Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 16 maja 2025 23:03
  • Data zakończenia: 16 maja 2025 23:21

Egzamin zdany!

Wynik: 38/40 punktów (95,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Fragment procedury analitycznej
(...) Przenieś badany roztwór całkowicie do rozdzielacza gruszkowego o pojemności od 50 do 100 cm3, dodaj 5 cm3 roztworu tiocyjanianu potasu oraz 10 cm3 alkoholu izopentylowego, a następnie wstrząsaj zawartością przez 30 sekund.
Po rozdzieleniu faz przenieś roztwór wodny do drugiego rozdzielacza, natomiast fazę organiczną do suchej kolbki miarowej o pojemności 50 cm3(...) Który rodzaj ekstrakcji jest opisany w powyższym fragmencie?

A. Ciągłej ciecz – ciecz
B. Ciągłej ciało stałe – ciecz
C. Okresowej ciecz – ciecz
D. Okresowej ciało stałe – ciecz
Fragment procedury analitycznej opisuje proces ekstrakcji okresowej ciecz – ciecz, co oznacza, że rozdzielanie składników następuje w wyniku wielokrotnego kontaktu dwóch cieczy o różnej polarności. W przedstawionej procedurze, badany roztwór jest mieszany z roztworem tiocyjanianu potasu i alkoholem izopentylowym, co prowadzi do rozdzielenia faz. Ekstrakcja okresowa jest szczególnie efektywna w przypadku związków organicznych, które można oddzielić od roztworów wodnych. Praktyczne zastosowanie tego typu ekstrakcji występuje w analitycznej chemii, np. w izolowaniu związków organicznych z wodnych roztworów, co jest istotne w laboratoriach zajmujących się analizą chemiczną żywności, środowiska czy farmaceutyków. Dobrym przykładem może być ekstrakcja substancji czynnych z roztworów, co pozwala na ich dalszą analizę i identyfikację. Warto zwrócić uwagę, że stosowanie odpowiednich proporcji reagentów oraz optymalnych warunków mieszania jest kluczowe dla efektywności tego procesu.

Pytanie 2

Po zakończeniu pomiarów pH, elektrody powinny być przepłukane

A. roztworem buforowym o ustalonym pH
B. roztworem chlorku potasu
C. wodą destylowaną
D. wodą destylowaną z dodatkiem roztworu wzorcowego
Przemywanie elektrod pH wodą destylowaną jest kluczowym krokiem po zakończeniu pomiarów, ponieważ pozwala na usunięcie resztek substancji, które mogłyby wpłynąć na dokładność kolejnych pomiarów. Woda destylowana jest wolna od zanieczyszczeń, co sprawia, że jest idealnym rozwiązaniem do czyszczenia elektrody. Nie wprowadza dodatkowych jonów, które mogłyby zmienić pH roztworu, co jest szczególnie istotne w przypadku elektrochemicznych pomiarów pH. Przykładem zastosowania tej procedury jest przygotowanie elektrody do kolejnego pomiaru po analizie próbek zawierających różne chemikalia. W laboratoriach analitycznych i chemicznych, procedura przemywania elektrod wodą destylowaną jest zgodna z normami ISO oraz dobrymi praktykami laboratoryjnymi, co zapewnia rzetelność i powtarzalność wyników. Ponadto, woda destylowana nie powoduje korozji ani uszkodzeń, co zapewnia dłuższą żywotność elektrody, a także minimalizuje potrzebę jej kalibracji przed każdym pomiarem.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Do kolby destylacyjnej wprowadzono 200 cm3 zanieczyszczonego acetonu o gęstości d = 0,9604 g/cm3 oraz czystości 90% masowych. W celu oczyszczenia przeprowadzono proces destylacji, w wyniku czego uzyskano 113,74 g czystego acetonu. Jakie były straty acetonu podczas destylacji?

A. 81,77%
B. 65,80%
C. 34,20%
D. 18,33%
Wybierając inne odpowiedzi, można napotkać kilka typowych pułapek myślowych. Często zdarza się, że studenci mylnie zakładają, iż straty acetonu można obliczyć jako prostą różnicę między masą początkową a masą końcową bez uwzględnienia rzeczywistej zawartości czystego acetonu. W takich przypadkach dochodzi do nieprawidłowego założenia co do ilości czystego acetonu w początkowej próbce. Ponadto, niektóre osoby mogą błędnie oszacować straty, nie uwzględniając gęstości substancji oraz jej czystości, co prowadzi do znacznych odchyleń w obliczeniach. Straty mogą być również źle interpretowane jako różnica objętości, co nie jest adekwatne, gdyż konieczne jest przejście na jednostki masy dla porównania. Aby uniknąć tych błędów, ważne jest, by przy każdej analizie chemicznej szczegółowo zrozumieć, jakie dane są potrzebne do prawidłowego obliczenia. Rekomenduje się także stosowanie standardowych procedur analitycznych oraz dokumentację każdego kroku procesu, co zwiększa transparentność i umożliwia identyfikację potencjalnych błędów. Dobre praktyki w laboratoriach chemicznych zakładają również regularne szkolenie personelu oraz dbałość o dokładność pomiarów, co może znacząco wpłynąć na jakość uzyskiwanych wyników.

Pytanie 5

Woda, która została poddana dwukrotnej destylacji, to woda

A. redestylowana
B. ultra czysta
C. odmineralizowana
D. odejonizowana
Woda dwukrotnie destylowana to woda, która została poddana procesowi destylacji dwa razy, co pozwala na usunięcie znacznej większości zanieczyszczeń i rozpuszczonych substancji chemicznych. Dzięki temu uzyskuje się wodę o wysokiej czystości, często określaną mianem wody redestylowanej. Woda redestylowana jest szczególnie cenna w zastosowaniach laboratoryjnych i przemysłowych, gdzie wymagana jest wysoka jakość wody, np. w analizach chemicznych, w produkcji farmaceutyków, czy w zastosowaniach technologicznych, takich jak chłodzenie urządzeń. W kontekście standardów, woda redestylowana spełnia wymagania norm dotyczących czystości wody, takich jak te ustalone przez Farmakopeę. Przykładem jej zastosowania może być przygotowanie roztworów do badań, gdzie obecność nawet minimalnych zanieczyszczeń może wpłynąć na wyniki. Dlatego jej produkcja i wykorzystanie powinny odbywać się zgodnie z najlepszymi praktykami, aby zapewnić najwyższą jakość.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Aby przeprowadzić analizę jakościową, próbkę mosiądzu należy roztworzyć w stężonym kwasie

A. siarkowym(VI)
B. bromowodorowym
C. chlorowodorowym
D. azotowym(V)
Roztwarzanie mosiądzu w stężonym kwasie azotowym(V) jest prawidłowym podejściem, ponieważ kwas ten jest silnym utleniaczem, zdolnym do rozkładu mosiądzu, który jest stopem miedzi i cynku. Kwas azotowy(V) powoduje utlenienie miedzi do tlenków miedzi oraz rozpuszczenie cynku, a reakcja ta prowadzi do powstania azotanu miedzi i azotanu cynku. Stosowanie kwasu azotowego w analizie jakościowej ma zastosowanie w laboratoriach chemicznych oraz w przemyśle metalurgicznym, gdzie dokładna analiza składników stopów jest kluczowa dla kontrolowania jakości produktów. Na przykład, w procesach produkcji i recyklingu metali nieżelaznych, analiza jakościowa przy użyciu kwasu azotowego pozwala na dokładne określenie proporcji składników w stopach, co ma istotne znaczenie dla ich dalszego przetwarzania oraz zastosowania. W pracy laboratoryjnej należy pamiętać o zachowaniu odpowiednich środków ostrożności, ponieważ kwas azotowy jest substancją silnie żrącą i toksyczną, co wymaga stosowania odpowiednich zabezpieczeń osobistych oraz procedur BHP.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Przeprowadzono reakcję 13 g cynku z kwasem solnym zgodnie z równaniem: Zn + 2 HCl → ZnCl2 + H2↑. Otrzymano 1,12 dm3 wodoru (w warunkach normalnych). Masy molowe to: MZn = 65 g/mol, MH = 1g/mol, MCl = 35,5g/mol. Jaka jest wydajność tego procesu?

A. 60%
B. 75%
C. 50%
D. 25%
Aby obliczyć wydajność reakcji, należy najpierw ustalić, ile moli wodoru zostało uzyskanych oraz ile moli powinno być teoretycznie wyprodukowanych na podstawie reakcji. Z równania reakcji: Zn + 2 HCl → ZnCl2 + H2 wynika, że 1 mol cynku produkuje 1 mol wodoru. Masy molowe podane w zadaniu umożliwiają obliczenie, że 13 g cynku to około 0,2 mola (13 g / 65 g/mol). Teoretycznie, z 0,2 mola cynku powinniśmy uzyskać 0,2 mola wodoru, co odpowiada 4,48 dm³ (0,2 mola * 22,4 dm³/mol) przy warunkach normalnych. Zgodnie z danymi, zebrano 1,12 dm³ wodoru, co wskazuje, że uzyskano 25% teoretycznej ilości. W praktyce, wydajność reakcji jest kluczowym wskaźnikiem efektywności procesów chemicznych, szczególnie w przemyśle, gdzie każda strata surowców wpływa na koszty produkcji. Zrozumienie i obliczanie wydajności jest niezbędne w procesach produkcyjnych, aby optymalizować reakcje i minimalizować straty, co jest zgodne z zasadami zrównoważonego rozwoju.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Przedstawiony schemat ideowy ilustruje proces wytwarzania N2 → NO → NO2 → HNO3

A. kwasu azotowego(II) z azotu
B. kwasu azotowego(III) z azotu
C. kwasu azotowego(IV) z azotu
D. kwasu azotowego(V) z azotu
Odpowiedź na pytanie o kwas azotowy(V) jest jak najbardziej trafna. Proces wytwarzania HNO3 z azotu (N2) rzeczywiście zaczyna się od utlenienia azotu do tlenku azotu(II) (NO), który potem przekształca się w tlenek azotu(IV) (NO2). To właśnie ten tlenek odgrywa ważną rolę w produkcji kwasu azotowego. W przemyśle chemicznym najczęściej stosuje się metodę Ostwalda, gdzie amoniak jest pierwszym etapem, który prowadzi nas do tlenku azotu. Potem ten tlenek reaguje z tlenem, tworząc NO2, a w obecności wody przekształca się to w HNO3. Kwas azotowy(V) ma sporo zastosowań, na przykład produkując nawozy azotowe czy materiały wybuchowe, a także jest ważnym odczynnikiem w laboratoriach. Myślę, że warto pamiętać, że kwas ten jest istotny w wielu dziedzinach chemii, zarówno organicznej, jak i nieorganicznej, co czyni go kluczowym dla branży chemicznej.

Pytanie 13

Osady kłaczkowe, które powstają w wyniku prostego koagulowania, określa się mianem osadów

A. drobnokrystalicznymi
B. liofobowymi
C. liofilowymi
D. grubokrystalicznymi
Osady kłaczkowate, które powstają w wyniku łatwego koagulowania, określane są mianem osadów liofobowych. Termin ten odnosi się do systemów, w których cząstki stałe są zawieszone w cieczy, a ich tendencja do agregacji jest zmniejszona przez siły odpychające, wynikające z ich liofobowości. W praktyce, osady liofobowe są istotne w wielu procesach technologicznych, takich jak oczyszczanie ścieków czy wytwarzanie emulsji i zawiesin. Na przykład, w przemyśle chemicznym, kontrola koagulacji i flokulacji jest kluczowa do uzyskania wysokiej jakości produktów. Wykorzystanie koagulantów, które sprzyjają tworzeniu osadów liofobowych, pozwala na efektywne separowanie ciał stałych od cieczy, co jest zgodne z najlepszymi praktykami w zakresie zarządzania odpadami. Dodatkowo, znajomość właściwości fizykochemicznych systemów liofobowych jest istotna dla inżynierów chemicznych, którzy projektują procesy produkcyjne wymagające precyzyjnych kontroli nad zachowaniem cząstek w zawiesinach.

Pytanie 14

Aby zebrać próbki gazów, wykorzystuje się

A. miarki cylindryczne
B. aspiratory
C. detektory gazów
D. butelki z plastikowym wieczkiem
Aspiratory są urządzeniami zaprojektowanymi specjalnie do pobierania próbek gazowych w kontrolowanych warunkach. Ich działanie polega na wykorzystaniu podciśnienia do zasysania gazów z określonego otoczenia, co pozwala na zbieranie reprezentatywnych prób do dalszej analizy. W laboratoriach chemicznych oraz w przemyśle petrochemicznym aspiratory są niezbędne do monitorowania jakości powietrza, a także do wykrywania zanieczyszczeń gazowych. Przykładem zastosowania aspiratorów jest ich użycie w badaniach środowiskowych, gdzie ocenia się stężenie szkodliwych substancji w atmosferze. Standardy, takie jak ISO 16000, określają metody pobierania próbek gazowych, a stosowanie aspiratorów jest zgodne z najlepszymi praktykami w tej dziedzinie, zapewniając dokładność i wiarygodność wyników analitycznych. Ponadto, aspiratory mogą być używane do analizy gazów wydechowych w przemyśle motoryzacyjnym, co jest kluczowe dla oceny emisji i przestrzegania norm ekologicznych.

Pytanie 15

Aby otrzymać czystą substancję, próbka z nitroaniliną została poddana procesowi krystalizacji. Jaką masę nitroaniliny użyto do krystalizacji, jeśli uzyskano 1,5 g czystego związku, a wydajność krystalizacji wyniosła 75%?

A. 2 g
B. 0,5 g
C. 50 g
D. 0,02 g
W przypadku obliczeń związanych z krystalizacją często dochodzi do nieporozumień dotyczących interpretacji wydajności oraz masy próbki. Wydajność krystalizacji to kluczowy parametr, który informuje nas, jaką część początkowej masy substancji udało się uzyskać w formie czystego związku. Niektórzy mogą błędnie zakładać, że masa odważki powinna być równa masie czystego produktu, co jest znamienne dla błędnej interpretacji wyników. Odpowiedzi, które sugerują masę mniejszą niż rzeczywista masa próbki, ignorują fakt, że wydajność jest zawsze wyrażana jako wartość mniejsza niż 1 lub 100%. To prowadzi do poważnych błędów w obliczeniach. Na przykład, odpowiedzi, które sugerują masy takie jak 0,02 g czy 0,5 g, pomijają podstawowy związek pomiędzy masą uzyskanego produktu a jego wydajnością. Ważne jest również to, aby zrozumieć, że przy krystalizacji nie tylko ilość, ale także jakość uzyskanego produktu jest kluczowa. W praktyce, niewłaściwe obliczenia mogą prowadzić do nieefektywnego procesu oczyszczania, co może mieć poważne konsekwencje w przemyśle chemicznym. W kontekście standardów branżowych, takie błędy mogą skutkować niezgodnością z wymaganiami jakościowymi, co jest nieakceptowalne w produkcji farmaceutyków i chemikaliów specjalistycznych. Z tego powodu niezwykle ważne jest, aby zrozumieć i zastosować poprawne metody obliczeń w każdym etapie procesu chemicznego.

Pytanie 16

Z kolby miarowej o pojemności 1 dm3, zawierającej roztwór HCl o stężeniu 0,1 mol/dm3, pobrano pipetą 2,5 cm3, a następnie przeniesiono do kolby miarowej o pojemności 20 cm3 i rozcieńczono wodą "do kreski" miarowej. Jakie stężenie ma otrzymany roztwór?

A. 0,1250 mol/dm3
B. 0,0125 mol/dm3
C. 0,0005 mol/dm3
D. 0,0500 mol/dm3
Aby obliczyć stężenie roztworu po rozcieńczeniu, należy zastosować zasadę zachowania moli. Początkowo mamy 2,5 cm³ roztworu HCl o stężeniu 0,1 mol/dm³. Możemy to przeliczyć na litry: 2,5 cm³ = 0,0025 dm³. Liczba moli HCl w tej objętości wynosi: n = C * V = 0,1 mol/dm³ * 0,0025 dm³ = 0,00025 mol. Po przelaniu roztworu do kolby o pojemności 20 cm³ (0,02 dm³) i rozcieńczeniu wodą do kreski, całkowita objętość wynosi 0,02 dm³. Stężenie końcowe oblicza się jako C = n / V = 0,00025 mol / 0,02 dm³ = 0,0125 mol/dm³. Przykładem praktycznym zastosowania tych obliczeń jest przygotowanie roztworów roboczych w laboratoriach chemicznych, gdzie precyzyjne określenie stężenia jest kluczowe dla uzyskania powtarzalnych wyników w eksperymentach. Ponadto, zgodnie z dobrymi praktykami laboratoryjnymi, zawsze należy dokumentować przygotowywane roztwory oraz ich stężenia, co może być istotne w analizach chemicznych.

Pytanie 17

Aby uzyskać sole sodowe fenoli, należy stopić dany fenol z sodą (M = 106 g/mol), stosując 10% nadmiar w porównaniu do ilości stechiometrycznej, według równania:
2 ArOH + Na2CO3 → 2 ArONa + H2O + CO2 Ile sody jest wymagane do reakcji z 7,2 g 2-naftolu (M = 144 g/mol)?

A. 5,30 g
B. 5,83 g
C. 2,65 g
D. 2,92 g
Żeby obliczyć masę sody potrzebnej do reakcji z 2-naftolem, na początku musimy zgarnąć ilość moli 2-naftolu. Mamy masę 2-naftolu, która wynosi 7,2 g i jego masę molową, co to jest 144 g/mol. Teraz dzielimy masę przez masę molową i wychodzi nam, że n(2-naftol) to 7,2 g podzielić na 144 g/mol, czyli jakieś 0,05 mola. Z równania reakcji wiemy, że na 2 mole 2-naftolu potrzeba 1 mol sody. Więc jak mamy 0,05 mola 2-naftolu, to potrzebujemy tylko 0,025 mola Na2CO3. A masa molowa Na2CO3 to 106 g/mol, więc masa sody, której potrzebujemy, to 0,025 mol razy 106 g/mol, co daje nam 2,65 g. Ponieważ lepiej mieć zapas, liczymy też 10% z 2,65 g, co wychodzi 0,265 g. Tak więc całkowita masa sody do reakcji to 2,65 g + 0,265 g, czyli 2,92 g. Tego typu obliczenia są mega ważne w chemii, bo dają nam pewność, że wszystko się ładnie zareaguje i nie zmarnujemy materiałów.

Pytanie 18

Metoda oczyszczania substancji oparta na różnicach w rozpuszczalności poszczególnych składników w określonym rozpuszczalniku to

A. destylacja
B. krystalizacja
C. chromatografia
D. adsorpcja
Krystalizacja to proces oczyszczania substancji, który polega na wykorzystaniu różnic w rozpuszczalności składników w danym rozpuszczalniku. Podczas krystalizacji, gdy roztwór staje się nasycony, rozpuszczony substancja zaczyna wytrącać się w postaci kryształów. Ten proces jest szczególnie użyteczny w chemii i przemyśle farmaceutycznym, gdzie czystość substancji czynnej jest kluczowa. Przykładem może być produkcja soli kuchennej, gdzie rozpuszczona sól w wodzie jest poddawana procesowi odparowania, co prowadzi do wytrącenia się czystych kryształów soli. Krystalizacja jest zgodna z zasadami dobrej praktyki laboratoryjnej (GLP) oraz standardami czystości substancji, co czyni ją niezastąpioną metodą w analizie chemicznej i syntezach organicznych. Dzięki temu procesowi można uzyskać substancje o wysokiej czystości, co jest niezbędne w dalszych badaniach i aplikacjach przemysłowych.

Pytanie 19

Którego z poniższych naczyń laboratoryjnych nie powinno się używać do podgrzania 100 cm3wody?

A. Zlewki o pojemności 200 cm3
B. Kolby stożkowej o pojemności 200 cm3
C. Zlewki o pojemności 150 cm3
D. Kolby miarowej o pojemności 100 cm3
Kolby miarowe, ze względu na swoją konstrukcję i przeznaczenie, nie są odpowiednie do stosowania jako naczynia do ogrzewania cieczy, w tym przypadku 100 cm³ wody. Ich główną funkcją jest dokładne mierzenie objętości cieczy, a nie ich podgrzewanie. Kolby miarowe wykonane są z cienkiego szkła, co sprawia, że są bardziej wrażliwe na zmiany temperatury i mogą łatwo pęknąć pod wpływem ciepła. W praktyce laboratoryjnej, do ogrzewania cieczy zaleca się używanie naczyń takich jak zlewki czy kolby stożkowe, które są zaprojektowane do wytrzymywania wysokich temperatur. Na przykład, zlewki wykonane z borokrzemowego szkła, które charakteryzuje się wysoką odpornością na temperaturę, są powszechnie stosowane do takich zadań. Dobre praktyki laboratoryjne nakazują wybieranie naczyń dostosowanych do specyficznych zastosowań, aby zapewnić bezpieczeństwo i efektywność pracy.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

W wyniku analizy sitowej próbki stałej otrzymano frakcję o średnicy ziaren 12 – 30 mm. Jaką masę powinna mieć prawidłowo pobrana próbka pierwotna?

Tabela. Wielkość próbki pierwotnej w zależności od wielkości ziarna
Średnica ziaren lub kawałków [mm]do 11 - 1011 - 50ponad 50
Pierwotna próbka (minimum) [g]10020010002500

A. 100 g
B. 200 g
C. 1000 g
D. 2500 g
Odpowiedź '1000 g' jest prawidłowa, ponieważ zgodnie z normami analizy sitowej, dla ziaren o średnicy od 11 do 50 mm minimalna masa próbki pierwotnej powinna wynosić 1000 g. W przypadku analizy sitowej, w której badana jest frakcja ziaren, odpowiednia masa próbki jest kluczowa dla uzyskania wiarygodnych wyników. Zbyt mała próbka może prowadzić do błędnych wyników, zniekształcając charakterystykę frakcji ziarna. W praktyce, przy analizach takich jak ocena uziarnienia materiałów budowlanych czy surowców mineralnych, stosowanie się do odpowiednich standardów jest istotne dla zapewnienia jakości wyników. Przykładowo, w laboratoriach stosuje się normy PN-EN ISO 17892 dla gruntów, które również wskazują na konieczność stosowania odpowiednich mas próbki w zależności od rodzaju analizowanego materiału. Dlatego, jeśli analizowana frakcja mieści się w określonym przedziale średnic ziaren, należy zawsze upewnić się, że masa próbki odpowiada wymaganiom, aby uniknąć błędów w analizie.

Pytanie 22

Po zmieszaniu wszystkie pierwotne próbki danej partii materiału tworzą próbkę

A. ogólną
B. wtórną
C. średnią
D. analityczną
Odpowiedź ogólna jest poprawna, ponieważ po zmieszaniu wszystkich próbek pierwotnych danej partii materiału uzyskuje się jedną reprezentatywną próbkę, która odzwierciedla właściwości całej partii. W praktyce jest to kluczowe w procesach analitycznych, gdzie zapewnienie reprezentatywności próbki ma fundamentalne znaczenie dla uzyskanych wyników. W kontekście norm ISO 17025 dotyczących akredytacji laboratoriów badawczych oraz metod pobierania próbek, istotne jest, aby reprezentatywna próbka była zgodna z zaleceniami dotyczącymi wielkości i sposobu pobierania. Dzięki temu możemy mieć pewność, że wyniki analizy będą miały zastosowanie do całej partii materiału, a nie tylko do wybranych fragmentów. W praktyce, proces ten jest często stosowany w laboratoriach, które zajmują się kontrolą jakości, gdzie analiza jednego z wielu komponentów materiału pozwala na ocenę jego właściwości fizycznych czy chemicznych, co jest niezbędne w branżach takich jak przemysł spożywczy, farmaceutyczny czy chemiczny. W związku z tym, zrozumienie, czym jest próbka ogólna, jest niezbędne dla właściwej interpretacji wyników badań.

Pytanie 23

Pobieranie próbek wody z zbiornika wodnego, który zasila system wodociągowy, powinno odbywać się

A. na powierzchni wody, w pobliżu brzegu zbiornika
B. na powierzchni wody, w centralnej części zbiornika
C. w miejscu oraz na głębokości, gdzie następuje czerpanie wody
D. w najgłębszym punkcie, z którego czerpana jest woda
Prawidłowa odpowiedź wskazuje na konieczność pobierania próbek wody w miejscu i na głębokości, w którym następuje pobór wody. Jest to kluczowe dla zapewnienia, że próbki odzwierciedlają rzeczywiste warunki wody, jaka jest dostarczana do użytkowników. W praktyce oznacza to, że próbki należy pobierać w punktach, gdzie woda jest zasysana przez system wodociągowy, co pozwala na dokładne monitorowanie jakości wody oraz jej ewentualnych zanieczyszczeń. Zgodnie z normami i zaleceniami takich organizacji jak WHO czy EPA, próbki powinny być zbierane w sposób, który minimalizuje ryzyko zanieczyszczenia próbek. W praktyce, pobieranie próbek na głębokości w miejscu poboru wody jest niezbędne, aby uwzględnić różne warstwy wody oraz potencjalne różnice w jej jakości. Przykładem zastosowania tej wiedzy jest kontrola jakości wody pitnej, gdzie regularne badania próbek w różnych warunkach pozwalają na odpowiednie reagowanie na zmiany i zapewnienie bezpieczeństwa zdrowotnego mieszkańców.

Pytanie 24

Aby pobrać dokładnie 20 cm3 próbkę wody do przeprowadzenia analiz, należy zastosować

A. pipetę wielomiarową o pojemności 25 cm3
B. cylinder miarowy o pojemności 25 cm3
C. pipetę jednomiarową o pojemności 20 cm3
D. pipetę jednomiarową o pojemności 10 cm3
Pipeta jednomiarowa o pojemności 20 cm3 jest najodpowiedniejszym narzędziem do precyzyjnego pobierania próbki wody o objętości 20 cm3. W praktyce laboratoryjnej, pipety jednomiarowe są projektowane tak, aby umożliwić dokładne i powtarzalne pomiary, co jest kluczowe w analizach chemicznych. Wybierając pipetę o pojemności dokładnie odpowiadającej potrzebnej objętości, minimalizujemy ryzyko błędów pomiarowych i podnosimy jakość uzyskiwanych wyników. W kontekście standardów laboratoryjnych, zgodnie z normą ISO 8655, pipety powinny być kalibrowane i okresowo weryfikowane, aby zapewnić ich dokładność. Użycie pipety o odpowiedniej pojemności, jak w tym przypadku, nie tylko zwiększa precyzję, ale także efektywność pracy w laboratorium, co jest istotne w przypadku wielu analiz wymagających rozcieńczeń lub dokładnych pomiarów składników chemicznych.

Pytanie 25

Którą z poniższych czynności należy wykonać, aby zapewnić wysoką dokładność pomiaru masy substancji podczas przygotowywania próbki do analizy chemicznej?

A. Wystarczy ważyć substancję na zwykłej wadze kuchennej.
B. Zastosować wagę analityczną o dokładności do 0,1 mg.
C. Pominąć etap ważenia przy sporządzaniu roztworu.
D. Użyć linijki do określenia objętości substancji.
Dokładność pomiaru masy substancji chemicznych ma kluczowe znaczenie w analizie laboratoryjnej. Użycie wagi analitycznej o dokładności do 0,1 mg jest standardem wszędzie tam, gdzie wymagane są precyzyjne oznaczenia ilościowe. Wagi analityczne mają specjalną konstrukcję – są zamknięte w osłonie przeciwwiatrowej, mają bardzo czułe mechanizmy i są regularnie kalibrowane, co minimalizuje wpływ czynników zewnętrznych takich jak drgania czy ruchy powietrza. Tak wysoka dokładność pozwala na ważenie nawet niewielkich ilości substancji, co jest często niezbędne przy pracy z odczynnikami o wysokiej aktywności lub kosztownych standardach. W praktyce zawodowej takie podejście pozwala uniknąć błędów systematycznych, które mogłyby zafałszować wyniki analizy i doprowadzić do nieprawidłowych wniosków. Stosowanie wag analitycznych jest opisane w normach branżowych i podręcznikach dla laborantów. Moim zdaniem, bez tej dokładności nie da się mówić o profesjonalnym przygotowaniu próbek. Warto też pamiętać, że nawet drobne różnice masy mogą mieć duże znaczenie przy przygotowywaniu roztworów wzorcowych czy analitycznych, dlatego nie ma tu miejsca na półśrodki.

Pytanie 26

Podczas pomiaru masy substancji w naczyniu wagowym na wadze technicznej, dla zrównoważenia masy na szalce zastosowano odważniki: 10 g, 5 g, 500 mg, 200 mg, 200 mg, 50 mg, 20 mg, 10 mg oraz 10 mg. Masa substancji razem z naczynkiem wyniosła

A. 16,04 g
B. 15,99 g
C. 16,94 g
D. 15,94 g
Odpowiedź 15,99 g jest prawidłowa, ponieważ podczas ważenia substancji w naczynku wagowym, sumujemy masy odważników, które zostały użyte do zrównoważenia. W analizowanym przypadku odważniki to: 10 g, 5 g, 500 mg (czyli 0,5 g), 200 mg (czyli 0,2 g), 200 mg (0,2 g), 50 mg (0,05 g), 20 mg (0,02 g), 10 mg (0,01 g) i 10 mg (0,01 g). Gdy dodamy te wartości, otrzymujemy: 10 g + 5 g + 0,5 g + 0,2 g + 0,2 g + 0,05 g + 0,02 g + 0,01 g + 0,01 g = 15,99 g. W praktyce, ważenie substancji należy przeprowadzać na dobrze skalibrowanych wagach technicznych, które powinny być regularnie poddawane kalibracji zgodnie z normami ISO 9001, aby zapewnić dokładność pomiarów. Użycie odważników o precyzyjnych wartościach jest kluczowe dla uzyskania wiarygodnych wyników, co ma ogromne znaczenie w laboratoriach chemicznych oraz w przemyśle farmaceutycznym, gdzie niewielkie odchylenia w ważeniu mogą prowadzić do poważnych konsekwencji dla jakości produktów.

Pytanie 27

Jaką objętość powinna mieć kolba miarowa, aby przygotować mianowany roztwór NaOH o stężeniu 0,050 M z analitycznej odważki, która zawiera 0,1 mola NaOH?

A. 1 dm3
B. 2 dm3
C. 200 cm3
D. 100 cm3
Aby przygotować mianowany roztwór NaOH o stężeniu 0,050 M z odważki analitycznej, musimy obliczyć odpowiednią objętość roztworu. Stężenie molowe (M) wyraża liczbę moli substancji w litrze roztworu. W tym przypadku, aby uzyskać roztwór o stężeniu 0,050 M, musimy użyć 0,050 mola NaOH w 1 litrze roztworu. Mając 0,1 mola NaOH, możemy przygotować 0,1 / 0,050 = 2 litry roztworu. W związku z tym, kolba miarowa powinna mieć pojemność 2 dm3, aby pomieścić przygotowany roztwór. Tego rodzaju obliczenia są kluczowe w laboratoriach chemicznych, gdzie precyzyjne przygotowanie roztworów ma istotne znaczenie dla uzyskania wiarygodnych wyników eksperymentalnych. Przestrzeganie standardów przygotowania roztworów zapewnia ich jednorodność i dokładność, co jest niezbędne w badaniach analitycznych, a także w różnorodnych aplikacjach przemysłowych.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

Rozpuszczalniki organiczne powinny być składowane

A. w przestrzeni ogólnodostępnej
B. w drewnianych szafkach
C. w metalowych szafach
D. w miejscu o dużym nasłonecznieniu
Jak się okazuje, trzymanie rozpuszczalników organicznych w metalowych szafach to naprawdę ważna sprawa. Dzięki temu możemy zminimalizować ryzyko pożaru i wybuchu. Metal jest znacznie bardziej odporny na chemikalia niż drewno, co jest istotne, bo dzięki temu ogień się nie rozprzestrzeni. Wiele szaf ma też specjalne systemy wentylacyjne oraz uszczelnienia, co pomaga ograniczać niebezpieczne opary. Takie szafy są również klasyfikowane według norm NFPA, co daje pewność, że są bezpieczniejsze. No i warto pamiętać, żeby przy przechowywaniu rozpuszczalników zwracać uwagę na ich oznakowanie oraz lokalne przepisy BHP, bo to wszystko ma ogromne znaczenie. Przechowywanie ich w dobrze oznakowanych pojemnikach w wyznaczonej strefie to dobry pomysł, bo zmniejsza ryzyko wycieku czy przypadkowego kontaktu z innymi substancjami.

Pytanie 32

Oddzielanie płynnej mieszaniny wieloskładnikowej poprzez odparowanie, a następnie skraplanie jej komponentów, to proces

A. destylacji
B. krystalizacji
C. koagulacji
D. filtracji
Destylacja to proces, który polega na rozdzielaniu składników cieczy poprzez ich odparowanie i następne skroplenie. Jest to technika szeroko stosowana w różnych gałęziach przemysłu, takich jak petrochemia, przemysł spożywczy, a także w laboratoriach chemicznych. Przykładem zastosowania destylacji w przemyśle jest produkcja alkoholi, gdzie poprzez destylację fermentowanych surowców uzyskuje się wysokoprocentowe napoje. Proces destylacji wykorzystuje różnice w temperaturach wrzenia poszczególnych składników, co pozwala na ich selektywne odparowanie i kondensację. W praktyce, w destylacji frakcyjnej, stosuje się kolumny destylacyjne, które umożliwiają wielokrotne skraplanie i odparowywanie, co zwiększa efektywność rozdziału. Warto również znać standardy takie jak ASTM D86, które określają metody przeprowadzania destylacji w przemyśle naftowym, gwarantując wysoką jakość oraz powtarzalność procesów.

Pytanie 33

Woda używana w laboratorium chemicznym, uzyskana poprzez filtrację przez wymieniacz jonowy, jest określana mianem wody

A. mineralizowanej
B. destylowanej
C. demineralizowanej
D. redestylowanej
Woda demineralizowana to woda, z której usunięto praktycznie wszystkie rozpuszczone sole mineralne, dzięki procesowi wymiany jonów. W laboratoriach chemicznych wykorzystywana jest w wielu zastosowaniach, takich jak przygotowywanie roztworów, przeprowadzanie reakcji chemicznych czy jako medium w analizach chemicznych. Standardy branżowe, takie jak ISO 3696, definiują jakość wody demineralizowanej, co zapewnia jej wysoką czystość chemiczną i minimalne zanieczyszczenia, co jest kluczowe dla uzyskania wiarygodnych wyników eksperymentów. Przykłady zastosowania obejmują przygotowanie prób do spektroskopii i analizy chromatograficznej, gdzie obecność jonów może zafałszować wyniki. Woda demineralizowana jest również używana w procesach chłodzenia oraz w urządzeniach takich jak kotły, gdzie zanieczyszczenia mogą prowadzić do korozji. W związku z tym, posiadanie wody demineralizowanej w laboratorium jest niezbędne dla zapewnienia jakości i integralności prowadzonych badań.

Pytanie 34

Na podstawie danych zawartych w tabeli wskaż, które opakowania zawierają produkt zgodny ze specyfikacją.

WŁAŚCIWOŚCINORMA KLASY A
wg specyfikacji produktu
OPAKOWANIE
123
POSTAĆBezbarwna ciecz, bez zanieczyszczeń.
Dopuszcza się niebieskawе zabаrwienie
i obecność skrystalizowanego osadu
Bezbarwna ciecz
Zawartość ługu sodowego
(NaOH), min, % masy
46,046,546,848,0
Węglan sodu (Na₂CO₃),
nie więcej niż, % masy
0,40,30,30,2
Chlorek sodu (NaCl),
nie więcej niż, % masy
0,0200,0150,0140,011
Chloran sodu (NaClO₃),
nie więcej niż, % masy
0,0070,0060,0050,002
Siarczan sodu (Na₂SO₄),
nie więcej niż, % masy
0,0400,0380,0350,029
Zawartość żelaza (Fe₂O₃),
max, WT. PPM
15151510

A. Wszystkie.
B. Żadne.
C. Tylko 3.
D. Tylko 1 i 2.
Odpowiedź "Wszystkie" jest jak najbardziej na miejscu! Wszystkie opakowania (1, 2 i 3) spełniają normy klasy A według wymagań produktu. Zawierają bezbarwną ciecz, która przeszła testy na substancje chemiczne. To ważne, bo każde z tych opakowań mieści się w granicach określonych w normach, co znaczy, że są zgodne z wymaganiami jakościowymi. Z mojego doświadczenia, normy klasy A są kluczowe w wielu branżach, szczególnie w chemii czy farmacji, gdzie jakość i bezpieczeństwo to podstawa. Dobrze jest też pamiętać, że trzymanie się norm w pakowaniu jest mega ważne, bo złe opakowanie może zaszkodzić produktowi. Dlatego każdy, kto pracuje w produkcji, powinien znać te normy i się ich trzymać, żeby zapewnić najwyższą jakość i bezpieczeństwo produktów.

Pytanie 35

Jaką masę wodorotlenku potasu trzeba odważyć, żeby przygotować 500 cm3 roztworu o stężeniu 0,02 mola? Masy molowe poszczególnych pierwiastków wynoszą: potas K - 39 g/mol, tlen O - 16 g/mol, wodór H - 1 g/mol?

A. 0,28 g
B. 56,00 g
C. 0,56 g
D. 5,60 g
Aby obliczyć, ile gramów wodorotlenku potasu (KOH) należy odważyć do przygotowania 500 cm³ 0,02-molowego roztworu, należy zastosować wzór na obliczenie masy substancji w roztworze: m = C × V × M, gdzie m to masa w gramach, C to stężenie molowe, V to objętość roztworu w litrach, a M to masa molowa substancji. Masa molowa KOH wynosi: 39 g/mol (K) + 16 g/mol (O) + 1 g/mol (H) = 56 g/mol. Podstawiając dane do wzoru, otrzymujemy: m = 0,02 mol/L × 0,5 L × 56 g/mol = 0,56 g. W praktyce, precyzyjne odważenie substancji chemicznych jest kluczowe w laboratoriach, aby uzyskać odpowiednie stężenie roztworu, co jest istotne w wielu procesach chemicznych, takich jak syntezy, analizach chemicznych czy w badaniach naukowych.

Pytanie 36

Sód metaliczny powinien być przechowywany w laboratorium

A. w butelkach plastikowych
B. w szklanych naczyniach
C. w szklanych pojemnikach wypełnionych naftą
D. w butlach metalowych z wodą destylowaną
Sód metaliczny należy przechowywać w szklanych butlach wypełnionych naftą, ponieważ ma on silne właściwości reaktywne, szczególnie w kontakcie z wodą i powietrzem. Sód reaguje z wodą, wytwarzając wodór i ciepło, co może prowadzić do niebezpiecznych eksplozji. Nafta, jako substancja organiczna, skutecznie izoluje sód od kontaktu z wodą i wilgocią, co zapobiega jego utlenianiu oraz niebezpiecznym reakcjom chemicznym. Ponadto, szklane pojemniki są neutralne chemicznie i nie wchodzą w reakcje z sodem, co czyni je odpowiednim materiałem do przechowywania. Tego rodzaju praktyki są zgodne z normami bezpieczeństwa w laboratoriach chemicznych, gdzie szczególną uwagę zwraca się na odpowiednie metody przechowywania substancji niebezpiecznych. Warto również zauważyć, że w wielu laboratoriach stosuje się podobne metody przechowywania innych reaktywnych metali, aby zminimalizować ryzyko ich reakcji z substancjami zewnętrznymi.

Pytanie 37

Użycie płuczek jest konieczne w trakcie procesu

A. flotacji
B. krystalizacji
C. oczyszczania gazów
D. destylacji
Płuczkami, czyli urządzeniami stosowanymi do oczyszczania gazów, posługujemy się w celu usunięcia zanieczyszczeń oraz toksycznych substancji z gazów odpadowych. W procesie tym gaz przepływa przez ciecz, najczęściej wodę lub roztwory chemiczne, które absorbują zanieczyszczenia. Przykładem zastosowania płuczek jest przemysł chemiczny, gdzie gazy powstałe w wyniku reakcji chemicznych często zawierają szkodliwe dla środowiska substancje. Płuczki są zgodne z normami ochrony środowiska, takimi jak dyrektywy unijne dotyczące emisji gazów do atmosfery. Dzięki zastosowaniu nowoczesnych technologii płuczek, można osiągnąć wysoką efektywność oczyszczania, co przyczynia się do zmniejszenia emisji zanieczyszczeń i ochrony zdrowia publicznego. W praktyce płuczkami można również oczyszczać gazy przemysłowe, co jest kluczowe w kontekście zrównoważonego rozwoju i odpowiedzialności ekologicznej przedsiębiorstw.

Pytanie 38

W przypadku rozlania żrącego odczynnika chemicznego na skórę pierwszym poprawnym działaniem jest:

A. Zaklejenie miejsca plastrem
B. Natychmiastowe spłukanie miejsca kontaktu dużą ilością wody
C. Pocieranie miejsca kontaktu papierowym ręcznikiem
D. Posypanie miejsca solą kuchenną
Postępowanie w przypadku kontaktu skóry z substancją żrącą jest jednym z podstawowych elementów bezpieczeństwa w laboratorium chemicznym. Najważniejsze jest, żeby działać szybko i skutecznie. Od razu po rozlaniu żrącego odczynnika trzeba spłukać miejsce kontaktu dużą ilością wody – najlepiej bieżącej. To nie tylko rozcieńcza szkodliwy związek, ale przede wszystkim usuwa go z powierzchni skóry, zmniejszając ryzyko głębszych uszkodzeń tkanek. Praktyka ta wynika z ogólnych zasad BHP obowiązujących w laboratoriach oraz wytycznych instytutów takich jak CIOP czy OSHA. Efektywność tej metody potwierdzają liczne badania. Szybka reakcja pozwala ograniczyć wchłanianie substancji i minimalizuje skutki poparzeń chemicznych. Nawet jeśli żrący środek wydaje się mało agresywny, nie wolno tego bagatelizować. Dobrze mieć też pod ręką prysznic bezpieczeństwa lub zestaw do płukania oczu, zwłaszcza w laboratoriach chemicznych. Warto pamiętać, że niektóre substancje wymagają dłuższego płukania – nawet do 15 minut. Dodatkowo po takim incydencie zawsze należy zgłosić zdarzenie przełożonemu i skonsultować się z lekarzem. Z mojego doświadczenia, szybkie działanie i wiedza o pierwszej pomocy to rzeczy, które naprawdę robią różnicę w laboratoriach. Ostatecznie – lepiej spłukać odczynnik za długo, niż za krótko. To jedna z tych zasad, które zawsze warto mieć z tyłu głowy podczas pracy z chemikaliami.

Pytanie 39

Czysty odczynnik (skrót: cz.) charakteryzuje się poziomem czystości wynoszącym

A. 99,9-99,99%
B. 90-99%
C. 99-99,9%
D. 99,99-99,999%
Odpowiedź 99-99,9% jest poprawna, gdyż odczynnik czysty (skrót: cz.) jest definiowany przez stopień czystości, który powinien mieścić się w określonym zakresie. Zgodnie z normami międzynarodowymi, substancje charakteryzujące się czystością w tym zakresie są uznawane za wysokiej jakości, co ma kluczowe znaczenie w takich dziedzinach jak chemia analityczna, farmacja czy przemysł spożywczy. W praktyce, substancje o czystości 99-99,9% mogą być wykorzystywane w wytwarzaniu leków, gdzie nawet niewielkie zanieczyszczenie może wpłynąć na skuteczność i bezpieczeństwo preparatu. Przykłady takich substancji to wiele reagentów używanych w laboratoriach, które muszą spełniać wysokie standardy czystości, aby zapewnić wiarygodne wyniki w badaniach. Ponadto, ogólnie przyjęte normy, takie jak ISO 9001, podkreślają znaczenie monitorowania i zapewniania jakości materiałów, co jest istotne w kontekście czystości chemicznej.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.