Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 12 marca 2025 10:13
  • Data zakończenia: 12 marca 2025 10:42

Egzamin zdany!

Wynik: 34/40 punktów (85,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jaką kwotę będzie trzeba zapłacić za wymianę karty graficznej w komputerze, jeżeli jej koszt wynosi 250zł, czas wymiany to 80 minut, a każda rozpoczęta roboczogodzina to 50zł?

A. 350zł
B. 250zł
C. 400zł
D. 300zł
Koszt wymiany karty graficznej w komputerze składa się z dwóch głównych elementów: ceny samej karty oraz kosztu robocizny. W tym przypadku karta graficzna kosztuje 250zł. Czas wymiany wynosi 80 minut, co przelicza się na 1 godzinę i 20 minut. W przypadku kosztów robocizny, każda rozpoczęta roboczogodzina kosztuje 50zł, co oznacza, że za 80 minut pracy należy zapłacić za pełną godzinę, czyli 50zł. Zatem całkowity koszt wymiany karty graficznej wynosi 250zł (cena karty) + 50zł (koszt robocizny) = 300zł. Jednak, ponieważ za każdą rozpoczętą roboczogodzinę płacimy pełną stawkę, należy doliczyć dodatkowe 50zł, co daje 350zł. Praktycznym zastosowaniem tej wiedzy jest umiejętność dokładnego oszacowania kosztów związanych z serwisowaniem sprzętu komputerowego, co jest kluczowe dla osób prowadzących działalność gospodarczą oraz dla użytkowników indywidualnych planujących modernizację swojego sprzętu. Wiedza ta jest również dobrze przyjęta w standardach branżowych, gdzie precyzyjne szacowanie kosztów serwisowych jest nieodzowną praktyką.

Pytanie 2

Na ilustracji ukazano narzędzie systemowe w Windows 7, które jest używane do

Ilustracja do pytania
A. naprawiania problemów z systemem
B. konfiguracji preferencji użytkownika
C. tworzenia kopii zapasowych systemu
D. przeprowadzania migracji systemu
Ten rysunek, który widzisz, to część panelu sterowania Windows 7, a dokładniej sekcja Wygląd i personalizacja. Zajmuje się ona ustawieniami, które mają wpływ na to, jak wygląda nasz system. Możesz dzięki temu zmieniać różne rzeczy, jak kolory okien czy dźwięki. Gdy zmieniasz tło pulpitu, to naprawdę nadajesz swojemu miejscu pracy osobisty charakter – każdy lubi mieć coś, co mu się podoba. Poza tym, ta sekcja pozwala też dostosować rozdzielczość ekranu, co jest ważne, żeby dobrze widzieć, a przy okazji chronić wzrok. Takie opcje są super przydatne, zwłaszcza w pracy, bo kiedy system jest zgodny z naszymi oczekiwaniami, to praca idzie lepiej. Windows, przez te różne funkcje, daje nam sporą kontrolę nad tym, jak wygląda interfejs, co w dzisiejszych czasach jest naprawdę ważne.

Pytanie 3

Rejestr procesora, znany jako licznik rozkazów, przechowuje

A. adres rozkazu, który ma być wykonany następnie
B. ilość rozkazów zrealizowanych przez procesor do tego momentu
C. liczbę cykli zegara od momentu rozpoczęcia programu
D. liczbę rozkazów, które pozostały do zrealizowania do zakończenia programu
Rejestr mikroprocesora zwany licznikiem rozkazów (ang. Instruction Pointer, IP) jest kluczowym elementem w architekturze komputerowej. Jego główną funkcją jest przechowywanie adresu pamięci, który wskazuje na następny rozkaz do wykonania przez procesor. To fundamentalne dla zapewnienia prawidłowego przepływu kontroli w programach komputerowych. Gdy procesor wykonuje rozkaz, wartość w liczniku rozkazów jest automatycznie aktualizowana, aby wskazywała na kolejny rozkaz, co pozwala na sekwencyjne wykonywanie instrukcji. W praktyce oznacza to, że odpowiednia implementacja licznika rozkazów jest niezbędna do działania wszelkich systemów operacyjnych i aplikacji, które operują na procesorach. Standardy takie jak x86 i ARM mają swoje specyfikacje dotyczące działania tego rejestru, co zapewnia zgodność i optymalizację wydajności. Zrozumienie działania licznika rozkazów jest kluczowe dla każdego, kto zajmuje się programowaniem niskopoziomowym, co jest istotne m.in. w kontekście debugowania i optymalizacji kodu.

Pytanie 4

W systemie Linux zarządzanie parametrami transmisji w sieciach bezprzewodowych jest możliwe dzięki

A. winipcfg
B. ipconfig
C. ifconfig
D. iwconfig
Odpowiedź 'iwconfig' jest prawidłowa, ponieważ jest to narzędzie w systemie Linux służące do zarządzania interfejsami bezprzewodowymi. Umożliwia ono użytkownikom m.in. konfigurowanie parametrów takich jak SSID (nazwa sieci), tryb operacyjny, kanał transmisji oraz tryb zabezpieczeń. Przykładowo, aby połączyć się z określoną siecią bezprzewodową, użytkownik może użyć polecenia 'iwconfig wlan0 essid "nazwa_sieci"', co ustawia SSID dla interfejsu wlan0. Ponadto, 'iwconfig' pozwala na monitorowanie siły sygnału oraz jakości połączenia, co jest kluczowe w kontekście optymalizacji rozwiązań sieciowych w różnych środowiskach. Narzędzie to jest zgodne ze standardem IEEE 802.11 i jest powszechnie stosowane w administracji systemami i sieciami, co czyni je niezbędnym dla każdego administratora IT pracującego z urządzeniami bezprzewodowymi.

Pytanie 5

W jakim systemie jest przedstawiona liczba 1010(o)?

A. binarnym
B. szesnastkowym
C. ósemkowym
D. dziesiętnym
System dziesiętny, znany jako system dziesiątkowy, składa się z dziesięciu cyfr (0-9) i jest najpowszechniej stosowanym systemem liczbowym w codziennym życiu. Liczby w tym systemie są interpretowane na podstawie położenia cyfr w danej liczbie, co może prowadzić do błędnych wniosków przy konwersji do innych systemów. Na przykład, liczba 1010 w systemie dziesiętnym oznacza 1*10^3 + 0*10^2 + 1*10^1 + 0*10^0, co daje 1000 + 0 + 10 + 0 = 1010. Jednak taka interpretacja nie ma zastosowania w przypadku systemu ósemkowego, gdzie podstawą jest 8. Z kolei system binarny polega na użyciu jedynie dwóch cyfr (0 i 1), a liczba 1010 w tym systemie oznacza 1*2^3 + 0*2^2 + 1*2^1 + 0*2^0, co daje 8 + 0 + 2 + 0 = 10 w systemie dziesiętnym. Użycie systemu szesnastkowego, który obejmuje cyfry od 0 do 9 oraz litery od A do F (gdzie A=10, B=11, C=12, D=13, E=14, F=15), również wprowadza dodatkowe zamieszanie. Dlatego zrozumienie różnic pomiędzy tymi systemami oraz ich zastosowań jest kluczowe, aby uniknąć nieporozumień i błędów w konwersji liczby. Typowe błędy myślowe w analizie systemów liczbowych często wynikają z pomylenia podstawy systemu oraz zastosowania nieodpowiednich reguł konwersji, co prowadzi do zamieszania i nieprawidłowych wyników.

Pytanie 6

Jaką funkcję pełni protokół ARP (Address Resolution Protocol)?

A. Zarządza przepływem pakietów w ramach systemów autonomicznych
B. Obsługuje grupy multicast w sieciach opartych na protokole IP
C. Przekazuje informacje zwrotne dotyczące problemów z siecią
D. Określa adres MAC na podstawie adresu IP
Protokół ARP (Address Resolution Protocol) pełni kluczową rolę w komunikacji w sieciach komputerowych, szczególnie w kontekście sieci opartych na protokole Internet Protocol (IP). Jego podstawowym zadaniem jest ustalanie adresu fizycznego (adresu MAC) urządzenia, które ma przypisany dany adres IP. W momencie, gdy komputer chce wysłać dane do innego komputera w tej samej sieci lokalnej, najpierw musi znać jego adres MAC. Protokół ARP wykorzystuje żądania ARP, które są wysyłane jako multicastowe ramki do wszystkich urządzeń w sieci, pytając, kto ma dany adres IP. Odpowiedzią jest adres MAC urządzenia, które posiada ten adres IP. Dzięki temu, ARP umożliwia prawidłowe kierowanie pakietów w warstwie drugiej modelu OSI, co jest niezbędne do efektywnej komunikacji w lokalnych sieciach. Przykładem praktycznego zastosowania ARP jest sytuacja, w której komputer A chce nawiązać połączenie z komputerem B; ARP poprzez identyfikację adresu MAC umożliwia właściwe dostarczenie informacji, co jest fundamentem działania Internetu i lokalnych sieci komputerowych.

Pytanie 7

Relacja między ładunkiem zmagazynowanym na przewodniku a potencjałem tego przewodnika wskazuje na jego

A. rezystancję
B. moc
C. pojemność elektryczną
D. indukcyjność
Pojemność elektryczna to właściwość przewodnika, która definiuje zdolność do gromadzenia ładunku elektrycznego pod wpływem potencjału elektrycznego. Z definicji, pojemność C jest równa stosunkowi zgromadzonego ładunku Q do potencjału V, co można zapisać jako C = Q/V. W praktyce, pojemność elektryczna odgrywa kluczową rolę w wielu zastosowaniach technologicznych, takich jak kondensatory, które są komponentami szeroko stosowanymi w obwodach elektronicznych do przechowywania energii, filtracji sygnałów czy stabilizacji napięcia. Pojemność kondensatorów może być różna w zależności od zastosowanych materiałów dielektrycznych i geometrii. Dobre praktyki inżynieryjne wymagają zrozumienia pojemności, aby odpowiednio dobierać kondensatory do konkretnych układów, co wpływa na ich efektywność i żywotność. W kontekście standardów, analiza pojemności jest ważna także w projektowaniu systemów zasilania, gdzie stabilność i jakość dostarczanego napięcia są kluczowe dla funkcjonowania urządzeń elektronicznych.

Pytanie 8

Na ilustracji widać

Ilustracja do pytania
A. switch
B. patch panel
C. router
D. hub
Panel krosowy to istotny element infrastruktury sieciowej stosowany w centrach danych oraz serwerowniach. Jego główną funkcją jest ułatwienie zarządzania okablowaniem poprzez centralizację punktów połączeń kabli sieciowych. Panel krosowy składa się z wielu portów, do których podłączane są przewody skrętkowe. Umożliwia to łatwą modyfikację połączeń bez konieczności bezpośredniej ingerencji w urządzenia końcowe. Panel krosowy poprawia organizację struktury kablowej i ułatwia jej zarządzanie. Jest zgodny ze standardami takimi jak TIA/EIA-568, które określają zasady dotyczące okablowania strukturalnego. Dzięki panelowi krosowemu można szybko i efektywnie zmieniać konfiguracje sieciowe, co jest szczególnie ważne w dynamicznym środowisku IT. W praktyce panele krosowe są wykorzystywane w połączeniach pomiędzy serwerami, przełącznikami i różnymi segmentami sieci, co pozwala na elastyczne zarządzanie zasobami sieciowymi. Dobre praktyki wskazują na regularne etykietowanie portów i przewodów w celu łatwiejszej identyfikacji i obsługi.

Pytanie 9

Zrzut ekranu ilustruje aplikację

Ilustracja do pytania
A. antywirusowy
B. typu firewall
C. typu recovery
D. antyspamowy
Firewall to mega ważny element w zabezpieczeniach sieci komputerowych. Działa jak taka bariera pomiędzy naszą siecią a światem zewnętrznym. Jego głównym zadaniem jest monitorowanie i kontrolowanie ruchu w sieci, oczywiście na podstawie reguł, które wcześniej ustaliliśmy. Na zrzucie ekranu widać listę reguł przychodzących, co pokazuje, że mamy do czynienia z typowym firewall'em. Firewalle mogą być hardware'owe albo software'owe i często można je ustawiać w taki sposób, żeby filtrowały pakiety, zmieniały adresy sieciowe czy sprawdzały stan połączeń. Dobrze skonfigurowany firewall chroni przed nieautoryzowanym dostępem, zapobiega atakom DOS i kontroluje, kto ma dostęp do naszych zasobów. Korzysta się z nich w różnych miejscach, od domowych sieci po te wielkie korporacyjne. Dobrze jest regularnie aktualizować reguły firewalla, sprawdzać logi w poszukiwaniu dziwnych rzeczy i łączyć go z innymi narzędziami bezpieczeństwa, jak systemy wykrywania intruzów. Jak się to wszystko dobrze poustawia, można znacząco poprawić bezpieczeństwo i chronić nasze wrażliwe dane przed zagrożeniami w sieci.

Pytanie 10

Jakie pole znajduje się w nagłówku protokołu UDP?

A. Suma kontrolna
B. Numer sekwencyjny
C. Numer potwierdzenia
D. Wskaźnik pilności
Suma kontrolna w nagłówku protokołu UDP (User Datagram Protocol) jest kluczowym elementem, który zapewnia integralność danych przesyłanych w pakietach. UDP jest protokołem bezpołączeniowym, co oznacza, że nie ustanawia trwałego połączenia przed przesłaniem danych, co sprawia, że ważne jest, aby każda jednostka danych była weryfikowalna. Suma kontrolna obliczana jest na podstawie zawartości nagłówka oraz danych użytkownika i jest używana do sprawdzenia, czy pakiet nie został uszkodzony w trakcie transmisji. W praktyce, jeżeli suma kontrolna obliczona przez odbiorcę różni się od tej zawartej w nagłówku, pakiet jest odrzucany, co minimalizuje ryzyko błędów w komunikacji. Dobre praktyki dotyczące implementacji UDP zalecają korzystanie z sumy kontrolnej, aby wzmocnić niezawodność, mimo że sama specyfika protokołu nie wymusza jej użycia. W kontekście standardów, suma kontrolna jest zgodna z wymaganiami określonymi w dokumentach RFC, co podkreśla jej znaczenie w dziedzinie protokołów komunikacyjnych.

Pytanie 11

Na ilustracji przedstawiona jest konfiguracja

Ilustracja do pytania
A. wirtualnych sieci
B. rezerwacji adresów MAC
C. sieci bezprzewodowej
D. przekierowania portów
Wybór odpowiedzi związanej z siecią bezprzewodową jest błędny ponieważ na rysunku nie ma nic co odnosiłoby się do elementów specyficznych dla sieci bezprzewodowych jak punkty dostępowe czy konfiguracje SSID. Sieci bezprzewodowe wykorzystują technologie takie jak Wi-Fi które opierają się na standardach IEEE 802.11. Przekierowanie portów odnosi się do translacji adresów sieciowych (NAT) co jest związane z mapowaniem portów zewnętrznych na wewnętrzne adresy IP i porty. Jednak w kontekście rysunku nie ma żadnych wskazówek dotyczących konfiguracji NAT. Rezerwacja adresów MAC sugerowałaby ustawienia związane z przypisywaniem konkretnych adresów MAC do interfejsów sieciowych aby zapewnić kontrolę dostępu do sieci. Choć jest to funkcjonalność użyteczna w zarządzaniu sieciami to również nie dotyczy przedstawionego rysunku który koncentruje się na konfiguracji VLAN. Typowym błędem jest mylenie tych pojęć z uwagi na ich zastosowanie w zarządzaniu siecią jednak każde z nich pełni odrębne funkcje i odnosi się do różnych aspektów administracji sieciowej. Poprawne rozpoznanie elementów VLAN jest kluczowe dla skutecznego zarządzania segmentacją sieci i jej bezpieczeństwem co ma fundamentalne znaczenie w nowoczesnych infrastrukturach IT

Pytanie 12

Komputer dysponuje adresem IP 192.168.0.1, a jego maska podsieci wynosi 255.255.255.0. Który adres stanowi adres rozgłoszeniowy dla podsieci, do której ten komputer przynależy?

A. 192.168.0.255
B. 192.168.0.31
C. 192.168.0.63
D. 192.168.0.127
Adres 192.168.0.255 to adres rozgłoszeniowy dla sieci, do której należy komputer z adresem 192.168.0.1 i maską 255.255.255.0. Tak naprawdę, przy tej masce, pierwsze trzy oktety (192.168.0) wskazują na sieć, a ostatni (czyli ten czwarty) służy do adresowania urządzeń w tej sieci. Warto pamiętać, że adres rozgłoszeniowy to ten ostatni adres w danej podsieci, co w tym przypadku to właśnie 192.168.0.255. Ta funkcjonalność jest mega ważna, bo pozwala na wysłanie pakietów do wszystkich urządzeń w sieci naraz. W praktyce, rozgłoszenia są wykorzystywane w takich protokołach jak ARP czy DHCP, co pozwala na automatyczne przydzielanie adresów IP. Moim zdaniem, zrozumienie tego, jak działają adresy rozgłoszeniowe, ma znaczenie dla każdego, kto chce ogarnąć sprawy związane z sieciami komputerowymi. Właściwe użycie tych adresów naprawdę wpływa na to, jak dobrze działa sieć.

Pytanie 13

W systemie Linux, jak można znaleźć wszystkie pliki z rozszerzeniem txt, które znajdują się w katalogu /home/user i rozpoczynają się na literę a, b lub c?

A. ls /home/user/a?b?c?.txt
B. ls /home/user/[a-c]*.txt
C. ls /home/user/abc*.txt
D. ls /home/user/[!abc]*.txt
Odpowiedź 'ls /home/user/[a-c]*.txt' jest poprawna, ponieważ wykorzystuje wyrażenie regularne do określenia, że chcemy wyszukiwać pliki w katalogu /home/user, które zaczynają się na literę a, b lub c i mają rozszerzenie .txt. W systemach Unix/Linux, użycie nawiasów kwadratowych pozwala na definiowanie zbioru znaków, co w tym przypadku oznacza, że interesują nas pliki, których nazwy rozpoczynają się od wskazanych liter. Użycie znaku '*' na końcu oznacza, że wszystkie znaki po literze a, b lub c są akceptowane, co pozwala na wyszukiwanie dowolnych plików. Jest to przykład dobrych praktyk w posługiwaniu się powłoką Linux, gdzie umiejętność efektywnego wyszukiwania plików i folderów jest kluczowa dla zarządzania systemem. Przykładowe zastosowanie tego polecenia w codziennej pracy może obejmować wyszukiwanie dokumentów tekstowych, skryptów czy plików konfiguracyjnych, co znacznie przyspiesza proces organizacji i przetwarzania danych w systemie. Dodatkowo, znajomość wyrażeń regularnych jest niezbędna do automatyzacji zadań i pisania skryptów powłoki.

Pytanie 14

W systemie operacyjnym Fedora foldery domowe użytkowników znajdują się w folderze

A. /home
B. /user
C. /bin
D. /users
Katalog domowy użytkowników w systemie operacyjnym Fedora znajduje się w katalogu /home. Jest to standardowa praktyka w wielu dystrybucjach systemu Linux, co umożliwia łatwe zarządzanie danymi użytkowników. Katalogi domowe służą jako osobiste przestrzenie dla użytkowników, gdzie mogą przechowywać swoje pliki, dokumenty oraz konfiguracje aplikacji. Na przykład, po utworzeniu nowego użytkownika w systemie, jego katalog domowy będzie automatycznie tworzony jako /home/nazwa_użytkownika. Dobrą praktyką jest również nadawanie odpowiednich uprawnień do tych katalogów, co zapewnia prywatność i bezpieczeństwo danych użytkowników. Oprócz tego, katalog /home może być konfigurowany na osobnej partycji, co zwiększa bezpieczeństwo danych w przypadku, gdy system operacyjny wymaga reinstalacji. Poznanie struktury katalogów w systemie Linux jest kluczowe dla efektywnego zarządzania systemem i optymalizacji codziennych zadań administracyjnych.

Pytanie 15

Na rysunku przedstawiono ustawienia karty sieciowej urządzenia z adresem IP 10.15.89.104/25. Co z tego wynika?

Ilustracja do pytania
A. adres IP jest błędny
B. adres maski jest błędny
C. adres domyślnej bramy pochodzi z innej podsieci niż adres hosta
D. serwer DNS znajduje się w tej samej podsieci co urządzenie
Odpowiedź jest poprawna, ponieważ adres domyślnej bramy jest z innej podsieci niż adres hosta. Kluczowym elementem jest zrozumienie, jak działają podsieci w sieciach komputerowych. Adres IP 10.15.89.104 z maską 255.255.255.128 oznacza, że sieć obejmuje adresy od 10.15.89.0 do 10.15.89.127. Adres bramy 10.15.89.129 jest poza tym zakresem, co oznacza, że należy do innej podsieci. To jest ważne, ponieważ brama domyślna musi być w tej samej podsieci co host, aby komunikacja wychodząca z lokalnej sieci mogła być prawidłowo przekierowana. W praktyce konfiguracje tego typu są istotne dla administratorów sieci, którzy muszą zapewnić, że urządzenia sieciowe są prawidłowo skonfigurowane. Zgodność adresacji IP z maską podsieci oraz prawidłowe przypisanie bramy są kluczowe dla unikania problemów z łącznością sieciową. Standardowe praktyki branżowe zalecają dokładną weryfikację konfiguracji, aby upewnić się, że wszystkie urządzenia mogą komunikować się efektywnie i bez zakłóceń. Prawidłowa konfiguracja wspiera stabilność sieci i minimalizuje ryzyko wystąpienia problemów związanych z routingiem danych.

Pytanie 16

W systemie Windows harmonogram zadań umożliwia przypisanie

A. więcej niż pięciu terminów realizacji dla danego programu
B. nie więcej niż trzech terminów realizacji dla danego programu
C. nie więcej niż czterech terminów realizacji dla danego programu
D. nie więcej niż pięciu terminów realizacji dla danego programu
Wiele osób może błędnie zakładać, że harmonogram zadań w systemie Windows ogranicza się do niewielkiej liczby terminów wykonania, co prowadzi do niepełnego wykorzystania jego możliwości. Stwierdzenie, że harmonogram może przypisać nie więcej niż trzy, cztery lub pięć terminów wykonania, jest niezgodne z rzeczywistością. System Windows rzeczywiście pozwala na tworzenie wielu zadań dla jednego programu, co oznacza, że użytkownicy mają możliwość planowania go w różnych terminach i w różnorodny sposób. Takie ograniczone podejście do harmonogramu może być wynikiem niepełnej wiedzy na temat funkcji tego narzędzia. W rzeczywistości, harmonogram zadań może być wykorzystywany do tworzenia zadań cyklicznych, takich jak uruchamianie skanów antywirusowych, aktualizacji systemu, czy synchronizacji plików, co czyni go niezwykle wszechstronnym narzędziem. Ponadto, brak wiedzy o możliwościach harmonogramu zadań może negatywnie wpłynąć na efektywność pracy, ponieważ automatyzacja rutynowych operacji pozwala na bardziej efektywne zarządzanie czasem i zasobami. Warto zatem zainwestować czas w naukę pełnej funkcjonalności harmonogramu zadań, aby móc w pełni wykorzystać jego potencjał w codziennej pracy.

Pytanie 17

Aby zatuszować identyfikator sieci bezprzewodowej, należy zmodyfikować jego ustawienia w ruterze w polu oznaczonym numerem

Ilustracja do pytania
A. 2
B. 3
C. 1
D. 4
Opcja ukrycia identyfikatora SSID w sieci bezprzewodowej polega na zmianie konfiguracji routera w polu oznaczonym numerem 2 co jest standardową procedurą pozwalającą na zwiększenie bezpieczeństwa sieci. SSID czyli Service Set Identifier to unikalna nazwa identyfikująca sieć Wi-Fi. Choć ukrycie SSID nie zapewnia pełnej ochrony przed nieautoryzowanym dostępem może utrudnić odnalezienie sieci przez osoby niepowołane. W praktyce przydaje się to w miejscach gdzie chcemy ograniczyć możliwość przypadkowych połączeń z naszą siecią np. w biurach czy domach w gęsto zaludnionych obszarach. Dobrą praktyką jest także stosowanie dodatkowych środków zabezpieczających takich jak silne hasła WPA2 lub WPA3 oraz filtrowanie adresów MAC. Mimo że ukrycie SSID może zwiększyć bezpieczeństwo technicznie zaawansowani użytkownicy mogą zidentyfikować ukryte sieci za pomocą odpowiednich narzędzi do nasłuchu sieci. Jednakże dla przeciętnego użytkownika ukrycie SSID stanowi dodatkową warstwę ochrony. Należy pamiętać że zmiany te mogą wpływać na łatwość połączenia się urządzeń które były już wcześniej skonfigurowane do automatycznego łączenia z siecią.

Pytanie 18

Ile różnych sieci obejmują komputery z adresami IP podanymi w tabeli oraz przy standardowej masce sieci?

A. Czterech
B. Jednej
C. Dwóch
D. Sześciu
Odpowiedź 'Czterech' jest prawidłowa, ponieważ komputery opisane w tabeli mieszczą się w czterech różnych sieciach IP. Każdy adres IP w standardowym formacie IPv4 składa się z czterech oktetów, a w przypadku klasy adresowej A (jak w tym przypadku, gdzie pierwsza liczba to 172) pierwsze 8 bitów (pierwszy oktet) definiuje sieć, a pozostałe 24 bity mogą być używane do definiowania hostów w tej sieci. Używając standardowej maski podsieci 255.0.0.0 dla klasy A, możemy zauważyć, że pierwsze liczby różnych adresów IP decydują o przynależności do sieci. W tabeli mamy adresy 172.16, 172.18, 172.20 i 172.21, co oznacza, że komputery te są rozdzielone na cztery unikalne sieci: 172.16.0.0, 172.18.0.0, 172.20.0.0 i 172.21.0.0. Przykład praktyczny to sytuacja, gdy w firmie różne działy mają swoje własne podsieci, co pozwala na lepsze zarządzanie ruchem sieciowym i zwiększa bezpieczeństwo. Zrozumienie struktury adresacji IP oraz podziału na sieci jest kluczowe w projektowaniu i administracji sieci komputerowych, co jest zgodne z najlepszymi praktykami branżowymi.

Pytanie 19

Aby zmierzyć tłumienie światłowodowego łącza w dwóch zakresach długości fal 1310 nm i 1550 nm, należy zastosować

A. rejestratora cyfrowego
B. testera UTP
C. miernika mocy optycznej
D. reflektometr TDR
Miernik mocy optycznej to urządzenie, które idealnie nadaje się do pomiaru tłumienia łącza światłowodowego w różnych oknach transmisyjnych, takich jak 1310 nm i 1550 nm. Tłumienie, które wyraża się w decybelach (dB), jest określane jako różnica mocy sygnału przed i po przejściu przez medium, co pozwala na ocenę jakości łącza. Mierniki mocy optycznej są zgodne z normami ITU-T G.651 oraz G.652, które definiują wymagania dotyczące jakości sieci światłowodowych. W praktyce, podczas testowania łącza, nadajnik o znanej mocy jest używany do wprowadzenia sygnału do włókna, a miernik mocy optycznej rejestruje moc na końcu łącza. Dzięki temu możliwe jest precyzyjne określenie wartości tłumienia oraz identyfikacja ewentualnych problemów, takich jak zanieczyszczenia, złe połączenia lub uszkodzenia włókna. Regularne pomiary tłumienia są kluczowe dla utrzymania niezawodności i wydajności sieci światłowodowych, co jest istotne w kontekście rosnących wymagań dotyczących przepustowości i jakości usług.

Pytanie 20

Zakres operacji we/wy dla kontrolera DMA w notacji heksadecymalnej wynosi 0094-009F, a w systemie dziesiętnym?

A. 148-159
B. 1168-3984
C. 73-249
D. 2368-2544
Fajnie, że zajmujesz się zakresem adresów kontrolera DMA. Wiesz, wartość heksadecymalna 0094-009F w dziesiętnym to tak jakby 148 do 159. Przemiana z heksadecymalnego na dziesiętny to nie takie trudne, wystarczy pamietać, żeby każdą cyfrę pomnożyć przez 16 do odpowiedniej potęgi. Na przykład, jak mamy 0x0094, to się to rozkłada tak: 0*16^3 + 0*16^2 + 9*16^1 + 4*16^0, co daje 148. A z kolei 0x009F to 0*16^3 + 0*16^2 + 9*16^1 + 15*16^0 i wychodzi 159. Te zakresy są mega ważne, zwłaszcza przy programowaniu i zarządzaniu pamięcią, szczególnie w systemach wbudowanych, gdzie kontroler DMA musi być precyzyjny. Jak dobrze to rozumiesz, to możesz lepiej zarządzać pamięcią i unikać problemów z przesyłaniem danych, co naprawdę ma znaczenie, zwłaszcza w złożonych systemach.

Pytanie 21

Minimalna zalecana ilość pamięci RAM dla systemu operacyjnego Windows Server 2008 wynosi przynajmniej

A. 1,5 GB
B. 512 MB
C. 1 GB
D. 2 GB
Wybierając odpowiedzi inne niż 2 GB, można naprawdę się pomylić co do wymagań systemowych. Odpowiedzi takie jak 512 MB, 1 GB, czy 1,5 GB kompletnie nie biorą pod uwagę, czego naprawdę potrzebuje Windows Server 2008. W dzisiejszych czasach pamięć RAM to kluczowy element, który wpływa na to, jak dobrze wszystko działa. Jak jest jej za mało, serwer często korzysta z dysku twardego, co prowadzi do opóźnień. W branży mówi się, że minimalne wymagania to tylko początek, a w praktyce może być tego znacznie więcej w zależności od obciążenia i uruchomionych aplikacji. Ignorując wymagania dotyczące RAM, można napotkać problemy z aplikacjami klienckimi, co podnosi koszty związane z utrzymaniem systemu. Z mojego punktu widzenia, pomijanie tych wskazówek to prosta droga do komplikacji, a ryzyko awarii rośnie, co w pracy nie może być akceptowalne.

Pytanie 22

Aby uzyskać listę procesów aktualnie działających w systemie Linux, należy użyć polecenia

A. who
B. dir
C. show
D. ps
Polecenie 'ps' w systemie Linux jest kluczowym narzędziem do monitorowania i zarządzania procesami działającymi w systemie. Jego pełna forma to 'process status', a jego zadaniem jest wyświetlenie informacji o aktualnie uruchomionych procesach, takich jak ich identyfikatory PID, wykorzystanie pamięci, stan oraz czas CPU. Dzięki możliwościom filtrowania i formatowania wyników, 'ps' jest niezwykle elastyczne, co czyni je niezastąpionym narzędziem w codziennej administracji systemami. Na przykład, użycie polecenia 'ps aux' pozwala uzyskać pełen widok na wszystkie procesy, w tym te uruchomione przez innych użytkowników. W praktyce, administratorzy często łączą 'ps' z innymi poleceniami, takimi jak 'grep', aby szybko zidentyfikować konkretne procesy, co jest zgodne z dobrymi praktykami zarządzania systemami. Zrozumienie i umiejętność korzystania z 'ps' jest fundamentem dla każdego, kto zajmuje się administracją systemów Linux, a jego znajomość jest kluczowym elementem w rozwiązywaniu problemów związanych z wydajnością czy zarządzaniem zasobami.

Pytanie 23

Na urządzeniu zasilanym prądem stałym znajduje się wskazane oznaczenie. Co można z niego wywnioskować o pobieranej mocy urządzenia, która wynosi około

Ilustracja do pytania
A. 18,75 W
B. 7,5 W
C. 2,5 W
D. 11 W
Błędne odpowiedzi wynikają z nieprawidłowego zastosowania wzoru na moc dla prądu stałego, który brzmi P=U×I. Niepoprawne jest założenie, że moc jest równa innym wartościom niż iloczyn napięcia i natężenia. Przykładowo wybór odpowiedzi 2,5 W mógłby wynikać z błędnego założenia, że moc jest równa tylko jednemu z podanych parametrów, co jest niezgodne z zasadami obliczania mocy. Natomiast 7,5 W mogło być wynikiem błędnego pomnożenia napięcia przez natężenie z błędnym zaokrągleniem lub wyborem jednej z wartości. Takie pomyłki mogą wynikać z nieznajomości podstawowych zasad matematyki stosowanej w elektrotechnice, a także z braku uwagi przy dokładnym stosowaniu wzorów. Z kolei 11 W mogło być wynikiem niedokładnego pomnożenia 7,5 przez 2,5, co często zdarza się, gdy nie zwraca się uwagi na precyzję obliczeń. W branży elektrotechnicznej niezbędna jest dokładność i zrozumienie jak obliczać moc z uwzględnieniem wszystkich czynników, co ma kluczowe znaczenie dla bezpieczeństwa i sprawności działania urządzeń. Pomyłki w tym zakresie mogą prowadzić do niewłaściwego doboru komponentów i potencjalnych awarii sprzętu, dlatego tak istotne jest opanowanie tych umiejętności obliczeniowych. Właściwe zrozumienie i stosowanie wzorów na moc jest fundamentalne dla pracy w dziedzinie elektroniki i elektrotechniki oraz dla zapewnienia bezpiecznych i efektywnych projektów energetycznych.

Pytanie 24

Na jakich nośnikach pamięci masowej jednym z najczęstszych powodów uszkodzeń jest zniszczenie powierzchni?

A. W dyskach HDD
B. W pamięci zewnętrznej Flash
C. W kartach pamięci SD
D. W dyskach SSD
Dyski HDD (Hard Disk Drive) są nośnikami pamięci masowej, których konstrukcja opiera się na mechanicznym zapisie i odczycie danych przy użyciu wirujących talerzy pokrytych materiałem magnetycznym. Jedną z najczęstszych przyczyn uszkodzeń w dyskach HDD jest uszkodzenie powierzchni talerzy, które może być efektem fizycznych uderzeń, wstrząsów czy nieprawidłowego użytkowania. W przypadku dysków HDD, powierzchnia talerzy jest bardzo wrażliwa na zarysowania i inne uszkodzenia, co może prowadzić do utraty danych. Przykładem może być sytuacja, gdy użytkownik przenosi działający dysk HDD, co może spowodować przesunięcie głowic odczytujących i zapisujących, prowadząc do uszkodzenia powierzchni. W standardach i najlepszych praktykach branżowych zaleca się również regularne tworzenie kopii zapasowych danych z dysków HDD, aby zminimalizować skutki potencjalnych awarii. Zrozumienie działania dysków HDD i ich ograniczeń pozwala na lepsze wykorzystanie tej technologii w praktyce.

Pytanie 25

Urządzenie peryferyjne pokazane na ilustracji to skaner biometryczny, który do autoryzacji wykorzystuje

Ilustracja do pytania
A. kształt dłoni
B. linie papilarne
C. rysowanie twarzy
D. brzmienie głosu
Skanery biometryczne z wykorzystaniem linii papilarnych to naprawdę ciekawe urządzenia, które grają ważną rolę, zwłaszcza jeśli chodzi o bezpieczeństwo i potwierdzanie tożsamości. W zasadzie działają na zasadzie rozpoznawania unikalnych wzorów twoich odcisków, co sprawia, że są one jedyne w swoim rodzaju. Takie skanery są super bezpieczne, dlatego nadają się do różnych zastosowań, na przykład do logowania się do komputerów, korzystania z bankomatów czy dostępu do zamkniętych pomieszczeń. Muszę przyznać, że skanowanie odcisków palców jest ekspresowe i nie sprawia większych problemów, co jest dużą zaletą w porównaniu do innych metod biometrycznych. Do tego istnieją normy, jak ISO/IEC 19794-2, które określają, jak zapisuje się dane o liniach papilarnych, co ułatwia współpracę różnych systemów. Jeśli chodzi o wprowadzanie tych skanerów do firm czy instytucji, robi się to zgodnie z najlepszymi praktykami, takimi jak regularne aktualizacje oprogramowania i szkolenie pracowników w zakresie zabezpieczeń.

Pytanie 26

Główny punkt, z którego odbywa się dystrybucja okablowania szkieletowego, to punkt

A. dystrybucyjny
B. pośredni
C. dostępowy
D. abonamentowy
Punkt dystrybucyjny to kluczowy element w infrastrukturze okablowania szkieletowego, pełniący rolę centralnego punktu, z którego rozprowadzane są sygnały do różnych lokalizacji. Przy jego pomocy można efektywnie zarządzać siecią, co obejmuje zarówno dystrybucję sygnału, jak i zapewnienie odpowiedniej organizacji kabli. W praktyce, punkt dystrybucyjny zazwyczaj znajduje się w pomieszczeniach technicznych lub serwerowych, gdzie zainstalowane są urządzenia aktywne, takie jak przełączniki czy routery. Zgodnie z normami ANSI/TIA-568, efektywne planowanie i instalacja infrastruktury okablowania szkieletowego powinny uwzględniać lokalizację punktów dystrybucyjnych, aby minimalizować długość kabli oraz optymalizować ich wydajność. Dobrze zaprojektowany punkt dystrybucyjny umożliwia łatwy dostęp do urządzeń, co jest istotne podczas konserwacji i rozbudowy sieci.

Pytanie 27

Jakie materiały są używane w kolorowej drukarce laserowej?

A. podajnik papieru
B. pamięć wydruku
C. przetwornik CMOS
D. kartridż z tonerem
Kartridż z tonerem to naprawdę ważny element w kolorowych drukarkach laserowych. To w nim znajduje się toner, taki proszek, który jest odpowiedzialny za to, jak wygląda wydruk na papierze. Kiedy drukujemy, bęben światłoczuły zostaje naładowany elektrostatycznie, a potem przywiera do niego toner. Potem papier jest podgrzewany, co sprawia, że toner mocno przylega do jego powierzchni. Korzystanie z kartridża z tonerem pozwala na uzyskanie świetnej jakości wydruku, a co więcej, tonery mają dużą wydajność, więc można sporo dokumentów wydrukować, zanim trzeba je zmienić. W mojej opinii, dobrze jest wybierać odpowiednie kartridże, bo to wpływa nie tylko na to, jak drukarka działa, ale też na koszty, szczególnie w firmach. Miej na uwadze, że są też zamienniki kartridży, ale powinny być dobrej jakości, żeby uniknąć problemów z działaniem drukarki i osiągnąć najlepsze rezultaty.

Pytanie 28

Protokół trasowania wewnętrznego, który opiera się na analizie stanu łącza, to

A. OSPF
B. RIP
C. EGP
D. BGP
OSPF, czyli Open Shortest Path First, to taki fajny protokół trasowania, który opiera się na algorytmie stanu łącza. Działa to tak, że routery w sieci wymieniają między sobą informacje o tym, w jakim stanie są ich łącza. Dzięki temu mogą mieć pełny obraz topologii sieci. W większych rozwiązaniach OSPF ma sporo przewag nad innymi protokołami, jak na przykład RIP, bo jest bardziej skalowalny i efektywny. W korporacyjnych sieciach OSPF sprawdza się super, bo szybko reaguje na zmiany w topologii, co jest mega ważne, żeby wszystko działało jak należy. Jakby co, to standard OSPF można znaleźć w dokumencie RFC 2328, więc jest to naprawdę ważny protokół w sieciach. Przy projektowaniu większych i bardziej skomplikowanych sieci warto korzystać z OSPF, bo prostsze protokoły mogą nie dać sobie rady z takimi wyzwaniami.

Pytanie 29

Podaj polecenie w systemie Linux, które umożliwia wyświetlenie identyfikatora użytkownika.

A. who
B. users
C. id
D. whoami
Polecenie 'id' w systemie Linux jest najskuteczniejszym sposobem na uzyskanie informacji o użytkowniku, w tym jego unikalnego identyfikatora, czyli UID (User Identifier). To polecenie nie tylko wyświetla UID, ale także grupy, do których użytkownik należy, co jest niezwykle przydatne w kontekście zarządzania uprawnieniami i dostępem do zasobów systemowych. Przykładowo, po wpisaniu 'id' w terminalu, użytkownik otrzymuje informacje takie jak: uid=1000(nazwa_użytkownika) gid=1000(grupa) groups=1000(grupa),27(dodatkowa_grupa). Wiedza o UID jest kluczowa, gdyż pozwala administratorom na efektywne zarządzanie uprawnieniami i kontrolę dostępu do plików oraz procesów. W praktyce, zrozumienie działania polecenia 'id' pozwala na lepsze rozwiązywanie problemów związanych z uprawnieniami, co jest istotnym elementem codziennej administracji systemami Linux. Dobrą praktyką jest regularne korzystanie z tego polecenia w kontekście audytów bezpieczeństwa czy podczas konfigurowania nowych użytkowników.

Pytanie 30

Aby podłączyć drukarkę igłową o wskazanych parametrach do komputera, należy umieścić kabel dołączony do drukarki w porcie

A. Centronics
B. FireWire
C. USB
D. Ethernet
Odpowiedź Centronics jest poprawna, ponieważ jest to interfejs, który został zaprojektowany specjalnie do komunikacji z drukarkami igłowymi, w tym modelami producenta OKI. Interfejs Centronics, znany również jako standard IEEE 1284, umożliwia szybki i niezawodny transfer danych w formie równoległej, co jest kluczowe w kontekście drukarek, zwłaszcza tych, które operują na wyższych prędkościach druku, takich jak 576 znaków na sekundę w omawianym modelu. Przykładowo, w przypadku starszych urządzeń, takich jak drukarki igłowe, które często nie obsługują nowoczesnych standardów komunikacyjnych, jak USB czy Ethernet, interfejs Centronics pozostaje najczęściej stosowanym rozwiązaniem. Warto zaznaczyć, że przy podłączaniu drukarki do komputera należy zadbać o odpowiednie kable i porty, które muszą być zgodne z tym standardem, co zapewnia poprawne działanie sprzętu. Zrozumienie tych aspektów jest kluczowe dla efektywnego korzystania z technologii druku w biurze czy w środowisku produkcyjnym.

Pytanie 31

Liczba 10011001100 w systemie heksadecymalnym przedstawia się jako

A. 2E4
B. EF4
C. 4CC
D. 998
Odpowiedź 4CC nie jest dobra, ponieważ żeby przekonwertować liczbę z systemu binarnego na heksadecymalny, trzeba ją podzielić na grupy po cztery bity. W przypadku liczby 10011001100, najpierw dodajemy zera na początku, żeby otrzymać pełne grupy, co daje nam 0010 0110 0110. Teraz każdą grupę przekładamy na system heksadecymalny: 0010 to 2, 0110 to 6, więc wynik to 2B6, a nie 4CC. Widzę, że tu mogło być jakieś nieporozumienie przy przeliczaniu. Warto wiedzieć, jak te konwersje działają, bo są naprawdę ważne w programowaniu, na przykład przy adresowaniu pamięci czy w grafice komputerowej, gdzie heksadecymalny jest na porządku dziennym. Zrozumienie tych rzeczy pomoże ci lepiej radzić sobie z danymi technicznymi oraz przy pisaniu efektywnego kodu, zwłaszcza w kontekście mikrokontrolerów.

Pytanie 32

Jak dużo bitów minimum będzie potrzebnych w systemie binarnym do reprezentacji liczby heksadecymalnej 110h?

A. 16 bitów
B. 9 bitów
C. 3 bity
D. 4 bity
Poprawna odpowiedź to 9 bitów, co wynika z analizy liczby heksadecymalnej 110h. Liczba ta, zapisana w systemie heksadecymalnym, składa się z trzech cyfr: 1, 1 i 0. W systemie binarnym każda cyfra heksadecymalna jest reprezentowana przez 4 bity. Dlatego konwersja każdego z tych cyfr do systemu binarnego wygląda następująco: '1' to '0001', '0' to '0000'. Cała liczba '110h' w systemie binarnym będzie miała postać '0001 0001 0000'. Zsumowanie bitów daje nam 12, co jest sumą wszystkich bitów, ale do zapisania liczby jako całości wystarczą 9 bity, ponieważ 4 bity są potrzebne na każdą cyfrę, a liczby heksadecymalne mogą być skracane poprzez eliminację wiodących zer. W praktyce oznacza to, że 9 bitów jest wystarczających do reprezentacji liczby '110h' w systemie binarnym. Znajomość konwersji systemów liczbowych jest kluczowa w programowaniu i inżynierii, gdzie różne systemy liczbowe są często używane do reprezentacji danych. W standardach takich jak IEEE 754 dla reprezentacji liczb zmiennoprzecinkowych, zrozumienie sposobu kodowania liczb w systemach liczbowych jest niezbędne.

Pytanie 33

Przyglądając się przedstawionemu obrazkowi, można dostrzec, że deklarowany limit pamięci wynosi 620976 KB. Zauważamy również, że zainstalowana pamięć fizyczna w badanym systemie jest mniejsza niż pamięć zadeklarowana. Który typ pamięci wpływa na podniesienie limitu pamięci zadeklarowanej powyżej rozmiaru zainstalowanej pamięci fizycznej?

Ilustracja do pytania
A. Pamięć pliku stron
B. Pamięć RAM
C. Pamięć cache procesora
D. Pamięć jądra
Pamięć pliku stron, znana również jako pamięć wirtualna, odgrywa kluczową rolę w systemach operacyjnych, gdy fizyczna pamięć RAM jest ograniczona. Jest to obszar na dysku twardym, który system operacyjny wykorzystuje jako dodatkową pamięć RAM. Kiedy zainstalowana pamięć fizyczna nie wystarcza, system operacyjny może przenieść mniej używane dane procesów do pliku stronicowania. Dzięki temu operacje mogą kontynuować, nawet gdy fizyczna pamięć RAM jest zapełniona. Praktyczne zastosowanie pamięci pliku stron jest powszechne w systemach z ograniczoną pamięcią RAM, pozwalając na jednoczesne uruchamianie wielu aplikacji. Branżowe standardy rekomendują optymalizację rozmiaru pliku stronicowania, aby zbalansować wydajność i zużycie przestrzeni dyskowej. W systemach Windows plik stronicowania jest zazwyczaj konfigurowany automatycznie, ale administratorzy mogą dostosować jego rozmiar w zależności od potrzeb użytkowników i aplikacji. Dobre praktyki sugerują umieszczenie pliku stronicowania na osobnym, szybkim dysku, co minimalizuje opóźnienia dostępu i poprawia ogólną wydajność systemu. Efektywne zarządzanie pamięcią wirtualną jest kluczowe dla płynności działania systemu, zwłaszcza w środowiskach o wysokim obciążeniu.

Pytanie 34

Po wykonaniu podanego skryptu

echo off
echo ola.txt >> ala.txt
pause

A. tekst z pliku ola.txt zostanie zapisany w pliku ala.txt
B. tekst z pliku ala.txt zostanie zapisany w pliku ola.txt
C. zawartość pliku ola.txt będzie przeniesiona do pliku ala.txt
D. zawartość pliku ala.txt będzie przeniesiona do pliku ola.txt
Pierwsza odpowiedź myli się, bo sugeruje, że zawartość pliku 'ala.txt' ma być skopiowana do 'ola.txt', a to nie jest prawda. W rzeczywistości w skrypcie używamy polecenia 'echo' z operatorami '>>', które nie kopiuje, tylko dodaje tekst do pliku. Druga odpowiedź też jest nietrafiona, twierdząc, że tekst 'ala.txt' zostanie wpisany do 'ola.txt', a w skrypcie to się nie pojawia. W poleceniu 'echo' tekst 'ola.txt' jest po prostu zwykłym ciągiem znaków, a nie zawartością pliku. Tak samo trzecia odpowiedź myli się, mówiąc, że zawartość 'ola.txt' trafi do 'ala.txt'. Operator '>>' nie działa jak kopiowanie, tylko dodaje tekst do pliku, który wskazujesz. Takie pomyłki wynikają z braku zrozumienia, jak działają operatory w wierszu poleceń, a to może prowadzić do problemów, gdy próbujesz to przenieść na grunt produkcji. Kluczowe jest, żeby dobrze rozumieć używane polecenia i ich funkcje w systemach operacyjnych.

Pytanie 35

Na schemacie pokazano sieć LAN wykorzystującą okablowanie kategorii 6. Stacja robocza C nie może nawiązać połączenia z siecią. Jaki problem warstwy fizycznej może być przyczyną braku komunikacji?

Ilustracja do pytania
A. Nieodpowiedni przewód
B. Błędny adres IP
C. Zła długość kabla
D. Niewłaściwy typ switcha
Zła długość kabla kategorii 6 może powodować problemy z łącznością w sieciach lokalnych. Kabel kategorii 6, zgodnie z standardami TIA/EIA, powinien mieć maksymalną długość 100 metrów, aby zapewnić prawidłowe działanie transmisji danych. W przypadku przekroczenia tej długości, sygnały mogą ulegać osłabieniu i zakłóceniom, prowadząc do utraty pakietów i braku możliwości komunikacji. Długość kabla wpływa na tłumienie sygnału oraz przesłuchy, co jest kluczowe w utrzymaniu odpowiedniego poziomu sygnału do szumu (SNR). Przy projektowaniu sieci należy uwzględniać te ograniczenia i stosować wzmacniacze sygnału lub przełączniki, aby utrzymać optymalne warunki pracy sieci. Przestrzeganie tych zasad jest istotne, aby zapewnić stabilność i wydajność sieci. W praktyce, w dużych instalacjach stosuje się również technologie GPON lub światłowodowe do pokonania ograniczeń długości miedzianych kabli sieciowych.

Pytanie 36

Jakie z podanych urządzeń stanowi część jednostki centralnej?

A. Klawiatura PS/2
B. Monitor LCD
C. Mysz USB
D. Modem PCI
Modem PCI jest elementem jednostki centralnej, ponieważ jest to komponent, który jest bezpośrednio zintegrowany z płytą główną komputera. Modemy PCI, jak sama nazwa wskazuje, wykorzystują standard PCI (Peripheral Component Interconnect), który umożliwia komunikację pomiędzy urządzeniami peryferyjnymi a jednostką centralną. To połączenie jest kluczowe dla funkcjonowania systemu komputerowego, ponieważ pozwala na szybką wymianę danych. Przykładem zastosowania modemu PCI może być łączenie się z Internetem, co jest niezbędne w dzisiejszym świecie. W praktyce, modem PCI może również wspierać różne standardy komunikacyjne, w tym DSL czy kablowe, co czyni go wszechstronnym rozwiązaniem dostępu do sieci. Ważne jest, aby pamiętać, że poprawne zainstalowanie i skonfigurowanie takiego sprzętu zgodnie z zaleceniami producentów jest kluczowe dla zapewnienia stabilności i wydajności systemu komputerowego.

Pytanie 37

Aby podłączyć drukarkę z interfejsem równoległym do komputera, który ma jedynie porty USB, należy użyć adaptera

A. USB na COM
B. USB na PS/2
C. USB na RS-232
D. USB na LPT
Adapter USB na LPT jest właściwym rozwiązaniem w przypadku podłączania urządzenia z portem równoległym (LPT) do komputera wyposażonego jedynie w porty USB. Ethernet w standardzie LPT (Line Printer Terminal) to złącze stosowane do komunikacji z drukarkami i innymi urządzeniami peryferyjnymi, które wymagają większej przepustowości niż tradycyjne złącza szeregowe. Adaptery USB na LPT konwertują sygnały USB na sygnały równoległe, co umożliwia integrację starszych urządzeń z nowoczesnymi komputerami. W praktyce, po podłączeniu adaptera, system operacyjny zazwyczaj automatycznie wykrywa drukarkę i instaluje odpowiednie sterowniki, co czyni proces prostym i intuicyjnym. Warto również zauważyć, że zgodność z normami USB i LPT zapewnia stabilność połączenia oraz minimalizuje ryzyko utraty danych, co jest istotne w kontekście wydajności zadań drukarskich. W związku z tym, jeśli korzystasz z drukarki starszego typu z portem LPT, wybór adaptera USB na LPT jest najlepszym rozwiązaniem, aby zapewnić prawidłowe działanie urządzenia przy zachowaniu wszystkich standardów branżowych.

Pytanie 38

Jaki wydruk w systemie rodziny Linux uzyskamy po wprowadzeniu komendy

dr-x------  2 root root       0 lis 28 12:39 .gvfs
-rw-rw-r--  1 root root  361016 lis  8  2012 history.dat
-rw-r--r--  1 root root   97340 lis 28 12:39 .ICEauthority
drwxrwxr-x  5 root root    4096 paź  7  2012 .icedtea
drwx------  3 root root    4096 cze 27 18:40 .launchpadlib
drwxr-xr-x  3 root root    4096 wrz  2  2012 .local

A. pwd
B. ps
C. ls -la
D. free
Komenda ls -la w systemie Linux jest używana do wyświetlania szczegółowego wykazu plików i katalogów w bieżącym katalogu roboczym. Parametr -l oznacza długi format listingu, który zawiera informacje takie jak prawa dostępu, liczba linków, właściciel, grupa właściciela, rozmiar pliku, data ostatniej modyfikacji oraz nazwa pliku lub katalogu. Natomiast parametr -a powoduje uwzględnienie plików ukrytych, które w systemach uniksowych są oznaczane kropką na początku nazwy. Wydruk przedstawiony w pytaniu pokazuje właśnie taki szczegółowy listing z plikami ukrytymi, co potwierdza użycie komendy ls -la. Tego rodzaju informacja jest nieoceniona dla administratorów systemów i programistów, którzy muszą zarządzać uprawnieniami i strukturą katalogów. Dobre praktyki branżowe zalecają regularne sprawdzanie zawartości katalogów, szczególnie w celu monitorowania uprawnień i zmian w plikach konfiguracyjnych. Komenda ls -la jest kluczowa w zrozumieniu struktury systemu plików i efektywnym zarządzaniu systemem operacyjnym Linux.

Pytanie 39

W celu zabezpieczenia komputerów w sieci lokalnej przed nieautoryzowanym dostępem oraz atakami typu DoS, konieczne jest zainstalowanie i skonfigurowanie

A. blokady okienek pop-up
B. filtru antyspamowego
C. programu antywirusowego
D. zapory ogniowej
Zainstalowanie i skonfigurowanie zapory ogniowej jest kluczowym krokiem w zabezpieczaniu komputerów w sieci lokalnej przed nieautoryzowanym dostępem oraz atakami typu DoS (Denial of Service). Zapora ogniowa działa jako filtr, kontrolując ruch trafiający i wychodzący z sieci, co pozwala na zablokowanie potencjalnie niebezpiecznych połączeń. Przykładem zastosowania zapory ogniowej jest możliwość skonfigurowania reguł, które zezwalają na dostęp tylko dla zaufanych adresów IP, co znacząco zwiększa bezpieczeństwo sieci. Warto również zauważyć, że zapory ogniowe są zgodne z najlepszymi praktykami branżowymi w zakresie zarządzania bezpieczeństwem informacji, jak na przykład standardy NIST czy ISO/IEC 27001. Regularne aktualizacje zapory oraz monitorowanie logów mogą pomóc w identyfikacji podejrzanego ruchu i w odpowiednim reagowaniu na potencjalne zagrożenia. To podejście pozwala na budowanie warstwy zabezpieczeń, która jest fundamentalna dla ochrony zasobów informacyjnych w każdej organizacji.

Pytanie 40

Jaki akronim oznacza wydajność sieci oraz usługi, które mają na celu między innymi priorytetyzację przesyłanych pakietów?

A. PoE
B. QoS
C. STP
D. ARP
QoS, czyli Quality of Service, to kluczowy akronim w kontekście przepustowości sieci oraz zarządzania jakością usług. QoS odnosi się do zestawu technologii i metod, które mają na celu zapewnienie odpowiedniego poziomu wydajności w przesyłaniu danych przez sieci komputerowe. W praktyce oznacza to między innymi nadawanie priorytetów różnym typom ruchu sieciowego, co jest szczególnie istotne w przypadku aplikacji wymagających niskiej latencji, takich jak VoIP czy strumieniowe przesyłanie wideo. W zastosowaniach rzeczywistych, QoS pozwala na segregowanie pakietów danych na te bardziej i mniej krytyczne, co umożliwia efektywne zarządzanie pasmem i minimalizowanie opóźnień. Przykładem może być środowisko korporacyjne, gdzie połączenia głosowe muszą mieć wyższy priorytet niż zwykły ruch internetowy. Warto pamiętać, że implementacja QoS opiera się na standardach takich jak RFC 2474, który definiuje metody klasyfikacji i zarządzania ruchem, co jest niezbędne do utrzymania wydajności sieci w obliczu rosnącego zapotrzebowania na usługi multimedialne. Znajomość i wdrożenie QoS jest niezbędne dla administratorów sieci, którzy pragną zapewnić użytkownikom optymalne wrażenia z korzystania z sieci.