Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 20 maja 2025 11:43
  • Data zakończenia: 20 maja 2025 12:01

Egzamin zdany!

Wynik: 24/40 punktów (60,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Do spawania metali za pomocą łuku elektrycznego wykorzystuje się zasilacz o

A. wysokim napięciu i małym prądzie
B. niskim napięciu i dużym prądzie
C. wysokim napięciu i dużym prądzie
D. niskim napięciu i małym prądzie
Rozumienie, jakie parametry prądu są właściwe do spawania metali, to mega ważna sprawa, jeśli chcesz dobrze wykonywać swoją robotę. Odpowiedzi, które sugerują niskie napięcie i mały prąd, są zwykle błędne, bo mały prąd po prostu nie da rady stopić materiału. Efekt? Możesz mieć niepełne spoiny i kłopoty z całą konstrukcją. A z wysokim napięciem i dużym prądem to już w ogóle trzeba uważać, bo można przegrzać materiał, co wprowadzi deformacje i pogorszy właściwości mechaniczne. Czasem są też problemy przy wysokim napięciu i małym prądzie, bo nie uzyskasz wystarczającej temperatury do skutecznego spawania. Niestety, dużo ludzi myśli, że wyższe napięcie zawsze jest lepsze, ale tak nie jest. Różne metody spawania wymagają różnych ustawień, które powinny być dostosowane do konkretnych warunków i materiałów. To jest zgodne z najlepszymi praktykami w branży, takimi jak normy AWS czy ISO. Dobrze dobrane parametry prądowe są kluczem do osiągnięcia jakości spoiny i jej długowieczności, co w przemyśle ma ogromne znaczenie.

Pytanie 3

Jakiego typu silnik prądu stałego powinno się użyć w systemie napędowym dla bardzo ciężkiej przepustnicy?

A. Szeregowy
B. Obcowzbudny
C. Bezszczotkowy
D. Bocznikowy
Silnik prądu stałego szeregowy jest najlepszym wyborem do obsługi bardzo ciężkiej przepustnicy ze względu na swoje właściwości charakterystyczne. Jego konstrukcja powoduje, że w momencie rozruchu generuje on znaczny moment obrotowy, co jest kluczowe przy napędzie elementów wymagających dużej siły. W silniku szeregowym uzwojenie wzbudzenia jest połączone szeregowo z uzwojeniem twornika, co sprawia, że przy niskich prędkościach obrotowych, gdy przepustnica jest obciążona, prąd w obwodzie wzbudzenia jest wysoki, co prowadzi do zwiększenia pola magnetycznego i efektywnego momentu obrotowego. Przykłady zastosowania silników szeregowych to napędy w systemach transportowych, dźwigach oraz w aplikacjach, gdzie wymagana jest znaczna moc przy niskich prędkościach. Zgodnie z normami branżowymi, wykorzystanie silników szeregowych w takich zastosowaniach jest powszechnie akceptowane i polecane z uwagi na efektywność energetyczną oraz niezawodność działania.

Pytanie 4

Jakie urządzenie powinno być zastosowane do zasilania silnika indukcyjnego klatkowego w układzie trójfazowym, aby umożliwić ustawienie maksymalnych wartości prądu rozruchowego oraz płynne dostosowanie prędkości obrotowej silnika?

A. Przemiennika częstotliwości
B. Softstartu
C. Prostownika sterowanego trójpulsowego
D. Przełącznika gwiazda-trójkąt
Wykorzystanie przełącznika gwiazda-trójkąt jest podejściem stosowanym głównie w przypadku silników o dużej mocy przy uruchamianiu. Jego celem jest zmniejszenie prądu rozruchowego poprzez przejście z połączenia w gwiazdę (gdzie silnik przy uruchamianiu pracuje z obniżoną mocą) do połączenia w trójkąt, co umożliwia pełne obciążenie. Jednakże, ta metoda nie pozwala na regulację prędkości obrotowej silnika, co czyni ją nieodpowiednią w kontekście wymagań przedstawionego pytania. Z kolei softstart to urządzenie, które także reguluje prąd rozruchowy, ale jego funkcjonalność kończy się po uruchomieniu silnika, co oznacza, że nie zapewnia on dalszej regulacji prędkości obrotowej. Dodatkowo, prostownik sterowany trójpulsowy jest komponentem używanym do prostowania prądu przemiennego, ale nie dostarcza funkcji regulacji prędkości obrotowej ani nie pozwala na kontrolowanie prądu rozruchowego w sposób wymagany do optymalizacji pracy silnika. Wybór nieodpowiednich urządzeń do zasilania silników może prowadzić do niewłaściwego ich działania, a także do zwiększenia zużycia energii, co jest niezgodne z nowoczesnymi standardami efektywności energetycznej, takimi jak ISO 50001. Dlatego znajomość i umiejętność prawidłowego doboru urządzeń jest kluczowa w inżynierii elektrycznej.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Zasada hydrostatycznego smarowania, która polega na oddzieleniu współdziałających powierzchni samoistnie powstającym klinem smarnym, stosowana jest w

A. hamulcach tarczowych
B. zaworach kulowych
C. łożyskach kulkowych
D. łożyskach ślizgowych
Wybór hamulców klockowych, zaworów kulowych czy łożysk kulkowych jako odpowiedzi błędnej opiera się na ich zasadach działania, które nie są zgodne z koncepcją smarowania hydrostatycznego. Hamulce klockowe działają na zasadzie tarcia między klockiem a tarczą hamulcową, co nie wymaga smarowania w sposób, jaki ma miejsce w łożyskach ślizgowych. W przypadku hamulców, kluczową rolę odgrywa generowanie siły tarcia, a nie separacja części roboczych. Zawory kulowe wykorzystują kulkę do regulowania przepływu cieczy lub gazu, co również nie ma związku z tworzeniem klina smarnego, a ich działanie opiera się na mechanicznym zamykaniu lub otwieraniu przepływu. Łożyska kulkowe z kolei wykorzystują kulki do rozdzielenia powierzchni, co pozwala na ruch obrotowy, ale opierają się na mechanicznym tarciu oraz smarowaniu, które różni się od hydrostatycznego. Takie błędne wnioski mogą wynikać z niepełnego zrozumienia zasad działania tych mechanizmów. W praktyce smarowanie hydrostatyczne ma zastosowanie wyłącznie w specyficznych aplikacjach, gdzie kluczowe jest unikanie bezpośredniego kontaktu metal-metal oraz redukcja tarcia, co jest typowe dla łożysk ślizgowych. Zrozumienie tych różnic jest istotne dla prawidłowego doboru elementów w systemach mechanicznych.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Urządzenie do pomiaru o zakresie od 0,1 do 10 m3/s to

A. przepływomierz
B. miernik mętności
C. miernik prędkości
D. czujnik poziomu
Przepływomierz to urządzenie, które służy do pomiaru przepływu cieczy lub gazów w określonym czasie. Miernik o zakresie pomiarowym od 0,1 do 10 m³/s jest typowym przykładem przepływomierza, który znajduje zastosowanie w różnych branżach, takich jak przemysł chemiczny, energetyczny czy wodociągowy. Przepływomierze mogą działać na różnych zasadach, w tym na zasadzie pomiaru różnicy ciśnień, elektromagnetycznych czy ultradźwiękowych. Przykładem zastosowania jest monitoring zużycia wody w systemach wodociągowych, gdzie dokładne pomiary przepływu pomagają w zarządzaniu zasobami oraz w identyfikacji nieszczelności w instalacjach. W kontekście dobrej praktyki, regularna kalibracja przepływomierzy jest kluczowa, aby zapewnić ich dokładność i niezawodność, co jest zgodne z normami ISO 9001 dotyczących zarządzania jakością.

Pytanie 15

Z informacji o parametrach wynika, że cewka elektrozaworu jest przeznaczona do pracy z napięciem przemiennym o wartości 230 V. Jaką wartość ona reprezentuje?

A. maksymalna napięcia podzielona przez √3
B. maksymalna napięcia podzielona przez √2
C. średnia napięcia wyznaczona dla okresu
D. średnia napięcia wyznaczona dla półokresu
Wartości napięcia przemiennego mogą być mylone z różnymi parametrami, co prowadzi do nieprawidłowych konkluzji. Pierwszą z takich koncepcji jest pomylenie średniej wartości napięcia wyznaczonej dla półokresu z wartością skuteczną. Średnia wartość napięcia dla półokresu sinusoidalnego nie odpowiada wartością, która jest używana w praktycznych zastosowaniach elektrycznych, ponieważ nie może odzwierciedlić energii, jaką dostarcza prąd. Dodatkowo, średnia wartość napięcia dla okresu nie jest stosowana w kontekście napięcia przemiennego, ponieważ dla sinusoidy obie wartości powracają do zera, co nie jest użyteczne w inżynierii elektrycznej. Kolejnymi błędami są próby odniesienia maksymalnej wartości napięcia do √3, co w ogóle nie znajduje zastosowania w kontekście typowych obwodów zasilających w zakresie napięcia przemiennego. Zastosowanie √3 odnosi się do napięcia w systemach trójfazowych, a nie jednofazowych, co prowadzi do błędnych obliczeń i niesprawności urządzeń. W praktyce, nieznajomość różnicy między wartościami napięcia skutecznego, maksymalnego i średniego prowadzi do nieprawidłowego doboru urządzeń oraz zagrożeń w instalacjach elektrycznych. Aby uniknąć takich pomyłek, kluczowe jest zrozumienie podstawowych zasad dotyczących parametrów napięcia oraz ich zastosowania w projektowaniu i użytkowaniu systemów elektrycznych.

Pytanie 16

Którego urządzenia nie wolno zasilać z źródła napięcia oznaczonego jako 400 V; 3/N/PE ~50 Hz?

A. Silnika prądu stałego o napięciu 400 V
B. Silnika trójfazowego klatkowego o napięciu międzyfazowym 400 V skojarzonego w Δ
C. Transformatora trójfazowego o napięciu górnym 400 V i skojarzeniu Dy5
D. Silnika jednofazowego o napięciu 230 V
Odpowiedzi wskazujące na inne urządzenia, takie jak silnik jednofazowy o napięciu 230 V, transformator trójfazowy o napięciu górnym 400 V, czy silnik trójfazowy klatkowy o napięciu międzyfazowym 400 V skojarzonego w Δ, sugerują pewne nieporozumienia dotyczące zasilania elektrycznego i charakterystyki tych urządzeń. Silnik jednofazowy o napięciu 230 V nie może być podłączony do systemu 400 V bez zastosowania transformatora obniżającego napięcie, ponieważ może to prowadzić do uszkodzenia silnika. Transformator trójfazowy, mimo że może być zasilany napięciem 400 V, wymaga poprawnego doboru napięcia, a jego skojarzenie Dy5 oznacza, że napięcie międzyfazowe wynosi 400 V, co czyni go odpowiednim do pracy w tym systemie. Silnik trójfazowy klatkowy o napięciu międzyfazowym 400 V jest zaprojektowany do pracy w systemach trójfazowych i bywa używany w wielu aplikacjach przemysłowych. Niezrozumienie tych podstawowych zasad zasilania prowadzi często do niebezpiecznych sytuacji w praktyce, takich jak niewłaściwe podłączenie urządzeń do źródeł energii, co może skutkować zarówno uszkodzeniem sprzętu, jak i zagrożeniem dla bezpieczeństwa operatorów. Każde urządzenie powinno być zasilane zgodnie z jego specyfikacją techniczną oraz odpowiednimi normami, aby uniknąć problemów eksploatacyjnych.

Pytanie 17

Jaką metodę spawania wykorzystuje się z gazem o właściwościach chemicznych aktywnych?

A. SAW
B. MIG
C. TIG
D. MAG
Wybór odpowiedzi dotyczących metod TIG, MIG czy SAW wskazuje na pewne nieporozumienia dotyczące zastosowania gazów w procesach spawania. Metoda TIG (Tungsten Inert Gas) opiera się na użyciu tungstenowego elektrody oraz gazu obojętnego, takiego jak argon, co oznacza brak zastosowania gazu chemicznie aktywnego. To sprawia, że metoda TIG nie jest odpowiednia do spawania materiałów podatnych na utlenianie, co czyni ją bardziej skomplikowaną w kontekście spawania stali konstrukcyjnych. Metoda MIG, podobnie jak TIG, także posługuje się gazami obojętnymi, co eliminuje możliwość wpływania aktywnych gazów na proces spawania. Na dodatek, w metodzie SAW (Submerged Arc Welding) stosuje się spawanie pod topnikiem, gdzie gaz nie jest kluczowym elementem procesu, co czyni tę metodę mniej elastyczną w kontekście zastosowań wymagających aktywnych gazów. Zrozumienie różnic między tymi technikami oraz ich odpowiednim zastosowaniem jest kluczowe dla uzyskania wysokiej jakości spoin. W praktyce, wybór odpowiedniej metody spawania powinien być podyktowany specyfiką materiałów oraz wymaganiami technologicznymi danego projektu, co jest zgodne z normami i dobrymi praktykami branżowymi.

Pytanie 18

Jakie z czynności związanych z wymianą oleju oraz filtrów w zasilaczu hydraulicznym powinno być zrealizowane jako ostatnie?

A. Odkręcić śruby mocujące pokrywę do zbiornika, zdjąć pokrywę, dokładnie oczyścić i przepłukać zbiornik
B. Zamienić uszczelkę między zbiornikiem a pokrywą oraz wymienić wkłady filtrujące, a później połączyć zbiornik z pokrywą, przestrzegając zalecanej siły dokręcania
C. Odłączyć wszystkie obwody, wyłączyć zasilanie, odkręcić śrubę odpowietrzającą lub wyjąć korek wlewowy i lekko przechylając zasilacz zlać olej
D. Wlać olej do właściwego poziomu i włączyć zasilanie, aby umożliwić samoczynne odpowietrzenie
Właściwy przebieg czynności przy wymianie oleju i filtrów w zasilaczu hydraulicznym powinien kończyć się wlaniem nowego oleju do odpowiedniego poziomu i włączeniem zasilania. Jest to kluczowy etap, ponieważ zapewnia prawidłowe funkcjonowanie systemu hydraulicznego. Po napełnieniu zbiornika olejem, należy uruchomić zasilacz, co pozwala na samoczynne odpowietrzenie układu. W praktyce, odpowietrzanie jest istotne, ponieważ usunięcie powietrza z układu hydraulicznego zapobiega powstawaniu kawitacji, a tym samym zwiększa efektywność i żywotność urządzeń. Zgodnie z wytycznymi producentów zasilaczy hydraulicznych, tego rodzaju czynności powinny być zawsze wykonywane według ścisłych norm, aby zapewnić bezpieczeństwo i niezawodność systemu. Na przykład, jeżeli w systemie pozostało powietrze, może to prowadzić do nieprawidłowego działania siłowników, co negatywnie wpływa na dokładność operacji hydraulicznych. Zatem, kluczowe znaczenie ma również monitorowanie poziomu oleju oraz regularne sprawdzanie stanu filtrów, co jest zgodne z praktykami zarządzania konserwacją w branży hydraulicznej.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

Podczas funkcjonowania urządzenia zaobserwowano nasilenie hałasu, spowodowane przez łożysko toczne. Odpowiednią metodą naprawy maszyny może być

A. zmniejszenie luzów łożyska
B. zmniejszenie nadmiaru smaru w łożysku
C. wymiana osłony łożyska
D. wymiana całego łożyska
Wymiana całego łożyska jest odpowiednim rozwiązaniem w przypadku stwierdzenia zwiększonego hałasu, gdyż najczęściej oznacza to, że łożysko uległo uszkodzeniu lub zużyciu. W praktyce, łożyska toczne są zaprojektowane do pracy z minimalnym luzem i w odpowiednio smarowanych warunkach. Gdy zauważamy hałas, to zazwyczaj jest skutkiem odkształceń materiałowych lub uszkodzenia elementów tocznych, co może prowadzić do dalszych uszkodzeń mechanicznych w obrębie układu napędowego. W takim przypadku wymiana całego łożyska eliminuje ryzyko wystąpienia kolejnych awarii w przyszłości. Dobrą praktyką w branży jest również przeprowadzanie analizy przyczyn źródłowych usterki, co pozwala na zrozumienie, dlaczego łożysko uległo uszkodzeniu, co może być związane z niewłaściwym smarowaniem, luzami, czy też eksploatacją w warunkach przekraczających specyfikacje producenta. Wymiana łożyska powinna być przeprowadzana zgodnie z obowiązującymi standardami, takimi jak ISO 281, które określają metodologię doboru i oceny łożysk, co zwiększa niezawodność całego urządzenia.

Pytanie 21

Podwyższenie temperatury oleju w systemie hydraulicznym prowadzi do

A. zmniejszenia objętości oleju
B. zwiększenia lepkości oleju
C. zmniejszenia lepkości oleju
D. zwiększenia efektywności układu
Jak temperatura oleju w hydraulice rośnie, to jego lepkość spada. Fajnie, bo to zjawisko można zobaczyć nie tylko w olejach hydraulicznych, ale i w innych cieczach. Po prostu, im wyższa temperatura, tym cząsteczki oleju mają więcej energii i szybciej się poruszają. W praktyce, olej staje się bardziej płynny, co znaczy, że lepiej krąży w układzie hydraulicznym. Dzięki mniejszej lepkości łatwiej pokonywane są opory, co sprawia, że wszystko działa lepiej. W branży hydraulicznej dobrze jest pilnować temperatury oleju. Jak pracuje długo w wysokich temperaturach, to warto pomyśleć o wymianie lub użyciu innego oleju, który lepiej znosi upały. Te wszystkie standardy, jak ISO 4406 dotyczący czystości oleju, są mega ważne, by olej zachował swoje właściwości w trudniejszych warunkach.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

W tabeli podano dane techniczne sterownika PLC Jakim maksymalnym prądem można obciążyć sterownik dołączając do jego wyjścia silnik?

Dane techniczne
Napięcie zasilająceAC/DC 24 V
Wejścia:
Zakres dopuszczalnyDC 20,4 ... 28,8 V
Przy sygnale „0"maks. AC/DC 5 V
Przy sygnale „1"min. AC/DC 12 V
Prąd wejściowy2,5 mA
Wyjścia:
Rodzaj4 przekaźnikowe
Prąd ciągły10 A - przy obciążeniu rezystancyjnym,
3 A - przy obciążeniu indukcyjnym

A. 0,75 A
B. 3 A
C. 10 A
D. 2,5 A
Maksymalny prąd 3 A, który można obciążyć sterownik PLC, odpowiada specyfikacjom podanym w dokumentacji technicznej urządzenia. W praktyce oznacza to, że przy dołączaniu silnika indukcyjnego do wyjścia sterownika, nie można przekraczać tego prądu, aby uniknąć uszkodzenia urządzenia. Przykładowo, jeśli planujesz używać niewielkiego silnika do napędu wentylatora lub pompy, upewnij się, że jego maksymalne zapotrzebowanie na prąd nie przekracza tego limitu. W przemyśle, często stosuje się zabezpieczenia, takie jak bezpieczniki lub wyłączniki przeciążeniowe, które chronią sprzęt przed uszkodzeniami związanymi z nadmiernym prądem. Dobrym rozwiązaniem jest również monitorowanie prądu roboczego silnika przy pomocy amperomierza, co pozwala na bieżąco ocenić, czy urządzenie pracuje w dopuszczalnych granicach. Zrozumienie i przestrzeganie tych limitów jest kluczowe dla wydajności oraz długowieczności systemów automatyki przemysłowej, w których używane są sterowniki PLC.

Pytanie 25

Tyrystor, w którym anoda ma dodatni potencjał, a katoda i bramka mają potencjał ujemny, znajduje się w stanie

A. przewodzenia
B. zaporowym
C. nasycenia
D. blokowania
Odpowiedzi, które podałeś, jak nasycenie, przewodzenie czy zaporowy, dotyczą różnych stanów pracy tyrystora, ale w tej sytuacji są niepoprawne. Stan nasycenia występuje, gdy tyrystor działa jako przełącznik i przewodzi prąd, ale tu mamy inaczej, bo anoda jest dodatnia, a katoda z bramką ujemna. Więc nie ma mowy o nasyceniu. Podobnie stan przewodzenia jest błędny, bo potrzebny jest impuls na bramkę, a tego nie ma w tym przypadku. Stan zaporowy też jest źle interpretowany, bo odnosi się do takiej sytuacji, gdzie tyrystor nie jest w pełni zablokowany, a w opisywanej sytuacji tak nie jest. Ważne, żeby zrozumieć, jak tyrystory kontrolują przepływ prądu, bo mylenie tych stanów może prowadzić do problemów w obwodach. Dobrze jest pamiętać, że zrozumienie tych spraw jest kluczowe, jeśli chodzi o projektowanie i stosowanie tyrystorów, żeby wszystko działało sprawnie i bezpiecznie.

Pytanie 26

Jaką kolejność należy zastosować przy montażu zespołu do przygotowania powietrza, zaczynając od sprężarki?

A. smarownica, filtr powietrza, zawór redukcyjny, manometr
B. smarownica, filtr powietrza, manometr
C. filtr powietrza, zawór redukcyjny z manometrem, smarownica
D. manometr, filtr powietrza, smarownica
Odpowiedź "filtr powietrza, zawór redukcyjny z manometrem, smarownica" jest prawidłowa, ponieważ kolejność montażu tych elementów ma kluczowe znaczenie dla sprawności i bezpieczeństwa całego systemu przygotowania powietrza. Filtr powietrza powinien być zainstalowany jako pierwszy, ponieważ jego główną rolą jest usunięcie zanieczyszczeń i wilgoci z powietrza, co zapobiega ich przedostawaniu się do kolejnych komponentów systemu. Zawór redukcyjny, wyposażony w manometr, reguluje ciśnienie powietrza, co jest niezbędne do zapewnienia optymalnych warunków pracy dla maszyn i urządzeń odbierających sprężone powietrze. Na końcu montujemy smarownicę, która smaruje ruchome elementy urządzeń zasilanych sprężonym powietrzem, a jej umiejscowienie za zaworem redukcyjnym zapewnia, że smar znajduje się pod odpowiednim ciśnieniem. Taka kolejność montażu jest zgodna z najlepszymi praktykami branżowymi, co pozwala na długotrwałe i niezawodne działanie całego układu.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Który z elementów tyrystora ma funkcję sterowania?

A. Katoda
B. Anoda
C. Bramka
D. Źródło
Bramka tyrystora, znana również jako terminal bramkowy, odgrywa kluczową rolę w jego działaniu, pełniąc funkcję sterującą. W momencie dostarczenia sygnału sterującego na bramkę, dochodzi do zainicjowania przewodzenia prądu pomiędzy anodą a katodą. Tyrystory są szeroko stosowane w aplikacjach wymagających precyzyjnego zarządzania dużymi prądami i napięciami, takich jak prostowniki, regulatory mocy oraz układy przełączające. Dzięki możliwości sterowania prądem za pomocą niskiego napięcia na bramce, tyrystory pozwalają na zdalne zarządzanie obciążeniem bez konieczności stosowania skomplikowanych układów mechanicznych. W praktyce, tyrystory z bramką są kluczowe w systemach automatyki przemysłowej, gdzie stabilna i efektywna kontrola mocy jest niezbędna do zapewnienia prawidłowego funkcjonowania maszyn.

Pytanie 36

Jakiego typu oprogramowanie powinno być zastosowane do monitorowania przebiegu procesów w przemyśle?

A. CAD
B. CAE
C. SCADA
D. CAM
Odpowiedzi CAM (Computer-Aided Manufacturing), CAD (Computer-Aided Design) oraz CAE (Computer-Aided Engineering) odnoszą się do różnych aspektów procesów inżynieryjnych, które nie są przeznaczone do nadzorowania procesów przemysłowych. CAM skupia się na automatyzacji procesów produkcyjnych, umożliwiając konwersję projektów CAD na instrukcje maszynowe, co jest kluczowe w produkcji, ale nie w samym monitorowaniu. CAD zajmuje się projektowaniem, dostarczając narzędzia do tworzenia precyzyjnych rysunków i modeli 3D, co również nie obejmuje funkcji nadzoru. CAE koncentruje się na analizach inżynieryjnych, wspierając procesy projektowania przez symulacje i analizy wydajności, jednak nie ma na celu monitorowania rzeczywistych procesów w czasie rzeczywistym. Wybór tych opcji może wynikać z mylnego przekonania, że wszystkie te technologie obejmują aspekty zarządzania procesami, co jest nieprawidłowe. Kluczowym błędem jest nieodróżnianie funkcji projektowania i produkcji od nadzoru i kontroli. Zrozumienie różnic między tymi systemami jest kluczowe, aby skutecznie je stosować w odpowiednich kontekstach przemysłowych, i pomoże uniknąć nieefektywnego wykorzystania narzędzi inżynieryjnych w procesach, które wymagają monitorowania i kontroli.

Pytanie 37

Tachometryczna prądnica działa z prędkością obrotową wynoszącą 1000 obr/min. Jaką prędkość obrotową należy osiągnąć, aby napięcie na wyjściu prądnicy wyniosło 7,3 V?

A. 730 obr/min
B. 73 obr/min
C. 7,3 obr/min
D. 7 300 obr/min
Wybór 7,3 obr/min, 730 obr/min oraz 73 obr/min jako odpowiedzi na pytanie o prędkość obrotową prądnicy tachometrycznej prowadzi do kilku błędnych wniosków, które są wynikiem nieprawidłowego zrozumienia zasad działania prądnic. Przede wszystkim, prądnica tachometryczna wytwarza napięcie, które jest proporcjonalne do prędkości obrotowej wału. Oznacza to, że im wyższa prędkość obrotowa, tym wyższe napięcie. Odpowiedzi 7,3 obr/min i 73 obr/min sugerują ekstremalnie niskie prędkości, które są nieadekwatne do standardowego działania prądnicy. Dla prędkości 1000 obr/min napięcie wynosi 7,3 V; zatem prędkości obrotowe niższe od 1000 obr/min nie mogą generować napięcia wyjściowego wyższego niż 7,3 V. Z kolei odpowiedź 730 obr/min również jest błędna, ponieważ przy tej prędkości napięcie wyniesie mniej niż 7,3 V. Typowym błędem myślowym jest przyjęcie, że mniejsze prędkości mogą wytwarzać wyższe napięcia, co jest sprzeczne z zasadami fizyki. Kluczowe jest zrozumienie, że prądnice tachometryczne są wykorzystywane w systemach, gdzie precyzyjne mierzenie prędkości obrotowej jest kluczowe, na przykład w systemach regulacji i kontroli procesów przemysłowych, a ich działanie opiera się na proporcjonalności między prędkością a napięciem.

Pytanie 38

Jaką czynność zrealizuje polecenie COMPILE w kontekście programowania systemów mechatronicznych?

A. Konwersja kodu binarnego na format dziesiętny
B. Pobranie programu z kontrolera
C. Przetłumaczenie programu na kod binarny
D. Przesłanie programu do kontrolera
Wywołanie polecenia COMPILE w kontekście programowania urządzeń mechatronicznych może być mylone z innymi czynnościami związanymi z zarządzaniem programem. Nie należy utożsamiać kompilacji z przesyłaniem programu do sterownika, gdyż te operacje są od siebie odrębne. Przesłanie programu do sterownika odbywa się po etapie kompilacji, a jego celem jest zainstalowanie odpowiednio przetłumaczonego kodu binarnego w pamięci urządzenia. Zrozumienie tego procesu jest kluczowe, aby uniknąć błędów w programowaniu. Kolejnym typowym nieporozumieniem jest mylenie kompilacji z tłumaczeniem kodu binarnego na format zrozumiały dla człowieka, jak kod decymalny. Tego rodzaju operacje, nazywane dekompilacją, są rzadko praktykowane w kontekście programowania urządzeń mechatronicznych, ponieważ zazwyczaj pracujemy w odwrotnym kierunku, przetwarzając kod źródłowy na binarny. Ostatnią pomyłką jest pomylenie kompilacji z pobieraniem programu ze sterownika, co jest kolejnym krokiem w cyklu życia oprogramowania, ale nie jest bezpośrednio związane z procesem kompilacji. Kluczowym elementem skutecznego programowania jest zrozumienie tych różnic oraz umiejętność ich zastosowania w praktyce.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.