Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 25 maja 2025 08:02
  • Data zakończenia: 25 maja 2025 08:13

Egzamin niezdany

Wynik: 17/40 punktów (42,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Podwyższenie temperatury oleju w systemie hydraulicznym prowadzi do

A. zwiększenia efektywności układu
B. zmniejszenia objętości oleju
C. zmniejszenia lepkości oleju
D. zwiększenia lepkości oleju
Jak temperatura oleju w hydraulice rośnie, to jego lepkość spada. Fajnie, bo to zjawisko można zobaczyć nie tylko w olejach hydraulicznych, ale i w innych cieczach. Po prostu, im wyższa temperatura, tym cząsteczki oleju mają więcej energii i szybciej się poruszają. W praktyce, olej staje się bardziej płynny, co znaczy, że lepiej krąży w układzie hydraulicznym. Dzięki mniejszej lepkości łatwiej pokonywane są opory, co sprawia, że wszystko działa lepiej. W branży hydraulicznej dobrze jest pilnować temperatury oleju. Jak pracuje długo w wysokich temperaturach, to warto pomyśleć o wymianie lub użyciu innego oleju, który lepiej znosi upały. Te wszystkie standardy, jak ISO 4406 dotyczący czystości oleju, są mega ważne, by olej zachował swoje właściwości w trudniejszych warunkach.

Pytanie 2

W systemie mechatronicznym znajduje się 18 czujników cyfrowych, 4 przetworniki analogowe oraz 11 elementów wykonawczych działających w trybie dwustanowym. Jaką konfigurację modułowego sterownika PLC należy zastosować do zarządzania tym układem?

A. DI32/DO8 oraz AI2
B. DI16/DO8 oraz AI4
C. DI32/DO16 oraz AI4
D. DI16/DO16 oraz AI2
Wybór złej konfiguracji w systemie PLC może naprawdę narobić kłopotów. Na przykład, DI16/DO16 oraz AI2 to kiepski pomysł, bo mają za mało wejść. W twoim układzie potrzeba przynajmniej 18 wejść, więc DI16 będzie niewystarczające. A te 2 analogowe na AI2? No, raczej nie podepniesz wszystkich 4 przetworników, co może spowodować, że nie będziesz mógł monitorować ważnych parametrów. Możesz pomyśleć, że DI32/DO8 oraz AI2 to dobry plan, bo DI32 ma odpowiednią liczbę wejść, ale 8 wyjść cyfrowych to za mało, żeby obskoczyć 11 elementów wykonawczych. To może być frustrujące, bo układ może nie działać jak należy. Podobna sytuacja jest z DI16/DO8 oraz AI4 – znowu te 16 wejść to za mało na wszystkie czujniki. Generalnie, dobierając konfigurację sterowników PLC, dobrze jest mieć na uwadze nadmiarowość i elastyczność, bo wtedy system łatwiej dostosować do przyszłych potrzeb.

Pytanie 3

Który z podanych standardów przesyłania sygnałów cyfrowych pozwala na bezprzewodową transmisję danych?

A. IRDA
B. RS 485
C. RS 232
D. USB
Wybór pozostałych standardów transmisji sygnałów cyfrowych, takich jak RS 485, USB i RS 232, wskazuje na nieporozumienie związane z ich funkcjonalnością oraz zastosowaniem. RS 485 to standard szeregowy, który jest używany w komunikacji na większe odległości, często w aplikacjach przemysłowych. Jego główną zaletą jest zdolność do pracy w trudnych warunkach, lecz nie ma on możliwości przesyłania sygnałów bezprzewodowo, ponieważ wymaga fizycznego połączenia kablowego. USB (Universal Serial Bus) to standard, który służy do podłączania urządzeń i przesyłania danych, ale również wymaga przewodowego połączenia. Co prawda, istnieją technologie USB, które współpracują z bezprzewodowymi adaptatorami, jednak sam standard USB nie jest bezprzewodowy. RS 232 to kolejny przykład standardu szeregowego, znanego ze swojej prostoty i powszechności w starszych urządzeniach, jednak podobnie jak pozostałe wymienione standardy, nie obsługuje transmisji bezprzewodowej. Typowe błędy myślowe prowadzące do wyboru tych opcji mogą wynikać z mylenia pojęć związanych z komunikacją kablową i bezprzewodową, co podkreśla znaczenie zrozumienia różnic pomiędzy tymi technologiami. W kontekście nowoczesnych rozwiązań komunikacyjnych, znajomość standardów bezprzewodowych, takich jak IRDA, jest kluczowa dla efektywnej wymiany danych oraz integracji z nowymi technologiami.

Pytanie 4

Jakiego typu silnik prądu stałego powinno się użyć w systemie napędowym dla bardzo ciężkiej przepustnicy?

A. Bezszczotkowy
B. Bocznikowy
C. Obcowzbudny
D. Szeregowy
Silnik prądu stałego szeregowy jest najlepszym wyborem do obsługi bardzo ciężkiej przepustnicy ze względu na swoje właściwości charakterystyczne. Jego konstrukcja powoduje, że w momencie rozruchu generuje on znaczny moment obrotowy, co jest kluczowe przy napędzie elementów wymagających dużej siły. W silniku szeregowym uzwojenie wzbudzenia jest połączone szeregowo z uzwojeniem twornika, co sprawia, że przy niskich prędkościach obrotowych, gdy przepustnica jest obciążona, prąd w obwodzie wzbudzenia jest wysoki, co prowadzi do zwiększenia pola magnetycznego i efektywnego momentu obrotowego. Przykłady zastosowania silników szeregowych to napędy w systemach transportowych, dźwigach oraz w aplikacjach, gdzie wymagana jest znaczna moc przy niskich prędkościach. Zgodnie z normami branżowymi, wykorzystanie silników szeregowych w takich zastosowaniach jest powszechnie akceptowane i polecane z uwagi na efektywność energetyczną oraz niezawodność działania.

Pytanie 5

Które z poniższych sformułowań oznacza rozwinięcie skrótu CAM?

A. Komputerowa kontrola jakości
B. Komputerowe przygotowanie produkcji
C. Komputerowe wspomaganie projektowania
D. Komputerowe wspomaganie wytwarzania
Wybór niepoprawnych określeń wynikł z nieporozumienia dotyczącego terminologii związanej z projektowaniem i produkcją. 'Komputerowe wspomaganie projektowania' (CAD) odnosi się do oprogramowania używanego do tworzenia i modyfikacji modeli oraz rysunków inżynieryjnych. Chociaż CAD odgrywa kluczową rolę w procesie projektowania, nie jest to skrót związany z wytwarzaniem. 'Komputerowa kontrola jakości' odnosi się do procesów związanych z zapewnieniem jakości produktów, co jest bardzo ważnym aspektem w każdym zakładzie produkcyjnym, ale nie jest bezpośrednio związane ze wspomaganiem samego procesu wytwarzania. Z kolei 'komputerowe przygotowanie produkcji' to termin, który może odnosić się do różnych działań związanych z planowaniem i organizowaniem produkcji, ale nie skupia się bezpośrednio na aspekcie produkcyjnym, który jest kluczowy w CAM. Typowym błędem myślowym jest pomieszanie funkcji projektowania oraz wytwarzania, co prowadzi do mylnego utożsamiania tych dwóch obszarów. Ważne jest, aby zrozumieć, że CAM koncentruje się na automatyzacji procesów produkcyjnych, a nie na fazie projektowania czy kontroli jakości.

Pytanie 6

Jakie urządzenie pomiarowe wykorzystuje się do określania podciśnienia?

A. Wakuometr
B. Dynamometr
C. Wariometr
D. Pirometr
Wariometr to przyrząd, który służy do pomiaru zmian ciśnienia atmosferycznego, a jego zastosowanie jest szczególnie widoczne w aeronautyce oraz meteorologii. Używany jest często w samolotach do określenia wysokości lotu i jest niezbędnym narzędziem dla pilotów, jednak nie ma zastosowania w pomiarze podciśnienia. Pirometr to urządzenie do pomiaru temperatury na podstawie promieniowania cieplnego, co czyni go całkowicie nieodpowiednim do miary ciśnienia jakiegokolwiek rodzaju. Z kolei dynamometr służy do pomiaru siły lub momentu obrotowego, co również nie ma związku z pomiarem podciśnienia. Te błędne odpowiedzi mogą wynikać z nieprecyzyjnego rozumienia funkcji i zastosowania różnych przyrządów pomiarowych. Kluczowe jest zrozumienie, że każdy przyrząd ma swoje specyficzne zastosowanie i pomylenie ich może prowadzić do nieprawidłowych wyników pomiarów oraz konsekwencji w praktyce inżynieryjnej. W kontekście branżowym, umiejętność rozróżniania pomiędzy różnymi typami przyrządów pomiarowych jest fundamentem dla każdej osoby zajmującej się inżynierią lub zarządzaniem procesami technologicznymi. Właściwe dobieranie narzędzi pomiarowych do specyficznych zadań jest kluczowe dla uzyskania wiarygodnych i dokładnych wyników.

Pytanie 7

Osoba, która doświadczyła porażenia prądem elektrycznym, nie oddycha, natomiast krążenie krwi jest prawidłowe. Jakie czynności należy wykonać w odpowiedniej kolejności podczas udzielania pierwszej pomocy?

A. ustawienie na boku, sztuczne oddychanie
B. udrożnienie dróg oddechowych, wykonanie sztucznego oddychania i masaż serca
C. sztuczne oddychanie oraz masaż serca
D. udrożnienie dróg oddechowych, wykonanie sztucznego oddychania
Odpowiedź "udrożnienie dróg oddechowych, sztuczne oddychanie" jest prawidłowa, ponieważ w sytuacji, gdy osoba porażona prądem elektrycznym nie oddycha, ale krążenie jest zachowane, priorytetem jest zapewnienie prawidłowego przepływu powietrza do płuc. Procedura ta jest zgodna z wytycznymi Europejskiej Rady Resuscytacji, które podkreślają znaczenie udrożnienia dróg oddechowych jako pierwszego kroku w każdym przypadku zatrzymania oddechu. Udrożnienie dróg oddechowych można osiągnąć poprzez odpowiednią pozycję ciała poszkodowanego (np. metoda odchylenia głowy do tyłu, unieś podbródek) oraz usunięcie ewentualnych przeszkód, takich jak ciała obce. Następnie, sztuczne oddychanie powinno być przeprowadzane w celu dostarczenia tlenu do płuc poszkodowanego, co jest kluczowe dla uniknięcia niedotlenienia mózgu. Wsparcie w tej sytuacji może być realizowane poprzez metody takie jak wentylacja ustami ust lub przy użyciu urządzeń wentylacyjnych, jeśli są dostępne. W przypadku dalszego braku samodzielnego oddechu, konieczne może być wprowadzenie resuscytacji krążeniowo-oddechowej, jednak najpierw trzeba zająć się zapewnieniem drożności dróg oddechowych i wentylacji, co zgodne jest z zasadami w pierwszej pomocy.

Pytanie 8

Aby zachować odpowiedni poziom ciśnienia w systemach hydraulicznych, wykorzystuje się zawory

A. dławiące
B. rozdzielające
C. redukujące
D. odcinające
Zawory redukcyjne odgrywają kluczową rolę w zarządzaniu ciśnieniem w układach hydraulicznych. Ich głównym zadaniem jest obniżenie ciśnienia roboczego na określonym poziomie, co jest istotne w wielu zastosowaniach przemysłowych. Zawory te działają poprzez automatyczne regulowanie przepływu cieczy, co pozwala na utrzymanie stabilnych warunków pracy w układzie. Na przykład, w systemach hydraulicznych zasilających maszyny produkcyjne, zawory redukcyjne zapewniają, że ciśnienie nie przekracza wartości określonej przez producenta, co zapobiega uszkodzeniom i zwiększa bezpieczeństwo operacji. Dobre praktyki w branży hydraulicznej zalecają regularne sprawdzanie i konserwację zaworów redukcyjnych, aby zapewnić ich prawidłowe funkcjonowanie. Dodatkowo, zgodność z normami takimi jak ISO 4414 dotycząca bezpieczeństwa w hydraulice, podkreśla wagę stosowania właściwych zaworów w celu minimalizacji ryzyka awarii systemów hydraulicznych.

Pytanie 9

Kiedy w układzie hydraulicznym, w którym nie ma elementów dławiących, w normalnych warunkach roboczych występuje wolna reakcja oraz znaczne opory przepływu, należy zastąpić olej olejem

A. tworzącym emulsję z wodą
B. o wyższej gęstości
C. odpornym na proces starzenia
D. o niższej lepkości
Odpowiedź o mniejszej lepkości jest prawidłowa, ponieważ lepkość oleju znacząco wpływa na opory przepływu w układzie hydraulicznym. Olej o niższej lepkości zmniejsza opory, co pozwala na łatwiejszy przepływ cieczy przez system hydrauliczny. W praktyce, zmiana na olej o mniejszej lepkości może poprawić reakcję układu hydraulicznego, zwiększając jego wydajność i responsywność. W standardach branżowych, takich jak ISO 6743, zaleca się dobór oleju hydraulicznego na podstawie jego lepkości, aby zapewnić optymalne warunki pracy i minimalizować zużycie energii. W przypadku systemów hydraulicznych, w których występują duże opory przepływu, zastosowanie oleju o mniejszej lepkości może przynieść korzyści w postaci zmniejszenia temperatury pracy, co wpływa na dłuższą żywotność komponentów oraz redukcję kosztów eksploatacyjnych. Warto również zauważyć, że należy zawsze dostosowywać lepkość oleju do warunków pracy i specyfikacji producenta, aby uniknąć problemów z działaniem układu hydraulicznego.

Pytanie 10

Wskaź prawidłową sekwencję montażu składników w systemie przygotowania sprężonego powietrza?

A. Smarownica, filtr powietrza, reduktor
B. Reduktor, filtr powietrza, smarownica
C. Filtr powietrza, reduktor, smarownica
D. Reduktor, smarownica, filtr powietrza
Filtr powietrza, reduktor, smarownica to prawidłowa kolejność montażu elementów składowych w zespole przygotowania sprężonego powietrza. Rozpoczynamy od filtra powietrza, który jest kluczowy w procesie oczyszczania powietrza z zanieczyszczeń, takich jak pyły, woda i oleje, aby zapewnić wysoką jakość sprężonego powietrza. Następnie, po filtracji, powietrze trafia do reduktora ciśnienia, który obniża ciśnienie powietrza do pożądanego poziomu, co jest niezbędne do dalszej obróbki i właściwego działania urządzeń pneumatycznych. Ostatnim elementem jest smarownica, która dostarcza odpowiednią ilość oleju do sprężonego powietrza, co zmniejsza tarcie w narzędziach pneumatycznych i wydłuża ich żywotność. Takie podejście jest zgodne z najlepszymi praktykami w branży pneumatycznej, co pozwala na osiągnięcie optymalnej efektywności i bezpieczeństwa w operacjach z wykorzystaniem sprężonego powietrza.

Pytanie 11

Jakiego rodzaju środek ochrony indywidualnej powinien w szczególności wykorzystać pracownik podczas wymiany tranzystora CMOS?

A. Fartuch ochronny z bawełny
B. Opaskę uziemiającą
C. Buty z izolującą podeszwą
D. Ochronne okulary
Wybór bawełnianego fartucha ochronnego, okularów ochronnych lub butów z izolowaną podeszwą do pracy przy wymianie tranzystora CMOS jest niewłaściwy, gdyż te elementy ochrony nie są wystarczające, aby zminimalizować ryzyko związane z uszkodzeniem komponentów przez ładunki elektrostatyczne. Fartuch ochronny, mimo że może chronić przed zanieczyszczeniami, nie zapewnia ochrony przed ESD. Użycie okularów ochronnych jest również nieadekwatne, ponieważ ich główną funkcją jest ochrona oczu przed zanieczyszczeniami mechanicznymi czy chemicznymi, ale nie ma zastosowania w kontekście ochrony przed uszkodzeniami wywołanymi przez elektrostatykę. Co więcej, buty z izolowaną podeszwą mogą prowadzić do zwiększenia ryzyka gromadzenia się ładunków elektrostatycznych, co jest sprzeczne z zasadami ochrony ESD. Często pracownicy nie doceniają znaczenia uziemienia, uważając, że inne formy ochrony są wystarczające, co jest klasycznym błędem myślowym. W przypadku pracy z wrażliwymi komponentami, jak tranzystory CMOS, najważniejsze jest minimalizowanie ryzyka ESD, a do tego niezbędne jest stosowanie opasek uziemiających, które zapewniają bezpieczne odprowadzenie ładunków do ziemi. Bez odpowiedniej ochrony ESD, nawet niewielkie ładunki mogą spowodować nieodwracalne uszkodzenia komponentów, co prowadzi do zwiększonych kosztów napraw oraz strat w produkcji.

Pytanie 12

Jaką rezystancję ma świecąca żarówka, której napięcie nominalne wynosi 230 V, a moc to 100 W?

A. 23 k?
B. 460 ?
C. 2,3 ?
D. 529 ?
Wynik 2,3 Ω to zdecydowanie za mało dla żarówki przy zadanym napięciu i mocy. To sugeruje, że żarówka by przewodziła ogromne prądy, co byłoby niebezpieczne. A 23 kΩ? No, to już za dużo, bo sugeruje, że żarówka w ogóle nie przewodzi prądu, co mija się z rzeczywistością. 460 Ω mogłoby być efektem złych obliczeń dotyczących mocy lub napięcia, ale to też nie pasuje do praktycznych zastosowań. W obliczeniach rezystancji trzeba brać pod uwagę zarówno napięcie, jak i moc, inaczej możemy dojść do błędnych konkluzji. Najczęstsze pomyłki to na przykład mylenie jednostek czy błędne przekształcanie wzorów. W projektowaniu obwodów niezwykle istotne jest, żeby dobrze rozumieć rezystancję komponentów, bo ma to wpływ na ich dobór, a przez to na wydajność i bezpieczeństwo całego systemu elektrycznego.

Pytanie 13

Wymiana tranzystora wyjściowego w CMOS sterowniku PLC powinna być przeprowadzana z użyciem

A. okularów ochronnych
B. opaski uziemiającej
C. bawełnianego fartucha ochronnego
D. butów z izolowaną podeszwą
Stosowanie okularów ochronnych, butów z izolowaną podeszwą lub bawełnianego fartucha ochronnego w kontekście wymiany tranzystora wyjściowego CMOS sterownika PLC może wydawać się na pierwszy rzut oka odpowiednie, jednak nie adresuje kluczowego zagadnienia ochrony przed elektrostatycznymi wyładowaniami. Okulary ochronne, choć istotne w kontekście ochrony wzroku przed przypadkowymi zanieczyszczeniami czy odpryskami, nie mają wpływu na zapobieganie uszkodzeniom komponentów elektronicznych spowodowanym przez ESD. Z kolei buty z izolowaną podeszwą, mimo że mogą chronić przed porażeniem prądem w niektórych sytuacjach, nie eliminują ryzyka gromadzenia się ładunków elektrostatycznych, co jest kluczowym zagadnieniem podczas pracy z układami CMOS. Bawełniany fartuch ochronny również nie ma zastosowania w kontekście ochrony przed ESD, a jego główną rolą jest ochrona przed zanieczyszczeniami i rozpryskami materiałów chemicznych. W praktyce, błędne podejście do ochrony przed ESD prowadzi do niepotrzebnych uszkodzeń sprzętu, zwiększając koszty napraw i przestojów. Kluczowe jest zrozumienie, że wrażliwość układów CMOS na ESD wymaga stosowania wyspecjalizowanych metod ochrony, a nie standardowych środków ochrony osobistej, które nie odpowiadają na specyfikę zagrożeń związanych z elektrostatycznymi wyładowaniami.

Pytanie 14

Które z wymienionych materiałów sztucznych jest najbardziej odpowiednie do wytwarzania kół zębatych?

A. Silikon
B. Poliamid
C. Poliuretan
D. Lateks
Wybór nieodpowiednich tworzyw sztucznych do produkcji kół zębatych może prowadzić do znacznych problemów w funkcjonowaniu całego systemu. Poliuretan, choć elastyczny i odporny na ścieranie, ma ograniczone właściwości mechaniczne, które mogą prowadzić do deformacji pod wpływem obciążeń, co jest nieakceptowalne w przypadku kół zębatych wymagających precyzyjnego dopasowania. Silikon, z kolei, jest materiałem charakteryzującym się doskonałą odpornością na wysokie temperatury i chemikalia, ale jego niska wytrzymałość na rozciąganie i kruchość czynią go niewłaściwym wyborem dla elementów narażonych na intensywne obciążenia mechaniczne. Lateks, mimo że jest elastyczny, nie zapewnia odpowiedniej twardości i odporności na ścieranie, co czyni go mało praktycznym w zastosowaniach wymagających dużej precyzji i trwałości. Wybierając materiał do produkcji kół zębatych, kluczowe jest zrozumienie, że odpowiednie właściwości mechaniczne, takie jak wytrzymałość, odporność na ścieranie oraz niskie tarcie, są niezbędne dla zapewnienia ich długowieczności i efektywności, co w przypadku wymienionych materiałów nie jest spełnione.

Pytanie 15

Jakie środki ochrony osobistej, oprócz kasku ochronnego, powinien założyć pracownik wykonujący konserwację wyłączonego z eksploatacji urządzenia mechatronicznego w hali produkcyjnej?

A. Odzież ochronna
B. Buty ochronne
C. Rękawice ochronne
D. Okulary ochronne
Podczas pracy w hali produkcyjnej, gdzie konserwacja urządzenia mechatronicznego jest przeprowadzana, wybór odpowiednich środków ochrony indywidualnej jest kluczowy dla zapewnienia bezpieczeństwa pracowników. Chociaż odzież ochronna, okulary ochronne i buty ochronne są istotnymi elementami ochrony, to ich rolę w kontekście konserwacji często się bagatelizuje. Odzież ochronna, mimo że chroni przed zabrudzeniami i drobnymi urazami, nie zapewnia takiego poziomu ochrony dłoni, jak rękawice ochronne. Często można spotkać nieprawidłowe przekonanie, że odzież wystarczająco chroni przed kontaktami z ostrymi elementami lub substancjami chemicznymi. Ponadto, okulary ochronne, które mają na celu zabezpieczenie oczu przed odpryskami, nie chronią innych części ciała, takich jak ręce, które są narażone na bezpośrednie uszkodzenia. Buty ochronne, choć są niezbędne dla ochrony stóp przed ciężkimi przedmiotami czy upadkami, nie zmieniają faktu, że to rękawice są najbardziej krytycznym elementem ochrony podczas wykonywania precyzyjnych operacji wymagających dużej zręczności i bliskiego kontaktu z urządzeniem. W rzeczywistości, brak odpowiednich rękawic może prowadzić do poważnych urazów, co podkreśla znaczenie ich użycia w każdym przypadku, gdzie ryzyko uszkodzenia dłoni jest obecne. Dlatego ważne jest, aby nie lekceważyć znaczenia rękawic ochronnych i zrozumieć, że są one nie tylko dodatkiem do stroju roboczego, ale kluczowym elementem systemu zabezpieczeń w środowisku przemysłowym.

Pytanie 16

Silniki, które mają największy moment rozruchowy to

A. asynchroniczne prądu przemiennego
B. synchroniczne prądu przemiennego
C. bocznikowe prądu stałego
D. szeregowe prądu stałego
Silniki elektryczne różnią się między sobą konstrukcją i zasadą działania, co ma bezpośredni wpływ na ich charakterystyki, w tym moment obrotowy. Synchroniczne silniki prądu przemiennego, mimo że mają swoje zastosowania w przemyśle, nie są optymalne tam, gdzie wymagana jest wysoka wartość momentu rozruchowego. Ich działanie opiera się na synchronizacji wirnika z polem magnetycznym, co może prowadzić do problemów z rozruchem przy dużych obciążeniach. Z drugiej strony, silniki bocznikowe prądu stałego również nie osiągają tak dużego momentu rozruchowego jak silniki szeregowe, gdyż ich uzwojenie wzbudzenia jest podłączone równolegle do wirnika, co skutkuje mniejszym prądem wzbudzenia w momentach startowych. Asynchroniczne silniki prądu przemiennego, znane ze swojej prostoty i niezawodności, także nie potrafią generować momentu rozruchowego porównywalnego z silnikami szeregowymi. Ich charakterystyka rozruchowa jest opóźniona z powodu braku prądu wzbudzenia w stanie spoczynku. Zrozumienie tych różnic jest kluczowe w inżynierii, ponieważ dobór odpowiedniego silnika do konkretnych zastosowań może zadecydować o efektywności i wydajności systemu. Z tego powodu, w obszarach, gdzie wysoka siła rozruchowa jest niezbędna, zaleca się stosowanie silników szeregowych prądu stałego jako najbardziej odpowiedniego rozwiązania.

Pytanie 17

Jakie urządzenie chroni silnik przed zwarciem i przeciążeniem?

A. termistor
B. wyłącznik silnikowy
C. odgromnik
D. przekaźnik termiczny
Wyłącznik silnikowy to urządzenie zabezpieczające, które chroni silniki przed zwarciem oraz przeciążeniem. Jego działanie opiera się na wykrywaniu prądów, które przekraczają ustalone wartości graniczne, co może prowadzić do uszkodzenia silnika. W przypadku wykrycia przeciążenia, wyłącznik silnikowy automatycznie odcina zasilanie, co zapobiega przegrzaniu i potencjalnym uszkodzeniom mechanicznym. W praktycznych zastosowaniach wyłączniki silnikowe stosowane są w różnych aplikacjach, od przemysłowych do budowlanych, zapewniając bezpieczeństwo operacyjne. Zgodnie z normami IEC 60947-4-1, instalacja wyłączników silnikowych powinna być zgodna z zasadami ochrony przeciwporażeniowej oraz zabezpieczeń przed skutkami zwarć. Oprócz zabezpieczenia przed przeciążeniem, wiele modeli wyłączników silnikowych wyposażonych jest w dodatkowe funkcje, takie jak serwisowe wskaźniki błędów, które informują użytkowników o awariach, co zwiększa bezpieczeństwo i efektywność operacyjną.

Pytanie 18

W trakcie pracy z urządzeniem hydraulicznym pracownik poślizgnął się na plamie oleju i doznał zwichnięcia kostki. Jakie czynności należy podjąć, aby udzielić pierwszej pomocy poszkodowanemu?

A. Nastawić staw i zabandażować kostkę
B. Zabandażować kostkę i przewieźć pacjenta do lekarza
C. Przyłożyć zimny okład na zwichnięty staw i unieruchomić go
D. Podać leki przeciwbólowe
Podawanie leków przeciwbólowych przy urazach, jak zwichnięcia, może na pierwszy rzut oka wydawać się sensowne, ale to nie jest najlepsza decyzja na początek. Leki mogą tylko zamaskować ból, co sprawi, że źle ocenimy stan kontuzji i ryzykujemy, że sytuacja się pogorszy. Pamiętaj też, że niektórzy mogą mieć alergie lub inne problemy ze stosowaniem konkretnych leków, a to dodatkowe ryzyko. A jeśli najpierw nie schłodzisz stawu, a dopiero potem go zabandażujesz, to może się okazać, że obrzęk się zatrzyma i leczenie będzie mało skuteczne. Jeśli użyjesz bandaża bez unieruchomienia stawu, to problem może się tylko pogłębić i dodatkowo uszkodzić otaczające tkanki. Próbować nastawiać staw samemu to nie jest dobry pomysł, bo tak można narobić jeszcze większych kłopotów. Tego typu działania mogą prowadzić do poważnych problemów zdrowotnych. Lepiej skupić się na odpowiedniej pierwszej pomocy, czyli schłodzeniu, unieruchomieniu i wezwaniu specjalisty, niż na nieprzemyślanym łykaniu leków czy chaotycznym nastawianiu stawów.

Pytanie 19

Z czego składa się pneumohydrauliczny wzmacniacz ciśnienia?

A. przemiennik pneumohydrauliczny oraz siłownik hydrauliczny
B. przemiennik pneumohydrauliczny oraz siłownik pneumatyczny
C. siłownik pneumatyczny połączony szeregowo z siłownikiem hydraulicznym
D. akumulator hydrauliczny połączony szeregowo z pneumatycznym siłownikiem
Wskazane odpowiedzi nieprawidłowo definiują pojęcie pneumohydraulicznego wzmacniacza ciśnienia, co może prowadzić do mylnych wniosków. Propozycje takie jak akumulator hydrauliczny połączony szeregowo z siłownikiem pneumatycznym czy przemiennik pneumohydrauliczny w zestawieniu z siłownikiem hydraulicznym nie uwzględniają fundamentalnych zasad działania tych urządzeń. Akumulator hydrauliczny, będący elementem systemów hydraulicznych, przechowuje energię w postaci ciśnienia cieczy, lecz samodzielnie nie przekształca energii pneumatycznej w hydrauliczną, co jest kluczowym zjawiskiem w pneumohydraulicznych wzmacniaczach ciśnienia. Z kolei przemiennik pneumohydrauliczny jest urządzeniem, które może być wykorzystywane w kontekście różnych systemów, lecz jego rola nie jest związana z połączeniem siłowników w wymieniony sposób. Typowym błędem w myśleniu jest mylenie ról poszczególnych elementów układu oraz niewłaściwe łączenie różnych technologii, co prowadzi do nieefektywności systemu. Aby zrozumieć, jak prawidłowo konstruować tego typu systemy, ważne jest przyswojenie zasad funkcjonowania zarówno hydrauliki, jak i pneumatyki, oraz zapoznanie się z odpowiednimi normami branżowymi, które regulują ich stosowanie.

Pytanie 20

Jaką rolę odgrywają cewki w systemach elektrycznych?

A. Tworzą przeszkodę optyczną
B. Zbierają energię w polu magnetycznym
C. Tworzą przeszkodę elektryczną
D. Zbierają energię w polu elektrycznym
Ok, więc pierwsza pomyłka to przekonanie, że cewki zbierają energię w polu elektrycznym. Ale to tak naprawdę kondensatory robią, bo magazynują ładunek elektryczny. Cewki działają głównie z prądem zmiennym i opierają się na indukcji elektromagnetycznej. Kolejna rzecz, to mylenie cewek z barierą elektryczną. Bariera elektryczna dotyczy izolacji, a cewki mają zupełnie inną funkcję, bardziej związaną z indukcją. A trzecia pomyłka to wspomnienie o barierze optycznej, co brzmi dziwnie, bo cewki nie mają nic wspólnego z optyką. Cewki są pasywnymi elementami, które wpływają na prąd i napięcie, ale nie zajmują się optyką czy barierami elektrycznymi. Te nieporozumienia biorą się często z braku zrozumienia indukcji elektromagnetycznej i różnic między elementami elektronicznymi, co prowadzi do błędnych wniosków.

Pytanie 21

Prąd jałowy transformatora wynosi około 10% prądu znamionowego. Aby precyzyjnie zmierzyć prąd jałowy transformatora o parametrach SN = 2300 VA, U1N = 230 V, U2N = 10 V, należy zastosować amperomierz prądu przemiennego o zakresie pomiarowym

A. 15,0 A
B. 3,6 A
C. 0,6 A
D. 1,2 A
Odpowiedź 1,2 A jest poprawna, ponieważ prąd jałowy transformatora związany jest z jego mocą znamionową. W przypadku transformatora o mocy S_N = 2300 VA, prąd znamionowy można obliczyć, korzystając ze wzoru: I_N = S_N / U_1N, co daje I_N = 2300 VA / 230 V = 10 A. Prąd jałowy wynosi około 10% wartości prądu znamionowego, co w tym przypadku daje I_0 = 0,1 * 10 A = 1 A. Aby dokładnie zmierzyć prąd jałowy, należy wziąć pod uwagę, że amperomierz powinien mieć zakres pomiarowy, który pozwoli na uchwycenie tej wartości z odpowiednim marginesem. Wybór amperomierza o zakresie 1,2 A jest trafny, ponieważ zapewnia wystarczającą precyzję pomiaru oraz minimalizuje ryzyko uszkodzenia urządzenia. W praktyce, pomiar prądu jałowego jest kluczowy w diagnostyce i utrzymaniu transformatorów, ponieważ nadmierny prąd jałowy może wskazywać na problemy z izolacją lub innymi komponentami urządzenia.

Pytanie 22

Jakie czynności są niezbędne do utrzymania sprawności urządzeń hydraulicznych?

A. Miesięczny demontaż oraz montaż pomp
B. Codzienna wymiana oleju
C. Regularna wymiana filtrów
D. Regularna wymiana rozdzielacza
Okresowa wymiana filtrów w urządzeniach hydraulicznych jest kluczowa dla zapewnienia ich sprawności oraz wydajności. Filtry hydrauliczne mają za zadanie zatrzymywać zanieczyszczenia, które mogą uszkodzić pompy, zawory oraz inne elementy układu hydraulicznego. Zanieczyszczenia te mogą pochodzić z różnych źródeł, takich jak procesy tarcia wewnętrznych komponentów, a także z zewnątrz, na przykład w wyniku nieprawidłowego napełniania systemu olejem. Regularna wymiana filtrów zgodnie z zaleceniami producentów oraz standardami branżowymi, takimi jak ISO 4406, pozwala na minimalizację ryzyka awarii oraz wydłużenie żywotności całego systemu hydraulicznego. Przykładem dobrych praktyk jest wprowadzenie harmonogramu konserwacji, który uwzględnia częstotliwość wymiany filtrów, co pozwala na monitorowanie stanu oleju oraz zanieczyszczeń w systemie. Taka praktyka jest szczególnie ważna w zastosowaniach przemysłowych, gdzie nieprzewidziane przestoje mogą generować znaczne straty finansowe.

Pytanie 23

Ile urządzeń sieciowych można maksymalnie podłączyć do sterownika, wykorzystując jeden dodatkowy moduł CSM 1277 o parametrach podanych w tabeli?

WłaściwościCSM 1277 switch
Typ interfejsuEthernet / Profinet
Ilość interfejsów4 x RJ45
Szybkość transmisji danych10/100 Mbit/s
Typ switchaniezarządzalny
Zasilanie24 V DC
Max. długość kabla bez wzmacniacza100 m
Straty mocy1,6 W
Stopień ochronyIP 20

A. 3 urządzenia.
B. 1 urządzenie.
C. 4 urządzenia.
D. 2 urządzenia.
Poprawna odpowiedź wskazuje, że maksymalnie można podłączyć 3 urządzenia sieciowe do sterownika za pomocą dodatkowego modułu CSM 1277. Moduł ten wyposażony jest w 4 interfejsy RJ45, z których jeden jest przeznaczony do połączenia z sterownikiem. To oznacza, że pozostają 3 wolne interfejsy, które mogą być wykorzystane do podłączenia dodatkowych urządzeń. W praktyce, takie podejście umożliwia rozbudowę systemu w sieciach przemysłowych, gdzie często zachodzi potrzeba podłączenia różnych urządzeń, jak czujniki, kamery czy komputerowe systemy kontroli. Wiedza na temat liczby dostępnych interfejsów jest kluczowa w projektowaniu architektury sieci, co pozwala na optymalne wykorzystanie zasobów i zwiększenie efektywności działania systemu. W kontekście branżowym, takie rozwiązania muszą być zgodne z normami, jak na przykład IEC 61158, które regulują komunikację w systemach automatyki. Dlatego też, prawidłowe zrozumienie parametrów technicznych urządzeń jest niezbędne do ich efektywnego wdrażania.

Pytanie 24

Z informacji o parametrach wynika, że cewka elektrozaworu jest przeznaczona do pracy z napięciem przemiennym o wartości 230 V. Jaką wartość ona reprezentuje?

A. maksymalna napięcia podzielona przez √3
B. maksymalna napięcia podzielona przez √2
C. średnia napięcia wyznaczona dla okresu
D. średnia napięcia wyznaczona dla półokresu
Wartości napięcia przemiennego mogą być mylone z różnymi parametrami, co prowadzi do nieprawidłowych konkluzji. Pierwszą z takich koncepcji jest pomylenie średniej wartości napięcia wyznaczonej dla półokresu z wartością skuteczną. Średnia wartość napięcia dla półokresu sinusoidalnego nie odpowiada wartością, która jest używana w praktycznych zastosowaniach elektrycznych, ponieważ nie może odzwierciedlić energii, jaką dostarcza prąd. Dodatkowo, średnia wartość napięcia dla okresu nie jest stosowana w kontekście napięcia przemiennego, ponieważ dla sinusoidy obie wartości powracają do zera, co nie jest użyteczne w inżynierii elektrycznej. Kolejnymi błędami są próby odniesienia maksymalnej wartości napięcia do √3, co w ogóle nie znajduje zastosowania w kontekście typowych obwodów zasilających w zakresie napięcia przemiennego. Zastosowanie √3 odnosi się do napięcia w systemach trójfazowych, a nie jednofazowych, co prowadzi do błędnych obliczeń i niesprawności urządzeń. W praktyce, nieznajomość różnicy między wartościami napięcia skutecznego, maksymalnego i średniego prowadzi do nieprawidłowego doboru urządzeń oraz zagrożeń w instalacjach elektrycznych. Aby uniknąć takich pomyłek, kluczowe jest zrozumienie podstawowych zasad dotyczących parametrów napięcia oraz ich zastosowania w projektowaniu i użytkowaniu systemów elektrycznych.

Pytanie 25

Taśmociąg, który jest napędzany trójfazowym silnikiem indukcyjnym, porusza się w kierunku przeciwnym do oczekiwanego. Co może być tego przyczyną?

A. zwarciem jednej fazy z obudową.
B. przerwą w jednej z faz.
C. błędną sekwencją faz.
D. zwarciem dwóch faz.
Kolejność faz w trójfazowym silniku indukcyjnym to naprawdę istotna sprawa, bo ma duży wpływ na to, w którą stronę silnik się obraca. Te silniki działają dzięki wirującemu polu magnetycznemu, które powstaje właśnie przez różnice między fazami w przewodach. Kiedy zamieniasz miejscami fazy A, B i C, pole zmienia kierunek, no i silnik obraca się w drugą stronę. To ma znaczenie w wielu miejscach, jak na przykład przy taśmociągach w fabrykach, gdzie wszystko musi działać jak należy, żeby nie tracić czasu. Jak już coś nie gra z podłączeniem, to można szybko sprawdzić sytuację z miernikiem fazowym, który pokaże, jak to wygląda. Dlatego warto przestrzegać zasad przy podłączaniu silników, bo to ważne dla ich działania i bezpieczeństwa. Bez tego, mogą się pojawić poważne problemy.

Pytanie 26

W pomiarze deformacji konstrukcji nośnych najczęściej wykorzystuje się czujniki, które działają na zasadzie

A. zmiany pojemności elektrycznej
B. zmiany rezystancji
C. efektu piezoelektrycznego
D. zmiany indukcyjności własnej
W przypadku pomiarów odkształceń, metody oparte na zmianie indukcyjności własnej, pojemności elektrycznej oraz efekcie piezoelektrycznym nie są tak powszechnie stosowane jak tensometry. Zmiana indukcyjności własnej może być wykorzystywana w niektórych aplikacjach, jednak nie jest ona standardowym rozwiązaniem w kontekście monitorowania odkształceń konstrukcji nośnych. Wzory analityczne związane z tą metodą często wymagają skomplikowanych obliczeń oraz precyzyjnego dostrojenia, co czyni je mniej praktycznymi w realnych zastosowaniach budowlanych. Zmiana pojemności elektrycznej może być używana w czujnikach pojemnościowych, jednak ich zastosowanie w kontekście monitorowania odkształceń wymaganych w inżynierii budowlanej nie jest tak efektywne. Efekt piezoelektryczny, zaś, mimo że ma swoje miejsce w technologii czujników, głównie w aplikacjach takich jak detekcja drgań, nie jest typowym sposobem na pomiar odkształceń konstrukcyjnych. Te metody mogą prowadzić do błędów pomiarowych, zwłaszcza w dynamicznych warunkach pracy konstrukcji, gdzie tensometry zapewniają znacznie większą dokładność i niezawodność. Zastosowanie bardziej skomplikowanych technologii powinno być zarezerwowane dla specyficznych przypadków, gdzie prostsze metody, takie jak zmiana rezystancji, nie mogą być zastosowane.

Pytanie 27

Jakiego klucza należy użyć, aby odkręcić śrubę z walcowym łbem i sześciokątnym gniazdem?

A. Nasadowego
B. Imbusowego
C. Płaskiego
D. Dynamometrycznego
Odpowiedź 'imbusowy' jest poprawna, ponieważ śruby z łbem walcowym i gniazdem sześciokątnym są zaprojektowane do współpracy z kluczami imbusowymi. Klucz imbusowy, znany również jako klucz sześciokątny, ma kształt, który idealnie pasuje do gniazda w takiej śrubie. Umożliwia to łatwe i efektywne wykręcanie i wkręcanie śrub, a także zapewnia mocny chwyt, co jest szczególnie ważne w zastosowaniach wymagających dużego momentu obrotowego. Przykładowo, wiele rowerów, mebli flat-pack i urządzeń mechanicznych wykorzystuje tego rodzaju śruby, co sprawia, że klucz imbusowy jest niezbędnym narzędziem w narzędziowni. Standardy DIN 911 określają wymiary kluczy imbusowych, co gwarantuje ich uniwersalność i dostępność w różnych rozmiarach, co jest kluczowe w pracy z różnymi typami śrub. W związku z tym, używając klucza imbusowego, możemy zapewnić właściwe dopasowanie oraz uniknąć uszkodzenia śruby lub narzędzia.

Pytanie 28

Tensomer foliowy powinien być zamocowany do podłoża

A. klejem
B. śrubą
C. nitem
D. zszywką
Mocowanie tensomera foliowego za pomocą nitów, zszywek czy śrub to raczej kiepski pomysł. Nity i zszywki są popularne, ale nie dają tej elastyczności, jakiej potrzebuje folia. Jak zmieniają się temperatury i wilgotność, to folia się kurczy albo rozciąga, a sztywne mocowania mogą spowodować pęknięcia. A śruby to już w ogóle mogą przebić folię, co osłabia jej właściwości. W branży zaleca się, żeby mocowanie folii było wykonane w taki sposób, by zminimalizować ryzyko uszkodzeń. Lepiej iść w sprawdzone metody, jak klejenie, bo to nie tylko zwiększa efektywność, ale i przedłuża żywotność materiałów, a to jest istotne, jeśli chodzi o koszty użytkowania. Więc lepiej się trzymać tych lepszych rozwiązań, a nie wymyślać coś na szybko.

Pytanie 29

Demontaż przekładni pasowej zaczyna się od

A. zdemontowania koła pasowego o mniejszej średnicy
B. zdemontowania koła pasowego o większej średnicy
C. poluzowania naciągu pasów
D. demontażu wałów
Poluzowanie naciągu pasów jest kluczowym krokiem w demontażu przekładni pasowych, ponieważ pozwala na swobodne odłączenie elementów układu. W praktyce, zanim przystąpimy do demontażu, ważne jest, aby zminimalizować napięcie w pasach, co zapewnia łatwe usunięcie kół pasowych, zarówno większych, jak i mniejszych. Podczas pracy z przekładniami pasowymi, zgodnie z normami branżowymi, należy zawsze rozpoczynać demontaż od poluzowania naciągu, aby uniknąć uszkodzeń komponentów oraz zapewnić bezpieczeństwo. Przykładowo, w wielu zakładach przemysłowych, przed demontażem przekładni, technicy wykonują inspekcję stanu pasów oraz kół pasowych, aby upewnić się, że nie ma widocznych uszkodzeń. Taki proces pozwala na uniknięcie niepotrzebnych kosztów związanych z wymianą uszkodzonych elementów, a także przyspiesza proces konserwacji maszyn. Dlatego, poluzowanie naciągu pasów jest nie tylko procedurą techniczną, ale także praktycznym podejściem do zarządzania zasobami w zakładzie.

Pytanie 30

Zwiększenie wartości częstotliwości wyjściowej falownika zasilającego silnik indukcyjny, przy niezmiennym obciążeniu silnika, prowadzi do

A. zmniejszenia prędkości obrotowej
B. wzrostu rezystancji uzwojeń
C. zwiększenia prędkości obrotowej
D. spadku rezystancji uzwojeń
Wzrost wartości częstotliwości wyjściowej falownika zasilającego silnik indukcyjny prowadzi do zwiększenia prędkości obrotowej silnika. Wynika to z faktu, że prędkość obrotowa silnika indukcyjnego jest bezpośrednio proporcjonalna do częstotliwości zasilania, co jest opisane równaniem: n = (120 * f) / p, gdzie n to prędkość obrotowa w obrotach na minutę (RPM), f to częstotliwość w hercach (Hz), a p to liczba par biegunów silnika. W praktyce oznacza to, że zmiana częstotliwości zasilania pozwala na precyzyjne sterowanie prędkością obrotową silnika, co jest kluczowe w wielu aplikacjach przemysłowych, takich jak napędy wentylatorów, pomp czy przenośników taśmowych. Wzrost prędkości obrotowej może również skutkować zwiększeniem wydajności procesu produkcyjnego oraz optymalizacją zużycia energii, ponieważ falowniki pozwalają na dostosowanie parametrów pracy silnika w zależności od aktualnych potrzeb. Współczesne standardy w automatyce przemysłowej promują wykorzystanie falowników jako najbardziej efektywnego sposobu zarządzania napędami elektrycznymi, co przekłada się na większą elastyczność i oszczędności energetyczne.

Pytanie 31

Który element powinien zostać wymieniony w podnośniku hydraulicznym, jeśli tłoczysko siłownika unosi się, a następnie samoistnie opada?

A. Zawór bezpieczeństwa
B. Tłokowy pierścień uszczelniający
C. Sprężynę zaworu zwrotnego
D. Filtr oleju
Wymiana innych komponentów podnośnika hydraulicznego, takich jak filtr oleju, sprężyna zaworu zwrotnego czy zawór bezpieczeństwa, nie rozwiązuje problemu opadania tłoczyska. Filtr oleju ma na celu jedynie oczyszczanie oleju hydraulicznego z zanieczyszczeń, co jest istotne dla długotrwałego funkcjonowania systemu, ale nie wpływa bezpośrednio na utrzymywanie ciśnienia w siłowniku. Z kolei sprężyna zaworu zwrotnego ma za zadanie zapewnić odpowiednie ciśnienie w systemie oraz regulować przepływ oleju, jednak jej uszkodzenie nie powoduje opadania tłoka, lecz może prowadzić do problemów z jego podnoszeniem. Zawór bezpieczeństwa, który zapobiega nadmiernemu ciśnieniu w układzie, również nie ma wpływu na obniżanie się tłoka po jego podniesieniu. W rzeczywistości, niepoprawne zrozumienie funkcji tych elementów może prowadzić do niepotrzebnych kosztów w wymianie podzespołów i zaburzeń w pracy maszyny. Kluczowe jest zrozumienie, że problem opadania tłoka wynika z nieszczelności w układzie hydrauliki, a nie z niewłaściwego działania innych komponentów. Dlatego zamiast wymieniać części, które nie są przyczyną problemu, należy skupić się na diagnostyce i wymianie kluczowego elementu, jakim jest tłokowy pierścień uszczelniający, aby przywrócić prawidłową funkcjonalność podnośnika.

Pytanie 32

W instalacjach niskonapięciowych (systemach TN) jako elementy zabezpieczające mogą być wykorzystywane

A. wyłączniki montażowe
B. wyłączniki różnicowoprądowe
C. izolatory długiej osi
D. dławiki blokujące
Wybór innych urządzeń ochronnych, takich jak wyłączniki natynkowe, dławiki zaporowe czy izolatory długopniowe, nie jest odpowiedni w kontekście ochrony przed porażeniem prądem w układach niskiego napięcia. Wyłączniki natynkowe to elementy, które głównie służą do włączania i wyłączania obwodów, ale nie oferują ochrony przed upływem prądu, co czyni je nieodpowiednimi do ochrony ludzi. Dławiki zaporowe z kolei są stosowane w celu ograniczania zakłóceń elektromagnetycznych, a ich funkcja nie ma nic wspólnego z bezpieczeństwem użytkowników w przypadku awarii instalacji elektrycznej. Izolatory długopniowe są istotnymi elementami w systemach przesyłowych, jednak ich rola polega na zapewnieniu izolacji elektrycznej w sieciach wysokiego napięcia, a nie na ochronie przed prądem różnicowym w instalacjach niskonapięciowych. W praktyce, wybór niewłaściwych urządzeń ochronnych może prowadzić do poważnych zagrożeń dla zdrowia i życia użytkowników. Zastosowanie wyłączników różnicowoprądowych jest kluczowe dla zapewnienia bezpieczeństwa, a ignorowanie tej zasady może skutkować nie tylko zagrożeniem dla osób korzystających z energii elektrycznej, ale również naruszeniem obowiązujących norm i przepisów. Właściwe podejście do ochrony przed porażeniem prądem w instalacjach elektrycznych powinno opierać się na znajomości zasad działania i zastosowań odpowiednich urządzeń ochronnych, zgodnych z aktualnymi standardami branżowymi.

Pytanie 33

Osoba pracująca przy monitorze komputerowym ma prawo do

A. skrócenia o 5 minut czasu pracy za każdą godzinę pracy
B. 5-minutowej przerwy po każdej godzinie pracy, wliczanej do czasu pracy
C. 10-minutowej przerwy po każdej godzinie pracy, wliczanej do czasu pracy
D. zmniejszenia o 10 minut czasu pracy za każdą godzinę pracy
Dobra robota! Wskazanie, że powinna być 5-minutowa przerwa po każdej godzinie pracy, to zgodne z tym, co mówią przepisy. Takie przerwy są ważne, bo pomagają zadbać o zdrowie, zwłaszcza kiedy się spędza tyle czasu przed komputerem. Regularne oderwanie wzroku od ekranu to dobry pomysł, bo to może zmniejszyć zmęczenie oczu i poprawić krążenie. Z mojego doświadczenia takie przerwy naprawdę pomagają w pracy, bo pozwalają się zrelaksować i lepiej się skupić. Wiele firm zauważa korzyści płynące z promowania zdrowych nawyków, więc organizują szkolenia na temat ergonomii i przypominają pracownikom o przerwach. Warto to mieć na uwadze, bo to może się przełożyć na lepsze samopoczucie i satysfakcję z pracy.

Pytanie 34

Element oznaczony symbolem BC 107 to tranzystor?

A. krzemowy w.cz.
B. germanowy impulsowy
C. krzemowy m.cz.
D. germanowy mocy
Odpowiedzi takie jak 'germanowy impulsowy', 'krzemowy w.cz.' oraz 'germanowy mocy' są błędne, ponieważ mylą podstawowe właściwości tranzystora BC 107 oraz jego zastosowanie. Tranzystory germanowe, używane w przeszłości, mają swoje ograniczenia, takie jak wyższy poziom szumów i mniejsze napięcie przebicia w porównaniu do tranzystorów krzemowych. Germanowe tranzystory impulsowe były popularne w układach o wysokiej częstotliwości, ale nie są odpowiednie do niskonapięciowych aplikacji. Tranzystory krzemowe w.cz. są przeznaczone do pracy w obwodach wysokoczęstotliwościowych i mają inne parametry niż te, które charakteryzują BC 107. Natomiast germanowe tranzystory mocy, choć mogą obsługiwać wyższe prądy, również nie pasują do charakterystyki BC 107. Typowe błędy myślowe to pomylenie właściwości materiałów półprzewodnikowych oraz niewłaściwe przypisanie zastosowań do tranzystorów. Użytkownicy powinni być świadomi, że wybór tranzystora powinien być oparty na specyfikacji technicznej oraz parametrach aplikacji, a nie na ogólnych założeniach dotyczących materiałów półprzewodnikowych.

Pytanie 35

Przez jaki element manipulatora realizowane są różne operacje manipulacyjne?

A. Sondy
B. Silnika
C. Chwytaka
D. Regulatora
Sonda, silnik i regulator to elementy, które pełnią różne funkcje w systemach automatyzacji, ale nie są bezpośrednio odpowiedzialne za operacje manipulacyjne. Sonda, na przykład, jest używana do pomiaru i detekcji, co oznacza, że zbiera dane o otoczeniu lub obiektach, ale nie wykonuje operacji manipulacyjnych. W kontekście automatyzacji, sondy mogą być stosowane do lokalizacji obiektów lub monitorowania warunków, ale ich rolą nie jest chwytanie czy przenoszenie. Silnik z kolei napędza ruch manipulatora, ale to chwytak jest tym elementem, który bezpośrednio wchodzi w interakcję z obiektami. Regulator natomiast zarządza pracą silnika, kontrolując jego parametry pracy, co może wpływać na precyzję ruchu, lecz nie jest on odpowiedzialny za manipulację samych obiektów. Typowe błędy myślowe, które prowadzą do mylnej percepcji tych elementów, wynikają z niepełnego zrozumienia ich roli w systemie automatyzacji. Użytkownicy często mylą funkcje kontrolne z operacjami manipulacyjnymi, co prowadzi do nieprawidłowych wniosków podczas oceny działania systemów. Właściwe zrozumienie tych różnic jest kluczowe dla efektywnego projektowania i zastosowania technologii automatyzacji.

Pytanie 36

Który z podanych materiałów znajduje zastosowanie w konstrukcjach spawanych?

A. Stal wysokowęglowa
B. Żeliwo białe
C. Stal niskowęglowa
D. Żeliwo szare
Stal niskowęglowa to jeden z najpopularniejszych materiałów, jeśli chodzi o konstrukcje spawane. Ma świetne właściwości mechaniczne i jest łatwa do spawania. Niska zawartość węgla sprawia, że jest elastyczna i nie pęka tak łatwo podczas spawania. Dzięki tym zaletom, stal niskowęglowa znajduje różne zastosowania - w budownictwie, przemyśle stoczniowym czy motoryzacyjnym. Na przykład, używa się jej do produkcji belek, rur czy ram, gdzie potrzebna jest solidność i wytrzymałość na obciążenia. Zresztą, normy takie jak EN 10025 dokładnie określają wymagania dla stali konstrukcyjnych, co tylko potwierdza jej znaczenie w przemyśle. Z mojego doświadczenia, stal niskowęglowa jest lepszym wyborem niż stal wysokowęglowa, bo ma lepsze właściwości spawalnicze i mniejsze ryzyko wystąpienia naprężeń wewnętrznych, co jest mega istotne w konstrukcjach spawanych.

Pytanie 37

Zbyt mała lepkość oleju hydraulicznego może być wynikiem zbyt

A. niskiej ściśliwości oleju
B. niskiej temperatury oleju
C. wysokiego ciśnienia oleju
D. wysokiej temperatury oleju
Wysokie ciśnienie oleju hydraulicznego nie wpływa na jego lepkość w sposób, który prowadziłby do jej znacznego zmniejszenia. Ciśnienie w układzie hydraulicznym ma na celu przede wszystkim zapewnienie skutecznego przesyłu energii, a nie determinowanie właściwości reologicznych oleju. W kontekście układów hydraulicznych, zbyt wysokie ciśnienie może prowadzić do uszkodzeń elementów konstrukcyjnych, ale nie ma bezpośredniego związku z lepkością oleju jako taką. Niska ściśliwość oleju również nie jest czynnikiem wpływającym na jego lepkość. W rzeczywistości, ściśliwość odnosi się do zmiany objętości cieczy pod wpływem ciśnienia, co w większości przypadków nie ma istotnego wpływu na lepkość w normalnych warunkach pracy. Z kolei niska temperatura oleju może prowadzić do wzrostu lepkości, a nie jej spadku. Warto pamiętać, że lepkość oleju hydraulicznego jest zazwyczaj zmniejszana przez podwyższoną temperaturę, co jest zgodne z zasadami termodynamiki oraz reologii płynów. Dlatego identyfikowanie temperatury jako kluczowego czynnika w regulacji lepkości oleju hydraulicznego jest kluczowe dla zrozumienia działania układów hydraulicznych i ich prawidłowego funkcjonowania.

Pytanie 38

Olej hydrauliczny klasy HL to olej

A. mineralny posiadający właściwości antykorozyjne
B. o polepszonych parametrach lepkości i temperatury
C. mineralny bez dodatków uszlachetniających
D. syntetyczny
Wybór innej opcji, która nie pasuje do rzeczywistych właściwości oleju hydraulicznego HL, może prowadzić do nieporozumień. Oleje z polepszonymi właściwościami, mimo że są przydatne, nie są HL, bo HL skupia się na ochronie przed korozją. Warto zauważyć, że oleje mineralne bez dodatków ochronnych to kiepski wybór w wielu przypadkach, gdzie ważna jest odporność na rdza. Oleje syntetyczne, chociaż mają swoje zalety, jak lepsza stabilność, nie zastąpią olejów mineralnych HL. Takie mylne wnioski mogą prowadzić do sytuacji, gdzie użycie niewłaściwego oleju skutkuje szybszym zużyciem sprzętu i awariami, więc ważne, żeby wybierać oleje zgodne z zaleceniami producentów. Te błędy wynikają z tego, że ludzie często nie rozumieją różnic między tymi olejami, a to jest kluczowe dla dobrego działania hydrauliki.

Pytanie 39

W sytuacji krwawienia zewnętrznego dłoni pracownika po upadku z wysokości (pracownik jest przytomny, oddycha, tętno jest wyczuwalne, wezwano pogotowie), należy

A. przygotować jałowy opatrunek i mocno nacisnąć go na ranę
B. nałożyć opatrunek, a po chwili zmienić go sprawdzając, czy krwawienie ustąpiło
C. zatamować krew stosując opaskę poniżej rany i zabezpieczyć ranę bandażem
D. zatamować krew używając opaski powyżej rany i owinąć ranę bandażem
W przypadku krwotoku zewnętrznego, kluczowe jest podjęcie odpowiednich działań, aby zminimalizować utratę krwi i wspierać dalsze leczenie. Przygotowanie jałowego opatrunku i mocne uciskanie go na ranie to prawidłowa metoda postępowania, ponieważ ucisk na ranę pomaga zatrzymać krwawienie. Takie działanie jest zgodne z zasadami pierwszej pomocy, które zalecają stosowanie ucisku w miejscach krwawienia, zwłaszcza w przypadku krwotoków tętniczych i żylnych. W praktyce, zastosowanie jałowego opatrunku eliminuje ryzyko zakażenia, a mocne uciskanie sprzyja tworzeniu się skrzepu i stabilizuje ranę. Ważne jest również, aby nie zakładać opaski uciskowej powyżej rany, ponieważ może to prowadzić do dalszych uszkodzeń tkanek. W sytuacji, gdy krwawienie nie ustępuje, należy kontynuować ucisk oraz wezwać pomoc medyczną. Ponadto, znajomość techniki użytku opatrunków i ich właściwego stosowania w praktycznych sytuacjach jest niezbędna dla każdego, kto może być narażony na sytuacje wymagające udzielenia pierwszej pomocy.

Pytanie 40

Jaką czynność należy przeprowadzić, aby zwiększyć średnicę otworu i umożliwić osadzenie w nim łba śruby?

A. Pogłębianie
B. Wiercenie
C. Wiercenie wtórne
D. Rozwiercanie
Wiercenie to proces robienia otworów, ale w tym przypadku to nie jest najlepszy wybór do powiększania średnicy otworu. Ono bardziej nadaje się do tworzenia nowych otworów, a nie do zmiany tych, które już są. Wiercenie wtórne też nie jest idealne, bo koncentruje się na uzupełnianiu istniejących otworów, a my potrzebujemy coś więcej. Rozwiercanie może działać w tej sytuacji, ale jest trudniejsze i może uszkodzić materiał, bo wymaga większej precyzji. Kiedy wybierasz metodę obróbcą, musisz brać pod uwagę wymagania projektu i materiał, z którego zrobiony jest element. Wiele osób myśli, że można te metody stosować zamiennie, a to prowadzi do problemów jak źle dobrane średnice otworów, co może zrujnować konstrukcję lub utrudnić montaż.