Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 19 maja 2025 18:20
  • Data zakończenia: 19 maja 2025 18:35

Egzamin niezdany

Wynik: 19/40 punktów (47,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Główną metodą ochrony sieci komputerowej przed zagrożeniem z zewnątrz jest zastosowanie

A. serwera Proxy
B. programu antywirusowego
C. zapory sieciowej
D. blokady portu 80
Wybór odpowiedzi innej niż zapora sieciowa wskazuje na pewne nieporozumienia dotyczące podstawowych metod zabezpieczenia sieci. Blokada portu 80, która jest używana głównie do uniemożliwienia dostępu do standardowych usług HTTP, może być skuteczna w bardzo specyficznych scenariuszach, jednak nie stanowi kompleksowego rozwiązania. Ograniczenie dostępu do jednego portu nie chroni przed innymi wektory ataku, które mogą wykorzystywać różne porty, a także metody takie jak socjotechnika. Programy antywirusowe, choć istotne, skupiają się głównie na wykrywaniu i eliminowaniu złośliwego oprogramowania na poziomie końcowych urządzeń, a nie na zabezpieczaniu całej sieci przed atakami z zewnątrz. Serwery Proxy mogą pełnić rolę pośredników w transmisji danych, poprawiając prywatność i wydajność, ale nie są przeznaczone do ochrony przed atakami. Właściwe zrozumienie roli poszczególnych komponentów zabezpieczeń jest kluczowe dla stworzenia skutecznej architektury ochrony. Dlatego ważne jest, aby skupić się na wielowarstwowych strategiach zabezpieczeń, włączających zapory, systemy detekcji intruzów, a także regularne aktualizacje i audyty zabezpieczeń, co stanowi fundament nowoczesnej ochrony sieciowej.

Pytanie 2

W jednostce ALU do rejestru akumulatora wprowadzono liczbę dziesiętną 600. Jak wygląda jej reprezentacja w systemie binarnym?

A. 110110000
B. 111111101
C. 111011000
D. 111110100
Analizując inne odpowiedzi, można zauważyć, że zawierają one błędy w procesie konwersji liczby dziesiętnej na system binarny. Przykładowo, odpowiedź 110110000 wskazuje na nieprawidłowe obliczenia, które mogą wynikać z pomylenia reszt przy dzieleniu lub błędnego odczytu wartości. W przypadku wyboru 111011000, również następuje pomyłka w podliczaniu wartości, co może być rezultatem błędnego zrozumienia zasady konwersji, gdzie zamiast prawidłowego przekształcenia liczby, dochodzi do zamiany wartości binarnych, które nie odpowiadają rzeczywistej wartości dziesiętnej. Natomiast odpowiedź 111111101 jest na tyle bliska, że może prowadzić do mylnego wrażenia, że jest poprawna, jednak w rzeczywistości jest to wynik błędnego dodawania reszt, które nie pokrywają się z dokładnym procesem konwersji. Wiele z tych błędów może być wynikiem nieprawidłowego zrozumienia podstawowych zasad działania systemów liczbowych oraz ich konwersji. Kluczowe jest, aby podczas nauki konwersji z jednego systemu na drugi zwracać uwagę na każdy krok dzielenia i poprawne zbieranie reszt w odpowiedniej kolejności. Często zdarza się, że studenci koncentrują się na błędach w obliczeniach, które są bardziej związane z nieodpowiednim stosowaniem zasad konwersji niż z samymi umiejętnościami matematycznymi. Aby uniknąć tych pułapek, warto ćwiczyć konwersję liczb na różnych przykładach, co pozwoli na lepsze zrozumienie i przyswojenie mechanizmów rządzących tym procesem.

Pytanie 3

Aby stworzyć las w strukturze katalogów AD DS (Active Directory Domain Services), konieczne jest utworzenie przynajmniej

A. czterech drzew domeny
B. trzech drzew domeny
C. jednego drzewa domeny
D. dwóch drzew domeny
Aby utworzyć las w strukturze katalogowej Active Directory Domain Services (AD DS), wystarczy stworzyć jedno drzewo domeny. Las składa się z jednego lub więcej drzew, które mogą dzielić wspólną schematykę i konfigurację. Przykładowo, w organizacji z różnymi działami, każdy dział może mieć swoje drzewo domeny, ale wszystkie one będą częścią jednego lasu. Dzięki temu możliwe jest efektywne zarządzanie zasobami oraz dostępem użytkowników w całej organizacji, co jest zgodne z najlepszymi praktykami w zakresie zarządzania środowiskami IT. W praktyce, organizacje często tworzą jedną główną domenę, a następnie rozwijają ją o kolejne jednostki organizacyjne lub drzewa, gdy zajdzie taka potrzeba. To podejście pozwala na elastyczne zarządzanie strukturą katalogową w miarę rozwoju firmy i zmieniających się warunków biznesowych.

Pytanie 4

Aby poprawić bezpieczeństwo zasobów sieciowych, administrator sieci komputerowej w firmie otrzymał zadanie podziału aktualnej lokalnej sieci komputerowej na 16 podsieci. Obecna sieć posiada adres IP 192.168.20.0 i maskę 255.255.255.0. Jaką maskę sieci powinien zastosować administrator?

A. 255.255.255.224
B. 255.255.255.248
C. 255.255.255.192
D. 255.255.255.240
Wybór nieprawidłowej maski sieciowej może prowadzić do nieefektywnego zarządzania adresami IP i zmniejszenia bezpieczeństwa sieci. Na przykład, odpowiedź 255.255.255.224 (mask 27) daje 8 podsieci, a nie 16, co oznacza, że potrzeba więcej podsieci niż dostępnych. Przy tej masce każda podsieć miałaby tylko 30 dostępnych adresów hostów, co może być niewystarczające w większych środowiskach. Z kolei maska 255.255.255.192 (mask 26) dałaby 4 podsieci, a nie 16, co również nie spełnia wymagań. Podobnie, maska 255.255.255.248 (mask 29) pozwalałaby na utworzenie 32 podsieci, ale zaledwie 6 adresów hostów w każdej z nich, co było by niewystarczające dla większości zastosowań. Wybierając niewłaściwą maskę, administrator może nie tylko zredukować liczbę dostępnych adresów, ale także wprowadzić chaos w całej strukturze sieci. Ważne jest, aby przed podziałem sieci zawsze przeanalizować wymagania dotyczące liczby podsieci i hostów, co jest podstawą planowania adresacji IP i zarządzania siecią zgodnie z najlepszymi praktykami w dziedzinie IT.

Pytanie 5

Plik tekstowy wykonaj.txt w systemie Windows 7 zawiera ```@echo off``` echo To jest tylko jedna linijka tekstu Aby wykonać polecenia zapisane w pliku, należy

A. dodać uprawnienie +x
B. skompilować plik przy użyciu odpowiedniego kompilatora
C. zmienić nazwę pliku na wykonaj.exe
D. zmienić nazwę pliku na wykonaj.bat
Na wstępie, skompilowanie pliku tekstowego za pomocą kompilatora nie ma zastosowania w kontekście plików .bat, ponieważ nie są to programy w tradycyjnym sensie. Kompilacja odnosi się do procesu przekształcania kodu źródłowego w kod maszynowy, co jest typowe dla języków programowania takich jak C++ czy Java. Pliki .bat są interpretowane przez system operacyjny, a nie kompilowane; zatem odpowiedź sugerująca kompilację jest całkowicie błędna. Kolejnym błędnym rozumowaniem jest dodanie uprawnienia +x, co jest pojęciem stosowanym w systemach Unix/Linux, gdzie oznacza to możliwość wykonywania plików. W systemie Windows nie stosuje się tego rodzaju uprawnień dla plików .bat, a ich uruchamianie nie wymaga specjalnych uprawnień wykonawczych. Ponadto, zmiana nazwy pliku na .exe również nie jest trafnym podejściem. Pliki .exe są plikami wykonywalnymi i wymagają innego formatu oraz struktury kodu, który jest wykonywany przez system operacyjny. Dlatego też, aby prawidłowo uruchomić skrypt w Windows, należy po prostu zadbać o odpowiednie rozszerzenie .bat, a nie próbować zmieniać go na inne lub stosować nieadekwatne metody.

Pytanie 6

Komputer stracił łączność z siecią. Jakie działanie powinno być podjęte w pierwszej kolejności, aby naprawić problem?

A. Przelogować się na innego użytkownika
B. Sprawdzić adres IP przypisany do karty sieciowej
C. Zaktualizować system operacyjny
D. Zaktualizować sterownik karty sieciowej
Zaktualizowanie systemu operacyjnego, przelogowanie się na innego użytkownika oraz zaktualizowanie sterownika karty sieciowej to podejścia, które mogą być użyteczne w innych kontekstach, ale nie są one pierwszymi krokami w rozwiązywaniu problemów z połączeniem sieciowym. Aktualizacja systemu operacyjnego jest zazwyczaj zalecana w celu poprawy bezpieczeństwa oraz dodania nowych funkcji, jednak w przypadku utraty połączenia to działanie nie jest priorytetowe. Często system operacyjny jest już odpowiednio skonfigurowany do obsługi sieci, więc aktualizacja nic nie wniesie do rozwiązania problemu. Przelogowanie się na innego użytkownika może pomóc w sytuacji, gdy problem jest związany z kontem użytkownika, ale nie jest to standardowa praktyka w rozwiązywaniu problemów sieciowych. Z kolei aktualizacja sterownika karty sieciowej, choć może być użyteczna, często nie jest konieczna, jeśli karta funkcjonowała poprawnie przed utratą połączenia. Typowym błędem jest zakładanie, że problemy z siecią zawsze wymagają skomplikowanych działań; w wielu przypadkach najprostsze kroki, takie jak sprawdzenie adresu IP, mogą szybko zidentyfikować źródło problemu. Kluczowe jest zrozumienie, że diagnozowanie problemów sieciowych powinno zaczynać się od podstawowej analizy, co pozwala oszczędzić czas i zasoby.

Pytanie 7

Aby w systemie Linux wykonać kopię zapasową określonych plików, należy wprowadzić w terminalu polecenie programu

A. cal
B. gdb
C. set
D. tar
Odpowiedzi set, cal i gdb są nieodpowiednie do tworzenia kopii zapasowych w systemie Linux z kilku powodów. Set, będący narzędziem do ustawiania i kontrolowania zmiennych powłoki, nie ma zastosowania w kontekście archiwizacji danych. Typowe myślenie, że jakiekolwiek polecenie związane z konfiguracją powłoki może również odpowiadać za operacje na plikach, prowadzi do błędnych wniosków. Z kolei cal, który jest programem do wyświetlania kalendarza, również nie ma żadnego związku z operacjami na plikach czy tworzeniem kopii zapasowych. To zamieszanie między różnymi funkcjonalnościami narzędzi jest częstym błędem, który może prowadzić do frustracji i utraty danych, jeśli nie zrozumie się podstawowych ról poszczególnych programów. Gdb, debugger dla programów w C i C++, jest narzędziem do analizy i debugowania kodu, a nie do zarządzania plikami. Użytkownicy często mylą funkcje narzędzi, co może prowadzić do nieefektywnego wykorzystania systemu i braku zabezpieczeń danych. W kontekście tworzenia kopii zapasowych, kluczowe jest poznanie narzędzi dedykowanych tym operacjom, takich jak tar, które są stworzone z myślą o tych potrzebach.

Pytanie 8

Jakie polecenie w systemie operacyjnym Windows służy do wyświetlenia konfiguracji interfejsów sieciowych?

A. ipconfig
B. ifconfig
C. hold
D. tracert
Odpowiedzi 'ifconfig', 'hold' i 'tracert' nie są poprawne w kontekście wyświetlania konfiguracji interfejsów sieciowych w systemach Windows. 'ifconfig' jest poleceniem używanym głównie w systemach Unix i Linux do zarządzania interfejsami sieciowymi, co może prowadzić do zamieszania wśród użytkowników Windows, którzy mogą mieć ograniczoną znajomość innych systemów operacyjnych. Użytkownicy mogą błędnie sądzić, że wszystkie systemy operacyjne oferują identyczne polecenia, co jest mylnym założeniem, ponieważ każdy system operacyjny ma swoje unikalne zestawy narzędzi i poleceń. 'hold' z kolei nie jest standardowym poleceniem w kontekście sieci, a jego znaczenie może być niejasne, co prowadzi do nieporozumień. Użytkownicy mogą mylić to pojęcie z innymi terminami związanymi z zarządzaniem zasobami komputerowymi. Odpowiedź 'tracert' jest używana do śledzenia trasy, jaką pokonują pakiety w sieci, a nie do wyświetlania konfiguracji. Użytkownicy mogą myśleć, że 'tracert' dostarcza informacji o konfiguracji, jednak jest to narzędzie służące do analizy ścieżki komunikacji w sieci, co nie odpowiada na pytanie dotyczące konfiguracji interfejsów. Zrozumienie różnicy między tymi poleceniami jest kluczowe dla prawidłowego zarządzania i diagnozowania problemów sieciowych.

Pytanie 9

W lokalnej sieci uruchomiono serwer odpowiedzialny za przydzielanie dynamicznych adresów IP. Jaką usługę należy aktywować na tym serwerze?

A. ISA
B. DNS
C. DCHP
D. DHCP
Odpowiedź o DHCP jest jak najbardziej na miejscu. DHCP, czyli Dynamic Host Configuration Protocol, to całkiem sprytny wynalazek, bo automatycznie przypisuje adresy IP w sieciach. Dzięki temu, każde urządzenie w lokalnej sieci dostaje swój adres i inne potrzebne info, jak maska podsieci czy serwery DNS. W praktyce, w biurach czy w domach, gdzie mamy sporo sprzętu podłączonego do netu, DHCP naprawdę ułatwia życie. Nie musimy biegać i ręcznie ustawiać adresy na każdym z urządzeń. To super rozwiązanie, które można znaleźć w różnych standardach, jak na przykład RFC 2131 i RFC 2132. Działa to na routerach, serwerach czy nawet w chmurze, co jeszcze bardziej upraszcza zarządzanie siecią. Z tego, co widziałem, to w wielu miejscach jest to teraz standard.

Pytanie 10

Możliwość bezprzewodowego połączenia komputera z siecią Internet za pomocą tzw. hotspotu będzie dostępna po zainstalowaniu w nim karty sieciowej posiadającej

A. gniazdo RJ-45
B. złącze USB
C. moduł WiFi
D. interfejs RS-232C
Odpowiedź z modułem WiFi jest poprawna, ponieważ umożliwia bezprzewodowy dostęp do sieci Internet. Moduły WiFi są standardowym rozwiązaniem w nowoczesnych komputerach i urządzeniach mobilnych, pozwalającym na łączenie się z lokalnymi sieciami oraz dostęp do Internetu poprzez hotspoty. W praktyce użytkownicy mogą korzystać z takich hotspotów, jak publiczne sieci WiFi w kawiarniach, hotelach czy na lotniskach. Moduły te działają w standardach IEEE 802.11, które obejmują różne wersje, takie jak 802.11n, 802.11ac czy 802.11ax, co wpływa na prędkość oraz zasięg połączenia. Warto również zauważyć, że dobre praktyki w zakresie zabezpieczeń, takie jak korzystanie z WPA3, są kluczowe dla ochrony danych podczas łączenia się z nieznanymi sieciami. W kontekście rozwoju technologii, umiejętność łączenia się z siecią bezprzewodową stała się niezbędną kompetencją w codziennym życiu oraz pracy.

Pytanie 11

Który z poniższych protokołów reprezentuje protokół warstwy aplikacji w modelu ISO/OSI?

A. UDP
B. FTP
C. ARP
D. ICMP
Protokół ARP, czyli Address Resolution Protocol, nie jest protokołem warstwy aplikacji, lecz warstwy łącza danych modelu ISO/OSI. Jego główną funkcją jest tłumaczenie adresów IP na adresy MAC, co jest kluczowe dla komunikacji w lokalnych sieciach. To podejście może być mylące, ponieważ ARP jest istotne dla funkcjonowania sieci, ale jego rola jest ograniczona do warstwy łącza danych, a nie aplikacji. Przechodząc do UDP, czyli User Datagram Protocol, należy zaznaczyć, że ten protokół należy do warstwy transportowej, a nie aplikacyjnej. UDP jest wykorzystywany do przesyłania datagramów bez nawiązywania połączenia, co oznacza, że nie gwarantuje dostarczenia danych ani ich kolejności, co czyni go mniej niezawodnym w porównaniu z TCP. Natomiast ICMP, czyli Internet Control Message Protocol, jest również protokołem warstwy transportowej, który służy głównie do przesyłania komunikatów kontrolnych i diagnostycznych w sieci, na przykład do informowania o błędach w przesyłaniu danych. Wiele osób myli te protokoły z warstwą aplikacji, co prowadzi do nieporozumień. Kluczowym błędem myślowym jest utożsamianie funkcji protokołów z ich warstwą w modelu ISO/OSI, przez co można pomylić ich zastosowanie i rolę w sieci komputerowej. Zrozumienie struktury modelu ISO/OSI oraz właściwych protokołów przypisanych do każdej z warstw jest niezbędne dla każdego, kto pracuje z sieciami komputerowymi.

Pytanie 12

Aby przywrócić dane z sformatowanego dysku twardego, konieczne jest zastosowanie programu

A. CD Recovery Toolbox Free
B. Acronis True Image
C. CDTrack Rescue
D. RECUVA
Odzyskiwanie danych z sformatowanego dysku twardego wymaga specjalistycznych narzędzi i programów, jednak nie wszystkie z wymienionych opcji są odpowiednie w tym kontekście. CDTrack Rescue to program, który koncentruje się na odzyskiwaniu danych z uszkodzonych nośników CD i DVD, a nie na dyskach twardych, co czyni go nieodpowiednim w tym przypadku. Acronis True Image jest narzędziem, które służy głównie do tworzenia obrazów dysków oraz kopii zapasowych, a jego funkcjonalność nie obejmuje bezpośredniego odzyskiwania danych z sformatowanych dysków. Choć może być użyteczne w kontekście ochrony danych, to nie jest najlepszym wyborem przy odzyskiwaniu danych po formatowaniu. Z kolei CD Recovery Toolbox Free koncentruje się na odzyskiwaniu danych z nośników CD i DVD, co również nie odnosi się do problematyki dysków twardych. Często błędne rozumienie ról tych programów wynika z braku wiedzy na temat ich specyfikacji i zastosowań. Kluczowe w wyborze odpowiedniego narzędzia jest zrozumienie, że każdy program ma swoje unikalne funkcje i ograniczenia, a skuteczne odzyskiwanie danych wymaga zastosowania narzędzi zaprojektowanych specjalnie do danego rodzaju nośnika oraz sytuacji, w jakiej się znajdujemy.

Pytanie 13

Jak określana jest transmisja w obie strony w sieci Ethernet?

A. Duosimplex
B. Full duplex
C. Simplex
D. Half duplex
Transmisja dwukierunkowa w sieci Ethernet nazywana jest full duplex. Oznacza to, że urządzenia mogą jednocześnie wysyłać i odbierać dane, co znacząco zwiększa efektywność komunikacji w sieci. W przypadku pełnego dupleksu, zastosowanie technologii takich jak przełączniki Ethernet pozwala na jednoczesne przesyłanie informacji w obydwu kierunkach, co jest szczególnie istotne w aplikacjach wymagających dużej przepustowości, takich jak strumieniowanie wideo, rozmowy VoIP czy gry online. W praktyce pełny dupleks jest standardem w nowoczesnych sieciach komputerowych, wspieranym przez protokoły IEEE 802.3, co zapewnia lepsze wykorzystanie dostępnych zasobów sieciowych oraz minimalizację opóźnień.

Pytanie 14

Jakie ustawienia dotyczące protokołu TCP/IP zostały zastosowane dla karty sieciowej, na podstawie rezultatu uruchomienia polecenia IPCONFIG /ALL w systemie Windows?

Ilustracja do pytania
A. Karta sieciowa ma przypisany statyczny adres IP
B. Karta sieciowa otrzymała adres IP w sposób automatyczny
C. Karta sieciowa nie ma zdefiniowanego adresu bramy
D. Karta sieciowa nie posiada skonfigurowanego adresu serwera DNS
Prawidłowa odpowiedź wskazuje, że karta sieciowa uzyskała adres IP automatycznie. W systemie Windows polecenie IPCONFIG /ALL pozwala na wyświetlenie szczegółowych informacji o konfiguracji sieciowej. W przedstawionym wyniku można zauważyć, że opcja DHCP jest włączona, co oznacza, że karta sieciowa pobiera swój adres IP z serwera DHCP automatycznie. DHCP (Dynamic Host Configuration Protocol) jest standardowym protokołem używanym do automatycznego przydzielania adresów IP oraz innych parametrów sieciowych, takich jak maska podsieci i brama domyślna, do urządzeń w sieci. Dzięki DHCP zarządzanie dużymi sieciami staje się bardziej efektywne, a błędy wynikające z ręcznego przypisywania adresów IP są zminimalizowane. Używanie DHCP jest szczególnie korzystne w środowiskach, gdzie urządzenia często się zmieniają, jak w biurach czy instytucjach edukacyjnych. Dzięki temu sieć jest bardziej elastyczna i mniej podatna na problemy związane z konfliktami adresów IP. Włączenie DHCP jest zgodne z dobrymi praktykami zarządzania siecią w większości współczesnych infrastruktur IT.

Pytanie 15

Technologia procesorów z serii Intel Core, wykorzystywana w układach i5, i7 oraz i9, umożliwiająca podniesienie częstotliwości w sytuacji, gdy komputer potrzebuje większej mocy obliczeniowej, to

A. Hyper Threading
B. Turbo Boost
C. CrossFire
D. BitLocker
CrossFire to technologia firmy AMD, która pozwala na łączenie dwóch lub więcej kart graficznych w celu zwiększenia wydajności graficznej. Nie ma ona jednak żadnego związku z procesorami Intel Core ani ich zarządzaniem mocą obliczeniową. Często mylenie CrossFire z funkcjami procesorów wynika z braku zrozumienia różnic między komponentami systemu komputerowego, takimi jak procesory i karty graficzne. BitLocker to usługa szyfrowania dysków w systemach operacyjnych Windows, która ma na celu ochronę danych przed nieautoryzowanym dostępem, a nie zwiększanie wydajności procesora. Pojęcie Hyper Threading odnosi się do technologii wirtualizacji rdzeni w procesorach Intel, co pozwala na lepsze wykorzystanie dostępnych zasobów procesora, ale również nie dotyczy dynamicznego zwiększania taktowania, jak ma to miejsce w przypadku Turbo Boost. Zrozumienie działania tych technologii i ich zastosowań jest kluczowe dla efektywnej optymalizacji systemu komputerowego. Wiele osób popełnia błąd, zakładając, że wszystkie funkcje związane z wydajnością procesora są ze sobą tożsame, podczas gdy każda z nich pełni inną rolę i ma swoje specyficzne zastosowania. Dlatego ważne jest, aby przed podjęciem decyzji dotyczącej hardware'u zrozumieć, jak różne technologie współpracują ze sobą, aby osiągnąć optymalną wydajność systemu.

Pytanie 16

Jakie narzędzie powinno być użyte do zbadania wyników testu POST dla modułów na płycie głównej?

Ilustracja do pytania
A. Rys. A
B. Rys. C
C. Rys. B
D. Rys. D
Prawidłowa odpowiedź to Rys. B. Jest to specjalne narzędzie diagnostyczne znane jako karta POST, używane do testowania i diagnozowania problemów z płytą główną komputera. Kiedy komputer jest uruchamiany, przechodzi przez test POST (Power-On Self-Test), który sprawdza podstawowe komponenty sprzętowe. Karta POST wyświetla kody wyników testu, co umożliwia technikom zidentyfikowanie problemów, które mogą uniemożliwiać prawidłowy rozruch systemu. Karty POST są niezwykle przydatne w środowiskach serwisowych, gdzie szybka diagnostyka jest kluczowa. Dają one bezpośredni wgląd w proces rozruchu płyty głównej i wskazują na potencjalne awarie sprzętowe, takie jak uszkodzone moduły pamięci RAM, problemy z procesorem czy kartą graficzną. W praktyce, kody wyświetlane przez kartę POST mogą być porównywane z tabelami kodów POST producenta płyty głównej, co pozwala na szybkie i precyzyjne określenie przyczyny awarii i przystąpienie do jej usunięcia. Warto zaznaczyć, że użycie karty POST jest standardem w diagnostyce komputerowej i stanowi dobrą praktykę w pracy serwisanta.

Pytanie 17

Jakie polecenie w systemie Linux przyzna możliwość zapisu dla wszystkich obiektów w /usr/share dla wszystkich użytkowników, nie modyfikując innych uprawnień?

A. chmod -R a+w /usr/share
B. chmod -R o+r /usr/share
C. chmod a-w /usr/share
D. chmod ugo+rw /usr/share
Wybór polecenia 'chmod a-w /usr/share' jest błędny, ponieważ nie nadaje ono uprawnień do pisania, lecz je odbiera. Flaga 'a-w' oznacza usunięcie uprawnienia do pisania dla wszystkich użytkowników, co jest sprzeczne z celem pytania, jakim jest przyznanie tych uprawnień. Z kolei 'chmod ugo+rw /usr/share' dodaje uprawnienia do czytania i pisania dla właściciela, grupy oraz innych użytkowników, jednak nie jest to zgodne z wymaganiem, aby zmiany dotyczyły tylko uprawnień do pisania. Innym nieprawidłowym podejściem jest 'chmod -R o+r /usr/share', które dodaje jedynie uprawnienia do odczytu dla innych użytkowników, co nie spełnia założenia dotyczącego przyznania uprawnień do pisania. Użytkownicy często mylą różne flagi polecenia 'chmod' i nie rozumieją, że każdy z parametrów wpływa na konkretne aspekty uprawnień. Często dochodzi do nieporozumień związanych z tym, jakie uprawnienia są rzeczywiście potrzebne w danej sytuacji, przez co nieprzemyślane działania mogą prowadzić do poważnych konsekwencji, takich jak naruszenie bezpieczeństwa systemu lub utrata dostępu do istotnych zasobów. Zrozumienie struktury uprawnień w systemie Linux oraz ich konsekwencji jest kluczowe dla prawidłowego zarządzania dostępem do plików i katalogów.

Pytanie 18

Który z poniższych protokołów służy do zarządzania urządzeniami w sieciach?

A. SFTP
B. DNS
C. SMTP
D. SNMP
SNMP, czyli Simple Network Management Protocol, to protokół komunikacyjny, który jest kluczowy w zarządzaniu i monitorowaniu urządzeń w sieciach komputerowych. SNMP pozwala administratorom na zbieranie informacji o statusie i wydajności urządzeń, takich jak routery, przełączniki, serwery oraz inne elementy infrastruktury sieciowej. Dzięki temu protokołowi możliwe jest m.in. zbieranie danych dotyczących obciążenia, błędów transmisyjnych, a także stanu interfejsów. W praktyce, administratorzy często korzystają z narzędzi SNMP do monitorowania sieci w czasie rzeczywistym, co pozwala na szybką reakcję na potencjalne problemy. Organizacje mogą wdrażać SNMP zgodnie z najlepszymi praktykami, stosując odpowiednie zabezpieczenia, takie jak autoryzacja i szyfrowanie komunikacji, co zwiększa bezpieczeństwo zarządzania urządzeniami. Protokół ten jest zgodny z różnymi standardami, takimi jak RFC 1157, co czyni go powszechnie akceptowanym rozwiązaniem w branży IT.

Pytanie 19

Tester strukturalnego okablowania umożliwia weryfikację

A. liczby przełączników w sieci
B. obciążenia ruchu sieciowego
C. mapy połączeń
D. liczby komputerów w sieci
Tester okablowania strukturalnego to urządzenie, które ma za zadanie sprawdzać, czy wszystko w instalacji sieciowej działa jak należy. Odpowiedź dotycząca mapy połączeń jest jak najbardziej na miejscu, bo te testery pomagają zrozumieć, jak kable są ze sobą połączone. Dzięki mapowaniu można łatwo zobaczyć, które kable idą do jakich portów na przełącznikach, co jest ważne, gdy coś zaczyna szwankować w sieci. Przykładowo, kiedy występują problemy z przesyłem danych, tester może szybko wskazać, gdzie może być awaria. A jak wiadomo, zgodnie z normami TIA/EIA-568, dobrze zaplanowane okablowanie to podstawa, żeby sieć działała płynnie. Analizując mapę połączeń, zarządcy sieci mogą też lepiej rozłożyć obciążenie, co przekłada się na lepszą jakość dla użytkowników. Z mojego doświadczenia, to naprawdę ułatwia życie w zarządzaniu siecią.

Pytanie 20

Na ilustracji ukazano sieć o układzie

Ilustracja do pytania
A. drzewa
B. siatki
C. magistrali
D. gwiazdy
Topologia magistrali to jeden z fundamentalnych modeli organizacji sieci komputerowej polegający na podłączeniu wszystkich urządzeń do jednego wspólnego medium transmisyjnego. W praktyce oznacza to, że urządzenia takie jak komputery czy drukarki są podłączone do wspólnej linii kablowej. Taka konfiguracja charakteryzuje się prostotą i niskimi kosztami implementacji ze względu na mniejszą ilość kabli wymaganych do połączenia wszystkich urządzeń. Jednakże, w przypadku awarii kabla lub jednego z urządzeń, cała sieć może przestać działać. Magistrala jest często wykorzystywana w mniejszych sieciach lokalnych czy w środowiskach edukacyjnych, gdzie koszty są kluczowe. W takich przypadkach stosuje się zazwyczaj kable koncentryczne. Zaletą tego rozwiązania jest łatwość rozbudowy sieci poprzez dodanie nowych urządzeń, choć należy pamiętać o ograniczeniach związanych z odległością i liczbą urządzeń. Topologia ta, choć mniej popularna w nowoczesnych sieciach, była kluczowa w rozwoju technologii sieciowych i stanowi podstawę zrozumienia bardziej zaawansowanych konfiguracji jak topologia gwiazdy czy siatki.

Pytanie 21

Który zakres adresów pozwala na komunikację multicast w sieciach z użyciem adresacji IPv6?

A. 3ffe::/16
B. 2002::/24
C. ::/96
D. ff00::/8
Wybór adresów, takich jak ::/96, 3ffe::/16 czy 2002::/24, jest błędny z różnych powodów. Adres ::/96 jest częścią adresacji IPv6, która jest stosowana do translacji adresów IPv4, ale nie jest dedykowana do komunikacji multicast. Z kolei adres 3ffe::/16 był częścią zarezerwowanej przestrzeni adresowej IPv6 przeznaczonej dla zastosowań eksperymentalnych, co również nie ma związku z multicastem. Adres 2002::/24 jest związany z protokołem 6to4, który służy do tunelowania IPv6 przez IPv4, a więc również nie odnosi się do multicastu. W kontekście adresacji IPv6, nieprawidłowe podejście do wyboru adresów może prowadzić do nieefektywnej komunikacji w sieci, ponieważ nie każda pula adresów ma zastosowanie w różnych scenariuszach komunikacyjnych. Kluczowe jest, aby w przypadku rozważań nad multicastem korzystać z odpowiednio zdefiniowanych standardów, które wskazują na konkretne zakresy adresów, a także rozumieć ich różne zastosowania. Ignorowanie tych zasad prowadzi do nieporozumień i trudności w implementacji rozwiązań sieciowych, co może poważnie wpłynąć na jakość i wydajność usług świadczonych w sieci.

Pytanie 22

Która z licencji ma charakter grupowy i pozwala instytucjom komercyjnym oraz organizacjom edukacyjnym, państwowym i charytatywnym na zakup większej ilości oprogramowania firmy Microsoft na korzystnych zasadach?

A. APSL
B. MOLP
C. OEM
D. MPL
MPL (Mozilla Public License) to licencja open source, która koncentruje się na udostępnianiu kodu źródłowego. Choć promuje współpracę i rozwój wspólnotowy, nie jest przeznaczona dla instytucji, które potrzebują elastyczności licencyjnej dla komercyjnych zastosowań. APSL (Apple Public Source License) również dotyczy oprogramowania open source i jest skierowana głównie do projektów Apple. Oferuje ona zasady korzystania z kodu źródłowego, ale nie zapewnia korzystnych warunków zakupu dla instytucji komercyjnych. Z kolei licencja OEM (Original Equipment Manufacturer) jest przeznaczona dla producentów sprzętu, którzy dostarczają oprogramowanie razem z urządzeniami. Tego typu licencje często wiążą się z ograniczeniami dotyczącymi przenoszenia oprogramowania oraz brakiem możliwości zakupu w dużych ilościach na preferencyjnych warunkach. W kontekście licencjonowania oprogramowania Microsoft, te opcje nie spełniają wymagań instytucji szukających korzystnych warunków zakupu dla grupy użytkowników. Często mylone są przeznaczenie i schematy licencjonowania, co prowadzi do błędnych założeń o możliwościach, jakie oferują poszczególne licencje.

Pytanie 23

Który z materiałów eksploatacyjnych nie jest stosowany w ploterach?

A. Filament
B. Tusz
C. Atrament
D. Pisak
Wybierając tusz, pisak czy atrament, można łatwo pomylić ich zastosowanie, zwłaszcza w kontekście urządzeń, w których są one wykorzystywane. Tusz oraz atrament są materiałami eksploatacyjnymi stosowanymi w ploterach atramentowych, które są powszechnie używane do drukowania dokumentów i grafik. W przypadku tych ploterów, tusze mają różne formuły, takie jak tusze pigmentowe i barwnikowe, co wpływa na jakość i trwałość wydruków. Tusze pigmentowe charakteryzują się wyższą odpornością na blaknięcie, co czyni je idealnymi do zewnętrznych zastosowań, podczas gdy tusze barwnikowe zwykle oferują lepszą reprodukcję kolorów na papierze. Pisaki, chociaż mniej powszechne, mogą być również wykorzystywane w ploterach tnących do rysowania i oznaczania. Warto dodać, że ich mechanizm działania jest oparty na innej technologii niż w przypadku standardowych ploterów atramentowych, co może prowadzić do nieporozumień. Kluczowym błędem w analizowaniu tych materiałów jest założenie, że wszystkie mogą być stosowane w tym samym kontekście, co jest dalekie od rzeczywistości. Dlatego ważne jest, aby znać specyfikę każdego urządzenia i odpowiednio dobierać materiały eksploatacyjne do jego funkcji.

Pytanie 24

W jednostce ALU do akumulatora została zapisana liczba dziesiętna 240. Jak wygląda jej reprezentacja w systemie binarnym?

A. 11111000
B. 11110000
C. 11111110
D. 11111100
Reprezentacja binarna liczby dziesiętnej 240 to 11110000. Aby ją obliczyć, należy najpierw zrozumieć, jak działa konwersja z systemu dziesiętnego na binarny. Proces ten polega na ciągłym dzieleniu liczby przez 2 i zapisaniu reszt z tych dzielników. Dla liczby 240, dzieląc przez 2, otrzymujemy następujące wyniki: 240/2=120 (reszta 0), 120/2=60 (reszta 0), 60/2=30 (reszta 0), 30/2=15 (reszta 0), 15/2=7 (reszta 1), 7/2=3 (reszta 1), 3/2=1 (reszta 1), 1/2=0 (reszta 1). Zbierając reszty od ostatniego dzielenia do pierwszego, otrzymujemy 11110000. To przykład konwersji, która jest powszechnie stosowana w programowaniu komputerowym oraz w elektronice cyfrowej, gdzie liczby binarne są kluczowe dla działania procesorów i systemów operacyjnych. Dobra praktyka to zrozumienie nie tylko samego procesu konwersji, ale również tego, jak liczby binarne są używane do reprezentowania różnych typów danych w pamięci komputerowej.

Pytanie 25

Na podstawie oznaczenia pamięci DDR3 PC3-16000 można określić, że ta pamięć

A. pracuje z częstotliwością 160 MHz
B. ma przepustowość 16 GB/s
C. ma przepustowość 160 GB/s
D. pracuje z częstotliwością 16000 MHz
Analizując błędne odpowiedzi, można zauważyć, że niepoprawne stwierdzenia często wynikają z nieporozumienia dotyczącego sposobu, w jaki określa się parametry pamięci. Stwierdzenie, że pamięć ma przepustowość 160 GB/s, jest nieprawidłowe, ponieważ przekracza rzeczywiste możliwości standardu DDR3, który nie osiąga takich wartości. Wartości przepustowości są związane z częstotliwością zegara oraz szerokością magistrali, a 160 GB/s przekracza fizyczne limity technologii DDR3. Kolejną nieścisłością jest stwierdzenie, że pamięć pracuje z częstotliwością 160 MHz. Taka wartość jest znacznie poniżej rzeczywistych parametrów DDR3. Częstotliwość odnosi się do zegara w trybie transferu, gdzie DDR3 pracuje z częstotliwościami rzędu 800 MHz, co odpowiada efektywnym wartościom 1600 MHz, a stąd już wnioskujemy, że przepustowość może osiągnąć 16 GB/s. Z kolei podanie wartości 16000 MHz jest również nieprawidłowe, ponieważ to odnosi się do błędnego przeliczenia jednostek - efektywna częstotliwość DDR3 PC3-16000 to 2000 MHz, a nie 16000 MHz. Poprawne zrozumienie tych parametrów jest kluczowe dla właściwego doboru pamięci w systemach komputerowych, aby zapewnić optymalną wydajność i zgodność z pozostałymi komponentami.

Pytanie 26

W specyfikacji IEEE 802.3af opisano technologię dostarczania energii elektrycznej do różnych urządzeń sieciowych jako

A. Power over Internet
B. Power over Classifications
C. Power under Control
D. Power over Ethernet
Wybór odpowiedzi innej niż 'Power over Ethernet' wskazuje na nieporozumienie dotyczące technologii zasilania przez Ethernet oraz specyfiki standardów IEEE. Odpowiedzi takie jak 'Power over Classifications', 'Power under Control' czy 'Power over Internet' nie są uznawane za standardy IEEE i nie odnoszą się do rzeczywistych praktyk zasilania urządzeń sieciowych. 'Power over Classifications' sugeruje podział urządzeń na różne klasy według zapotrzebowania na moc, co nie jest istotnym aspektem stosowanego w praktyce zasilania przez Ethernet. 'Power under Control' brzmi jak koncepcja zarządzania mocą, ale nie odnosi się bezpośrednio do jakiejkolwiek znanej normy zasilania w kontekście sieci. 'Power over Internet' myli zasady działania sieci komputerowych z zasilaniem, co prowadzi do błędnych wniosków. W rzeczywistości, Power over Ethernet to technologia, która wprowadza spójność i efektywność w projektowaniu systemów zasilania urządzeń w sieciach, a błędne odpowiedzi mogą wynikać z mylenia terminologii lub braku zrozumienia zastosowań technologii PoE. Kluczowym błędem jest nieodróżnianie pojęcia zasilania od pojęcia komunikacji w sieciach komputerowych, co prowadzi do dezorientacji w zakresie standardów i ich zastosowania w realnych scenariuszach.

Pytanie 27

Wykonanie polecenia tar -xf dane.tar w systemie Linux spowoduje

A. pokazanie informacji o zawartości pliku dane.tar
B. wyodrębnienie danych z archiwum o nazwie dane.tar
C. stworzenie archiwum dane.tar, które zawiera kopię katalogu /home
D. przeniesienie pliku dane.tar do katalogu /home
Polecenie 'tar -xf dane.tar' jest używane w systemie Linux do wyodrębnienia zawartości archiwum tar o nazwie 'dane.tar'. Flaga '-x' oznacza 'extract', co jest kluczowe, ponieważ informuje program tar, że zamierzamy wydobyć pliki z archiwum. Flaga '-f' wskazuje, że będziemy pracować z plikiem, a następnie podajemy nazwę pliku archiwum. Pozycjonowanie tych flag jest istotne, ponieważ tar interpretuje je w określony sposób. W praktyce, kiedy używasz tego polecenia, otrzymujesz dostęp do zawartości archiwum, która może zawierać różne pliki i katalogi, w zależności od tego, co zostało pierwotnie skompresowane. Użycie tar jest powszechne w zadaniach związanych z tworzeniem kopii zapasowych oraz przenoszeniem zbiorów danych między systemami. Dobrą praktyką jest również używanie flagi '-v', co pozwala na wyświetlenie informacji o plikach podczas ich wyodrębniania, co ułatwia monitorowanie postępu. Warto również wspomnieć, że tar jest integralną częścią wielu procesów w systemach opartych na Unixie, a znajomość jego działania jest niezbędna dla administratorów systemów.

Pytanie 28

Jaką usługę można wykorzystać do zdalnej pracy na komputerze z systemem Windows, korzystając z innego komputera z tym samym systemem, który jest podłączony do tej samej sieci lub do Internetu?

A. pulpit zdalny
B. serwer plików
C. FTP
D. DHCP
Pulpit zdalny to usługa, która umożliwia zdalny dostęp do komputera z systemem Windows z innego urządzenia, również działającego na tym samym systemie operacyjnym. Działa to na zasadzie przesyłania obrazu pulpitu komputerowego przez sieć, co pozwala użytkownikowi na interakcję z systemem tak, jakby był bezpośrednio przed nim. Przykładowo, wiele firm wykorzystuje pulpit zdalny, aby umożliwić pracownikom pracę zdalną, co zyskuje na znaczeniu w obliczu rosnącej popularności pracy hybrydowej i zdalnej. Z perspektywy technicznej, zdalny pulpit oparty jest na protokole RDP (Remote Desktop Protocol), który zapewnia szyfrowanie i autoryzację, co jest zgodne z najlepszymi praktykami w zakresie bezpieczeństwa IT. Umożliwia on również dostęp do lokalnych zasobów, takich jak drukarki czy pliki, co znacznie ułatwia zdalną pracę. Dodatkowo, pulpit zdalny może być konfigurowany w różnych wersjach systemu Windows, co daje elastyczność w zakresie dostępnych funkcji i zabezpieczeń.

Pytanie 29

Jaki protokół posługuje się portami 20 oraz 21?

A. DHCP
B. WWW
C. FTP
D. Telnet
Protokół FTP (File Transfer Protocol) to standardowy protokół używany do przesyłania plików między komputerami w sieci. Wykorzystuje on porty 20 i 21 do komunikacji. Port 21 służy do ustanawiania połączenia oraz zarządzania sesją FTP, natomiast port 20 jest używany do przesyłania danych. Dzięki temu podziałowi, możliwe jest zarządzanie połączeniem i transferem w sposób zorganizowany. FTP jest powszechnie stosowany w różnych aplikacjach, takich jak przesyłanie plików na serwer internetowy, synchronizacja danych czy tworzenie kopii zapasowych. W kontekście standardów, FTP jest zgodny z dokumentami RFC 959, które definiują jego działanie i zasady. W praktyce, wiele firm i organizacji korzysta z FTP do zarządzania swoimi zasobami, ponieważ umożliwia on łatwe i efektywne przesyłanie dużych plików, co jest istotne w środowiskach biurowych oraz w projektach wymagających dużych transferów danych.

Pytanie 30

Kluczowe znaczenie przy tworzeniu stacji roboczej, na której ma funkcjonować wiele maszyn wirtualnych, ma:

A. System chłodzenia wodnego
B. Ilość rdzeni procesora
C. Mocna karta graficzna
D. Wysokiej jakości karta sieciowa
Liczba rdzeni procesora jest kluczowym czynnikiem przy budowie stacji roboczej przeznaczonej do obsługi wielu wirtualnych maszyn. Wirtualizacja to technologia, która pozwala na uruchamianie wielu systemów operacyjnych na jednym fizycznym serwerze, co wymaga znacznej mocy obliczeniowej. Wielordzeniowe procesory, takie jak te oparte na architekturze x86 z wieloma rdzeniami, umożliwiają równoczesne przetwarzanie wielu zadań, co jest niezbędne w środowiskach wirtualnych. Przykładowo, jeśli stacja robocza ma 8 rdzeni, umożliwia to uruchomienie kilku wirtualnych maszyn, z których każda może otrzymać swój dedykowany rdzeń, co znacznie zwiększa wydajność. W kontekście standardów branżowych, rekomendowane jest stosowanie procesorów, które wspierają technologię Intel VT-x lub AMD-V, co pozwala na lepszą wydajność wirtualizacji. Odpowiednia liczba rdzeni nie tylko poprawia wydajność, ale także umożliwia lepsze zarządzanie zasobami, co jest kluczowe w zastosowaniach komercyjnych, takich jak serwery aplikacji czy platformy do testowania oprogramowania.

Pytanie 31

Adres MAC (Medium Access Control Address) stanowi fizyczny identyfikator interfejsu sieciowego Ethernet w obrębie modelu OSI

A. drugiej o długości 48 bitów
B. trzeciej o długości 32 bitów
C. trzeciej o długości 48 bitów
D. drugiej o długości 32 bitów
Adres MAC (Medium Access Control Address) jest unikalnym identyfikatorem przydzielanym każdemu interfejsowi sieciowemu, który korzysta z technologii Ethernet. Jego długość wynosi 48 bitów, co odpowiada 6 bajtom. Adres MAC jest używany w warstwie drugiej modelu OSI, czyli warstwie łącza danych, do identyfikacji urządzeń w sieci lokalnej. Dzięki standardowi IEEE 802.3, każda karta sieciowa produkowana przez różnych producentów otrzymuje unikalny adres MAC, co jest kluczowe dla prawidłowego działania sieci Ethernet. Przykładowo, w zastosowaniach takich jak DHCP (Dynamic Host Configuration Protocol), adres MAC jest niezbędny do przypisania odpowiednich adresów IP urządzeniom w sieci. Ponadto, w praktyce adresy MAC mogą być używane w różnych technologiach zabezpieczeń, takich jak filtracja adresów MAC, co pozwala na kontrolowanie dostępu do sieci. Zrozumienie roli adresu MAC w architekturze sieciowej jest fundamentalne dla każdego specjalisty w dziedzinie IT, a jego poprawne wykorzystanie jest zgodne z najlepszymi praktykami zarządzania siecią.

Pytanie 32

W systemie Windows uruchomiono plik wsadowy z dwoma argumentami. Uzyskanie dostępu do wartości drugiego argumentu w pliku wsadowym jest możliwe przez

A. $2$
B. %2
C. $2
D. %2%
W błędnych odpowiedziach pojawiają się zrozumiane nieporozumienia dotyczące sposobu odwoływania się do parametrów w plikach wsadowych. Odpowiedź $2 wydaje się opierać na niepoprawnym założeniu, że symbol dolara jest używany do referencji parametrów, co jest typowe dla niektórych innych języków skryptowych, ale nie dotyczy to Windows Batch. Użycie %2, a nie $2, jest zgodne z konwencjami systemu Windows. Odpowiedzi %2% i $2$ również są błędne, ponieważ ich składnia nie odpowiada wymaganej strukturze. Użycie symbolu procenta w formie %2% sugeruje, że użytkownik zakłada, iż dolne i górne znaki procenta są potrzebne do oznaczenia zmiennej, co jest niewłaściwe w kontekście skryptów wsadowych. Całkowity brak zrozumienia zasad przekazywania argumentów w plikach wsadowych prowadzi do takich pomyłek. Kluczowe jest zrozumienie, że argumenty są przypisane do zmiennych za pomocą prostego zastosowania symbolu % bez dodatkowych znaków. Użytkownicy powinni zwracać uwagę na dokumentację i standardy, aby unikać takich typowych pułapek, które mogą zafałszować logikę działania skryptów i prowadzić do niepoprawnych wyników.

Pytanie 33

Element obliczeń zmiennoprzecinkowych to

A. FPU
B. AND
C. RPU
D. ALU
Niepoprawne odpowiedzi zawierają różne typy jednostek obliczeniowych, które jednak nie są odpowiednie dla obliczeń zmiennoprzecinkowych. ALU, czyli jednostka arytmetyczna i logiczna, jest odpowiedzialna za podstawowe operacje arytmetyczne, takie jak dodawanie i odejmowanie, ale nie obsługuje zaawansowanych operacji na liczbach zmiennoprzecinkowych, które wymagają większej precyzji i złożoności. ALU przetwarza głównie liczby całkowite i nie jest w stanie efektywnie radzić sobie z problemem zaokrągleń, który jest kluczowym aspektem obliczeń zmiennoprzecinkowych. RPU, czyli jednostka obliczeń rozproszonych, to nieformalny termin, który nie jest powszechnie używany w kontekście architektury komputerowej. Można go mylić z innymi jednostkami obliczeniowymi lub z rozproszonymi systemami obliczeniowymi, które także nie mają bezpośredniego związku z operacjami zmiennoprzecinkowymi. Ostatnia z odpowiedzi, AND, odnosi się do bramki logicznej, która jest używana w operacjach cyfrowych, jednak nie ma związku z obliczeniami zmiennoprzecinkowymi. Kluczowym błędem myślowym jest mylenie funkcji różnych jednostek obliczeniowych i ich zastosowań. Aby skutecznie korzystać z architektury komputerowej, ważne jest zrozumienie, jak poszczególne jednostki współpracują oraz jakie operacje są dla nich charakterystyczne.

Pytanie 34

W systemie Linux do bieżącego śledzenia działających procesów wykorzystuje się polecenie:

A. ps
B. sed
C. sysinfo
D. proc
Polecenie 'ps' w systemie Linux jest fundamentalnym narzędziem do monitorowania procesów. Jego nazwa pochodzi od 'process status', co idealnie oddaje jego funkcję. Umożliwia ono użytkownikom wyświetlenie aktualnie działających procesów oraz ich statusu. Przykładowo, wykonując polecenie 'ps aux', uzyskujemy szczegółowy widok wszystkich procesów, które są uruchomione w systemie, niezależnie od tego, kto je uruchomił. Informacje te obejmują identyfikator procesu (PID), wykorzystanie CPU i pamięci, czas działania oraz komendę, która uruchomiła dany proces. Dobre praktyki w administracji systemem zalecają regularne monitorowanie procesów, co pozwala na szybkie wykrycie problemów, takich jak zbyt wysokie zużycie zasobów przez konkretne aplikacje. Użycie 'ps' jest kluczowe w diagnostyce stanu systemu, a w połączeniu z innymi narzędziami, takimi jak 'top' czy 'htop', umożliwia bardziej szczegółową analizę oraz zarządzanie procesami.

Pytanie 35

Które polecenie w systemie Windows Server 2008 pozwala na przekształcenie serwera w kontroler domeny?

A. gpedit
B. gpresult
C. nslookup
D. dcpromo
Wybór innych opcji, takich jak gpedit, gpresult i nslookup, może prowadzić do nieporozumień dotyczących ich funkcji i zastosowania w kontekście zarządzania domenami w systemie Windows Server. Narzędzie gpedit (Group Policy Editor) służy do zarządzania politykami grupowymi, które definiują ustawienia konfiguracyjne dla systemu operacyjnego i aplikacji w sieci. Chociaż przydatne w zarządzaniu politykami, nie jest odpowiednie do promowania serwera do roli kontrolera domeny, ponieważ nie oferuje możliwości konfiguracji Active Directory. Z kolei gpresult (Group Policy Result) jest używane do zbierania informacji na temat polityk grupowych, które zostały zastosowane do określonego użytkownika lub komputera, ale również nie ma związku z promowaniem serwera. Z kolei narzędzie nslookup jest wykorzystywane do diagnozowania problemów związanych z systemem DNS (Domain Name System) poprzez zapytania o rekordy DNS, co jest istotne w kontekście rozwiązywania problemów z dostępnością zasobów, ale nie ma zastosowania w procesie promowania serwera. Zrozumienie tych narzędzi jest ważne, ponieważ ich mylne stosowanie w kontekście promowania serwera do roli kontrolera domeny może prowadzić do nieefektywnego zarządzania infrastrukturą oraz błędów, które mogą wpłynąć na bezpieczeństwo i wydajność całej sieci.

Pytanie 36

Graficzny symbol pokazany na ilustracji oznacza

Ilustracja do pytania
A. koncentrator
B. przełącznik
C. bramę
D. most
Przełącznik, znany również jako switch, jest kluczowym elementem infrastruktury sieciowej stosowanym do zarządzania ruchem danych między różnymi urządzeniami w sieci lokalnej (LAN). Jego główną funkcją jest przekazywanie pakietów danych tylko do docelowych urządzeń, co zwiększa efektywność i bezpieczeństwo sieci. Przełącznik analizuje adresy MAC urządzeń podłączonych do jego portów, co pozwala na inteligentne przesyłanie danych tylko tam, gdzie są potrzebne. Przełączniki mogą działać w różnych warstwach modelu OSI, ale najczęściej funkcjonują na warstwie drugiej. W nowoczesnych sieciach stosuje się przełączniki zarządzalne, które oferują zaawansowane funkcje, takie jak VLAN, QoS czy możliwość zdalnego konfigurowania. Dzięki temu możliwa jest bardziej precyzyjna kontrola i optymalizacja ruchu sieciowego. W praktyce przełączniki są stosowane w wielu środowiskach, od małych sieci biurowych po duże centra danych, gdzie odpowiadają za skalowalne i efektywne zarządzanie zasobami sieciowymi. Zgodnie z dobrymi praktykami branżowymi, wybór odpowiedniego przełącznika powinien uwzględniać zarówno aktualne potrzeby sieci, jak i przyszłe możliwości jej rozbudowy.

Pytanie 37

Jaką maksymalną liczbę hostów można przypisać w lokalnej sieci, dysponując jedną klasą C adresów IPv4?

A. 255
B. 512
C. 510
D. 254
Maksymalna liczba hostów, które można zaadresować w sieci lokalnej z wykorzystaniem adresów klasy C, często bywa niewłaściwie interpretowana. Odpowiedzi 512, 510, oraz 255 sugerują, że liczby te mogą być uznawane za poprawne w kontekście bloków adresów IP. Warto jednak zrozumieć, że adres klas C z maską 255.255.255.0 pozwala na 256 adresów IP. Wiele osób myli liczbę adresów dostępnych dla hostów z ogólną liczbą adresów IP w danym bloku. Adres sieci i adres rozgłoszeniowy są zarezerwowane i nie mogą być przypisane urządzeniom, co znacząco wpływa na dostępność adresów. Odpowiedzi, które sugerują liczbę 255, pomijają fakt, że adres rozgłoszeniowy również musi być uwzględniony jako niewykorzystany. Propozycja 510 odnosi się do nieprawidłowego zrozumienia adresacji IP, gdzie ktoś mógłby pomyśleć, że dwa adresy można by jakoś 'przywrócić' lub zarządzać nimi w sposób, który narusza zasady przydzielania adresów IP. Natomiast 512 jest absolutnie niepoprawne, gdyż liczba ta przekracza całkowitą liczbę adresów IP dostępnych w bloku klasy C. Kwestia właściwego zrozumienia struktury adresowania IPv4 jest kluczowa dla projektowania i zarządzania sieciami, a stosowanie się do standardów i dobrych praktyk jest niezbędne dla zapewnienia prawidłowego funkcjonowania infrastruktury sieciowej.

Pytanie 38

Którego protokołu działanie zostało zobrazowane na załączonym rysunku?

Ilustracja do pytania
A. Domain Name System(DNS)
B. Telnet
C. Dynamic Host Configuration Protocol (DHCP)
D. Security Shell (SSH)
Domain Name System (DNS) jest protokołem używanym do tłumaczenia nazw domenowych na adresy IP, co umożliwia użytkownikom łatwiejsze poruszanie się po Internecie bez potrzeby zapamiętywania skomplikowanych adresów liczbowych. DNS działa w oparciu o hierarchiczny system serwerów i nie uczestniczy w procesie przypisywania adresów IP, ale w mapowaniu nazw na już przypisane adresy. Często mylnie utożsamiany z DHCP ze względu na rolę w zarządzaniu zasobami sieciowymi, lecz jego funkcje są całkowicie różne. Secure Shell (SSH) to protokół sieciowy zapewniający bezpieczne zdalne logowanie i komunikację w niezabezpieczonych sieciach. Jest używany głównie do zarządzania serwerami przez bezpieczne kanały komunikacyjne. W przeciwieństwie do DHCP, SSH koncentruje się na ochronie danych i autoryzacji użytkowników, a nie na konfiguracji sieci. Telnet to starszy protokół komunikacyjny używany do zdalnego połączenia z urządzeniami w sieci, jednak nie zapewnia zabezpieczeń, takich jak szyfrowanie danych, co czyni go podatnym na podsłuch i ataki. Zarówno SSH, jak i Telnet, koncentrują się na komunikacji między urządzeniami, podczas gdy DHCP ma na celu automatyzację przydzielania zasobów sieciowych. Mylenie tych protokołów wynika często z niezrozumienia ich specyfiki i odmiennych zastosowań w sieciach komputerowych. Ważne jest, aby zrozumieć, że każdy z tych protokołów ma swoje unikalne, niekrzyżujące się funkcje i zastosowania, co pozwala na ich właściwy dobór w zależności od potrzeb sieciowych organizacji. Błędne przypisanie funkcji jednemu z nich może prowadzić do nieefektywności i problemów bezpieczeństwa w zarządzaniu infrastrukturą sieciową. W przypadku zarządzania siecią kluczowe jest dokładne określenie roli, jaką każdy protokół odgrywa w jej funkcjonowaniu i odpowiednie ich wdrożenie zgodnie z najlepszymi praktykami branżowymi.

Pytanie 39

Jaki protokół warstwy aplikacji jest wykorzystywany do zarządzania urządzeniami sieciowymi poprzez sieć?

A. FTP
B. MIME
C. SNMP
D. NTP
Protokół SNMP (Simple Network Management Protocol) jest kluczowym narzędziem stosowanym do zarządzania urządzeniami sieciowymi w rozbudowanych infrastrukturach IT. Umożliwia administratorom monitorowanie i zarządzanie urządzeniami takimi jak routery, przełączniki, drukarki i serwery w sieci. Dzięki zastosowaniu SNMP, administratorzy mogą zdalnie zbierać informacje o stanie urządzeń, ich wydajności oraz ewentualnych problemach, co pozwala na szybsze reagowanie na awarie i utrzymanie ciągłości działania sieci. Protokół ten działa na zasadzie modelu klient-serwer, gdzie agent SNMP na urządzeniu zbiera i przesyła dane do menedżera SNMP, który interpretuje te dane oraz podejmuje odpowiednie działania. W praktyce, SNMP jest szeroko wykorzystywany w systemach zarządzania siecią, takich jak SolarWinds czy Nagios, co jest zgodne z najlepszymi praktykami w branży, które zalecają bieżące monitorowanie stanu infrastruktury sieciowej.

Pytanie 40

W jakim systemie numerycznym przedstawione są zakresy We/Wy na ilustracji?

Ilustracja do pytania
A. Binarnym
B. Dziesiętnym
C. Ósemkowym
D. Szesnastkowym
Odpowiedź szesnastkowa jest prawidłowa, ponieważ zakresy We/Wy w systemach komputerowych często są przedstawiane w systemie szesnastkowym (hexadecymalnym). System szesnastkowy jest bardzo powszechnie stosowany w informatyce, ponieważ pozwala na bardziej zwięzłe przedstawienie danych binarnych. Każda cyfra szesnastkowa reprezentuje cztery bity, co ułatwia konwersję między tymi dwoma systemami liczbowymi. W praktyce, system szesnastkowy jest używany do reprezentacji adresów pamięci, rejestrów procesora oraz innych zasobów systemowych. W interfejsach użytkownika, takich jak menadżery zasobów systemowych, adresy są często wyświetlane w formacie szesnastkowym, poprzedzone prefiksem '0x', co jednoznacznie wskazuje na ich format. Standardowe zasady i dobre praktyki w branży informatycznej sugerują użycie systemu szesnastkowego do oznaczania adresacji sprzętowej, co minimalizuje błędy i ułatwia zarządzanie zasobami. W szczególności, w systemach operacyjnych takich jak Windows, zakresy pamięci i adresy portów są często prezentowane w tym systemie, co daje administratorom systemów i programistom narzędzie do precyzyjnego zarządzania i diagnozowania systemów komputerowych. Zrozumienie i umiejętność interpretacji danych szesnastkowych jest kluczowe dla profesjonalistów w dziedzinie IT.