Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 22 maja 2025 12:36
  • Data zakończenia: 22 maja 2025 12:56

Egzamin zdany!

Wynik: 24/40 punktów (60,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Jaką średnicę powinien mieć otwór, aby pomieścić nit o średnicy 2 mm?

A. 2,3 mm
B. 2,0 mm
C. 2,1 mm
D. 1,9 mm
Odpowiedź 2,1 mm jest poprawna, ponieważ przy wykonywaniu otworów pod nity ważne jest, aby zapewnić odpowiedni luz montażowy. Nit o średnicy 2 mm wymaga otworu o nieco większej średnicy, aby umożliwić właściwe wprowadzenie nitu oraz zapewnić odpowiednią przestrzeń do rozprężenia. Zgodnie z normami dotyczącymi montażu nitów, zaleca się, aby średnica otworu była o 0,1 mm do 0,3 mm większa od średnicy samego nitu. W praktyce, luz ten pozwala na łatwiejsze osadzenie nitu oraz eliminuje ryzyko uszkodzenia materiału, w który wprowadzany jest nit. Zbyt wąski otwór może prowadzić do trudności w montażu i do uszkodzeń. W przypadku materiałów o dużej twardości lub w zastosowaniach wymagających precyzyjnego zamocowania, zachowanie odpowiednich standardów luzu jest kluczowe dla długowieczności połączenia. Warto również zwrócić uwagę na materiały, z których wykonane są elementy, ponieważ różne rodzaje metali mogą wymagać różnych tolerancji w zakresie średnicy otworu, co jest podkreślone w standardach takich jak ISO 286-1.

Pytanie 4

Jakiego klucza należy użyć, aby odkręcić śrubę z walcowym łbem i sześciokątnym gniazdem?

A. Dynamometrycznego
B. Imbusowego
C. Nasadowego
D. Płaskiego
Odpowiedź 'imbusowy' jest poprawna, ponieważ śruby z łbem walcowym i gniazdem sześciokątnym są zaprojektowane do współpracy z kluczami imbusowymi. Klucz imbusowy, znany również jako klucz sześciokątny, ma kształt, który idealnie pasuje do gniazda w takiej śrubie. Umożliwia to łatwe i efektywne wykręcanie i wkręcanie śrub, a także zapewnia mocny chwyt, co jest szczególnie ważne w zastosowaniach wymagających dużego momentu obrotowego. Przykładowo, wiele rowerów, mebli flat-pack i urządzeń mechanicznych wykorzystuje tego rodzaju śruby, co sprawia, że klucz imbusowy jest niezbędnym narzędziem w narzędziowni. Standardy DIN 911 określają wymiary kluczy imbusowych, co gwarantuje ich uniwersalność i dostępność w różnych rozmiarach, co jest kluczowe w pracy z różnymi typami śrub. W związku z tym, używając klucza imbusowego, możemy zapewnić właściwe dopasowanie oraz uniknąć uszkodzenia śruby lub narzędzia.

Pytanie 5

Siłownik hydrauliczny o powierzchni tłoka A = 20 cm2 musi wygenerować siłę F = 30 kN. Jakie powinno być ciśnienie oleju?

A. 150 bar
B. 15 bar
C. 1 500 bar
D. 15 000 bar
Wybór ciśnienia 15 000 bar jest niewłaściwy, ponieważ wartość ta przekracza wytrzymałość typowych materiałów stosowanych w hydraulice. Tak ekstremalne ciśnienie nie jest praktykowane w żadnym standardowym zastosowaniu hydraulicznym. To prowadzi do mylnego wrażenia, że wyższe ciśnienie zawsze oznacza większą moc, co jest błędne. Niepotrzebne zwiększenie ciśnienia może prowadzić do uszkodzeń elementów układu hydraulicznego, a w skrajnych przypadkach do katastrof. Odpowiedź 1 500 bar również jest niepoprawna, ponieważ przeliczenia wskazują, że jest to wartość znacznie wyższa niż wymagana w danym przypadku. Z kolei 15 bar jest zbyt niskim ciśnieniem, co skutkowałoby nieskutecznością siłownika w wytwarzaniu wymaganej siły. Istotnym błędem w myśleniu może być niepełne zrozumienie zasad działania hydrauliki, gdzie kluczowe są proporcje między siłą, ciśnieniem i powierzchnią czynnych tłoków. Właściwe obliczenia i dobór parametrów są kluczowe w projektowaniu i eksploatacji maszyn hydraulicznych, co podkreśla znaczenie edukacji technicznej oraz przestrzegania standardów branżowych. Zrozumienie tych zasad pozwala na uniknięcie kosztownych błędów oraz zwiększa bezpieczeństwo operacyjne w zastosowaniach hydraulicznych.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Jaką rolę odgrywają cewki w systemach elektrycznych?

A. Tworzą przeszkodę elektryczną
B. Tworzą przeszkodę optyczną
C. Zbierają energię w polu elektrycznym
D. Zbierają energię w polu magnetycznym
Cewki, czyli induktory, mają naprawdę ważną rolę w naszych obwodach elektrycznych, bo gromadzą energię w polu magnetycznym. Jak przez nie płynie prąd, wokół nich tworzy się pole magnetyczne, a jego siła zależy od natężenia prądu. Co ciekawe, kiedy ten prąd się zmienia, energia w polu magnetycznym może być uwalniana, co jest podstawą działania wielu urządzeń elektronicznych. Cewki znajdziesz niemal wszędzie – w filtrach, transformatorach czy obwodach rezonansowych. Weźmy na przykład filtry LC: cewki w nich blokują niepożądane częstotliwości w sygnałach audio i radiowych, przez co uzyskujemy lepszy dźwięk. Z resztą, w projektowaniu obwodów cewki są często używane w aplikacjach zabezpieczających przed przepięciami, co jest naprawdę istotne dla ochrony naszych komponentów elektronicznych.

Pytanie 8

Siłownik hydrauliczny o parametrach znamionowych zamieszczonych w tabeli, w warunkach nominalnych zasilany jest czynnikiem roboczym o ciśnieniu

Parametry siłownika hydraulicznego
TłokØ 25 mm ÷ Ø 500 mm
TłoczyskoØ 16 mm ÷ Ø 250 mm
Skokdo 5000 mm
Ciśnienie nominalnePn = 35 MPa (350 bar)
Ciśnienie próbnePp = 1,5 x Pn
Prędkość przesuwu tłokaVmax = 0,5 m/s
Temperatura czynnika roboczego-25°C ÷ +200°C (248 K ÷ 473 K)
Temperatura otoczenia-20°C ÷ +100°C (253 K ÷ 373 K)

A. 35 bar
B. 350 bar
C. 70 bar
D. 525 bar
Wybór odpowiedzi 350 bar jako poprawnej opiera się na danych przedstawionych w tabeli parametrów siłownika hydraulicznego. Według tych danych, ciśnienie nominalne (Pn) wynosi 35 MPa, co jest równoważne 350 bar. Zastosowanie siłowników hydraulicznych o odpowiednich parametrach ciśnienia jest kluczowe w wielu branżach, takich jak budownictwo, przemysł motoryzacyjny czy robotyka, gdzie precyzyjne działanie i niezawodność są niezbędne. W praktyce, jeśli siłownik jest zasilany ciśnieniem przekraczającym jego parametry nominalne, może to prowadzić do uszkodzenia urządzenia, a w rezultacie do awarii systemu. Często w zastosowaniach inżynieryjnych zaleca się stosowanie marginesu bezpieczeństwa, aby uniknąć sytuacji, w której ciśnienie robocze zbliża się do maksymalnych wartości znamionowych. Dobrą praktyką jest również regularne monitorowanie stanu siłowników oraz ich parametrów, aby zapewnić ich prawidłową pracę i wydajność. Znajomość specyfikacji technicznych i właściwości materiałów, z których wykonane są siłowniki, ma bezpośredni wpływ na ich długowieczność i efektywność w działaniu.

Pytanie 9

Wielkością charakterystyczną układu elektrycznego, mierzona w watach, jest jaka?

A. moc pozorna
B. moc bierna
C. moc czynna
D. energia elektryczna
Moc bierna, energia elektryczna i moc pozorna to terminy, które sporo osób myli z mocą czynną. Słuchaj, moc bierna ma związek z elementami, które są indukcyjne i pojemnościowe w układzie elektrycznym i nie generują żadnej realnej pracy, tylko tak sobie 'krążą' w systemie. Więc moc bierna, mierzona w warach, nie przyczynia się do wykonywania pracy i przez to jest jakoś mniej istotna, jeśli chodzi o wydajność urządzeń. Z drugiej strony, energia elektryczna to całkowita ilość energii, którą zużywają urządzenia w określonym czasie, a mierzymy to w kilowatogodzinach (kWh). To też jest coś innego niż moc, która to jest miarą chwilową. Co do mocy pozornej, ona jest określona jako iloczyn napięcia i natężenia prądu bez brania pod uwagę kąta fazowego. To jest taka całkowita miara, ale nie pokazuje nam rzeczywistej wydajności systemu, bo nie bierze pod uwagę strat związanych z mocą bierną. Często ludzie mylą te pojęcia i to prowadzi do błędnych wniosków o efektywności i kosztach eksploatacji instalacji elektrycznych. W konsekwencji, ignorowanie tych różnic może skutkować nieodpowiednim projektowaniem instalacji i wyższymi opłatami za energię, ponieważ moc bierna może obciążać dostawców energii.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Funkcją czujnika hallotronowego w urządzeniach do monitorowania i pomiarów jest detekcja

A. wewnętrznych naprężeń
B. zmian wartości momentów skręcających
C. oporu przepływu płynów
D. zmian wartości parametrów pola magnetycznego
Czujniki hallotronowe są specyficznymi urządzeniami wykrywającymi pola magnetyczne, a nie zmiany oporów cieczy, naprężeń wewnętrznych czy sił skręcających. W przypadku oporów przepływu cieczy, używane są zazwyczaj czujniki oparte na pomiarach hydraulicznych lub elektrycznych, które analizują zmiany w oporze elektrycznym w zależności od przepływu cieczy. To podejście jest całkowicie odmienne od zasad działania czujników hallotronowych, które nie mogą bezpośrednio mierzyć takich parametrów. Z kolei naprężenia wewnętrzne w materiałach są zazwyczaj badane przy użyciu tensometrów, które działają na zasadzie pomiaru deformacji materiału pod wpływem obciążenia. Zastosowanie czujników hallotronowych do tego celu jest nieadekwatne, ponieważ ich konstrukcja nie umożliwia pomiaru mechanicznych właściwości materiałów. Zmiany wartości sił skręcających również nie są wykrywane przez czujniki hallotronowe. W tym przypadku konieczne jest zastosowanie specjalistycznych urządzeń, takich jak czujniki momentu obrotowego, które są zaprojektowane do pomiaru skręcania. Zrozumienie różnic pomiędzy tymi technologiami jest kluczowe dla efektywnego projektowania systemów pomiarowych oraz doboru odpowiednich czujników do konkretnej aplikacji, aby uniknąć błędów w interpretacji danych oraz zapewnić wiarygodne wyniki pomiarów.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

Wskaź prawidłową sekwencję montażu składników w systemie przygotowania sprężonego powietrza?

A. Smarownica, filtr powietrza, reduktor
B. Reduktor, filtr powietrza, smarownica
C. Reduktor, smarownica, filtr powietrza
D. Filtr powietrza, reduktor, smarownica
Wybór innej kolejności montażu elementów składowych w zespole przygotowania sprężonego powietrza często opiera się na nieporozumieniach dotyczących funkcji poszczególnych komponentów i ich wzajemnych relacji. Na przykład, montaż reduktora przed filtrem powietrza jest błędny, ponieważ zanieczyszczone powietrze mogłoby uszkodzić mechanizmy regulacyjne reduktora, co prowadziłoby do jego awarii lub niewłaściwego działania. Podobnie, umieszczenie smarownicy przed filtrem może skutkować zatykaniem smarownicy cząstkami zanieczyszczeń, co również negatywnie wpłynie na cały system. W przemyśle pneumatycznym szczególnie ważne jest, aby każdy element działał optymalnie, a ich kolejność była zgodna z zaleceniami producentów i światowymi standardami. Niezrozumienie funkcji i sekwencji może prowadzić do poważnych problemów eksploatacyjnych, takich jak spadek wydajności, zwiększone ryzyko awarii mechanicznych oraz nieefektywne zużycie energii. Dlatego kluczowe jest odpowiednie przeszkolenie i znajomość norm, które regulują instalację systemów sprężonego powietrza.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Aby zdemontować sterownik PLC z szyny DIN (TS-35), potrzebne jest

A. klucza imbusowego
B. klucza płaskiego
C. wkrętaka krzyżowego
D. wkrętaka płaskiego
Użycie wkrętaka krzyżowego do demontowania sterownika PLC z szyny DIN to nie najlepszy pomysł. Te narzędzia są zaprojektowane bardziej do pracy z krzyżowymi gniazdami, a nie do zwalniania zatrzasków. Jak się mocno pchnie wkrętak krzyżowy, to można uszkodzić zatrzaski, a potem będzie problem z montowaniem z powrotem sterownika. Klucz imbusowy z kolei jest do śrub sześciokątnych, więc do szyn DIN się nie nadaje. A klucz płaski też nie zda egzaminu, bo nie jest do zatrzasków, co może być mylone przez osoby, które nie wiedzą, jak to działa. Używanie złych narzędzi wydłuża czas demontażu i może prowadzić do różnych uszkodzeń. W sytuacjach awaryjnych, kiedy potrzebna jest szybka wymiana, źle dobrane narzędzia mogą wywołać poważne problemy, zarówno techniczne, jak i finansowe. Dlatego trzeba się dobrze zapoznać z tym, co jest potrzebne i używać narzędzi, które poleca producent.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Aby zrealizować lutowanie na płytce drukowanej, konieczne jest użycie stacji lutowniczej oraz

A. lampy UV i szczypce
B. obcinacze i odsysacz
C. obcinacze i szczypce
D. lampy UV i odsysacz
Wybór obcinaczy i odsysacza, lampy UV i szczypców, czy lampy UV i odsysacza wskazuje na niezrozumienie podstawowych narzędzi oraz procesów wymaganych do lutowania. Odsysacz jest używany głównie do usuwania nadmiaru cyny z połączeń lutowanych, jednak nie jest to element niezbędny do samego wykonania lutowania, lecz narzędzie pomocnicze, które stosuje się w przypadku błędów lub poprawy połączeń. Niezrozumienie jego roli prowadzi do błędnego wniosku, że jest on kluczowy w standardowym procesie lutowania. Lampa UV, z kolei, jest stosowana w kontekście technologii lutowania w obszarze materiałów fotooptycznych i nie ma zastosowania w tradycyjnym lutowaniu komponentów elektronicznych, które wykorzystują cynę. Zastosowanie lampy UV w tym kontekście jest zupełnie nieadekwatne, co pokazuje brak znajomości standardów lutowania oraz technologii, które są podstawą w inżynierii elektronicznej. W praktyce, poprawne zrozumienie procesu lutowania wymaga znajomości narzędzi i ich właściwego zastosowania, co jest kluczowe dla uzyskania wysokiej jakości połączeń lutowanych.

Pytanie 22

Spośród wymienionych zjawisk fizycznych, w urządzeniach przekształcających liniowe przemieszczenie na sygnał elektryczny, najczęściej stosowane jest zjawisko

A. zwane efektem Dopplera
B. magnotorezystancji (Gaussa)
C. magnetooptyczne (Faradaya)
D. piezoelektryczne
Zjawiska piezoelektryczne, zwane efektem Dopplera oraz magnetooptyczne (Faradaya) z pewnością są interesującymi i ważnymi fenomenami, jednak nie odnoszą się one bezpośrednio do przekształcania przemieszczenia liniowego na sygnał elektryczny w takim samym stopniu jak magnotorezystancja. Zjawisko piezoelektryczne polega na generowaniu ładunku elektrycznego w materiale pod wpływem mechanicznego nacisku, co czyni je użytecznym w niektórych zastosowaniach, ale nie w kontekście szerokiego zakresu czujników przemieszczenia. Efekt Dopplera, z kolei, odnosi się do zmiany częstotliwości fali w przypadku ruchu źródła lub obserwatora, co ma zastosowanie głównie w akustyce i optyce, a nie w pomiarze przemieszczenia. Zjawisko magnetooptyczne (Faradaya) związuje się z oddziaływaniem pola magnetycznego na światło, oraz zmiany jego polaryzacji, co ma ograniczone zastosowanie w kontekście przemieszczenia liniowego. Błąd w wyborze odpowiedzi może wynikać z mylnego przekonania o uniwersalności tych zjawisk, mimo że każde z nich posiada swoje specyficzne zastosowanie. W kontekście czujników przemieszczenia, kluczowe jest rozumienie, które zjawiska oferują najlepsze właściwości dla danych aplikacji, a magnotorezystancja wyróżnia się tutaj jako najbardziej efektywne rozwiązanie. Analizując temat, warto zwrócić uwagę na standardy i praktyki branżowe, które wskazują na preferencje dotyczące wyboru odpowiednich technologii w zależności od wymagań aplikacji.

Pytanie 23

Na podstawie tabeli z kodami paskowymi rezystorów określ rezystancję rezystora oznaczonego paskami w kolejności: pomarańczowy, niebieski, czarny.

kolor1. cyfra2. cyframnożnik
czarny00100
brązowy11101
czerwony22102
pomarańczowy33103
żółty44104
zielony55105
niebieski66106
fioletowy77107
szary88108
biały99109

A. 360 Ω
B. 36 000 Ω
C. 3600 Ω
D. 36 Ω
Odpowiedź 36 Ω jest poprawna, ponieważ oznaczenia kolorów na rezystorze wskazują wartość rezystancji zgodnie z ogólnie przyjętą normą kodów kolorów rezystorów. Kolor pomarańczowy oznacza cyfrę 3, natomiast niebieski oznacza cyfrę 6. Czarny pasek na końcu wskazuje, że nie ma wartości mnożnika, co w tym przypadku oznacza, że wynik należy odczytać jako 36. Taka interpretacja jest kluczowa w elektronice, gdzie rezystory o dokładnych wartościach są niezbędne do zapewnienia poprawnego funkcjonowania układów elektronicznych. Przykładowo, w obwodach zasilających, dokładne wartości rezystancji są istotne dla regulacji prądu, co ma kluczowe znaczenie dla bezpieczeństwa i efektywności pracy urządzeń. Wiedza na temat kodów kolorów jest nie tylko przydatna w praktyce, ale również stanowi fundament dla bardziej zaawansowanych zastosowań w projektowaniu układów elektronicznych.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

Z odległości jednego metra można zarejestrować temperaturę obudowy urządzenia

A. daloczułkiem.
B. fotometrem.
C. multimetrem.
D. pirometrem.
Wybór dalmierza, fotometru czy multimetru jako narzędzi do pomiaru temperatury obudowy urządzenia jest nieprawidłowy, ponieważ każde z tych urządzeń ma swoje specyficzne zastosowania, które nie obejmują bezpośredniego pomiaru temperatury. Dalmierz jest narzędziem wykorzystywanym do pomiaru odległości, które działa na zasadzie pomiaru czasu, w jakim fala elektromagnetyczna przebywa dystans między nadajnikiem a obiektem. Nie posiada on jednak zdolności do wyczuwania temperatury, co czyni go nieodpowiednim do tego typu pomiarów. Fotometr, z drugiej strony, jest urządzeniem służącym do pomiaru natężenia światła, co również nie ma związku z pomiarem temperatury. Użycie fotometru w tym kontekście prowadzi do fundamentalnych błędów myślowych dotyczących jego funkcji i przeznaczenia. Multimetr, chociaż jest wszechstronnym narzędziem pomiarowym, również nie może być użyty do bezpośredniego pomiaru temperatury obiektu z odległości. Jego główne funkcje obejmują pomiar napięcia, prądu i oporu, a nie temperatury. W przypadku pomiarów temperatury, multimetr może być użyty tylko w połączeniu z odpowiednimi czujnikami, jednak wymaga to kontaktu z obiektem lub jego bliskiego umiejscowienia, co nie jest zgodne z zasadą pomiaru stosowaną w pirometrii. Zrozumienie właściwego zastosowania tych narzędzi jest kluczowe dla uzyskania dokładnych i wiarygodnych wyników pomiarów.

Pytanie 26

Podczas pracy z urządzeniem hydraulicznym pracownik odniósł ranę w udo na skutek wysunięcia siłownika i krwawi. Osoba ratująca, przystępując do udzielania pierwszej pomocy, powinna najpierw

A. sprawdzić, czy w okolicy są osoby posiadające kwalifikacje w reanimacji
B. założyć poszkodowanemu opatrunek uciskowy poniżej rany
C. założyć poszkodowanemu opatrunek uciskowy na ranę
D. umieścić poszkodowanego w bezpiecznej pozycji bocznej
Założenie opatrunku uciskowego na ranę jest kluczowym krokiem w przypadku, gdy poszkodowany krwawi. Opatrunek uciskowy ma na celu zatamowanie krwawienia poprzez zastosowanie odpowiedniego nacisku na ranę. W sytuacji, gdy krwotok jest znaczny, a czas reakcji jest ograniczony, natychmiastowe podjęcie działań może uratować życie. Dobrym przykładem zastosowania tej techniki jest stosowanie opatrunków hemostatycznych, które są zaprojektowane specjalnie do zatrzymywania krwawienia. W przypadku urazów spowodowanych np. wypadkami w pracy, pierwsza pomoc powinna być udzielana zgodnie z wytycznymi Europejskiej Rady Resuscytacji, które podkreślają znaczenie szybkiego i skutecznego działania. Należy pamiętać, że nawet przy udzielaniu pierwszej pomocy, ważne jest, aby wezwać odpowiednie służby ratunkowe, aby zapewnić dalszą pomoc medyczną. Znajomość zasad udzielania pierwszej pomocy oraz umiejętność szybkiego reagowania na sytuacje kryzysowe są niezbędne w każdym miejscu pracy, a odpowiednie szkolenia mogą znacząco zwiększyć bezpieczeństwo w środowisku zawodowym.

Pytanie 27

Trójfazowy silnik elektryczny o podanych parametrach zasilany jest z sieci.
Silnik elektryczny: moc P = 4 kW i cosφ = 0,75
Zasilany z sieci: 400 V; 3/PE ~, 50 Hz.
Prąd pobierany przez silnik z sieci jest równy

A. 7,70 A
B. 13,33 A
C. 10,00 A
D. 5,77 A
Poprawna odpowiedź wynika z obliczeń mocy dla trójfazowego silnika elektrycznego. Moc czynna (P) silnika można obliczyć za pomocą wzoru P = √3 × U × I × cos(φ), gdzie U to napięcie zasilania, I to prąd, a cos(φ) to współczynnik mocy. W tym przypadku mamy 4 kW mocy, współczynnik mocy 0,75 oraz napięcie 400 V. Obliczając prąd, przekształcamy wzór do postaci I = P / (√3 × U × cos(φ)). Podstawiając wartości, otrzymujemy I = 4000 W / (√3 × 400 V × 0,75) co daje około 7,70 A. Dzięki tym obliczeniom możemy zrozumieć, jak ważne jest uwzględnienie wszystkich parametrów w obliczeniach elektrycznych. Praktyczne zastosowanie tej wiedzy ma miejsce przy projektowaniu instalacji elektrycznych oraz doborze zabezpieczeń, które muszą być odpowiednio dobrane do wartości prądu znamionowego urządzeń. W branży elektrycznej standardy dotyczące doboru mocy i prądu są kluczowe dla zapewnienia bezpieczeństwa oraz efektywności energetycznej.

Pytanie 28

Jaką odległość określa skok siłownika?

A. odległość między skrajnymi położeniami końca tłoczyska (w stanie wsunięcia i wysunięcia)
B. odległość między obudową siłownika a końcem tłoczyska, gdy jest w pozycji wsuniętej
C. odległość pomiędzy krućcem zasilającym a końcem tłoczyska, gdy jest w wysuniętej pozycji
D. odległość między obudową siłownika a końcem tłoczyska w pozycji wysunięcia
Skok siłownika definiuje odległość pomiędzy jego skrajnymi położeniami, czyli w stanie całkowitego wsunięcia oraz całkowitego wysunięcia tłoczyska. Ta definicja jest kluczowa dla zrozumienia funkcji siłowników, które znajdują zastosowanie w wielu dziedzinach inżynierii, takich jak automatyka, robotyka czy przemysł motoryzacyjny. Przykładem praktycznym mogą być siłowniki hydrauliczne używane w prasach czy systemach podnoszenia, gdzie precyzyjne określenie skoku jest niezbędne do zapewnienia prawidłowego działania maszyn. W standardach branżowych, takich jak ISO 6432, definiowane są parametry siłowników, w tym skok, co pozwala na ich odpowiednie dobieranie do konkretnych zastosowań. Zrozumienie tej koncepcji umożliwia inżynierom właściwe projektowanie systemów, a także przeprowadzanie skutecznych analiz działania urządzeń. W praktyce, znajomość skoku siłownika jest kluczowa przy planowaniu układów automatyzacji oraz w procesie konserwacji i diagnostyki urządzeń.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

Jaką metodę pomiaru prędkości obrotowej powinno się zastosować do uwzględnienia ustalonej prędkości małego obiektu, gdy przerwanie procesu produkcyjnego jest niemożliwe, a miejsce pomiaru jest trudno dostępne?

A. Mechaniczną
B. Elektromagnetyczną
C. Stroboskopową
D. Optyczną
Wybór metody pomiaru prędkości obrotowej, która nie jest odpowiednia dla specyficznych warunków pracy, może prowadzić do wielu problemów w procesie produkcyjnym. Metoda mechaniczna, na przykład, często wymaga fizycznego kontaktu z obiektem pomiarowym, co może być niemożliwe w sytuacji, gdy dostęp do maszyny jest ograniczony. Taki pomiar może także zakłócić pracę urządzenia, co jest szczególnie niepożądane w dynamicznych środowiskach produkcyjnych. Z kolei metoda elektromagnetyczna, która opiera się na detekcji zmian w polu magnetycznym, może być mniej precyzyjna w przypadku małych obiektów lub w środowisku o dużym poziomie zakłóceń elektromagnetycznych. Właściwe zrozumienie zasad działania tych metod jest kluczowe, aby uniknąć błędnych pomiarów, które mogą prowadzić do fałszywych wniosków o stanie maszyny. Na przykład, przy pomiarach mechanicznych często występuje błąd wynikający z tarcia lub nieodpowiedniego ustawienia narzędzi, a w przypadku pomiarów elektromagnetycznych, pojawiające się zakłócenia mogą zafałszować odczyty. Dlatego tak ważne jest, aby wybierać metody pomiarowe, które są dostosowane do specyficznych wymagań danego procesu oraz środowiska operacyjnego.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

Jakie urządzenie jest wykorzystywane do pomiaru kąta?

A. sensor ultradźwiękowy
B. resolver
C. termoelement
D. tachometr
Resolver jest precyzyjnym urządzeniem stosowanym do pomiaru położenia kątowego w różnych aplikacjach inżynieryjnych, takich jak robotyka, automatyka przemysłowa oraz w systemach kontroli ruchu. Działa na zasadzie pomiaru kątów za pomocą dwóch sygnałów elektrycznych, które są proporcjonalne do aktualnego kąta obrotu. Dzięki temu, resolver zapewnia wysoką dokładność oraz możliwość pracy w trudnych warunkach, takich jak wysokie temperatury czy wibracje. Znalezienie zastosowania w systemach sterowania serwonapędami to jeden z przykładów efektywnego wykorzystania resolvera, gdzie precyzja pomiaru jest kluczowa dla prawidłowego działania układów napędowych. W praktyce, stosowanie resolverów przyczynia się do poprawy efektywności operacyjnej oraz minimalizacji błędów w systemach automatyki, co jest zgodne z najlepszymi praktykami w branży inżynieryjnej.

Pytanie 40

Instalacje pneumatyczne powinny być montowane pod lekkim kątem wznoszącym, aby ułatwić

A. rozbijanie kropli oleju strumieniem sprężonego powietrza
B. odfiltrowanie cząstek stałych z powietrza
C. spływ kondensatu wodnego do najniższego punktu instalacji
D. rozchodzenie się mgły olejowej w instalacji
Odpowiedź dotycząca spływu kondensatu wodnego do najniższego punktu instalacji jest poprawna, ponieważ odpowiednie nachylenie instalacji pneumatycznych jest kluczowe dla efektywnego zarządzania kondensatem. W instalacjach wykorzystujących sprężone powietrze, wilgoć ma tendencję do skraplania się w chłodniejszych miejscach, co prowadzi do powstawania kondensatu. Utrzymywanie niewielkiego kąta wznoszącego pozwala na naturalny spływ kondensatu do wyznaczonych punktów odprowadzających, co minimalizuje ryzyko osadzania się wody w rurach. Praktyczne przykłady skutecznego zarządzania kondensatem można znaleźć w branżach takich jak przemysł spożywczy czy farmaceutyczny, gdzie odpowiednie odprowadzanie wody jest kluczowe dla zachowania jakości produktu. Normy branżowe, takie jak ISO 8573, podkreślają znaczenie zarządzania jakością powietrza sprężonego, co obejmuje również kontrolę kondensatu, co dodatkowo uzasadnia konieczność stosowania odpowiedniego nachylenia rur.