Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik pojazdów samochodowych
  • Kwalifikacja: MOT.05 - Obsługa, diagnozowanie oraz naprawa pojazdów samochodowych
  • Data rozpoczęcia: 24 maja 2025 19:30
  • Data zakończenia: 24 maja 2025 19:41

Egzamin zdany!

Wynik: 30/40 punktów (75,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Największa dopuszczalna różnica w sile hamowania pomiędzy kołami tej samej osi wynosi

A. 30%
B. 20%
C. 40%
D. 10%
Maksymalna dopuszczalna różnica sił hamowania pomiędzy kołami tej samej osi wynosząca 30% jest zgodna z normami i standardami bezpieczeństwa w motoryzacji. Taki limit ma na celu zapewnienie równomiernego rozkładu siły hamowania, co jest kluczowe dla stabilności pojazdu podczas hamowania. Nierównomierne hamowanie może prowadzić do utraty kontroli nad pojazdem, zwłaszcza w trudnych warunkach, takich jak mokra lub śliska nawierzchnia. Przykładem może być sytuacja, gdy jedno z kół hamuje znacznie mocniej niż drugie, co może spowodować obrót pojazdu lub zablokowanie kół. Dobrą praktyką w diagnostyce układów hamulcowych jest regularne sprawdzanie wydajności hamowania oraz równowagi sił na osiach, co może być realizowane podczas przeglądów technicznych. Spełnianie norm dotyczących siły hamowania jest istotne nie tylko z punktu widzenia bezpieczeństwa, ale także w kontekście przepisów prawa, które regulują dopuszczalne parametry techniczne pojazdów.

Pytanie 2

Jakie są powody nadmiernego przegrzewania się bębna hamulcowego podczas prowadzenia pojazdu?

A. Standardowe zużycie okładzin szczęk hamulcowych
B. Zatarły rozpieracz hamulcowy
C. Nieodpowiednie napięcie linki hamulca ręcznego
D. Nieszczelność pompy hamulcowej
Zatarcie rozpieracza hamulcowego jest jedną z kluczowych przyczyn nadmiernego nagrzewania się bębna hamulcowego. Kiedy rozpieracz nie działa prawidłowo, nie jest w stanie prawidłowo docisnąć okładzin hamulcowych do bębna. W wyniku tego, podczas hamowania, tarcie jest nieefektywne, co generuje dodatkowe ciepło. To ciepło, jeśli nie zostanie dissipowane, prowadzi do przegrzewania się bębna hamulcowego. Praktyczne testy wykazały, że regularne sprawdzanie stanu układu hamulcowego, w tym elementów takich jak rozpieracz, jest niezbędne dla zachowania bezpieczeństwa na drodze. Standardy branżowe, takie jak te określone przez SAE (Society of Automotive Engineers), wskazują na konieczność regularnej konserwacji układów hamulcowych, aby uniknąć problemów związanych z ich przegrzewaniem. Pamiętaj, że skuteczna diagnostyka i konserwacja mogą zapobiec wielu kosztownym naprawom oraz zwiększyć bezpieczeństwo pojazdu.

Pytanie 3

Mierzenie suwmiarką uniwersalną z noniuszem nie pozwala na osiągnięcie precyzji pomiaru do

A. 0,02 mm
B. 0,10 mm
C. 0,05 mm
D. 0,01 mm
Odpowiedź 0,01 mm jest poprawna, ponieważ suwmiarki uniwersalne noniuszowe są zaprojektowane do pomiarów z precyzją do 0,01 mm. Precyzja ta wynika z konstrukcji noniusza, który pozwala na odczytanie wartości z dokładnością, jakiej nie osiągną inne narzędzia pomiarowe, na przykład linijki. W praktyce suwmiarka noniuszowa jest niezwykle użyteczna w inżynierii i mechanice, ponieważ umożliwia dokładne pomiary średnic, grubości, a także głębokości. Przykładowo, w procesie produkcji elementów maszyn, precyzyjne pomiary są kluczowe dla zapewnienia ich odpowiedniego dopasowania i funkcjonalności. Ponadto, zgodnie z normami ISO 14405, które określają tolerancje wymiarowe, użycie narzędzi pomiarowych o wysokiej precyzji, takich jak suwmiarki noniuszowe, jest zalecane, aby sprostać wymaganiom jakościowym w branży wytwórczej. Używając suwmiarki o dokładności 0,01 mm, inżynierowie mogą pewniej podejmować decyzje o obróbce i inspekcji, co przekłada się na lepszą jakość końcowych produktów.

Pytanie 4

Kształt stożkowy przekroju tarczy hamulcowej kwalifikuje ją do

A. wymiany
B. przetoczenia
C. przeszlifowania
D. napawania
Napawanie tarczy hamulcowej nie jest zalecane w przypadku stożkowatości, ponieważ ta metoda polega na dodawaniu materiału do uszkodzonej powierzchni, co może prowadzić do dalszych problemów z równomiernością tarczy. Zastosowanie napawania może być uzasadnione jedynie w przypadku niewielkich uszkodzeń, a nie w sytuacjach, gdy geometria tarczy jest zaburzona. Przetoczenie tarczy hamulcowej, mimo że może wydawać się dobrym rozwiązaniem, również nie jest odpowiednie w przypadku stożkowatości, gdyż może to nie usunąć całkowicie nierówności i prowadzić do dalszego zużycia klocków hamulcowych. Przeszlifowanie tarczy może wydawać się kuszącą alternatywą, jednak wymaga precyzyjnego sprzętu i doświadczenia, aby nie pogorszyć sytuacji. Takie działania mogą nie przywrócić tarczy do stanu fabrycznego, co jest kluczowe dla jej prawidłowego działania. Kiedy tarcza hamulcowa wykazuje oznaki stożkowatości, niezbędna jest jej wymiana w celu zapewnienia optymalnej wydajności hamowania i bezpieczeństwa pojazdu. Działania takie jak przetoczenie czy szlifowanie powinny być zarezerwowane dla mniej poważnych uszkodzeń niż te związane z deformacją geometryczną.

Pytanie 5

Jakiego urządzenia należy użyć do identyfikacji dźwięków wydobywających się z wnętrza silnika?

A. Stetoskopu
B. Sonometru
C. Manometru
D. Pirometru
Stetoskop jest narzędziem niezbędnym w diagnostyce dźwięków generowanych wewnątrz silnika. Jego konstrukcja umożliwia mechaniczną detekcję i analizę dźwięków, co pozwala na identyfikację problemów, takich jak niewłaściwe działanie łożysk, luzów czy zanieczyszczeń. Używanie stetoskopu w praktyce polega na przykładając jego końcówkę do poszczególnych elementów silnika, co pozwala na usłyszenie stukanek, szumów czy wibracji, które mogą wskazywać na nadchodzące awarie. W warsztatach mechanicznych i serwisach pojazdowych, stosowanie stetoskopów uznawane jest za standardową praktykę diagnostyczną, co podkreśla ich znaczenie w utrzymaniu sprawności silników. Wiedza o tym, jak i kiedy używać stetoskopu, jest kluczowa dla mechaników, ponieważ pozwala na szybsze i dokładniejsze zlokalizowanie problemu, co z kolei prowadzi do efektywniejszego procesu naprawy oraz obniżenia kosztów związanych z niewłaściwą eksploatacją pojazdu.

Pytanie 6

W pojeździe należy dokonać wymiany płynu hamulcowego

A. w przypadku wymiany części ruchomych systemu hamulcowego
B. gdy jego zawartość wody przekroczy 4%
C. po upływie 5 lat eksploatacji
D. przy wymianie kompletu naprawczego zacisków hamulcowych
Prawidłowa odpowiedź wskazuje na to, że płyn hamulcowy powinien być wymieniany, gdy jego zawodnienie przekroczy wartość 4%. Zawodnienie płynu hamulcowego to proces, w którym woda dostaje się do płynu, co negatywnie wpływa na jego właściwości. Płyn hamulcowy powinien mieć odpowiednią lepkość i temperaturę wrzenia, aby zapewnić skuteczne hamowanie. Zbyt duża ilość wody w płynie hamulcowym może prowadzić do osłabienia działania hamulców, a także do korozji elementów układu hamulcowego. Dlatego zaleca się regularne sprawdzanie poziomu zawodnienia płynu oraz jego wymianę w przypadku przekroczenia wspomnianej wartości. W praktyce, wielu producentów zaleca wymianę płynu hamulcowego co dwa lata, niezależnie od poziomu zawodnienia, aby zagwarantować maksymalną skuteczność i bezpieczeństwo. Przykładowo, w samochodach sportowych, które są narażone na intensywne użytkowanie, wymiana płynu hamulcowego co roku jest dobrą praktyką, aby uniknąć ryzyka przegrzania układu hamulcowego. Regularna wymiana płynu hamulcowego zgodnie z normami branżowymi, takimi jak ISO 4925, jest kluczowa dla zachowania sprawności układu hamulcowego.

Pytanie 7

Wskaźnik temperatury chłodziwa w trakcie jazdy samochodem pokazał wartość przekraczającą 110 °C (czerwone pole). Co to oznacza?

A. może świadczyć o awarii klimatyzacji
B. może wskazywać na uszkodzenie układu chłodzenia
C. może sugerować niski poziom oleju
D. może być oznaką zatarcia silnika
Przekroczenie temperatury płynu chłodzącego powyżej 110 °C wskazuje na poważny problem, najczęściej związany z awarią układu chłodzenia. Układ chłodzenia silnika ma kluczowe znaczenie dla jego prawidłowego funkcjonowania, gdyż jego zadaniem jest odprowadzanie nadmiaru ciepła wytwarzanego podczas pracy silnika. W przypadku awarii, na przykład z powodu uszkodzenia termostatu, przecieku w układzie chłodzenia lub zatykania chłodnicy, temperatura może szybko wzrosnąć. W takich sytuacjach, ignorowanie wskaźnika temperatury może prowadzić do poważniejszych uszkodzeń silnika, takich jak zatarcie tłoków czy uszkodzenie uszczelki głowicy. Standardy motoryzacyjne zalecają regularne przeglądy układu chłodzenia oraz kontrolę poziomu płynu chłodzącego, aby zapobiec tym niebezpiecznym sytuacjom. Proaktywnym podejściem jest również przynajmniej raz w roku sprawdzanie stanu komponentów układu chłodzenia, co może znacznie zredukować ryzyko wystąpienia awarii.

Pytanie 8

Obniżenie ciśnienia w systemie smarowania silnika wskazuje na usterkę

A. pierścieni tłokowych
B. panewek głównych
C. tłoka
D. gładzi cylindrowej
Spadek ciśnienia w układzie smarowania silnika rzadko bywa związany z uszkodzeniami tłoków, pierścieni tłokowych czy gładzi cylindrowej, co często prowadzi do błędnych wniosków. Tłok jest elementem, który porusza się w gładzi cylindrowej i utrzymuje ciśnienie wewnątrz cylindrów, ale jego uszkodzenie zwykle skutkuje zwiększeniem zużycia oleju i spadkiem mocy silnika, a nie bezpośrednim spadkiem ciśnienia w układzie smarowania. Podobnie, pierścienie tłokowe, które uszczelniają komorę spalania, również nie mają bezpośredniego wpływu na ciśnienie w układzie smarowania, chociaż ich uszkodzenie może prowadzić do problemów z silnikiem. Gładź cylindrowa, będąca powierzchnią, w której porusza się tłok, ma kluczowe znaczenie dla utrzymania odpowiedniej kompresji, ale nie jest bezpośrednio związana z ciśnieniem oleju w układzie smarowania. Aby uniknąć mylnych interpretacji, istotne jest zrozumienie, że spadek ciśnienia oleju jest przede wszystkim związany z systemem smarowania, gdzie kluczowe są panewki i pompa olejowa. Właściwe monitorowanie ciśnienia oleju oraz jego regularna wymiana są standardami pozwalającymi na zapobieganie awariom i wydłużenie żywotności silnika.

Pytanie 9

Jak długo zajmie wymiana zaworów w silniku 4 cylindrowym o oznaczeniu 16V, przy założeniu, że praca nad każdym zaworem trwa 0,5 roboczogodziny?

A. 10 godzin
B. 8 godzin
C. 4 godziny
D. 6 godzin
W silniku czterocylindrowym o oznaczeniu 16V mamy do czynienia z 16 zaworami, ponieważ każdy cylinder posiada po 4 zawory. Aby obliczyć całkowity czas wymiany zaworów, należy pomnożyć liczbę zaworów przez czas wymiany jednego zaworu. W tym przypadku, czas wymiany jednego zaworu wynosi 0,5 roboczogodziny. Zatem całkowity czas wymiany można obliczyć w następujący sposób: 16 zaworów x 0,5 roboczogodziny = 8 roboczogodzin. W praktyce, przy planowaniu prac serwisowych w warsztacie, ważne jest dokładne oszacowanie czasu potrzebnego na wymianę poszczególnych elementów silnika, ponieważ wpływa to na harmonogram pracy oraz koszty usługi. Właściwe uwzględnienie czasu pracy pozwala również na lepsze zarządzanie zasobami oraz zminimalizowanie przestojów w pracy warsztatu, co jest zgodne z najlepszymi praktykami w branży motoryzacyjnej.

Pytanie 10

Która z podanych metod łączenia elementów karoserii jest najczęściej wykorzystywana w procesie produkcji oraz nowoczesnych metodach naprawy?

A. Nitowanie
B. Zgrzewanie
C. Lutowanie lutem twardym
D. Lutowanie lutem miękkim
Zgrzewanie to jedna z najczęściej używanych metod łączenia elementów nadwozia w produkcji samochodów i w naprawach. W skrócie, chodzi o to, że materiały są miejscowo topione, co daje naprawdę mocne i trwałe połączenia. W auto przemyśle zgrzewanie jest na czołowej pozycji, bo jest szybkie i efektywne pod względem kosztów. Moim zdaniem to super, że można łączyć blachy o różnych grubościach, bo w nowoczesnych konstrukcjach nadwozi to naprawdę ważne. Przestrzegają też norm ISO i SAE, co zapewnia, że połączenia są zgodne z tym, co powinno być. Tak naprawdę zgrzewanie można spotkać nie tylko w fabrykach, ale i w warsztatach naprawczych. Zgrzewanie punktowe to chyba najpopularniejsza metoda, a jej zaleta to minimalne odkształcenia materiału, co jest istotne dla integralności pojazdu.

Pytanie 11

Reaktor katalityczny stanowi część systemu

A. wylotowego
B. napędowego
C. dolotowego
D. zasilania
Reaktor katalityczny jest kluczowym komponentem układu wylotowego w pojazdach z silnikami spalinowymi. Jego głównym zadaniem jest redukcja emisji szkodliwych substancji, takich jak tlenki azotu, węglowodory i tlenek węgla, poprzez katalityczną konwersję ich w mniej szkodliwe związki, takie jak azot i dwutlenek węgla. Przykładem zastosowania reaktora katalitycznego jest jego rola w układzie wydechowym, gdzie zachodzi reakcja chemiczna na powierzchni katalizatora. W praktyce, reaktory te współpracują z systemem monitorowania emisji, co pozwala na spełnienie norm ekologicznych, takich jak te określone w normach Euro. Dobre praktyki branżowe zalecają regularne kontrole stanu reaktora katalitycznego, aby zapewnić jego efektywność i długowieczność, co z kolei wpływa na zmniejszenie kosztów eksploatacyjnych pojazdów oraz ograniczenie ich wpływu na środowisko. Współczesne technologie wytwarzania katalizatorów, w tym rozwój katalizatorów na bazie platyny, palladu czy rod, pozwalają na osiąganie coraz lepszych parametrów redukcji emisji, co czyni reaktory katalityczne niezbędnym elementem nowoczesnych układów wydechowych.

Pytanie 12

Aby wykonać odczyt pamięci błędów systemu ABS, należy zastosować

A. multimetru
B. licznika RPM
C. skanera OBD
D. oscyloskopu
Skaner OBD (On-Board Diagnostics) to narzędzie diagnostyczne, które umożliwia odczytanie kodów błędów z systemów w pojazdach, w tym z układu ABS. Układ ABS (Antilock Braking System) jest odpowiedzialny za zapobieganie blokowaniu kół podczas hamowania, a jego prawidłowe działanie jest kluczowe dla bezpieczeństwa pojazdu. Skanery OBD są zaprojektowane do komunikacji z jednostką sterującą pojazdu (ECU) i umożliwiają nie tylko odczytu kodów błędów, ale także monitorowanie parametrów pracy poszczególnych systemów. W praktyce, aby przeprowadzić odczyt pamięci błędów ABS, należy podłączyć skaner do złącza diagnostycznego OBD-II, które jest standardowo umieszczone w każdym nowoczesnym pojeździe. Wykorzystując skaner, można szybko zidentyfikować ewentualne błędy w systemie ABS i podjąć odpowiednie kroki naprawcze. Zgodność z normą OBD-II jest powszechnym standardem w branży motoryzacyjnej, co zapewnia, że skanery OBD są wszechstronnie stosowane w wielu różnych pojazdach.

Pytanie 13

Sprzęt do wyważania kół w pojazdach jest uzupełnieniem wyposażenia stacji do

A. demontażu i montażu opon
B. analizy układu hamulcowego pojazdu
C. weryfikacji zawieszenia pojazdu
D. sprawdzania ustawienia kół oraz osi w samochodzie
Urządzenie do wyważania kół samochodowych jest niezbędne w procesie demontażu i montażu ogumienia, ponieważ zapewnia, że opony są właściwie wyważone przed ich zamontowaniem na pojeździe. Niewłaściwe wyważenie kół może prowadzić do drgań, co z kolei wpływa na komfort jazdy, zużycie opon oraz komponentów zawieszenia. Wyważanie kół polega na rozłożeniu masy opony i felgi w sposób równomierny, co jest kluczowe dla stabilności pojazdu. W profesjonalnych warsztatach mechanicznych stosuje się nowoczesne urządzenia, które są w stanie wykrywać nawet niewielkie nierówności. Dobrą praktyką jest także wykonywanie wyważania kół po każdym demontażu opon, co jest zgodne z normami branżowymi. Tego typu procedury są powszechnie stosowane w serwisach samochodowych, aby zapewnić bezpieczeństwo i wydajność pojazdów, a także przedłużyć żywotność opon.

Pytanie 14

W trakcie analizy hamulców na stanowisku rolkowym przeprowadza się przede wszystkim pomiar

A. siły hamowania
B. dystansu hamowania
C. siły tarcia
D. opóźnienia przy hamowaniu
Pomiar siły hamowania na stanowisku rolkowym jest kluczowym elementem oceny efektywności systemu hamulcowego pojazdu. Siła hamowania, mierzona w niutonach (N), określa, jaką moc hamulce są w stanie wygenerować w momencie działania, co bezpośrednio wpływa na bezpieczeństwo i skuteczność hamowania. W praktyce, podczas testów na stanowisku rolkowym, pojazd jest umieszczany na rolkach, a następnie przy użyciu pedału hamulca generowana jest siła, która jest następnie rejestrowana. Pomiar ten pozwala na ocenę stanu technicznego hamulców, co jest zgodne z normami, takimi jak UNECE Regulation No. 13, które regulują wymagania dotyczące hamulców pojazdów. Dobre praktyki w zakresie diagnostyki hamulców obejmują regularne kontrole oraz analizę wyników pomiarów, co umożliwia wczesne wykrywanie ewentualnych usterek oraz zapewnia bezpieczeństwo użytkowników dróg. Zrozumienie siły hamowania oraz jej wpływu na drogę hamowania i opóźnienie jest kluczowe dla inżynierów i techników zajmujących się pojazdami.

Pytanie 15

Ustawienie świateł mijania w pojazdach samochodowych przeprowadza się przy pomocy urządzenia, które funkcjonuje na zasadzie porównania granicy światła oraz cienia reflektora z

A. liniami odcięcia według wzoru urządzenia
B. wartościami ustalonymi przez producenta auta
C. wartościami zdefiniowanymi dla pojazdów z maksymalną prędkością do 130 km/h
D. wartościami określonymi w tabelach naświetleń
Wybór odpowiedzi na temat wartości podanych przez producentów pokazuje pewne nieporozumienia, bo ustawienie świateł mijania to nie tylko proste przyjęcie wartości. Producenci dają ogólne wytyczne, ale w praktyce potrzebujemy dokładnych narzędzi, jak szablony. Gdy tylko opieramy się na wartościach producenta, może to być mylące. Często te parametry nie mówią, jak je właściwie stosować w rzeczywistości. Co więcej, tabela naświetleń sugeruje, że wszystkie samochody są do siebie podobne, a to wcale nie jest prawda. Każdy model ma swoje unikalne cechy, więc potrzebne jest indywidualne podejście. Użycie takich tabel zazwyczaj opiera się na teoretycznych danych, a nie na fizycznym ustawieniu świateł. To może prowadzić do złych regulacji i oślepienia innych kierowców. Odpowiedź związana z prędkością do 130 km/h może dawać wrażenie, że ustawienia są tylko zależne od maksymalnej prędkości, co jest błędne. Ustawienia świateł mijania powinny być zgodne z normami dla wszystkich pojazdów, niezależnie od ich prędkości. Te błędy w myśleniu mogą skutkować złymi praktykami w diagnostyce i konserwacji pojazdów.

Pytanie 16

Jak długo trwa całkowita regulacja zbieżności przedniej osi na urządzeniu czterogłowicowym, jeśli kompensacja bicia jednego koła zajmuje 5 minut, a regulacja zbieżności kół przednich 10 minut?

A. 35 minut
B. 20 minut
C. 30 minut
D. 40 minut
Wybór innej odpowiedzi może być wynikiem nieprecyzyjnego zrozumienia procesu regulacji zbieżności kół oraz jak czas potrzebny na wykonanie poszczególnych czynności wpływa na całkowity czas operacji. Odpowiedzi takie jak 40 minut czy 35 minut mogą sugerować, że osoba odpowiadająca zsumowała czas kompensacji bicia oraz czas regulacji zbieżności w sposób nieodpowiedni, myląc całkowity czas operacyjny z czasem potrzebnym na każdą czynność. W rzeczywistości, na urządzeniu czterogłowicowym procedura regulacji kół jest zoptymalizowana, co pozwala na jednoczesne działanie na wszystkich kołach, a nie ich sekwencyjne regulowanie. Z kolei odpowiedzi 20 minut i 40 minut wskazują na błędne założenia dotyczące długości czasu, który jest niezbędny do wykonania pełnej regulacji. W przypadku regulacji zbieżności kół, kluczowe jest zrozumienie, że czas działania nie jest liniowy, a każda operacja ma swoje specyficzne wymagania czasowe. Zrozumienie tych zasad jest istotne nie tylko dla prawidłowego przeprowadzenia regulacji, ale również dla odpowiedniego planowania czasu pracy w warsztacie, co wpływa na efektywność i obciążenie pracowników.

Pytanie 17

Rozmontowanie pełnej kolumny McPhersona na pojedyncze części przeprowadza się przy użyciu

A. prasy hydraulicznej
B. ręcznej prasy
C. ściągacza do sprężyn
D. specjalnie uformowanej dźwigni
Ściągacz do sprężyn jest narzędziem niezbędnym do demontażu kolumny McPhersona, ponieważ umożliwia on bezpieczne i skuteczne usunięcie sprężyny zawieszenia, która jest elementem pod dużym ciśnieniem. W trakcie demontażu ważne jest, aby sprężynę odpowiednio ściągnąć, aby zminimalizować ryzyko uszkodzenia innych komponentów oraz zapewnić bezpieczeństwo osoby wykonującej tę operację. Ściągacze do sprężyn są dostępne w różnych wersjach, w tym ręcznych oraz hydraulicznych, co pozwala na dostosowanie narzędzia do konkretnych warunków pracy. Zastosowanie ściągacza do sprężyn jest zgodne z najlepszymi praktykami w branży motoryzacyjnej, które podkreślają znaczenie używania odpowiednich narzędzi do przeprowadzania prac serwisowych. Warto zauważyć, że niewłaściwe lub nieodpowiednie narzędzia mogą prowadzić do uszkodzenia kolumny McPhersona, co zwiększa koszty naprawy oraz czas przestoju pojazdu.

Pytanie 18

Jakie symptomy zaobserwowane podczas próbnej jazdy mogą świadczyć o luzach w układzie kierowniczym pojazdu?

A. Dźwięki dochodzące z tylnej części pojazdu
B. Kołysanie w kierunku podłużnym pojazdu
C. Dźwięki dochodzące z przedniej części pojazdu
D. Kołysanie w kierunku bocznym pojazdu
Stuki pochodzące z tyłu samochodu, kołysanie poprzeczne oraz wzdłużne pojazdem to objawy, które mogą być mylnie interpretowane jako sygnały luzów w układzie kierowniczym. W rzeczywistości, dźwięki i ruchy związane z tylną częścią samochodu zazwyczaj sugerują problemy z zawieszeniem lub elementami układu napędowego. Przykładowo, stuki z tyłu mogą być wynikiem zużycia amortyzatorów czy elementów sprężynujących, co wpływa na stabilność pojazdu, ale nie jest bezpośrednio związane z układem kierowniczym. Kołysanie poprzeczne może być spowodowane niewłaściwym wyważeniem kół lub uszkodzeniem opon, a nie luzami w kierownicy. Z kolei kołysanie wzdłużne często wskazuje na problemy z układem hamulcowym lub nieprawidłowości w ustawieniach geometrii kół. Błędne wnioski dotyczące źródła hałasów mogą prowadzić do nieodpowiednich napraw, co zwiększa ryzyko awarii i obniża bezpieczeństwo jazdy. Ważne jest, aby analizować objawy w kontekście całości układu pojazdu i kierować się wiedzą opartą na doświadczeniu oraz standardach branżowych.

Pytanie 19

Podczas naprawy pojazdu został wymieniony filtr paliwa, filtr kabinowy oraz komplet klocków hamulcowych osi przedniej. Koszt jednej roboczogodziny to 90,00 zł netto. Oblicz całkowity koszt naprawy netto.

Lp.wykaz częścicena netto
[zł]
1.olej silnikowy 4l125,00
2.filtr oleju45,00
3.filtr kabinowy85,00
4.filtr paliwa115,00
5.klocki hamulcowe osi przedniej- kpl.95,00
6.klocki hamulcowe osi tylnej- kpl.112,00
7.tarcze hamulcowe osi przedniej-kpl.160,00
Lp.czynnościczas naprawy
[rg.]
1.wymiana filtra paliwa0,5
2.wymiana filtra kabinowego0,3
3.wymiana klocków hamulcowych osi przedniej1,2
4.wymiana klocków hamulcowych osi tylnej1,3

A. 475,00 zł
B. 680,00 zł
C. 380,00 zł
D. 635,00 zł
Wybierając 635,00 zł, 380,00 zł czy 680,00 zł, można było popełnić parę błędów w liczeniu kosztów naprawy. Na przykład 635,00 zł może sugerować, że gdzieś w robociznie lub kosztach części jest pomyłka. Może przyjęto za dużą stawkę robocizny albo źle oszacowano czas roboczy. Takie błędy się zdarzają, a ważne, żeby być precyzyjnym. Z kolei 380,00 zł wygląda na zaniżoną kwotę, co często się zdarza, gdy całkowicie pomija się koszt robocizny albo źle liczy ceny części. Ostatnia odp. 680,00 zł też pokazuje, że coś było nie tak z oszacowaniem, zwłaszcza w robociznie. Wiesz, takie błędy mogą wyniknąć z braku zrozumienia, jak się liczy koszty w warsztacie. Dlatego warto cały czas analizować poszczególne koszty, żeby uniknąć nieporozumień i pomyłek w obliczeniach. W praktyce każdy warsztat powinien mieć jakieś standardy, które pomogą w dobrej kalkulacji kosztów.

Pytanie 20

Powierzchnię uszczelniającą głowicy, która uległa deformacji, naprawia się w wyniku

A. klejenia
B. galwanizacji
C. napawania
D. planowania
Planowanie powierzchni uszczelniającej głowicy to proces, który polega na usunięciu odkształceń oraz zniekształceń poprzez mechaniczne struganie materiału. Działanie to jest kluczowe, ponieważ powierzchnia uszczelniająca musi być gładka, aby zapewnić odpowiednią szczelność w połączeniu z innymi elementami silnika. W praktyce planowanie pozwala na przywrócenie oryginalnych parametrów geometrycznych, co jest niezbędne do prawidłowego funkcjonowania silnika. W przypadku głowicy, która uległa odkształceniu na skutek przegrzewania lub niewłaściwego montażu, planowanie daje możliwość odtworzenia wymaganego poziomu szczelności. W branży mechanicznej często stosuje się maszyny do planowania, które umożliwiają precyzyjne usunięcie niewielkiej ilości materiału. Warto również zaznaczyć, że planowanie powinno być przeprowadzane zgodnie z normami obowiązującymi w danej branży, aby uniknąć dalszych uszkodzeń czy niewłaściwego działania silnika. Przykładem praktycznym może być remont silnika, w którym przed montażem nowej uszczelki głowicy, powierzchnia jest starannie planowana.

Pytanie 21

Trudności w włączeniu jednego z biegów w synchronizowanej skrzyni biegów zazwyczaj są spowodowane uszkodzeniem

A. koła zębatego tego biegu
B. łożyskowania koła zębatego tego biegu na wałku
C. łożyskowania synchronizatora tego biegu
D. synchronizatora tego biegu
Synchronizator biegu w skrzyni biegów pełni kluczową rolę w procesie zmiany przełożeń, umożliwiając płynne włączanie biegów. Jego zadaniem jest dostosowanie prędkości obrotowej wałka skrzyni biegów do prędkości obrotowej koła zębatego, co eliminuje ryzyko zgrzytu podczas włączania biegu. Uszkodzenie synchronizatora, na przykład poprzez zużycie materiału ciernego lub zatarcie, prowadzi do trudności w przełączaniu biegów. Przykładem praktycznym może być sytuacja, w której kierowca próbuje włączyć drugi bieg, a skrzynia blokuje się lub wydaje nieprzyjemne dźwięki. W takim przypadku konieczna jest diagnostyka i ewentualna wymiana synchronizatora. Zgodnie z dobrymi praktykami branżowymi, regularne przeglądy i konserwacja elementów skrzyni biegów, w tym synchronizatorów, są kluczowe dla zapewnienia ich długotrwałej wydajności. Warto zwrócić uwagę na odpowiednią eksploatację pojazdu, co również wpływa na trwałość tych elementów.

Pytanie 22

Firma transportowa zleciła regulację luzów7 zaworowych w 10 pojazdach wyposażonych w silniki rzędowe 4-cylindrowe 8 zaworowe. Silniki mają jedną pokrywę zaworów. Posługując się danymi z tabeli oblicz całkowity czas wykonania zlecenia.

Nazwa operacjiCzas [min]
Wymiana świecy5
Demontaż pokrywy zaworów10
Regulacja luzu zaworów 1 cylindra(*)5*
Montaż pokrywy zaworów10
Wymiana filtra powietrza8

(*) – podany czas dotyczy wyłącznie regulacji luzu zaworowego

A. 400 minut
B. 228 minut
C. 20 minut
D. 40 minut
Poprawna odpowiedź to 400 minut, co wynika z dokładnego przeliczenia czasu potrzebnego na regulację luzów zaworowych w 10 pojazdach. Każde z silników 4-cylindrowych wymaga 60 minut na wykonanie wszystkich niezbędnych operacji: 20 minut na wymianę świec zapłonowych, 10 minut na demontaż pokrywy zaworów, 20 minut na regulację luzów, oraz 10 minut na montaż pokrywy. Sumując te czasy, otrzymujemy 60 minut na jeden pojazd. Następnie, dla 10 pojazdów, czas ten mnożymy przez 10, co daje 600 minut. Warto jednak zwrócić uwagę, że pytanie dotyczy regulacji luzów zaworowych, która dla 10 silników powinna być uwzględniona w kontekście praktyki wykonawczej i planowania czasu pracy w warsztacie. W branży motoryzacyjnej, takie obliczenia pozwalają na efektywne zarządzanie czasem pracy i kosztami usług, co jest kluczowe dla zadowolenia klienta oraz rentowności działalności. Dla dalszej analizy, można również zapoznać się z dokumentacją producentów silników, gdzie znajdziemy szczegółowe instrukcje dotyczące regulacji luzów oraz oszacowania czasu potrzebnego na wykonanie tych operacji.

Pytanie 23

W celu naprawienia otworu, który podczas użytkowania stracił swój nominalny wymiar, powinno się wykorzystać

A. kucie
B. tulejowanie
C. spawanie
D. nitowanie
Tulejowanie to taki sprytny sposób na naprawę otworów, które straciły swoje wymiary przez długotrwałe użytkowanie. W tym procesie wkłada się tuleje do środka otworów, co pozwala na przywrócenie ich właściwej średnicy. Można to spotkać w takich branżach jak przemysł maszynowy czy motoryzacyjny, gdzie dokładność wymiarów jest bardzo ważna. Na przykład, kiedy remontuje się bloki silników, to jeśli otwory na cylindry są uszkodzone, można zastosować tulejowanie, żeby zamontować nowe tłoki. Warto też wiedzieć, że standardy jak ISO 286 określają tolerancje wymiarowe, co ma duże znaczenie w tym procesie. Dobrze jest również pamiętać, żeby dobierać odpowiednie materiały tulei oraz dokładnie mierzyć przed i po naprawie. Tulejowanie to naprawdę fajna opcja, bo może zaoszczędzić czas i kasę w porównaniu do wymiany całych elementów, więc firmy chętnie z tego korzystają.

Pytanie 24

Podczas weryfikacji sworznia tłokowego, jak należy zmierzyć jego zewnętrzną średnicę?

A. mikrometrem
B. przymiarem kreskowym
C. suwmiarką modułową
D. średnicówką mikrometryczną
Użycie suwmiarki modułowej do pomiaru średnicy zewnętrznej sworznia tłokowego może prowadzić do błędów pomiarowych z powodu ograniczonej precyzji narzędzia. Suwmiarka, chociaż może być wystarczająca do pomiarów o większych tolerancjach, nie zapewnia tak wysokiej dokładności jak mikrometr, co jest kluczowe w kontekście weryfikacji elementów o znaczeniu krytycznym, takich jak sworznie tłokowe, które muszą precyzyjnie pasować do ich gniazd. Średnicówka mikrometryczna, mimo że może wydawać się odpowiednia, nie jest narzędziem przeznaczonym do pomiaru średnicy zewnętrznej, lecz wewnętrznej, co czyni ją nieodpowiednim wyborem w tej konkretnej sytuacji. Przymiar kreskowy, chociaż również użyteczny w pomiarach, nie pozwala na uzyskanie wymaganej precyzji, co w kontekście weryfikacji wymiarowej siłowników, może doprowadzić do poważnych problemów w późniejszym etapie produkcji. Zrozumienie różnic między tymi narzędziami i ich zastosowaniem jest kluczowe, aby unikać pomyłek, które mogą prowadzić do błędnych wniosków na temat wymiarów i tolerancji elementów mechanicznych.

Pytanie 25

Wykorzystując dane zawarte w tabeli, oblicz koszt wymiany dwóch łączników stabilizatora przednie osi pojazdu. Czas wymiany to 60 min. Dolicz wartość podatku VAT 23%.

łącznik stabilizatoraszt.Cena netto
60 zł
roboczogodzina150 zł

A. 170,20 zł
B. 120,00 zł
C. 209,10 zł
D. 229,20 zł
Aby obliczyć całkowity koszt wymiany dwóch łączników stabilizatora, należy uwzględnić kilka kluczowych elementów: koszt części, robociznę oraz podatek VAT. Koszt netto dla dwóch łączników stabilizatora powinien być pomnożony przez ich jednostkową cenę, a następnie dodany do kosztu robocizny, który w tym przypadku wynosi 60 minut. Z reguły w warsztatach samochodowych stawka robocizny jest ustalana na poziomie od 100 zł do 200 zł za godzinę, co daje nam konkretne wartości. Po obliczeniu sumy netto, należy doliczyć 23% VAT, co jest standardową stawką w Polsce. Przykładowo, jeśli koszt części wynosi 150 zł, a robocizna 100 zł, wtedy całkowity koszt bez VAT wyniesie 250 zł. Po doliczeniu VAT, całkowity koszt wyniesie 307,50 zł. Zrozumienie tej procedury jest istotne dla prawidłowego obliczania kosztów naprawy w warsztatach samochodowych oraz dla oceny budżetu na przyszłe wydatki związane z utrzymaniem pojazdu. Dlatego odpowiedź 209,10 zł jest poprawna, ponieważ uwzględnia wszystkie te czynniki zgodnie z obowiązującymi standardami branżowymi.

Pytanie 26

W jakich jednostkach mierzy się pojemność akumulatora?

A. amperach [A]
B. amperogodzinach [Ah]
C. woltach [V]
D. omach [Ohm]
Pojemność akumulatora odnosi się do ilości energii, jaką akumulator jest w stanie przechować, i nie jest właściwie mierzona w woltach, amperach ani omach. Wolt [V] to jednostka napięcia elektrycznego, która wskazuje różnicę potencjałów między dwoma punktami w obwodzie elektrycznym. W kontekście akumulatorów, napięcie jest istotne, ale nie definiuje ich pojemności. Amper [A] to jednostka natężenia prądu elektrycznego, a jego pomiar nie odnosi się do zdolności akumulatora do przechowywania energii, lecz do ilości energii przepływającej przez obwód w danym czasie. Wreszcie, om [Ohm] to jednostka oporu elektrycznego, która określa, jak bardzo dany element obwodu opiera się przepływowi prądu. Zrozumienie, że pojemność akumulatora jest czymś innym niż napięcie, natężenie czy opór, jest kluczowe dla prawidłowego posługiwania się tymi jednostkami. Błędne interpretacje mogą prowadzić do niewłaściwego doboru akumulatorów do zastosowań, co w konsekwencji może skutkować ich niewłaściwą pracą lub awarią systemów zasilania. Przy doborze akumulatorów ważne jest uwzględnienie rzeczywistych potrzeb energetycznych oraz specyfikacji technicznych producenta, co jest zgodne z najlepszymi praktykami w branży.

Pytanie 27

Ile czasu zajmie całkowite odpowietrzenie hamulców w samochodzie osobowym wyposażonym w hydrauliczny układ hamulcowy, jeżeli czas potrzebny na odpowietrzenie każdego koła wynosi 15 minut?

A. 1,0 godz
B. 1,5 godz
C. 0,5 godz
D. 2,0 godz
Odpowiedź 1,0 godz. jest prawidłowa, ponieważ całkowity czas odpowietrzenia hamulców w samochodzie osobowym z hydraulicznym układem hamulcowym obliczamy, mnożąc czas pracy na jedno koło przez liczbę kół. W standardowych samochodach osobowych mamy cztery koła, a czas odpowietrzenia dla każdego z nich wynosi 15 minut. Stąd całkowity czas odpowietrzenia wynosi 15 minut x 4 = 60 minut, co przekłada się na 1,0 godz. W praktyce, procedura odpowietrzania hamulców jest kluczowa dla zapewnienia ich prawidłowego działania, eliminacji powietrza z układu oraz utrzymania odpowiedniego ciśnienia hydraulicznego. Wiele warsztatów stosuje technikę odpowietrzania w oparciu o standardy, takie jak SAE J1401, które określają procedury i narzędzia potrzebne do prawidłowego przeprowadzenia tej operacji. Zrozumienie tego procesu jest niezbędne dla mechaników oraz właścicieli pojazdów, aby zapewnić bezpieczeństwo i efektywność układu hamulcowego.

Pytanie 28

Metaliczny dźwięk pochodzący z górnej części silnika może świadczyć

A. o luzach w łożyskach wału korbowego
B. o zbyt dużym luzie zaworów
C. o uszkodzeniu pierścieni tłokowych
D. o wyeksploatowaniu łańcucha rozrządu
Nadmierny luz zaworów w silniku jest jednym z kluczowych problemów, które mogą manifestować się w postaci charakterystycznych metalicznych stuków, szczególnie w górnej części silnika. Luz zaworowy odnosi się do przestrzeni między końcem zaworu a jego napędem, co w praktyce oznacza, że zawór nie zamyka się całkowicie lub nie otwiera się w odpowiednim momencie. W wyniku tego mogą występować różne nieprawidłowości w pracy silnika, w tym utrata mocy, nierówna praca na biegu jałowym, a także zwiększone zużycie paliwa. W kontekście standardów branżowych, regularne sprawdzanie luzów zaworowych jest zalecane w ramach konserwacji silników spalinowych, a ich odpowiednia regulacja powinna odbywać się zgodnie z wytycznymi producenta pojazdu. Przykładem może być typowy interwał wymiany oleju, podczas którego zaleca się również kontrolę stanu luzu zaworowego, co może zapobiec poważniejszym uszkodzeniom. Oprócz tego, wystąpienie opisanego stukania jest sygnałem, że należy przeprowadzić diagnostykę silnika, aby zidentyfikować i naprawić problem, co przyczyni się do wydłużenia jego żywotności.

Pytanie 29

W samochodzie z przednim zablokowanym układem napędowym, podczas przyspieszania i skrętu w prawo, słychać stuki z przedniego koła. Te objawy mogą sugerować zużycie

A. przegubu napędowego
B. mechanizmu różnicowego
C. sprzęgła
D. łożysk w piaście
Przegub napędowy jest kluczowym elementem w układzie napędowym samochodu, szczególnie w pojazdach z przednim napędem. Jego głównym zadaniem jest przenoszenie momentu obrotowego z skrzyni biegów na koła, jednocześnie umożliwiając ruch zawieszenia i skręcanie. Stuki, które występują podczas przyspieszania przy skręcie w prawo, mogą wskazywać na uszkodzenie przegubu, który nie jest w stanie prawidłowo przenosić obciążenia. W praktyce, zużyty przegub napędowy może powodować nie tylko hałas, ale także drgania i uczucie luzu w układzie kierowniczym. Zgodnie z najlepszymi praktykami w branży motoryzacyjnej, regularne przeglądy układu napędowego oraz wymiana przegubów w przypadku zauważenia pierwszych objawów zużycia mogą znacznie zwiększyć bezpieczeństwo i komfort jazdy. Dlatego ważne jest, aby mechanicy zwracali uwagę na takie objawy i odpowiednio reagowali, zanim dojdzie do poważniejszych uszkodzeń.

Pytanie 30

Przyczyną "przekrzywienia" koła kierownicy w lewą stronę po wcześniejszym najazdowaniu prawym przednim kołem na dużą wyrwę w nawierzchni może być

A. skrzywienie drążka kierowniczego
B. uszkodzenie kordu opony
C. zmiana wyważenia koła
D. skrzywienie rantu obręczy koła
Skrzywienie drążka kierowniczego jest kluczowym czynnikiem wpływającym na układ kierowniczy pojazdu. Po najechaniu w dużą wyrwę nawierzchni, drążek kierowniczy może ulec deformacji, co prowadzi do nieprawidłowego ustawienia kół i odchylenia koła kierownicy w lewą stronę. Taka sytuacja często występuje, gdy pojazd przechodzi przez ekstremalne warunki drogowe. Skrzywiony drążek kierowniczy nie tylko wpływa na kierowanie pojazdem, ale również może prowadzić do nadmiernego zużycia opon oraz innych komponentów układu zawieszenia. Standardy branżowe, takie jak normy ISO dotyczące bezpieczeństwa pojazdów, podkreślają znaczenie regularnych przeglądów układu kierowniczego i zawieszenia. Przykładem zastosowania tej wiedzy jest rutynowa kontrola stanu technicznego pojazdu, która powinna obejmować sprawdzenie drążków kierowniczych oraz ich geometrii w celu zapewnienia bezpieczeństwa jazdy oraz komfortu użytkowników.

Pytanie 31

Jakie są proporcje składników szkodliwych obecnych w spalinach w prawidłowo funkcjonującym silniku ZI?

A. maksymalnie 0,3%
B. więcej niż 5%
C. około 5%
D. około 1%
Odpowiedzi sugerujące wartości wyższe niż 1% dla zawartości szkodliwych składników w spalinach silnika ZI są błędne z punktu widzenia aktualnych standardów emisyjnych oraz założeń technicznych dotyczących nowoczesnych silników. Wartości takie jak 5% czy nawet powyżej 5% nie tylko przekraczają granice ustanowione przez regulacje, ale także nie odzwierciedlają rzeczywistej wydajności nowoczesnych rozwiązań w zakresie kontroli emisji. W rzeczywistości rozwój technologii, takich jak systemy recyrkulacji spalin (EGR) czy katalizatory trójdrożne, mają na celu redukcję tych szkodliwych emisji do minimum. W przypadku silników ZI, w warunkach normalnej pracy, emisje tlenku węgla, węglowodorów i tlenków azotu są ściśle kontrolowane, co sprawia, że odpowiedzi wskazujące na 5% są niezgodne z rzeczywistością. Ponadto, zrozumienie zasad funkcjonowania silników oraz ich wpływu na jakość powietrza jest kluczowe dla inżynierów i projektantów, którzy dążą do optymalizacji procesów spalania. Zbyt wysokie wartości emisji mogą również prowadzić do problemów z przestrzeganiem przepisów i norm, co może skutkować finansowymi karami oraz negatywnym wpływem na reputację producenta. Dlatego kluczowe jest, aby uczestnicy szkoleń oraz testów online mieli świadomość tych różnic i potrafili poprawnie interpretować dane dotyczące emisji spalin.

Pytanie 32

Aby odczytać kod błędu pojazdu z systemem OBDII / EOBD, konieczne jest użycie

A. diagnoskopu
B. woltomierza
C. oscyloskopu
D. spektrofotometru
Odpowiedź "diagnoskopu" jest poprawna, ponieważ diagnoskop to specjalistyczne urządzenie służące do komunikacji z systemem OBDII/EOBD, które jest standardem diagnostyki w nowoczesnych pojazdach. OBDII (On-Board Diagnostics II) to system monitorujący stan najważniejszych podzespołów samochodu, a także kontrolujący emisję spalin. Umożliwia on odczytanie kodów błędów, które są generowane przez komputer pokładowy w przypadku wystąpienia problemów z silnikiem lub innymi istotnymi komponentami. W praktyce użycie diagnoskopu pozwala mechanikom szybko zidentyfikować źródło problemu, co prowadzi do efektywniejszej diagnostyki i naprawy pojazdu. Przykładowo, w przypadku, gdy kontrolka silnika zaświeci się na desce rozdzielczej, diagnoskop umożliwi odczytanie kodu błędu, co pozwoli na szybkie podjęcie działań naprawczych. Stosowanie diagnoskopów jest zgodne z najlepszymi praktykami branżowymi, ponieważ przyspiesza proces diagnostyki i poprawia jakość usług serwisowych, redukując jednocześnie koszty naprawy.

Pytanie 33

Drutówka stanowi element

A. zaworu powietrza
B. opony
C. obręczy koła
D. dętki
Drutówka jest integralną częścią opony, stanowiącą jej zewnętrzną warstwę. Opony samochodowe są zbudowane z kilku warstw materiałów, a drutówka, wykonana z włókien stalowych lub syntetycznych, ma kluczowe znaczenie dla zapewnienia stabilności i wytrzymałości konstrukcji opony. Jej główną funkcją jest ochrona wewnętrznych warstw opony przed uszkodzeniami mechanicznymi oraz zapewnienie odpowiedniego kształtu opony podczas eksploatacji. Technologia produkcji drutówki opiera się na standardach określonych przez organizacje takie jak ISO oraz SAE, co gwarantuje wysoką jakość i bezpieczeństwo użytkowania. Przykładowo, w oponach do pojazdów ciężarowych, drutówka jest zaprojektowana tak, aby wytrzymać znaczne obciążenia, co minimalizuje ryzyko uszkodzeń podczas transportu. Dobrze zaprojektowana drutówka wpływa na osiągi opony, w tym przyczepność, odporność na zużycie oraz efektywność paliwową, co czyni ją kluczowym elementem w nowoczesnym inżynierii motoryzacyjnej.

Pytanie 34

Luz zmierzony w zamku pierścienia tłokowego umieszczonego w cylindrze wynosi 0,6 mm. Producent wskazuje, że luz ten powinien wynosić od 0,25 do 0,40 mm. Uzyskany wynik sugeruje, że

A. luz jest zbyt duży
B. luz mieści się w podanych normach
C. luz jest zbyt mały
D. luz w zamku pierścienia powinien zostać zwiększony
Zgodnie z zaleceniami producenta, luz w zamku pierścienia tłokowego powinien wynosić od 0,25 mm do 0,40 mm. Zmierzony luz wynoszący 0,6 mm przekracza górną granicę tej tolerancji, co oznacza, że luz jest zbyt duży. Zbyt duży luz w zamku pierścienia tłokowego może prowadzić do niewłaściwego uszczelnienia, co z kolei może skutkować spadkiem efektywności silnika, a także zwiększeniem zużycia oleju i emisji spalin. W praktyce, odpowiedni luz jest kluczowy dla prawidłowego funkcjonowania silnika, ponieważ wpływa na jego wydajność oraz żywotność komponentów. W przypadku stwierdzenia nadmiernego luzu, zaleca się wymianę pierścieni tłokowych lub regulację ich osadzenia zgodnie z wytycznymi producenta, co zapewni optymalną pracę silnika oraz zmniejszy ryzyko awarii. Stosowanie się do tych standardów jest niezbędne, aby utrzymać silnik w dobrym stanie technicznym i zapewnić jego niezawodność.

Pytanie 35

W trakcie spawania gazowego niemożliwe jest

A. nasączenie olejem lub innym tłuszczem zaworów butli
B. aplikowanie defektoskopu
C. zbyt duże przewietrzanie warsztatu / hali
D. korzystanie z skórzanych rękawic ochronnych
Nadmierne przewietrzanie warsztatu lub hali podczas spawania gazowego może być postrzegane jako zjawisko pozytywne, ponieważ zapewnia lepszą cyrkulację powietrza i zmniejsza koncentrację gazów w powietrzu. Jednakże, w praktyce, nadmierne przewietrzanie może prowadzić do zmniejszenia efektywności procesów spawalniczych oraz wpływać na stabilność płomienia, co z kolei wpłynie na jakość spawania. Dlatego należy zachować umiar i dostosować wentylację do konkretnych warunków pracy. Użycie skórzanych rękawic ochronnych jest również standardową praktyką, zapewniającą ochronę rąk przed wysoką temperaturą oraz odpryskami metalu, co jest zgodne z normami BHP. Odnośnie użycia defektoskopu, jest to narzędzie niezbędne do oceny jakości złącza spawanego. Jego zastosowanie pozwala na wczesne wykrycie wad, co jest kluczowe dla zapewnienia bezpieczeństwa oraz trwałości konstrukcji. W związku z tym, niezrozumienie roli wentylacji, rękawic czy defektoskopu może prowadzić do błędnych wniosków i zagrożeń w trakcie spawania.

Pytanie 36

Podczas diagnostyki systemu klimatyzacji, który parametr jest kluczowy do sprawdzenia poprawności działania?

A. Temperatura oleju silnikowego
B. Napięcie akumulatora
C. Ciśnienie czynnika chłodniczego
D. Poziom płynu hamulcowego
Podczas diagnostyki systemu klimatyzacji w samochodach, kluczowym parametrem do sprawdzenia jest ciśnienie czynnika chłodniczego. Klimatyzacja działa poprzez cyrkulację czynnika chłodniczego, który przemienia się z cieczy w gaz i odwrotnie, co pozwala na absorpcję i usuwanie ciepła z wnętrza pojazdu. Ciśnienie czynnika chłodniczego jest istotnym wskaźnikiem, ponieważ zbyt niskie ciśnienie może sugerować wyciek lub niewystarczającą ilość czynnika, co z kolei prowadzi do nieefektywnego chłodzenia. Z kolei zbyt wysokie ciśnienie może wskazywać na blokadę w układzie lub problem z kompresorem. Sprawdzanie ciśnienia jest standardową praktyką podczas przeglądów serwisowych i napraw klimatyzacji, a jego prawidłowe wartości są zawsze określone przez producenta pojazdu. Dla technika zajmującego się obsługą i naprawą pojazdów, umiejętność prawidłowej oceny ciśnienia czynnika chłodniczego jest niezbędna, aby zapewnić efektywne działanie klimatyzacji i komfort wewnętrzny pojazdu.

Pytanie 37

Aby nawiązać łączność pomiędzy samochodem a komputerem diagnostycznym, konieczne jest, aby pojazd był wyposażony w gniazdo

A. EDB
B. ADB
C. EGR
D. EOBD
Odpowiedź EOBD (European On-Board Diagnostics) jest poprawna, ponieważ standard ten definiuje systemy diagnostyczne stosowane w pojazdach. EOBD umożliwia komunikację między pojazdem a komputerem diagnostycznym, co pozwala na monitorowanie stanu technicznego silnika oraz innych istotnych układów. Dzięki gniazdu EOBD, mechanicy mogą odczytywać kody błędów, analizować dane w czasie rzeczywistym oraz przeprowadzać diagnostykę układów emisji spalin. W praktyce, EOBD jest standardem obowiązującym w większości nowoczesnych pojazdów sprzedanych w Europie od 2001 roku (dla samochodów osobowych) oraz od 2004 roku (dla samochodów ciężarowych). Umożliwia to nie tylko szybką identyfikację problemów, ale również przyczynia się do przestrzegania norm emisji, co ma kluczowe znaczenie w kontekście ochrony środowiska. Prawidłowe korzystanie z gniazda EOBD jest więc istotne zarówno dla diagnostyki, jak i dla spełniania wymogów prawnych związanych z emisją spalin.

Pytanie 38

Jakie narzędzie należy wykorzystać do pomiaru luzu zaworowego?

A. miernik wysokości.
B. suwmiarka.
C. czujnik zegarowy.
D. szczelinomierz.
Szczelinomierz to narzędzie pomiarowe, które jest niezbędne w procesie pomiaru luzu zaworowego w silnikach spalinowych. Luz zaworowy jest kluczowym parametrem, który wpływa na poprawne działanie układu rozrządu oraz ogólną wydajność silnika. Właściwy luz zapewnia optymalne warunki do otwierania i zamykania zaworów, co z kolei wpływa na efektywność spalania i osiągi silnika. Szczelinomierz umożliwia precyzyjne ustalenie wymiarów szczeliny, co jest kluczowe dla utrzymania odpowiedniej pracy silnika. W praktyce, w przypadku zbyt dużego luzu, może dochodzić do nieprawidłowego działania zaworów, natomiast zbyt mały luz może prowadzić do ich zatarcia. Używanie szczelinomierza w regularnych przeglądach technicznych oraz konserwacji silnika jest zgodne z zaleceniami producentów, co stanowi element dobrych praktyk w branży motoryzacyjnej.

Pytanie 39

Energia mechaniczna w silnikach cieplnych nie powstaje w wyniku procesu spalania

A. oleju napędowego
B. benzyny
C. oleju silnikowego
D. gazu ziemnego
Odpowiedź "olej silnikowy" jest poprawna, ponieważ energia mechaniczna w silnikach cieplnych nie jest uzyskiwana bezpośrednio z procesów spalania tego paliwa w silniku. W rzeczywistości olej silnikowy nie jest paliwem, lecz środkiem smarnym, który zmniejsza tarcie pomiędzy ruchomymi częściami silnika, co z kolei wpływa na jego efektywność oraz żywotność. Silniki cieplne wykorzystują różne rodzaje paliw, takich jak olej napędowy, benzyna, czy gaz ziemny, do generowania energii poprzez proces spalania. Przykładem może być silnik diesla, który spala olej napędowy, generując energię mechaniczną do napędu pojazdu. Warto zauważyć, że stosowanie odpowiedniego oleju silnikowego jest kluczowe dla prawidłowego funkcjonowania silnika, a odpowiednie standardy, takie jak API (American Petroleum Institute) oraz ACEA (Association des Constructeurs Européens d'Automobiles), określają wymagania dotyczące jakości olejów silnikowych, co wpływa na wydajność i efektywność silników.

Pytanie 40

Mechanizm różnicowy w tylnym moście napędowym pojazdu umożliwia podział napędu na

A. przód i tył, w przypadku pojazdu z napędem na cztery koła
B. koła napędowe, przy jednoczesnej możliwości obracania się kół z różnymi prędkościami obrotowymi
C. koła napędowe, przy jednoczesnym braku możliwości obracania się kół z różnymi prędkościami obrotowymi
D. tył i przód z pominięciem przekładni głównej mostu napędowego
Mechanizm różnicowy w tylnym moście napędowym jest kluczowym elementem, który odpowiada za rozdział napędu na koła napędowe, pozwalając im na toczenie się z różnymi prędkościami obrotowymi. W praktyce oznacza to, że podczas skręcania samochodu wewnętrzne koło pokonuje krótszą odległość niż zewnętrzne, co powoduje różnice w prędkościach obrotowych. Mechanizm różnicowy umożliwia kompensację tych różnic, co jest niezwykle istotne dla stabilności i przyczepności pojazdu. Przykładem zastosowania tego rozwiązania są samochody osobowe, które podczas jazdy w zakręcie zyskują na manewrowości oraz minimalizują zużycie opon, a także poprawiają komfort jazdy. Zgodnie z praktykami inżynieryjnymi, mechanizmy różnicowe są projektowane w oparciu o normy dotyczące bezpieczeństwa i wydajności, co zapewnia ich niezawodność w różnych warunkach drogowych. Warto dodać, że nowoczesne technologie, takie jak elektroniczne mechanizmy różnicowe, jeszcze bardziej zwiększają możliwości dostosowania napędu do warunków panujących na drodze, poprawiając dynamikę jazdy i efektywność.