności nie uznaje się za element konserwacji systemów alarmowych?

A. Weryfikacja powiadamiania
B. Montaż manipulatora
C. Zamiana akumulatora
D. Sprawdzanie czujników
Montaż manipulatora to czynność, która nie należy do konserwacji instalacji alarmowych. Konserwacja odnosi się do działań mających na celu utrzymanie systemu w sprawności i zapewnienie jego prawidłowego funkcjonowania. Wymiana akumulatora, testowanie czujników oraz kontrola powiadamiania to działania rutynowe, które pomagają w ocenie stanu systemu oraz w zapobieganiu ewentualnym awariom. Na przykład, regularne testowanie czujników pozwala na wykrycie ich ewentualnych usterek, co jest kluczowe dla bezpieczeństwa użytkowników. Wymiana akumulatora, natomiast, jest niezbędna, aby zapewnić ciągłość działania systemu w przypadku przerwy w zasilaniu. Standardy branżowe, takie jak PN-EN 50131, wskazują na znaczenie regularnej konserwacji dla systemów zabezpieczeń, co podkreśla rolę tych czynności w zapewnieniu niezawodności i efektywności systemów alarmowych.

Pytanie 18

Jednym z komponentów urządzenia elektronicznego jest rezystor o wartości rezystancji 1 kΩ i mocy 1 W. Jeśli brakuje elementu o tych parametrach, można go zastąpić rezystorem

A. o wyższej rezystancji i tej samej mocy
B. o identycznej rezystancji i niższej mocy
C. o niższej rezystancji i tej samej mocy
D. o identycznej rezystancji i wyższej mocy
Wybór rezystora o mniejszej rezystancji i tej samej mocy jest nieprawidłowy, ponieważ zmiana rezystancji w obwodzie wprowadza inne parametry do działania układu. Zmniejszenie rezystancji spowoduje wzrost prądu zgodnie z prawem Ohma, co może prowadzić do przeciążenia pozostałych elementów obwodu, a także spalić nowy rezystor, jeśli nie jest on odpowiednio dobrany do wymagań. Wybór rezystora o takiej samej rezystancji, ale mniejszej mocy, również jest błędny, ponieważ rezystor o mniejszej mocy nie będzie w stanie pracować w warunkach, które byłyby akceptowane dla oryginalnego elementu. Może to prowadzić do przegrzania i uszkodzenia rezystora. Wybór rezystora o większej rezystancji i tej samej mocy jest także niewłaściwy, gdyż zwiększenie rezystancji zmieni całkowity prąd w obwodzie, co z kolei wpłynie na działanie pozostałych komponentów. Takie podejście często wynika z niepełnego zrozumienia zasad działania obwodów elektrycznych oraz mechanizmów odpowiedzialnych za prąd i napięcie. Dlatego ważne jest, aby przy wyborze komponentów zawsze kierować się nie tylko ich rezystancją, ale także mocą, aby zapewnić pełną kompatybilność w obwodzie.

Pytanie 19

Jakie czynności należy wykonać, aby udzielić pierwszej pomocy osobie, która została porażona prądem elektrycznym i jest nieprzytomna?

A. Położenie jej na brzuchu i odchylenie głowy w bok
B. Położenie jej w pozycji na boku przy równoczesnym poluzowaniu ubrania
C. Przeniesienie jej na świeżym powietrzu i częściowe rozebranie
D. Położenie jej na plecach i poluzowanie odzieży na szyi
Ułożenie osoby porażonej prądem elektrycznym na brzuchu jest niebezpieczne, ponieważ może prowadzić do zablokowania dróg oddechowych i uniemożliwić swobodne oddychanie. Pozycja na plecach, choć teoretycznie bezpieczna, może również skutkować aspiracją, jeśli poszkodowany wymiotuje. Wyniesienie na świeże powietrze jest zasadne tylko w sytuacji, gdy istnieje ryzyko dalszego porażenia prądem lub innych zagrożeń, jednak nie powinno się tego robić samodzielnie, jeśli nie ma pewności, że nie zagraża to ratownikowi. Częściowe rozebranie osoby może być konieczne w celu schłodzenia jej, ale tylko w odpowiednich warunkach, a nie w przypadku porażenia prądem, gdzie kluczowe jest zapewnienie stabilności i bezpieczeństwa. Pomoc przedlekarska powinna być zawsze zgodna z wytycznymi, które podkreślają znaczenie odpowiednich pozycji oraz metod zapewnienia bezpieczeństwa. Typowym błędem jest zakładanie, że każda sytuacja wymaga natychmiastowego przenoszenia poszkodowanego, co w wielu przypadkach prowadzi do pogorszenia jego stanu zdrowia. Prawidłowe postępowanie w sytuacjach kryzysowych wymaga nie tylko znajomości procedur, ale także umiejętności ich dostosowania do konkretnej sytuacji, co jest niezbędne dla efektywnego udzielania pomocy.

Pytanie 20

Reflektometr optyczny to urządzenie wykorzystywane do identyfikacji uszkodzeń w

A. matrycach LCD
B. światłowodach
C. matrycach LED RGB
D. ogniwach fotowoltaicznych
Reflektometr optyczny, znany również jako OTDR (Optical Time Domain Reflectometer), to zaawansowane narzędzie służące do diagnozowania oraz lokalizacji uszkodzeń w systemach światłowodowych. Działa na zasadzie wysyłania impulsów światła przez włókno optyczne, a następnie analizowania odbitych sygnałów, co pozwala na określenie lokalizacji oraz charakterystyki uszkodzeń. Przykładowo, w przypadku przerwania włókna, OTDR jest w stanie zidentyfikować miejsce usterki z dużą precyzją, co jest kluczowe dla szybkiej naprawy i minimalizacji przestojów w sieciach telekomunikacyjnych. W branży telekomunikacyjnej stosuje się standardy ITU-T G.651 i G.652, które regulują parametry włókien optycznych, a reflektometry optyczne są uznawane za standardowe narzędzie w monitorowaniu ich wydajności. Dzięki zastosowaniu OTDR można także ocenić jakość połączeń, co jest istotne przy wdrażaniu nowych instalacji. Wiedza na temat użycia reflektometrów optycznych jest niezbędna dla techników i inżynierów w dziedzinie telekomunikacji.

Pytanie 21

Zasady zabraniają przeprowadzania prac serwisowych na instalacjach antenowych w warunkach

A. wietrznej pogody
B. niskiej temperatury
C. wyładowań atmosferycznych
D. ograniczonej widoczności
Prace serwisowe instalacji antenowych w warunkach wyładowań atmosferycznych są zabronione, ponieważ stanowią one poważne ryzyko dla bezpieczeństwa pracowników oraz integralności systemu. Wyładowania atmosferyczne mogą prowadzić do uszkodzeń sprzętu, a także zagrażać życiu ludzi pracujących na wysokości, gdzie instalacje antenowe są często montowane. Standardy BHP oraz przepisy dotyczące prac na wysokości jednoznacznie wskazują, że prace te powinny być wykonywane w warunkach minimalizujących ryzyko, a wyładowania atmosferyczne są jednym z najpoważniejszych zagrożeń. Na przykład, w przypadku burzy, potencjalne uderzenie pioruna może nie tylko uszkodzić sprzęt, ale także spalić instalację elektryczną, co może prowadzić do pożaru. Pracownicy powinni być w pełni świadomi tych zagrożeń i przestrzegać zasad bezpieczeństwa, takich jak monitorowanie prognoz pogody, aby unikać pracy w takich warunkach. Zastosowanie odpowiednich praktyk, takich jak planowanie prac serwisowych w czasie stabilnej pogody, jest kluczowe dla zapewnienia bezpieczeństwa.

Pytanie 22

Gdy w wzmacniaczu użyjemy ujemnego sprzężenia zwrotnego równoległego o charakterze napięciowym, to wzmocnienie

A. napięciowe zmniejszy się
B. napięciowe wzrośnie
C. napięciowe zostanie niezmienne
D. prądowe pozostanie na tym samym poziomie
Rozważając inne odpowiedzi, należy zwrócić uwagę na koncepcje związane z działaniem sprzężenia zwrotnego. Przykładowo, stwierdzenie, że wzmocnienie prądowe będzie stałe, jest mylnym podejściem, ponieważ ujemne sprzężenie zwrotne wpływa przede wszystkim na wzmocnienie napięciowe, a nie prądowe. Wzmocnienie prądowe może się zmieniać w zależności od obciążenia i warunków pracy wzmacniacza. Z kolei wskazanie, że napięciowe wzrośnie, jest błędne, ponieważ zastosowanie ujemnego sprzężenia zwrotnego ma na celu redukcję wzmocnienia, a nie jego zwiększenie. Stabilizacja wzmocnienia wiąże się z efektem ograniczenia wzmocnienia do wartości określającej funkcjonalność wzmacniacza, co z kolei zapobiega nieliniowości w jego działaniu. Odpowiedzi sugerujące, że napięciowe może zmaleć, także są nieprawidłowe, gdyż wzmocnienie napięciowe nie maleje w wyniku wprowadzenia sprzężenia zwrotnego, ale stabilizuje się na określonym poziomie. Błędne przekonania w tej kwestii często wynikają z braku zrozumienia mechanizmów działania sprzężenia zwrotnego oraz ich wpływu na parametry wzmacniacza. Wzmacniacze, w których zastosowano odpowiednią konfigurację sprzężenia zwrotnego ujemnego, są projektowane zgodnie z najlepszymi praktykami inżynieryjnymi, co pozwala na uzyskanie wysokiej jakości sygnału przy jednoczesnym unikaniu zniekształceń.

Pytanie 23

Operatorzy kablowych sieci telewizyjnych sprawdzają jakość sygnału u poszczególnych subskrybentów, wykonując pomiary parametrów sygnału

A. w poszczególnych gniazdach abonenckich
B. nadanego przez stację czołową
C. w kanale zwrotnym
D. na wyjściach poszczególnych węzłów optycznych
Odpowiedź 'w kanale zwrotnym' jest poprawna, ponieważ operatorzy telewizji kablowej monitorują jakość sygnału u abonentów, analizując parametry sygnału, które są przesyłane w kanale zwrotnym. Kanal zwrotny to część infrastruktury, w której sygnał z gniazd abonenckich wraca do stacji czołowej. Operatorzy mogą na przykład mierzyć poziom sygnału, jego jakość oraz wszelkie zakłócenia, które mogą wpływać na odbiór. W praktyce, pomiar tych parametrów pozwala na szybką diagnostykę ewentualnych problemów technicznych, co jest kluczowe dla utrzymania wysokiej jakości usług. W standardach branżowych, takich jak SCTE (Society of Cable Telecommunications Engineers), podkreśla się znaczenie monitorowania kanału zwrotnego jako elementu zapewniającego ciągłość i niezawodność usług telewizyjnych. Dzięki regularnym pomiarom, operatorzy mogą także dostosowywać swoje usługi do potrzeb klientów, co jest istotnym aspektem konkurencyjności na rynku telekomunikacyjnym.

Pytanie 24

Aby wykorzystać kamerę IP o wysokiej rozdzielczości, konieczne jest

A. dostęp do sieci komputerowej
B. rejestrator z dużą pojemnością dysku
C. zasilacz o większej mocy prądowej
D. obiektyw o wyższej rozdzielczości
Wielu użytkowników może mylnie sądzić, że rejestrator z dyskiem o dużej pojemności jest niezbędny do użycia kamery megapikselowej IP. Choć posiadanie takiego rejestratora ułatwia przechowywanie danych wideo z kamer, to nie jest to warunek konieczny do samego działania kamery. Kamery IP mogą transmitować obraz bezpośrednio przez sieć, co pozwala na zdalne monitorowanie bez potrzeby lokalnego rejestratora. Kolejnym błędem jest przekonanie, że obiektyw o zwiększonej rozdzielczości jest wymagany. Chociaż lepszy obiektyw może poprawić jakość obrazu, sama kamera IP działa niezależnie od rodzaju obiektywu, a jej funkcjonalność w dużym stopniu opiera się na dostępie do sieci. Innym nieporozumieniem jest zasilacz o podwyższonej wydajności prądowej. Kamery IP zazwyczaj korzystają z technologii Power over Ethernet (PoE), co oznacza, że mogą być zasilane bezpośrednio z kabla sieciowego, eliminując potrzebę dodatkowego zasilania. Tego rodzaju niejasności mogą prowadzić do błędnych decyzji przy planowaniu instalacji systemów monitoringu, dlatego ważne jest zrozumienie, że kluczowym elementem dla kamer IP jest ich integracja z siecią komputerową, a nie inne komponenty.

Pytanie 25

Metalowa obudowa urządzenia elektronicznego powinna być połączona z przewodem ochronnym instalacji zasilającej poprzez przewód o izolacji w odcieniu

A. niebieskim
B. żółto-zielonym
C. czarno-białym
D. czerwonym
Metalowa obudowa urządzeń elektronicznych powinna być połączona z żyłą ochronną instalacji elektrycznej za pomocą przewodu o izolacji w kolorze żółto-zielonym, co wynika z europejskich norm dotyczących instalacji elektrycznych, takich jak norma PN-EN 60446. Kolor żółto-zielony jednoznacznie identyfikuje przewody ochronne, które mają na celu zabezpieczenie przed porażeniem prądem elektrycznym poprzez odprowadzenie ewentualnego prądu upływowego do ziemi. W praktyce, połączenie metalowej obudowy z żyłą ochronną minimalizuje ryzyko uszkodzenia ciała ludzkiego w przypadku awarii urządzenia. W kontekście praktycznym, stosowanie odpowiednich kolorów przewodów ułatwia identyfikację ich funkcji, co jest kluczowe przy konserwacji i naprawach. Przykładowo, w przypadku modernizacji instalacji w budynku, stosowanie przewodów o standardowej kolorystyce zapewnia bezpieczeństwo techniczne i zgodność z przepisami, co jest niezbędne do przeprowadzenia skutecznych prac instalacyjnych. Zrozumienie tej zasady jest kluczowe dla każdego elektryka, ponieważ nieprzestrzeganie norm może prowadzić do poważnych konsekwencji prawnych oraz zagrożeń zdrowotnych.

Pytanie 26

W jakim czujniku do działania wykorzystuje się efekt zmiany pola magnetycznego?

A. Tensometrycznym
B. Bimetalicznym
C. Kontaktronowym
D. Pojemnościowym
Czujnik kontaktronowy wykorzystuje zjawisko zmiany pola magnetycznego do zadziałania, co jest kluczowe w jego działaniu. Kontaktrony składają się z dwóch metalowych styków zamkniętych w hermetycznej obudowie. Kiedy pole magnetyczne jest obecne, stykają się one, co powoduje zamknięcie obwodu elektrycznego. To zjawisko jest szeroko stosowane w automatyce budynkowej, systemach alarmowych oraz w różnych czujnikach i przełącznikach. Przykładem zastosowania kontaktronów jest detekcja otwarcia drzwi i okien w systemach zabezpieczeń, gdzie obecność lub brak pola magnetycznego sygnalizuje stan zamknięcia lub otwarcia. Warto również zaznaczyć, że czujniki te są preferowane ze względu na swoją niezawodność, długą żywotność oraz odporność na warunki zewnętrzne, co czyni je zgodnymi z normami ISO w zakresie jakości i trwałości urządzeń elektronicznych.

Pytanie 27

Wykonanie polecenia NOP przez mikrokontroler z rodziny '51

A. spowoduje przesunięcie zawartości akumulatora w prawo
B. wywoła skok warunkowy do adresu zarejestrowanego w akumulatorze
C. nie spowoduje żadnych działań, zajmie jedynie 1 cykl maszynowy
D. wykona logiczny iloczyn na odpowiednich bitach argumentów
Rozkaz NOP (No Operation) w architekturze mikrokontrolerów rodziny '51 jest instrukcją, która nie wykonuje żadnych operacji na danych, a jedynie wprowadza jednostkę czasu w cyklu maszynowym. Użycie tej instrukcji może być przydatne w różnych scenariuszach, takich jak synchronizacja procesów, wprowadzanie opóźnień czy też jako miejsce rezerwowe w kodzie, które może być później uzupełnione innymi instrukcjami. Z perspektywy praktycznej, NOP jest często stosowany w rutynach czasowych, gdzie wymagana jest pewna ilość cykli maszynowych do synchronizacji z innymi zdarzeniami w systemie. Zgodnie z dobrymi praktykami programowania w asemblerze, korzystanie z NOP może pomóc w unikaniu błędów związanych z niezamierzonymi operacjami, co zwiększa stabilność i przewidywalność działania systemu. Ponadto, w kontekście debugowania, stosowanie NOP może ułatwić analizę wykonywanego kodu, umożliwiając wprowadzenie punktów przerwania bez wpływania na logikę programu.

Pytanie 28

Stacja bazowa jest częścią systemu

A. telewizji kablowej
B. sterowania mikroprocesorowego
C. nawigacyjnego
D. alarmowego
Stacja czołowa w systemie telewizji kablowej pełni kluczową rolę w procesie odbioru, przetwarzania i dystrybucji sygnałów telewizyjnych. Jest to miejsce, w którym sygnały z różnych źródeł, takich jak satelity, nadajniki radiowe czy inne platformy multimedialne, są zbierane i konwertowane na format, który może być przesyłany do abonentów. Stacje czołowe są odpowiedzialne za modulację sygnałów, co pozwala na ich efektywne przesyłanie przez sieci kablowe. Przykładem zastosowania stacji czołowej jest system dystrybucji kanałów telewizyjnych przez operatorów telekomunikacyjnych, którzy dzięki wysokiej jakości przetwarzaniu sygnału mogą oferować różnorodne programy telewizyjne. W praktyce, stacje czołowe implementują również technologie takie jak MPEG-2, MPEG-4, które umożliwiają kompresję sygnałów wideo, co jest zgodne z międzynarodowymi standardami. Dobre praktyki związane z projektowaniem stacji czołowej obejmują zapewnienie redundancji systemów, co zwiększa niezawodność usług telewizyjnych.

Pytanie 29

Jaki element elektroniczny jest określany przez symbole: S-źródło, G-bramka, D-dren?

A. Tranzystor unipolarny
B. Tranzystor bipolarny
C. Tyrystor
D. Trymer
Tranzystor unipolarny, znany również jako tranzystor MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor), jest elementem elektronicznym, który charakteryzuje się trzema głównymi terminalami: źródłem (S), bramką (G) oraz drenem (D). Te oznaczenia są standardem w dokumentacji technicznej i umożliwiają zrozumienie, jak tego typu tranzystor funkcjonuje. W tranzystorze unipolarnym prąd przepływa między drenem a źródłem, gdy na bramkę przyłożone jest odpowiednie napięcie, co kontroluje jego stan włączony lub wyłączony. Zastosowania tranzystorów unipolarnych obejmują obwody cyfrowe, wzmacniacze oraz układy przełączające, co czyni je niezwykle wszechstronnymi w różnych dziedzinach elektroniki, od komputerów po systemy komunikacji. Warto zauważyć, że ze względu na ich niskie zużycie energii i wysoką szybkość przełączania, tranzystory MOSFET są szeroko stosowane w nowoczesnych urządzeniach elektronicznych, co podkreśla ich znaczenie w branży.

Pytanie 30

Jakie jest zadanie konwertera satelitarnego?

A. przesyłanie sygnału z odbiornika satelitarnego do satelity
B. przekazywanie sygnału z satelity do odbiornika satelitarnego
C. dopasowywanie reaktancji anteny satelitarnej
D. regulacja napięcia w obwodzie antenowym
Konwerter satelitarny odgrywa kluczową rolę w systemach telekomunikacyjnych, umożliwiając efektywne przesyłanie sygnałów z satelitów do odbiorników satelitarnych. Jego główną funkcją jest odbieranie sygnałów radiowych emitowanych przez satelity geostacjonarne, ich konwersja na niższe częstotliwości i przesyłanie ich do odbiornika. Dzięki temu możliwe jest korzystanie z różnych usług, takich jak telewizja satelitarna, internet satelitarny czy telekomunikacja. Przykładem zastosowania konwertera jest system dostarczania sygnału telewizyjnego do domów, gdzie konwerter umieszczony na antenie zbiera sygnał z satelity, a następnie przetworzony sygnał jest przesyłany do dekodera w telewizorze. Zgodnie z najlepszymi praktykami w branży, konwertery powinny być dostosowane do specyfikacji LNB (Low Noise Block), aby zminimalizować szumy i zapewnić optymalną jakość sygnału. Dodatkowo, konwertery muszą być zgodne z normami ITU i ETSI, co gwarantuje ich interoperacyjność w globalnych systemach satelitarnych.

Pytanie 31

Który z komponentów półprzewodnikowych ma czterowarstwową budowę typu n-p-n-p?

A. Dioda LED
B. Tranzystor bipolarny
C. Warikap
D. Tyrystor
Tyrystor to ciekawy element półprzewodnikowy, który ma cztery warstwy, czyli taką strukturę n-p-n-p. Dzięki temu działa tak, jak działa, i dlatego jest używany w różnych sytuacjach, na przykład w prostownikach czy falownikach. Moim zdaniem, jego właściwości są naprawdę fajne, zwłaszcza w tych aplikacjach, gdzie trzeba kontrolować duże prądy. Tyrystory przewodzą prąd w jednym kierunku i po wyłączeniu nie potrzebują, żeby ktoś im dał impuls, by znowu przestały przewodzić. To bardzo przydatne w automatyce i systemach zasilania, bo można je stosować tam, gdzie szybka zmiana stanu jest niezbędna. Warto pamiętać, że w elektronice dobrze jest ich używać w urządzeniach, które muszą radzić sobie z wysokimi napięciami i prądami. W sumie, są naprawdę ważnym elementem nowoczesnych układów elektronicznych.

Pytanie 32

Nagłe zmiany temperatury (np. z powodu pieców czy otwartych okien) mogą powodować zakłócenia w działaniu detektora umieszczonego w jego pobliżu?

A. ruchu
B. czadu
C. światła
D. dymu
Gwałtowne zmiany temperatury, takie jak te spowodowane otwieraniem okien lub działaniem pieca, mogą znacząco wpłynąć na funkcjonalność detektorów ruchu. Te urządzenia działają na zasadzie wykrywania zmian w promieniowaniu podczerwonym emitowanym przez obiekty w ich zasięgu. Kiedy temperatura wokół detektora szybko się zmienia, może to prowadzić do fałszywych alarmów lub całkowitego zaniku ich reakcji na ruch. W praktyce oznacza to, że w pomieszczeniach, gdzie występują gwałtowne zmiany temperatury, zaleca się instalację detektorów w miejscach mniej narażonych na takie czynniki. W standardach branżowych, takich jak EN 50131, zwraca się uwagę na odpowiednie umiejscowienie czujników oraz ich calibrację, co ma kluczowe znaczenie dla efektywności systemu zabezpieczeń. Dlatego zrozumienie wpływu temperatury na działanie detektorów ruchu jest istotnym zagadnieniem dla projektantów systemów alarmowych i użytkowników, którzy chcą zapewnić ich niezawodność i skuteczność w ochronie mienia.

Pytanie 33

Jakie urządzenie jest odpowiedzialne za rozdzielanie tonów niskich, średnich i wysokich do głośników?

A. komparator głośnikowy
B. limiter
C. equalizer
D. zwrotnica głośnikowa
Zwrotnica głośnikowa jest kluczowym elementem systemów audio, odpowiedzialnym za rozdzielanie sygnałów audio na różne pasma częstotliwości. Działa na zasadzie filtracji, co pozwala na kierowanie tonów niskich, średnich i wysokich do odpowiednich głośników. Dzięki temu, subwoofer odbiera tylko dźwięki niskich częstotliwości, głośniki średniozakresowe zajmują się tonami średnimi, a tweeter obsługuje dźwięki wysokie. To rozdzielenie pozwala na uzyskanie lepszej jakości dźwięku oraz zwiększa efektywność poszczególnych głośników, co jest szczególnie istotne w profesjonalnych systemach nagłośnieniowych oraz hi-fi. Dobrze zaprojektowana zwrotnica minimalizuje zniekształcenia dźwięku oraz maksymalizuje wydajność głośników, co jest zgodne z branżowymi standardami audio. W praktyce, zwrotnice są często wykorzystywane w koncertach, w studiach nagraniowych oraz w domowych systemach audio, co świadczy o ich wszechstronności i niezbędności w dziedzinie dźwięku.

Pytanie 34

Jakie typy złączy są stosowane w kamerach IP w systemach monitoringu?

A. RJ45
B. RJ11
C. SMA
D. BNC
Złącza SMA, BNC i RJ11, mimo że są powszechnie używane w różnych aplikacjach technologicznych, nie są odpowiednie w kontekście kamer IP. Złącze SMA jest stosowane głównie w systemach komunikacji bezprzewodowej, jako złącze antenowe, co czyni je nieprzydatnym dla kamer, które wymagają połączenia Ethernetowego do przesyłania danych. Z kolei złącze BNC jest przestarzałym rozwiązaniem stosowanym głównie w analogowych systemach wideo, takich jak kamery CCTV, gdzie obraz jest przesyłany w postaci sygnału analogowego. W systemach IP, które przesyłają dane w formie cyfrowej, wykorzystanie BNC nie jest zalecane, ponieważ nie obsługuje standardów transmisji IP. Złącze RJ11, znane jako złącze telefoniczne, również nie jest odpowiednie dla kamer IP, ponieważ jego zastosowanie ogranicza się do systemów telefonicznych i nie oferuje wystarczającej przepustowości ani możliwości przesyłania sygnału wideo. Wybór niewłaściwego złącza w systemie monitoringu może prowadzić do problemów z jakością obrazu, opóźnieniami oraz brakiem stabilności połączenia, co jest kluczowe w zabezpieczeniach i monitoringu obiektów.

Pytanie 35

Jakie urządzenie stosuje się do podziału sygnału z anteny w systemie telewizyjnym?

A. zwrotnicę
B. switch
C. spliter
D. symetryzator
Spliter to taki fajny gadżet, który można spotkać w instalacjach telewizyjnych. Dzięki niemu da się podzielić sygnał z anteny na kilka wyjść, co oznacza, że kilka telewizorów może korzystać z jednego źródła. To naprawdę przydatne w domach, gdzie mamy więcej niż jeden telewizor, bo zamiast biegać i wymieniać kable, wystarczy podłączyć splitter. Działa to na zasadzie dzielenia sygnału RF, a jak dobrze się go wybierze, to straty sygnału są minimalne. Warto zwrócić uwagę na parametry, takie jak szerokość pasma czy tłumienie, żeby wszystko pasowało do naszej anteny i telewizorów. To znaczy, żeby instalacja działała sprawnie i bezproblemowo. Można też poprawić jakość sygnału, używając wzmacniaczy sygnału w odpowiednich miejscach. Przykład? Nawet w małym mieszkaniu, jeśli mamy dwa telewizory, które chcą oglądać ten sam kanał, to spliter załatwi sprawę bez problemu – nie musimy mieć dwóch anten. Ogólnie mówiąc, to wygodne rozwiązanie, które warto mieć na uwadze.

Pytanie 36

Montaż wtyku F na kablu koncentrycznym polega na

A. usunięciu odciętej zewnętrznej izolacji, ułożeniu oplotu wzdłuż kabla, usunięciu izolacji żyły, nałożeniu wtyku
B. usunięciu odciętej zewnętrznej izolacji, usunięciu folii, usunięciu izolacji żyły, założeniu wtyku
C. nacięciu zewnętrznej powłoki, usunięciu oplotu, usunięciu izolacji żyły, nałożeniu wtyku
D. nacięciu zewnętrznej powłoki, usunięciu folii, usunięciu izolacji żyły, nałożeniu wtyku
W analizowanych odpowiedziach pojawiają się różne błędne koncepcje dotyczące montażu wtyku F na przewodzie koncentrycznym. Nacięcie powłoki zewnętrznej, jak sugerują niektóre z odpowiedzi, nie jest odpowiednią metodą, ponieważ może prowadzić do uszkodzenia struktury przewodu i obniżenia jakości sygnału. Usunięcie folii, które jest wspomniane w odpowiedziach, powinno dotyczyć tylko izolacji, a nie materiału ochronnego, który jest istotny dla właściwego przewodzenia sygnału. Użycie terminu 'nacięcie' sugeruje również, że można usunąć warstwę izolacyjną w sposób, który nie jest zgodny z dobrymi praktykami. Oplot pełni kluczową funkcję w ochronie przed zakłóceniami i powinien być właściwie przygotowany do montażu. Z kolei pominięcie etapu ułożenia oplotu wzdłuż przewodu prowadzi do nieprawidłowego połączenia wtyku, co może skutkować złym jakościowo sygnałem. Przykłady błędów myślowych mogą wynikać z braku zrozumienia roli poszczególnych elementów kabla koncentrycznego oraz procesu montażu. Ważne jest, aby podczas pracy z instalacjami koncentrycznymi stosować właściwe narzędzia oraz przestrzegać standardów branżowych, co pozwoli na uzyskanie trwałych i niezawodnych połączeń.

Pytanie 37

Jaki układ powinien być zastosowany, aby zestawić badane napięcie z napięciem odniesienia i w zależności od różnicy uzyskać na wyjściu układu sygnał logiczny 0 lub 1?

A. Komparator
B. Stabilizator
C. Multiplekser
D. Demultiplekser
Komparator to specjalistyczny układ elektroniczny, którego głównym zadaniem jest porównywanie dwóch napięć: badane napięcie oraz napięcie odniesienia. W przypadku, gdy napięcie badane jest większe od napięcia odniesienia, na wyjściu komparatora generowany jest sygnał logiczny 1, natomiast gdy jest mniejsze – sygnał logiczny 0. Komparatory są szeroko stosowane w różnorodnych aplikacjach, takich jak systemy automatyki, detektory poziomu, czy układy zabezpieczeń. Przykładowo, w aplikacjach zasilania, komparator może być używany do monitorowania napięcia akumulatora; jeśli napięcie spadnie poniżej ustalonego poziomu, układ może wyłączyć obciążenie, zapobiegając uszkodzeniu akumulatora. Z punktu widzenia standardów branżowych, komparatory powinny charakteryzować się niskim poziomem szumów oraz dużą szybkością przełączania, co zapewnia dokładność w działaniu. Warto również zwrócić uwagę na dobór odpowiednich napięć odniesienia, co może wpłynąć na stabilność i niezawodność komparatora w aplikacjach.

Pytanie 38

Podczas naprawy telewizora technik serwisowy doznał porażenia prądem. Po jego uwolnieniu z kontaktu stwierdzono, że jest nieprzytomny, oddycha i ma prawidłową pracę serca. W jaki sposób powinno się ułożyć poszkodowanego?

A. Na brzuchu z głową odchyloną na bok
B. Na plecach z uniesionymi nogami
C. W pozycji bocznej ustalonej
D. W pozycji siedzącej z podparciem głowy
Wybór nieprawidłowej pozycji dla poszkodowanego może prowadzić do poważnych konsekwencji zdrowotnych. Ułożenie w pozycji siedzącej i podtrzymywanie głowy nie jest optymalne, ponieważ może utrudnić swobodny przepływ powietrza oraz zwiększa ryzyko asfiksji, szczególnie jeśli osoba zacznie wymiotować. Natomiast ułożenie na brzuchu z głową odchyloną na bok jest niewłaściwe, gdyż może prowadzić do ucisku na klatkę piersiową i ograniczać ruchy oddechowe, co w przypadku nieprzytomności stwarza dodatkowe zagrożenie. Podobnie, umieszczenie poszkodowanego na plecach z uniesionymi nogami może być szkodliwe, ponieważ w takiej pozycji osoba może bez trudu wpaść w stan duszności, a w razie wymiotów grozi jej zachłyśnięcie. Kluczowym błędem myślowym jest niedocenienie znaczenia drożności dróg oddechowych oraz stabilności ciała. Utrzymując poszkodowanego w odpowiedniej, ale niewłaściwej pozycji, możemy narażać go na dodatkowe urazy i komplikacje zdrowotne. Dlatego w przypadku nieprzytomności, ale zachowanej świadomości oddechowej, najbezpieczniejszym rozwiązaniem jest zawsze pozycja boczna ustalona, która jest zgodna z wytycznymi i najlepszymi praktykami w zakresie pierwszej pomocy.

Pytanie 39

Który z wymienionych parametrów nie odnosi się do odbiorników radiowych?

A. Moc wejściowa
B. Czułość
C. Moc wyjściowa
D. Selektywność
Czułość, selektywność oraz moc wyjściowa to parametry, które są kluczowe w ocenie jakości odbiorników radiowych. Czułość odbiornika definiuje minimalny poziom sygnału, przy którym urządzenie jest w stanie zidentyfikować i przetworzyć sygnał. W praktyce, oznacza to, że im niższa wartość czułości, tym lepiej odbiornik poradzi sobie z odbieraniem słabych sygnałów, co jest szczególnie istotne w obszarach o niskiej mocy sygnału. Selektywność natomiast, określa zdolność urządzenia do oddzielania sygnałów znajdujących się blisko siebie w spektrum częstotliwości. Wartość ta jest niezwykle ważna, gdyż pozwala na odbiór wybranych stacji bez zakłóceń spowodowanych przez inne nadajniki działające w sąsiedztwie. Moc wyjściowa to parametr, który wskazuje na siłę sygnału dostarczanego do końcowego urządzenia, co ma bezpośredni wpływ na jakość dźwięku. Błędne zrozumienie mocy wejściowej i jej roli w kontekście odbiorników radiowych może prowadzić do mylnego wniosku, że jest ona istotnym parametrem dla tych urządzeń. W rzeczywistości moc wejściowa dotyczy źródła sygnału, a nie samego odbiornika, co jest kluczowym aspektem, który powinien być uwzględniany przy analizie parametrów radiowych. Zrozumienie tych różnic jest niezbędne dla prawidłowej oceny i porównania odbiorników radiowych w różnych zastosowaniach.

Pytanie 40

Która z topologii sieci komputerowych gwarantuje największą niezawodność?

A. Pierścienia.
B. Siatki.
C. Gwiazdy.
D. Drzewa.
Topologia siatki zapewnia najwyższy poziom niezawodności w sieciach komputerowych, ponieważ każda stacja w sieci jest połączona z wieloma innymi stacjami. W przypadku awarii jednego z połączeń, dane mogą być kierowane inną ścieżką, co minimalizuje ryzyko utraty komunikacji. Taki model jest często wykorzystywany w krytycznych aplikacjach, takich jak systemy finansowe czy infrastruktura transportowa, gdzie utrata połączenia może prowadzić do poważnych konsekwencji. Zastosowanie topologii siatki jest zgodne z najlepszymi praktykami w dziedzinie projektowania sieci, gdzie kluczowe jest zapewnienie dużej redundancji i elastyczności. Przykładem może być sieć miejskiego systemu monitoringu, w której wiele kamer jest połączonych w topologii siatki, co zapewnia ciągłość działania nawet w przypadku uszkodzenia kilku połączeń. Dodatkowo, siatki są zgodne z normami takimi jak IEEE 802.11s, które definiują standardy dla mesh networking, co umożliwia ich szerokie zastosowanie w różnych branżach.