Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 4 maja 2025 00:35
  • Data zakończenia: 4 maja 2025 00:51

Egzamin zdany!

Wynik: 26/40 punktów (65,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Z próbki zawierającej siarczany(VI) należy najpierw wydzielić metodą filtracji zanieczyszczenia, które są nierozpuszczalne w wodzie. Dokładność wypłukania tych zanieczyszczeń weryfikuje się za pomocą roztworu

A. oranżu metylowego
B. AgNO3
C. fenoloftaleiny
D. BaCl2
BaCl2, czyli chlorek baru, to super reagent do sprawdzania siarczanów(VI) w roztworach. Dlaczego? Bo tworzy nierozpuszczalny osad siarczanu baru (BaSO4) w obecności jonów siarczanowych. W praktyce robisz filtrację, oddzielasz te nierozpuszczalne zanieczyszczenia, a potem przemywasz wodą destylowaną. Jak dodasz BaCl2 do tych resztek, to jeśli są tam jakieś siarczany, zobaczysz biały osad. To oznacza, że siarczany są obecne. Ten proces jest zgodny z tym, co się robi w laboratoriach analitycznych, gdzie ważna jest dokładna detekcja siarczanów, żeby ocenić czystość próbek. Warto znać tę metodę, zwłaszcza w kontekście badań środowiskowych, bo tu precyzyjne dane są kluczowe.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

W trakcie określania miana roztworu NaOH, do zmiareczkowania 25,0 cm3 tego roztworu, użyto 30,0 cm3 roztworu HCl o stężeniu 0,1000 mol/dm3. Jakie miało miano zasady?

A. 0,1500 mol/dm3
B. 0,2000 mol/dm3
C. 0,1200 mol/dm3
D. 0,1000 mol/dm3
Wiele osób może nie dostrzegać, że poprawne obliczenia miana roztworu NaOH opierają się na znajomości stoichiometrii reakcji chemicznych oraz zrozumieniu, jak stosunki molowe wpływają na obliczenia. Wybrane odpowiedzi, takie jak 0,1000 mol/dm³, mogą sugerować błędne założenie, że miano NaOH odpowiada stężeniu HCl, co jest nieprawidłowe. Odpowiedzi wskazujące na miano 0,1500 mol/dm³ lub 0,2000 mol/dm³ mogą wynikać z błędnego przeliczenia objętości reagenta lub pomyłki w stosunku molowym. W praktyce, takie błędy są częste, gdy osoby nie biorą pod uwagę, że w reakcji neutralizacji między NaOH a HCl dochodzi do wymiany moli zgodnie z równaniem 1:1. Dlatego kluczowe jest, aby w obliczeniach uwzględniać zarówno objętości, jak i właściwe stężenia reagentów. Typowymi pułapkami są również błędy w jednostkach, gdzie pomijanie konwersji cm³ na dm³ prowadzi do nieprawidłowych wyników. Niewłaściwe zrozumienie reakcji chemicznych oraz ich stoichiometrii może skutkować fałszywymi wynikami, co w kontekście analitycznym jest niedopuszczalne. Rekomendacje branżowe sugerują regularne sprawdzanie obliczeń oraz stosowanie wzorców referencyjnych, aby zapewnić prawidłowość wyników, co jest niezwykle istotne w laboratoriach badawczych i przemysłowych.

Pytanie 4

Aby przygotować miano kwasu solnego, konieczne jest odważenie węglanu sodu o masie wynoszącej około 400 mg. Jaką precyzję powinna mieć waga używana do odważenia węglanu sodu?

A. 0,1 g
B. 0,001 g
C. 0,01 g
D. 1 g
Wybór wagi o dokładności 0,001 g (1 mg) jest uzasadniony, gdyż do przygotowania miany kwasu solnego potrzebna jest odważka węglanu sodu o masie około 400 mg. Wymagana dokładność przy ważeniu substanacji chemicznych jest kluczowa dla uzyskania precyzyjnych wyników analitycznych. W analityce chemicznej, zwłaszcza w titracji, precyzyjne ważenie reagentów jest niezbędne, aby uniknąć błędów pomiarowych, które mogą prowadzić do fałszywych wniosków. Przyjęcie dokładności na poziomie 0,001 g pozwala na dokładniejsze przygotowanie roztworu, co jest istotne w kontekście późniejszych obliczeń i analiz. Stosowanie wag analitycznych jest standardem w laboratoriach chemicznych, ponieważ umożliwiają one kontrolowanie jakości analizowanego materiału i zapewniają zgodność z zasadami dobrej praktyki laboratoryjnej (GLP). Przykładowo, w przypadku przygotowywania roztworów wzorcowych, dokładność ważenia jest kluczowa dla uzyskania odpowiednich stężeń, co jest niezbędne w dalszych etapach analizy.

Pytanie 5

Do wykonania preparatu według zamieszczonej procedury należy przygotować wagę, łyżeczkę, palnik gazowy, trójnóg, bagietkę, szczypce metalowe oraz

Procedura otrzymywania tlenku magnezu przez prażenie węglanu magnezu.
Odważoną ilość węglanu magnezu ubić dokładnie w tyglu (wcześniej zważonym) i przykryć pokrywką.
Początkowo ogrzewać niewielkim kopcącym płomieniem, a następnie gdy tygiel ogrzeje się, ogrzewać
silniej w temperaturze czerwonego żaru przez około 20 minut. Po zakończeniu prażenia tygiel odstawić
do ostudzenia chroniąc przed wilgocią. Zważyć tygiel z preparatem i obliczyć wydajność.

A. tygiel z pokrywką, trójkąt ceramiczny, eksykator.
B. tygiel, siatkę grzewczą, eksykator.
C. tygiel, trójkąt ceramiczny, krystalizator.
D. tygiel z pokrywką, siatkę grzewczą, zlewkę z zimną wodą.
Poprawna odpowiedź zawiera tygiel z pokrywką, trójkąt ceramiczny oraz eksykator, które są kluczowymi elementami w procesie prażenia węglanu magnezu do uzyskania tlenku magnezu. Tygiel z pokrywką jest niezbędny do przeprowadzenia reakcji chemicznych w kontrolowanych warunkach, chroniąc substancję przed zanieczyszczeniami oraz zapewniając właściwą izolację termiczną. Trójkąt ceramiczny pełni rolę podpory dla tygla, umożliwiając równomierne ogrzewanie nad płomieniem palnika gazowego. Eksykator jest istotny po zakończeniu prażenia, gdyż pozwala na schłodzenie produktu w warunkach niskiej wilgotności, co zapobiega jego absorpcji wody z otoczenia. Odpowiednie korzystanie z tych narzędzi jest zgodne z najlepszymi praktykami laboratoriami chemicznymi, co jest szczególnie ważne w kontekście uzyskiwania czystych i stabilnych produktów chemicznych. Zrozumienie procedur oraz standardów bezpieczeństwa w laboratoriach chemicznych jest kluczowe dla osiągnięcia sukcesu w eksperymentach.

Pytanie 6

Substancje pomocnicze wykorzystywane do realizacji podstawowych analiz jakościowych i ilościowych, które nie wymagają wysokiej czystości, są oznaczane na opakowaniach symbolem

A. techn.
B. cz.d.a.
C. cz.ch.
D. cz.
Odpowiedzi "cz.ch.", "techn." oraz "cz.d.a." są błędne w kontekście pytania, ponieważ każda z tych terminologii odnosi się do innych klas substancji. Termin "cz.ch." odnosi się do substancji czystych chemicznie, które muszą spełniać wysokie standardy czystości i są używane w bardziej wymagających analizach, gdzie nawet najmniejsze zanieczyszczenia mogą wpływać na wyniki. W kontekście analiz jakościowych i ilościowych, wybór substancji czystych chemicznie w sytuacjach, gdy nie jest to wymagane, nie tylko zwiększa koszty, ale również komplikuje procedury laboratoryjne. Z kolei "techn." odnosi się do substancji technicznych, które mogą być używane w procesach przemysłowych, ale ich standardy czystości również mogą nie być odpowiednie dla analiz laboratoryjnych. Używanie takich substancji w analizach może prowadzić do zafałszowań wyników, co jest absolutnie niedopuszczalne w kontekście rzetelnych badań. Termin "cz.d.a." odnosi się do czystości dla analizy, co również oznacza wyższe wymagania dotyczące czystości, a więc nie pasuje do koncepcji substancji pomocniczych, które nie muszą spełniać tych standardów. Typowe błędy myślowe prowadzące do takich niepoprawnych wniosków to niepełne zrozumienie różnic w wymaganiach czystości oraz niewłaściwe przypisywanie terminów do kontekstu ich zastosowania w analizach chemicznych.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Aby zregenerować rozpuszczalnik organiczny, należy wykonać proces

A. filtrowania
B. odparowywania
C. destylacji
D. demineralizacji
Sączenie, odparowanie i demineralizacja to metody, które mają swoje zastosowania, jednak nie są odpowiednie do regeneracji rozpuszczalników organicznych. Sączenie to fizyczny proces separacji ciał stałych od cieczy, wykorzystywany głównie w filtracji, a nie w przypadku substancji rozpuszczalnych. Użycie sączenia do regeneracji rozpuszczalników byłoby nieefektywne, ponieważ nie pozwala na odzyskiwanie cieczy w formie czystej. Odparowanie, z kolei, polega na usuwaniu cieczy poprzez podgrzewanie, co może prowadzić do utraty części rozpuszczalnika i jego nieodwracalnego zniszczenia, co jest sprzeczne z ideą regeneracji. Wreszcie, demineralizacja dotyczy usuwania soli i innych minerałów z wody i nie ma zastosowania w kontekście rozpuszczalników organicznych. Często popełnianym błędem jest mylenie różnych metod separacji i regeneracji, co prowadzi do wniosków, które nie są zgodne z charakterystyką danego procesu chemicznego. Kluczowe w regeneracji rozpuszczalników organicznych jest zrozumienie, iż efektywne odzyskiwanie zależy od właściwego doboru metod, a destylacja pozostaje najskuteczniejszą z nich.

Pytanie 9

W tabeli zamieszczono temperatury wrzenia niektórych składników powietrza. Na podstawie tych danych podaj, który ze składników oddestyluje jako ostatni.

Temperatura wrzenia °CSkładniki
-245,9Neon
-182,96Tlen
-195,8Azot
-185,7Argon

A. Neon.
B. Azot.
C. Tlen.
D. Argon.
Wybór azotu, neonu czy argonu jako ostatniego gazu, który oddestyluje, to błąd wynikający z nieprawidłowego rozumienia zasad fizyki gazów i temperatur wrzenia. Azot wrze w -195,79°C, więc jest jednym z tych gazów, które oddzielają się znacznie wcześniej niż tlen. Neon z temperaturą wrzenia -246,08°C też ma znacznie niższą wartość niż tlen, dlatego również wydostaje się przed nim. Argon, z temperaturą -185,85°C, znajduje się gdzieś pomiędzy nimi, także oddestylowuje przed tlenem. To nieprawidłowe podejście wynika z braku zrozumienia, jak działa temperatura wrzenia i jak wpływa na separację gazów. A w praktyce, różnice te są kluczowe w przemyśle. Błędne wnioski mogą prowadzić do problemów w produkcji, dlatego warto znać właściwości fizyczne gazów oraz ich znaczenie w technologii, bo to naprawdę podstawowe aspekty w inżynierii chemicznej.

Pytanie 10

Wodę do badań mikrobiologicznych powinno się pobierać do butelek

A. umytych wodorotlenkiem sodu
B. starannie wypłukanych, na przykład po niegazowanej wodzie mineralnej
C. sterylnych
D. zanurzonych wcześniej na 2-3 minuty w alkoholu etylowym
Pobieranie próbek wody do badań mikrobiologicznych powinno odbywać się wyłącznie w sterylnych butelkach, co ma kluczowe znaczenie dla uzyskania wiarygodnych wyników. Sterylność opakowania eliminuje ryzyko kontaminacji próbki przez mikroorganizmy z otoczenia. W praktyce, butelki do pobierania wody mikrobiologicznej są zazwyczaj produkowane z materiałów, które można wysterylizować, a ich zamknięcia są zaprojektowane tak, aby zapobiegać wszelkim kontaktom z zanieczyszczeniami. Ponadto, w przypadku badań mikrobiologicznych, takie wymagania są zgodne z normami, takimi jak ISO 5667, które określają procedury pobierania wody. Użycie sterylnych pojemników jest szczególnie istotne, gdyż mikroorganizmy mogą być obecne w różnych formach, a nawet niewielka ilość zanieczyszczeń może prowadzić do fałszywych wyników. Dlatego w laboratoriach oraz w trakcie inspekcji sanitarno-epidemiologicznych stosuje się ściśle określone procedury, aby zapewnić wysoką jakość i wiarygodność badań.

Pytanie 11

Piknometr służy do określania

A. rozpuszczalności
B. wilgotności
C. gęstości
D. lepkości
Piknometr jest precyzyjnym przyrządem służącym do pomiaru gęstości substancji, co jest niezwykle istotne w wielu dziedzinach, takich jak chemia, biochemia czy inżynieria materiałowa. Gęstość jest definiowana jako masa na jednostkę objętości i ma kluczowe znaczenie w identyfikacji substancji oraz w kontrolowaniu jakości produktów. Piknometry są wykorzystywane w laboratoriach do pomiaru gęstości cieczy, a także ciał stałych po uprzednim ich przekształceniu w zawiesiny. Przykładowo, w analizie chemicznej, znajomość gęstości substancji pozwala na obliczenie stężenia roztworów, co jest krytyczne dla wielu procesów syntezy chemicznej i analitycznej. Zgodnie z zasadami metrologii, pomiar gęstości powinien być przeprowadzany w warunkach kontrolowanej temperatury, a piknometry muszą być kalibrowane, aby zapewnić wiarygodność wyników. Standardy, takie jak ASTM D1481, wyznaczają metody pomiaru gęstości z wykorzystaniem piknometrów, co dodatkowo podkreśla ich znaczenie w praktyce laboratywnej.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Aby przyspieszyć reakcję, należy zwiększyć stężenie substratów

A. zwiększyć, a temperaturę podnieść
B. zmniejszyć, a temperaturę obniżyć
C. zwiększyć, a temperaturę zmniejszyć
D. zmniejszyć, a temperaturę podnieść
Zwiększenie szybkości reakcji chemicznych trochę się sprowadza do tego, jak ważne są substraty i temperatura. Kiedy podnosisz stężenie substratów, to więcej cząsteczek jest dostępnych do reakcji, więc mają większe szanse na zderzenie. Z drugiej strony, wyższa temperatura podkręca energię kinetyczną cząsteczek, co sprawia, że zderzają się częściej i mocniej, co pomaga im pokonać energię aktywacji. Na przykład w biochemii, jak mamy reakcje enzymatyczne, zwiększenie stężenia substratu może pomóc osiągnąć maksymalną prędkość reakcji, co jest zgodne z zasadą Vmax. W praktyce w przemyśle chemicznym, dobrze jest dostosować stężenie i temperaturę, żeby zoptymalizować wydajność i rentowność. Ciekawe jest to, że czasami, jak w reakcjach równowagi, podwyższenie stężenia reagentów może przesunąć równowagę w stronę produktów, co też jest korzystne dla wydajności reakcji.

Pytanie 14

Etykieta roztworu kwasu azotowego(V) o koncentracji 6 mol/dm3 powinna zawierać nazwę substancji oraz

A. masę, datę przygotowania i numer katalogowy
B. koncentrację, producenta i wykaz zanieczyszczeń
C. koncentrację, ostrzeżenia H oraz datę przygotowania
D. masę, koncentrację i numer katalogowy
Wiele z niepoprawnych odpowiedzi nie uwzględnia kluczowych elementów, które są obowiązkowe na etykietach chemikaliów, co może prowadzić do poważnych problemów w zakresie bezpieczeństwa. Odpowiedzi sugerujące umieszczenie masy, daty sporządzenia i numeru katalogowego pomijają istotne informacje dotyczące zagrożeń. Masa substancji chemicznej nie jest parametrem, który powinien być bezpośrednio wskazywany na etykiecie roztworu; zamiast tego, stężenie jest kluczowe dla oceny jej reaktancji i potencjalnego ryzyka. Numer katalogowy jest przydatny w kontekście identyfikacji produktu, ale nie ma bezpośredniego związku z bezpieczeństwem użytkownika w laboratorium. W kontekście praktycznym, błędne podejście do etykietowania może skutkować niewłaściwym użyciem substancji, co niesie ryzyko wystąpienia niebezpiecznych reakcji chemicznych. Ponadto, brak zwrotów zagrożeń H na etykiecie może prowadzić do nieświadomego narażenia pracowników na działanie toksycznych lub żrących substancji. W każdej sytuacji, każdy operator powinien być świadomy konieczności stosowania się do obowiązujących przepisów oraz najlepszych praktyk w zakresie etykietowania substancji chemicznych, a ich zaniedbanie może prowadzić do poważnych konsekwencji zdrowotnych i prawnych.

Pytanie 15

Próbkę laboratoryjną dzieli się na dwie części, ponieważ

A. analizę produktu zawsze realizuje się dwiema różnymi metodami
B. jedna część jest przeznaczona do potencjalnego przeprowadzenia analizy rozjemczej
C. jedna część jest skierowana do dostawcy, a druga do odbiorcy produktu
D. przeprowadza się dwie analizy badanego produktu i przyjmuje wartość średnią z wyników
Podział średniej próbki na dwie części to coś, na co trzeba zwrócić uwagę w analizie laboratoryjnej. Odpowiedzi, które mówią, że jedna próbka idzie dla dostawcy, a druga dla odbiorcy, mogą wprowadzać w błąd, bo nie bierze się pod uwagę celu analizy rozjemczej, która jest do rozstrzygania sporów. Dwie różne metody analizy mogą być fajne, ale to nie tłumaczy podziału próbki. Taki sposób robienia rzeczy może zamieszać i prowadzić do kiepskich wniosków o wynikach. Co więcej, robienie dwóch analiz i branie z tego średniej to nie jest standard w takich sprawach jak jakość, bo nie wyklucza błędów systematycznych. Trzeba też pamiętać, że analiza rozjemcza to nie to samo co kontrola jakości; jedno ma na celu rozwiązywanie sporów, a drugie to rutynowe sprawdzanie produkcji. Dobrze jest zrozumieć znaczenie właściwego podejścia do podziału próbki, bo to kluczowe dla obiektywności i przejrzystości w analizach.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Reakcja miedzi metalicznej z stężonym kwasem azotowym(V) prowadzi do powstania azotanu(V) miedzi(II) oraz jakiego związku?

A. tlenek azotu(V) oraz wodór
B. tlenek azotu(II) oraz woda
C. tlenek azotu(II) oraz wodór
D. tlenek azotu(IV) oraz woda
Reakcja miedzi metalicznej ze stężonym kwasem azotowym(V) prowadzi do powstania azotanu(V) miedzi(II) oraz tlenku azotu(IV) i wody. Proces ten ilustruje, jak metale przechodzą w reakcje redoks z kwasami azotowymi, co jest ważnym zagadnieniem w chemii nieorganicznej. Tlenek azotu(IV), zwany również dwutlenkiem azotu (NO2), jest istotnym produktem, który w warunkach atmosferycznych może prowadzić do powstawania smogu i wpływać na jakość powietrza. Przykłady zastosowania wiedzy o takich reakcjach obejmują zarówno przemysł chemiczny, gdzie azotany są wykorzystywane jako nawozy, jak i analizę środowiskową, gdzie tlenki azotu są monitorowane ze względu na ich szkodliwość. Zrozumienie tego procesu jest kluczowe, aby podejmować świadome decyzje dotyczące ochrony środowiska oraz technologii chemicznej, co jest zgodne z najlepszymi praktykami w branży chemicznej.

Pytanie 18

Aby odróżnić urządzenia w laboratorium chemicznym, rury do próżni maluje się w kolorze

A. żółtym
B. czerwonym
C. niebieskim
D. szarym
Wybór koloru rury do próżni jest kluczowy dla bezpieczeństwa i efektywności pracy w laboratoriach chemicznych. Czerwony, choć często kojarzony z ostrzeżeniem lub niebezpieczeństwem, nie jest standardowym kolorem dla rur do próżni. W rzeczywistości czerwony kolor zazwyczaj wskazuje na instalacje związane z gazami łatwopalnymi lub substancjami niebezpiecznymi, co może prowadzić do nieporozumień w identyfikacji systemów. Żółty kolor z kolei często jest używany do oznaczania rur związanych z mediami, które zawierają substancje chemiczne, które mogą być toksyczne lub żrące. Takie użycie koloru żółtego mogłoby wprowadzać w błąd w kontekście rur do próżni, które nie mają takiego samego ryzyka. Niebieski to kolor, który z reguły jest przypisany do instalacji związanych z wodą lub innymi cieczy, co również wprowadzałoby zamieszanie, gdyż nie odnosi się do systemów próżniowych. Oznaczenie rur do próżni w nieadekwatny sposób stwarza niebezpieczeństwo dla użytkowników laboratorium, którzy mogą nieprawidłowo zidentyfikować systemy, co prowadzi do poważnych konsekwencji. Dlatego tak ważne jest przestrzeganie norm i standardów branżowych dotyczących oznaczania instalacji, aby zminimalizować ryzyko pomyłek i zagwarantować bezpieczeństwo pracy w laboratoriach chemicznych.

Pytanie 19

Jakie środki należy zastosować do gaszenia pożaru metali, takich jak magnez, sód czy potas?

A. wody
B. gaśnicy śniegowej
C. gaśnicy pianowej
D. piasku
Użycie piasku do gaszenia pożarów metali, takich jak magnez, sód czy potas, jest zgodne z zaleceniami dotyczącymi bezpieczeństwa przeciwpożarowego. W przypadku pożarów metali, które reagują z wodą, stosowanie wody może prowadzić do niebezpiecznych reakcji chemicznych, a tym samym pogarszać sytuację. Piasek działa jako środek dławienia, ograniczając dostęp tlenu do ognia oraz absorbuje ciepło, co skutecznie gaśnie płomienie. W praktyce, podczas akcji ratunkowej, mogą być używane specjalne pojemniki z piaskiem, które są łatwe do transportu i użycia w nagłych wypadkach. Ważne jest, aby personel odpowiedzialny za bezpieczeństwo w zakładach przemysłowych był odpowiednio przeszkolony w zakresie używania piasku oraz innych aprobowanych środków do gaszenia pożarów metali. Aktualne wytyczne i normy, takie jak NFPA 484 (National Fire Protection Association), jasno określają metody postępowania w przypadku pożarów materiałów metalicznych, co podkreśla znaczenie prawidłowego doboru środka gaśniczego.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Jaką próbkę stanowi woreczek gleby pobranej zgodnie z instrukcją?

Instrukcja pobierania próbek glebowych
Próbki pierwotne pobiera się laską glebową z wierzchniej warstwy gleby 0-20 cm, kolejno wykonując czynności:
– w miejscu pobierania próbki pierwotnej (pojedynczej), rolę świeżo zaoraną przydeptać,
– pionowo ustawić laskę do powierzchni gleby,
– wcisnąć laskę do oporu (na wysokość poprzeczki ograniczającej),
– wykonać pełny obrót i wyjąć laskę,
– zawartość wgłębienia (zasobnika) przenieść do pojemnika skrobaczki.
Po pobraniu próbek pojedynczych, całość wymieszać i napełnić kartonik lub woreczek.

A. Jednostkową.
B. Ogólną.
C. Laboratoryjną.
D. Analityczną.
Woreczek gleby pobrany zgodnie z instrukcją stanowi próbkę ogólną, ponieważ jego celem jest uzyskanie reprezentatywnej analizy gleby z określonego obszaru. Przykładowo, jeżeli pobieramy próbki z pola uprawnego, wykonujemy to w różnych punktach, aby uwzględnić zmienność gleby, jak np. różnice w składzie mineralnym, wilgotności czy strukturze. Próbka ogólna, będąca wynikiem połączenia kilku próbek jednostkowych, pozwala na dokładniejsze zrozumienie średnich właściwości gleby, co jest kluczowe dla rolnictwa, oceny jakości gleby oraz zrównoważonego zarządzania zasobami naturalnymi. Zgodnie z normami ISO, takie podejście do pobierania próbek jest standardem w ocenie jakości gleby, co potwierdza znaczenie próbki ogólnej w badaniach środowiskowych oraz rolniczych.

Pytanie 24

Jakie substancje wykorzystuje się do wykrywania obecności jonów chlorkowych w wodzie mineralnej?

A. roztwór azotanu srebra
B. roztwór chlorku baru
C. roztwór szczawianu potasu
D. uniwersalny papierek wskaźnikowy
Roztwór azotanu srebra (AgNO3) jest kluczowym odczynnikiem w analizie chemicznej do wykrywania jonów chlorkowych (Cl-) w wodzie mineralnej. Po dodaniu azotanu srebra do próby zawierającej jony chlorkowe, zachodzi reakcja, w wyniku której powstaje biały osad chlorku srebra (AgCl). Reakcja ta jest równaniem: AgNO3 + NaCl → AgCl + NaNO3. Osad chlorku srebra jest nierozpuszczalny w wodzie, co czyni tę metodę bardzo efektywną w jakościowym wykrywaniu anionów chlorkowych. Praktyczne zastosowanie tej metody można zaobserwować w laboratoriach analitycznych, gdzie monitoruje się jakość wód mineralnych, aby spełniały one normy zdrowotne. Ponadto, metoda ta jest zgodna z wytycznymi organizacji takich jak ISO, co podkreśla jej wiarygodność i powszechne uznanie w branży analitycznej.

Pytanie 25

Jakie jest stężenie roztworu NaOH, który zawiera 4 g wodorotlenku sodu w 1 dm3 (masa molowa NaOH = 40 g/mol)?

A. 0,1 mol/dm3
B. 1 mol/dm3
C. 0,01 mol/dm3
D. 0,001 mol/dm3
Wybór stężenia 0,01 mol/dm³ to efekt błędnego spojrzenia na obliczenia dotyczące ilości moli i objętości roztworu. Żeby dobrze określić stężenie, najpierw trzeba znać masę molową substancji i przeprowadzić odpowiednie obliczenia. Przy 4 g NaOH, wydaje mi się, że pomyliłeś się, myśląc, że stężenie wynosi 0,01 mol/dm³. To wynika z nieprzypadkowego dzielenia masy przez masę molową. Liczba moli to masa substancji podzielona przez jej masę molową, czyli 4 g / 40 g/mol to 0,1 mol. Jeszcze trzeba uważać z objętościami, bo jeżeli pomylisz decymetry sześcienne z mililitrami, to mogą wyjść naprawdę duże błędy. Stężenie 0,001 mol/dm³ też wskazuje na nieprawidłowe rozumienie związku między masą a objętością. Może to być przez złą konwersję jednostek albo popełnione błędy w obliczeniach, co w pracy z roztworami chemicznymi jest kluczowe. Dobrze jest przed obliczeniami upewnić się, że wszystkie jednostki są zrozumiane i poprawnie zastosowane. Dlatego w laboratoriach precyzja w obliczeniach i umiejętność dobrej interpretacji wyników to podstawa, żeby wyjść z wiarygodnymi i powtarzalnymi rezultatami.

Pytanie 26

Jakie proporcje objętościowe powinny być zastosowane do zmieszania roztworu etanolu o stężeniu 30% (V/V) z roztworem o stężeniu 70% (V/V), aby uzyskać roztwór o stężeniu 50% (V/V)?

A. 1:2
B. 2:1
C. 3:7
D. 1:1
Aby zrobić roztwór o stężeniu 50% (V/V), trzeba połączyć roztwór etanolu 30% (V/V) z roztworem 70% (V/V) w równych częściach. Czyli, jeśli masz jednostkę objętości 30%, to dodajesz dokładnie taką samą jednostkę objętości 70%. W ten sposób końcowe stężenie etanolu wychodzi idealnie 50%, bo dobrze zbalansowaliśmy ilość etanolu z obu roztworów. Można to też zapisać matematycznie: (0.3V1 + 0.7V2) / (V1 + V2) = 0.5, gdzie V1 to objętość 30%, a V2 to objętość 70%. Takie obliczenia są na porządku dziennym w laboratoriach chemicznych i wszędzie tam, gdzie trzeba dokładnie wymieszać substancje. Na pewno widziałeś to w produkcji alkoholu, bo różne stężenia etanolu są tam używane, żeby uzyskać różne smaki. Zrozumienie tych zasad jest też ważne z perspektywy przepisów dotyczących sprzedaży alkoholu, które często opierają się na konkretnych stężeniach substancji aktywnych.

Pytanie 27

Przebieg: Po zważeniu dwóch suchych zlewek, odważ kolejno: do jednej 3,63 g Co(NO3)2·6H2O, a do drugiej 3,75 g Na2CO3·10H2O. Następnie do obu zlewek wlej 25 cm3 gorącej wody i mieszając za pomocą bagietki doprowadź do całkowitego rozpuszczenia soli. Do roztworu Co(NO3)2 dodaj gorący roztwór Na2CO3 podczas mieszania. Otrzymany roztwór schłodź w łaźni wodnej z 3 kostkami lodu do temperatury pokojowej. Schłodzony roztwór przefiltruj przy użyciu zestawu do sączenia pod próżnią. Osad na lejku przepłucz wodą destylowaną, aż osiągnie obojętny odczyn przesączu. Przesączony osad osusz z sączkiem międzyposiadającym złożone arkusze bibuły w temperaturze pokojowej. Po wyschnięciu osad zważ i oblicz wydajność. Określ, jaki czynnik wpływa na skład jakościowy uzyskanego węglanu kobaltu(II)?

A. Wpływ przemycia osadu
B. Tempo sączenia
C. Kolejność ważenia reagentów
D. Precyzja obliczeń wydajności
Wybór czynników wpływających na skład jakościowy otrzymanego węglanu kobaltu(II) powinien być dokładnie przeanalizowany. Dokładność obliczeń wydajności, mimo że istotna, nie wpływa na jakość samego produktu, a jedynie na efektywność procesu produkcji. Niezależnie od tego, jak precyzyjnie obliczamy wydajność, jeśli w procesie syntezy nie zostaną usunięte odpowiednie zanieczyszczenia, skład chemiczny uzyskanego węglanu kobaltu(II) może być zafałszowany. Podobnie, szybkość sączenia nie ma bezpośredniego wpływu na jakość końcowego produktu, a może jedynie wpłynąć na czas trwania całego procesu. Kolejność ważenia reagentów również nie jest czynnikiem determinującym jakość otrzymanego osadu, ponieważ kluczowym elementem jest reakcja chemiczna, która zachodzi w określonych warunkach, a nie to, w jakiej kolejności reagenty są waży. Zrozumienie tego, że skuteczne usunięcie zanieczyszczeń jest kluczowe dla uzyskania wysokiej jakości substancji chemicznych, jest fundamentalnym elementem pracy w laboratorium chemicznym. W praktyce, ignorowanie znaczenia przemywania osadu może prowadzić do poważnych błędów w analizie chemicznej oraz obniżenia standardów czystości w uzyskiwanych produktach chemicznych.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Fosfor biały, z uwagi na swoje właściwości, powinien być przechowywany

A. w benzenie
B. w benzynie
C. w nafcie
D. w wodzie
Fosfor biały jest substancją niezwykle reaktywną, a jego przechowywanie w wodzie jest kluczowe dla zapewnienia bezpieczeństwa. Woda działa jako medium, które ogranicza dostęp tlenu do fosforu, minimalizując ryzyko jego utlenienia i zapłonu. W przypadku kontaktu z powietrzem, fosfor biały może spontanicznie się zapalić, co czyni go niebezpiecznym w standardowych warunkach przechowywania. Woda nie tylko chroni przed reakcjami chemicznymi, ale także zapewnia fizyczną barierę, która zapobiega rozprzestrzenieniu się ewentualnych dymów fosforowych. Przykładem zastosowania tej metody przechowywania jest przemysł chemiczny, gdzie fosfor biały jest używany w procesach produkcji związków chemicznych, a odpowiednie metody przechowywania są zgodne z normami bezpieczeństwa, takimi jak OSHA (Occupational Safety and Health Administration). Dobrą praktyką w laboratoriach jest także oznaczanie pojemników z fosforem białym, aby zminimalizować ryzyko przypadkowego uwolnienia substancji do atmosfery.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

Do grupy reagentów o szczególnym zastosowaniu nie wlicza się

A. rozpuszczalników do chromatografii
B. wzorców
C. wodnych roztworów kwasów
D. wskaźników
Wybór wzorców, wskaźników czy rozpuszczalników do chromatografii jako odczynników o specjalnym przeznaczeniu opiera się na niepełnym zrozumieniu ich funkcji w kontekście analizy chemicznej. Wzorce chemiczne są niezbędne do kalibracji instrumentów oraz zapewnienia dokładności pomiarów, co jest podstawą każdej analizy. Użycie wzorców o odpowiedniej czystości i znanym składzie jest kluczowe dla uzyskania wiarygodnych wyników. Wskaźniki, takie jak fenoloftaleina czy oranż metylowy, mają kluczowe znaczenie w reakcjach titracyjnych, gdzie zmiana koloru sygnalizuje osiągnięcie punktu końcowego i umożliwia precyzyjne określenie stężenia substancji. Rozpuszczalniki do chromatografii są istotne, jako że ich właściwości wpływają na skuteczność separacji składników w próbce. Wybierając niewłaściwą odpowiedź, można przeoczyć rolę, jaką odczynniki o specjalnym przeznaczeniu odgrywają w osiąganiu wysokiej jakości wyników eksperymentalnych. W praktyce laboratoryjnej kluczowe jest zrozumienie, które substancje są stosowane do konkretnych celów, co może wpłynąć na jakość i powtarzalność wyników analizy. Dlatego ważne jest, aby nie mylić ogólnych roztworów z substancjami o specjalistycznym zastosowaniu, co może prowadzić do błędów w analizie i interpretacji danych.

Pytanie 32

Chemikalia, dla których upłynął okres przydatności,

A. można wykorzystać do końca opakowania
B. można je stosować, pod warunkiem że substancja pozostaje czysta
C. powinny być przechowywane w magazynie
D. należy zutylizować z odpadami chemicznymi
To, że odczynniki chemiczne po terminie ważności trzeba zutylizować jak odpady chemiczne, to bardzo dobra odpowiedź. Te substancje mogą być naprawdę niebezpieczne, zarówno dla zdrowia, jak i dla środowiska. Z tego, co wiem, każdy, kto korzysta z chemikaliów, powinien się z tym liczyć i robić to z głową. Na przykład, kwas siarkowy, jeśli nie zostanie właściwie usunięty, może zaszkodzić ziemi i wodom gruntowym. Utylizacja takich rzeczy według lokalnych przepisów, które zazwyczaj obejmują programy zbierania niebezpiecznych odpadów, jest kluczowa. Dbanie o to, żeby wszystko robić zgodnie z zasadami, zmniejsza ryzyko wypadków i kontaminacji. Warto też pamiętać, że trzymanie się przepisów dotyczących bezpieczeństwa chemicznego jest ważne dla reputacji firm i ich odpowiedzialności społecznej.

Pytanie 33

Na podstawie danych w tabeli wskaż, którego środka suszącego można użyć do osuszenia związku o wzorze (CH3)2CO

Środek suszącyStosowany do suszeniaNie nadaje się do suszenia
NaEter, węglowodory, aminy trzeciorzędoweChlorowcopochodne węglowodorów
CaCl₂Węglowodory, aceton, eter, gazy obojętneAlkohole, amoniak, aminy
Żel krzemionkowyW eksykatorzeHF
H₂SO₄Gazy obojętne i kwasoweZwiązki nienasycone, alkohole, substancje zasadowe

A. H2SO4
B. Na
C. CaCl2
D. żel krzemionkowy
Wybór jednego z pozostałych środków suszących, takich jak Na, H2SO4 czy żel krzemionkowy, w kontekście osuszania acetonu jest nieodpowiedni ze względu na specyfikę ich działania. Na, będący metalem alkalicznym, jest stosowany głównie do osuszania eterów, węglowodorów i amin trzeciorzędowych, gdzie jego reakcje z wodą prowadzą do powstawania sody i innych produktów, co czyni go nieodpowiednim do osuszania ketonów. H2SO4, czyli kwas siarkowy, jest odpowiedni do osuszania gazów obojętnych i kwasowych, jednak jego silne działanie drażniące oraz ryzyko reakcji egzotermicznych sprawiają, że nie nadaje się do osuszania substancji organicznych, takich jak aceton. Z kolei żel krzemionkowy, mimo że jest skutecznym środkiem osuszającym, jest zazwyczaj stosowany w eksykatorach, a nie w bezpośrednim osuszaniu cieczy. Typowe błędy w analizie polegają na pomijaniu specyficznych właściwości chemicznych poszczególnych substancji oraz ich zastosowań w laboratoriach. Aby skutecznie osuszać substancje chemiczne, należy znać ich właściwości, a także odpowiednie metody i środki, które są dostosowane do ich specyfiki. W kontekście standardów laboratoryjnych, brak takiej wiedzy może prowadzić do błędnych wniosków oraz zanieczyszczenia próbek, co wpłynie na wyniki analiz chemicznych.

Pytanie 34

W parownicy porcelanowej, w której znajduje się 2,5 g naftalenu, umieść krążek bibuły z niewielkimi otworami oraz odwrócony lejek szklany. Zatyczkę lejka zrób z korka z waty. Parownicę umieść w płaszczu grzejnym. Po delikatnym ogrzaniu parownicy, pary substancji przechodzą przez otwory w bibule i kondensują na wewnętrznych ściankach lejka... Powyższy opis dotyczy metody oczyszczania naftalenu przez

A. sublimację
B. krystalizację
C. resublimację
D. ługowanie
Odpowiedź "sublimację" jest prawidłowa, ponieważ opisany proces polega na bezpośredniej przemianie naftalenu z fazy stałej w fazę gazową bez przechodzenia przez stan ciekły. W opisanym eksperymencie, po łagodnym ogrzaniu parownicy, naftalen sublimuje, a jego pary przechodzą przez otwory w bibule, a następnie kondensują na ściankach lejka szklanego. Sublimacja jest wykorzystywana w przemyśle chemicznym do oczyszczania substancji o niskich temperaturach topnienia oraz do separacji związków chemicznych. Przykładem zastosowania sublimacji w praktyce jest oczyszczanie substancji organicznych, takich jak jod czy naftalen, gdzie proces ten pozwala na uzyskanie czystszych produktów. W kontekście standardów laboratoryjnych, sublimacja jest uznawana za metodę o wysokiej skuteczności, zapewniającą minimalne straty materiałowe i pozwalającą na zachowanie właściwości chemicznych oczyszczanej substancji.

Pytanie 35

Na etykietach substancji chemicznych można znaleźć oznaczenia literowe R i S (zgodnie z regulacjami CLP: H i P), które wskazują

A. na pojemność oraz skład opakowania
B. na ilość domieszek w składzie oraz datę przydatności
C. na ryzyko wystąpienia zagrożeń i zasady postępowania z nimi
D. na obecność zanieczyszczeń oraz metody ich usuwania
Odpowiedź dotycząca oznaczeń literowych R i S (obecnie H i P zgodnie z rozporządzeniem CLP) jest prawidłowa, ponieważ te oznaczenia mają na celu informowanie o ryzyku związanym z substancjami chemicznymi oraz zalecanych środkach ostrożności. Oznaczenia R (ryzyko) wskazują na potencjalne zagrożenia, takie jak toksyczność, wybuchowość czy korozja, z jakimi można się spotkać podczas pracy z danym odczynnikiem. Z kolei oznaczenia S (środki ostrożności) sugerują praktyczne zalecenia dotyczące bezpiecznego obchodzenia się z substancją, takie jak stosowanie odpowiednich środków ochrony osobistej, unikanie kontaktu ze skórą, czy przechowywanie w odpowiednich warunkach. Dla przykładu, substancja z oznaczeniem H300 (może być śmiertelna w przypadku połknięcia) wymaga szczególnej uwagi i zachowania ostrożności podczas jej używania. Stosowanie tych oznaczeń jest integralną częścią systemu zarządzania bezpieczeństwem chemicznym, a ich znajomość i przestrzeganie są kluczowe w laboratoriach, przemysłach chemicznych i w wszelkich zastosowaniach, gdzie występują substancje niebezpieczne. Obowiązujące standardy i dobre praktyki, takie jak ISO 45001, podkreślają znaczenie oceny ryzyka i stosowania odpowiednich środków ochrony w miejscach pracy, co czyni te oznaczenia niezbędnym elementem w codziennym obiegu informacji o substancjach chemicznych.

Pytanie 36

Dokonano pomiaru pH dwóch roztworów, uzyskując wartości pH= 2 oraz pH= 5. Wskaźnij poprawnie sformułowany wniosek.

A. Stężenie jonów [H+] w roztworze o pH= 5 jest 1000 razy mniejsze niż w roztworze o pH = 2
B. Stężenie jonów [H+] w roztworze o pH= 5 jest trzykrotnie mniejsze niż w roztworze o pH = 2
C. Stężenie jonów [H+] w roztworze o pH= 5 jest 1000 razy wyższe niż w roztworze o pH = 2
D. Stężenie jonów [H+] w roztworze o pH= 5 jest większe o 3 mol/dm3 niż w roztworze o pH = 2
Niezrozumienie konsekwencji skali pH prowadzi do błędnych wniosków. W przypadku stwierdzenia, że stężenie jonów [H+] w roztworze o pH=5 jest 3 razy mniejsze niż w roztworze o pH=2, pomija się kluczowy fakt o logarytmicznej naturze skali pH. Zmiana pH o jednostkę oznacza dziesięciokrotną różnicę w stężeniu jonów, co tworzy mylne przekonanie, że różnice są liniowe. W konsekwencji, jeśli pH zmienia się z 2 na 5, stężenie [H+] nie zmniejsza się o 3, ale o 1000 razy. Twierdzenie, że stężenie w roztworze pH=5 jest 1000 razy większe niż w pH=2, także jest błędne, ponieważ ignoruje właściwości pH jako miary stężenia jonów. Odpowiedź sugerująca, że stężenie w roztworze o pH=5 jest większe o 3 mol/dm3 niż w pH=2, wskazuje na brak zrozumienia skali i jednostek. W rzeczywistości różnice te nie są mierzone w molach, ale w proporcjach logarytmicznych. Błędem jest również myślenie, że takie zmiany można analizować w sposób prosty, liniowy, co jest sprzeczne z podstawowymi zasadami chemii kwasowo-zasadowej. Aby unikać takich nieporozumień, należy stosować dokładne obliczenia oparte na logarytmach oraz zrozumienie, jak pH wpływa na różne procesy chemiczne i biologiczne.

Pytanie 37

W jakiej standardowej temperaturze są kalibrowane szklane naczynia pomiarowe?

A. 25°C
B. 21°C
C. 20°C
D. 19°C
Odpowiedzi 19°C, 25°C oraz 21°C są niepoprawne w kontekście standardowych praktyk kalibracji szklanych naczyń miarowych. Kalibracja w temperaturze 19°C może wydawać się logiczna, jednak nie jest zgodna z powszechnie przyjętymi normami. Podobnie, 25°C, chociaż często stosowane w niektórych aplikacjach, prowadzi do nieścisłości, ponieważ cieczy w temperaturze 25°C mogą wykazywać różnice w objętości w porównaniu do standardowych pomiarów. Wysoka temperatura może również wpływać na zachowanie niektórych materiałów, co dodatkowo komplikuje pomiary. Z kolei 21°C, mimo że znajduje się blisko wartości standardowej, nie spełnia wymogów precyzyjnych pomiarów wymaganych w laboratoriach, gdzie każdy stopień Celsjusza może prowadzić do błędów w obliczeniach. Typowym błędem myślowym jest założenie, że niewielkie odchylenie od standardu nie ma znaczenia. W praktyce, nawet małe różnice w temperaturze mogą prowadzić do poważnych nieścisłości, co podkreśla konieczność stosowania kalibracji w 20°C dla zapewnienia dokładności i powtarzalności wyników. Warto zauważyć, że standardy ISO oraz normy branżowe jednoznacznie wskazują na 20°C jako optymalną temperaturę dla kalibracji, co jest kluczowe dla osiągnięcia wiarygodnych wyników w pomiarach laboratoryjnych.

Pytanie 38

Wskaż definicję fiksanali?

A. Małe ampułki z nieokreśloną masą substancji chemicznej
B. Małe kapsułki z nieokreśloną ilością stałej substancji chemicznej
C. Małe ampułki ze ściśle określoną masą substancji chemicznej
D. Kapsułki zawierające niewielkie ilości substancji chemicznej
Fiksanal, w kontekście farmaceutycznym, odnosi się do małych ampułek, które zawierają ściśle określoną masę danego związku chemicznego. Tego rodzaju preparaty są kluczowe w aplikacjach, gdzie precyzyjne dawkowanie substancji czynnej jest niezbędne, na przykład w leczeniu chorób, gdzie nadmierne lub niewystarczające dawki mogą prowadzić do poważnych skutków zdrowotnych. Fiksany są powszechnie wykorzystywane w laboratoriach analitycznych oraz w przemyśle farmaceutycznym, gdzie konieczność zachowania dokładnych proporcji substancji ma istotne znaczenie dla efektywności terapii. Przykładem zastosowania fiksanalów może być przygotowywanie rozwiązań do badań laboratoryjnych, gdzie wymagana jest precyzyjna kontrola masy substancji. Warto również zaznaczyć, że produkcja tych ampułek musi spełniać rygorystyczne normy jakości, takie jak GMP (Good Manufacturing Practice), co zapewnia, że każda partia fiksanali jest zgodna z określonymi standardami jakości.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.