Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik geodeta
  • Kwalifikacja: BUD.18 - Wykonywanie pomiarów sytuacyjnych, wysokościowych i realizacyjnych oraz opracowywanie wyników tych pomiarów
  • Data rozpoczęcia: 21 maja 2025 19:31
  • Data zakończenia: 21 maja 2025 19:45

Egzamin niezdany

Wynik: 19/40 punktów (47,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Jaką maksymalną długość rzędnej można stosować przy pomiarze sytuacyjnym obrysów budynków metodą prostokątnych domiarów?

A. 30 m
B. 15 m
C. 25 m
D. 20 m
Odpowiedzi, które sugerują inne długości rzędnej, takie jak 20 m, 30 m czy 15 m, mogą prowadzić do poważnych nieporozumień dotyczących standardów pomiarowych. Długości te są nieadekwatne do wymagań zawartych w normach geodezyjnych, które jasno określają optymalne zasięgi dla różnych metod pomiarowych. W przypadku 20 m można sądzić, że to zbyt krótka długość, która nie pozwala na uzyskanie wystarczającej precyzji przy dużych odległościach. Z kolei długość 30 m staje się problematyczna w kontekście pomiarów, gdyż może zwiększać ryzyko błędów kumulacyjnych oraz trudności związanych z precyzyjnym przenoszeniem wymiarów na większe odległości. Odpowiedź sugerująca 15 m jest nie tylko niewłaściwa, ale także w praktyce może prowadzić do istotnych trudności w realizacji pomiarów budowlanych, szczególnie na otwartych terenach, gdzie warunki atmosferyczne i uwarunkowania przestrzenne mogą wpływać na dokładność. Istotne jest, aby geodeci mieli świadomość, że stosowanie nieodpowiednich długości rzędnych może skutkować błędami, które mogą wpłynąć na całkowitą rzetelność projektu budowlanego, prowadząc do niepoprawnych danych geodezyjnych i konsekwencji w fazach realizacji inwestycji. Dlatego znajomość i stosowanie przyjętej długości rzędnej, jaką jest 25 m, jest kluczowe dla zapewnienia wysokiej jakości pomiarów.

Pytanie 2

Jakich informacji nie powinno się zamieszczać w opisie obiektu podczas aktualizacji mapy zasadniczej?

A. Numeru porządkowego obiektu
B. Liczby kondygnacji nadziemnych
C. Oznaczenia literowego funkcji obiektu
D. Oznaczenia literowego źródła danych o lokalizacji
Wybór danych, które nie powinny być umieszczane w opisie budynku podczas aktualizacji mapy zasadniczej, jest kwestią kluczową dla zachowania właściwej struktury informacji w systemach ewidencyjnych. W przypadku numeru porządkowego budynku, jest to podstawowy element identyfikacyjny, który umożliwia lokalizację obiektu w przestrzeni. Oznaczenie literowe funkcji budynku jest równie ważne, ponieważ określa przeznaczenie obiektu, co ma znaczenie w kontekście planowania przestrzennego i oceny jego wpływu na otoczenie. Liczba kondygnacji nadziemnych dostarcza informacji o wysokości budynku oraz jego funkcji, co jest istotne dla wielu aspektów zarządzania przestrzenią miejską, takich jak bezpieczeństwo pożarowe, dostępność czy warunki zabudowy. Oznaczenie literowe źródła danych o położeniu, choć ważne w kontekście technicznym, nie jest informacją, która powinna zdominować opis budynku. Typowe błędy myślowe prowadzące do ignorowania znaczenia numeru porządkowego czy funkcji budynku mogą wynikać z niepełnego zrozumienia, jak te elementy wpływają na całość systemu ewidencyjnego i praktyki zarządzania przestrzenią. Wiedza o tych elementach jest kluczowa dla prawidłowego funkcjonowania systemów GIS oraz usprawnienia procesu aktualizacji danych.

Pytanie 3

Który ze sporządzanych w terenie dokumentów geodezyjnych jest wykorzystywany m.in. do zlokalizowania trwale ustalonego punktu osnowy?

A. Plan osnowy
B. Szkic polowy
C. Opis topograficzny
D. Szkic budowlany
Analizując inne dokumenty geodezyjne, łatwo można zauważyć ich różnorodność oraz specyfikę, która nie zawsze jest zrozumiała dla osób nieobeznanych z tematem. Projekt osnowy to dokument, który ma na celu zaplanowanie rozmieszczenia punktów osnowy, jednak nie jest to dokument powstający w terenie, lecz raczej przedprojektowy. Ponadto, jego zawartość nie umożliwia odnalezienia konkretnego, zastabilizowanego punktu osnowy, ponieważ projekt ma charakter koncepcyjny, a nie operacyjny. Szkic tyczenia, z drugiej strony, jest dokumentem używanym w trakcie prac geodezyjnych do zaznaczania lokalizacji budynków czy innych obiektów, ale także nie służy bezpośrednio do identyfikacji punktów osnowy. Warto zauważyć, że szkic polowy to dokument, który jest bardziej roboczy i obejmuje zapisy dotyczące pomiarów wykonanych na ziemi, ale również nie dostarcza pełnej informacji o stałych punktach osnowy. Zrozumienie różnicy między tymi dokumentami i ich zastosowaniami jest kluczowe dla każdego geodety, a błędne przypisanie ich funkcji może prowadzić do nieporozumień oraz błędów w wykonaniu prac geodezyjnych. W branży geodezyjnej ważne jest, aby każdy dokument był wykorzystywany zgodnie z jego przeznaczeniem, co wpływa na efektywność i dokładność prowadzonych pomiarów oraz projektów.

Pytanie 4

Na czym umieszcza się współrzędne X oraz Y punktów osnowy realizacyjnej?

A. mapie zasadniczej
B. szkicu dokumentacyjnym
C. mapie ewidencyjnej
D. szkicu inwentaryzacyjnym
Szkic dokumentacyjny to naprawdę przydatne narzędzie, które pomaga w wizualizacji i zapisywaniu współrzędnych punktów osnowy realizacyjnej. Te współrzędne X i Y są mega ważne, bo pozwalają określić, gdzie dokładnie znajdują się punkty w przestrzeni, co jest super istotne w geodezji i inżynierii. Jak masz taki szkic, to łatwiej analizować i interpretować te wszystkie geodezyjne dane. Przykładowo, przy inwentaryzacji gruntów, precyzyjne odzwierciedlenie punktów osnowy pozwala dokładnie ustalić granice działek. No i co ważne, według standardów geodezyjnych, dokumentacja musi być zrozumiała i przejrzysta, żeby każdy mógł to ogarnąć. Dlatego tak ważne jest, aby współrzędne były poprawnie naniesione na szkic, bo to wpływa na cały proces geodezyjny i zgodność z normami prawnymi i technicznymi.

Pytanie 5

Pomiar kątów za pomocą tachimetru elektronicznego w dwóch pozycjach lunety nie usuwa błędu

A. kolimacji
B. indeksu
C. inklinacji
D. centrowania
Odpowiedź 'centrowania' jest prawidłowa, ponieważ pomiar kątów tachimetrem elektronicznym w dwóch położeniach lunety nie eliminuje błędu centrowania. Błąd centrowania odnosi się do nieprecyzyjnego umiejscowienia instrumentu geodezyjnego nad punktem pomiarowym. Nawet przy dokładnym ustawieniu lunety na dwóch różnych pozycjach, jeśli instrument nie jest idealnie wyśrodkowany, może wystąpić błąd w pomiarze kątów. W praktyce geodezyjnej, aby zminimalizować ten błąd, zaleca się stosowanie statywów o wysokiej stabilności oraz precyzyjnych zamocowań, które umożliwiają dokładne centrowanie instrumentu. Standardy geodezyjne, takie jak normy ISO i zalecenia organizacji geodezyjnych, podkreślają znaczenie precyzyjnego centrowania jako kluczowego elementu uzyskiwania wiarygodnych pomiarów. Dobrą praktyką jest również stosowanie instrumentów wyposażonych w funkcje automatycznego centrowania, co znacznie zwiększa dokładność pomiarów.

Pytanie 6

Jaką maksymalną długość mogą mieć linie pomiarowe na obszarach rolnych i leśnych?

A. 600 m
B. 400 m
C. 300 m
D. 500 m
Wybór długości linii pomiarowej, która jest niższa niż 400 m, jak 300 m czy 500 m, może wynikać z niepełnego zrozumienia zasad geodezyjnych. Ustalona maksymalna długość 400 m jest oparta na standardach, które uwzględniają zarówno dokładność pomiarów, jak i praktyczną wykonalność. Linie pomiarowe, które są zbyt krótkie, mogą prowadzić do nieefektywności w zakresie zbierania danych. Przykładowo, wybierając długość 300 m, można zmarnować zasoby i czas, ponieważ konieczne będzie wykonanie większej liczby pomiarów, co jest niepraktyczne w przypadku dużych obszarów. Z kolei nadmiernie długie linie, takie jak 600 m, wprowadzą dodatkowe ryzyko błędów związanych z warunkami terenowymi, co może skutkować niedokładnością wyników. Typowym błędem jest zatem mylenie długości z efektywnością, gdzie niektórzy mogą sądzić, że dłuższe linie zmniejszą liczbę pomiarów, podczas gdy w rzeczywistości mogą one zwiększyć margines błędu. Kluczowe jest zrozumienie, że maksymalna długość linii pomiarowej jest ustalona po dokładnej analizie czynników, które wpływają na precyzję pomiarów. Właściwe stosowanie tej normy przyczynia się do uzyskania dokładniejszych i bardziej wiarygodnych danych, co jest niezbędne w praktykach geodezyjnych oraz w kontekście planowania przestrzennego.

Pytanie 7

Który z poniższych elementów terenu zalicza się do pierwszej kategorii dokładnościowej?

A. Boisko sportowe
B. Linia brzegowa jeziora
C. Drzewo przyuliczne
D. Budynek szkoły
Budynek szkoły to coś, co możemy spokojnie wrzucić do pierwszej grupy dokładnościowej, jeśli mówimy o analizie terenowej i geodezyjnej. W tej grupie są obiekty, które mają naprawdę wysoką precyzję. To znaczy, że ich lokalizacja jest dokładnie określona i można je wykorzystać w różnych sytuacjach, jak planowanie przestrzenne czy urbanistyka. Jak to z budynkami bywa, zwłaszcza tymi publicznymi, jak szkoły, mają one duże znaczenie dla analizy przestrzennej, bo ich lokalizacja wpływa na to, jak dostępne są usługi dla ludzi w okolicy. Kiedy tworzymy mapy społeczne czy sprawdzamy dostęp do edukacji, precyzyjna lokalizacja szkół jest super ważna, żeby ocenić jakość życia i infrastruktury w danym miejscu. A wiesz, stosowanie standardów jak ISO 19115, które dotyczą metadanych geograficznych, pomaga w tym, żeby te dane były zebrane i użyte tak, jak trzeba. To naprawdę ważne dla dalszych analiz.

Pytanie 8

Gdzie umieszczane są punkty odniesienia do pomiaru przemieszczeń w kierunku pionowym?

A. w sąsiedztwie monitorowanego obiektu
B. na monitorowanym obiekcie
C. w obszarze wpływu monitorowanego obiektu
D. poza obszarem wpływu monitorowanego obiektu
Wybór punktów odniesienia w strefie oddziaływania monitorowanego obiektu nie jest właściwy z kilku powodów. Umiejscowienie punktów referencyjnych w bezpośredniej bliskości obiektu naraża je na wpływ wszelkich przemieszczeń lub drgań generowanych przez obiekt, co może prowadzić do błędnych pomiarów. Istnieje ryzyko, że zmiany, które mierzysz, będą wynikiem lokalnych efektów, takich jak osiadanie podłoża czy wibracje spowodowane ruchem pojazdów, zamiast rzeczywistych przemieszczeń obiektu. Ponadto, punkty odniesienia w pobliżu mogą być również narażone na zmiany warunków otoczenia, takie jak opady deszczu, co dodatkowo wpływa na ich stabilność. Często wyniki pomiarów z takich lokalizacji są nieprzewidywalne i mogą prowadzić do błędnych wniosków. Dobrą praktyką jest stosowanie lokalizacji referencyjnych, które są dobrze zabezpieczone, nie podlegają wpływom zewnętrznym i są zgodne z obowiązującymi normami, takimi jak ISO 17123 dotyczące metod pomiarowych w geodezji. Na przykład, w monitorowaniu budowli obiektów inżynieryjnych, w zależności od specyfiki projektu, należy umieścić punkty odniesienia w miejscach, które są geologicznie stabilne i nie są narażone na ruchy związane z działalnością budowlaną.

Pytanie 9

Wykonanie mapy zasadniczej dla obszarów z istotnym obecnym lub prognozowanym zainwestowaniem powinno odbywać się w skali

A. 1:2000
B. 1:500
C. 1:5000
D. 1:1000
Odpowiedź 1:2000 jest prawidłowa, ponieważ opracowanie mapy zasadniczej dla terenów o znacznym obecnym lub przewidywanym zainwestowaniu wymaga szczegółowego przedstawienia lokalizacji, granic i charakterystyki terenu. Skala 1:2000 pozwala na dokładne przedstawienie elementów urbanistycznych, takich jak ulice, budynki oraz infrastruktura techniczna. W praktyce, mapy w tej skali stosowane są do projektowania i planowania przestrzennego, co jest kluczowe w kontekście uchwał planistycznych i decyzji administracyjnych. W standardach branżowych, takich jak normy dotyczące geodezji i kartografii, podkreśla się znaczenie precyzyjnych odwzorowań w przypadkach intensywnej zabudowy. Przykładem zastosowania może być przygotowanie dokumentacji do wydania pozwolenia na budowę, gdzie konieczne jest uwzględnienie wszystkich detali infrastrukturalnych i istniejących obiektów, co jest możliwe tylko w takiej skali.

Pytanie 10

Jaką maksymalną liczbę boków może mieć jednostronnie nawiązany wielokąt?

A. 3 boki
B. 4 boki
C. 5 boków
D. 2 boki
Wybór innych opcji, takich jak 5, 3 czy 4 boki, wynika z nieporozumienia odnośnie definicji poligonów jednostronnie nawiązanych. Poligon ten, jak sama nazwa wskazuje, charakteryzuje się tym, że jest formą zamkniętą, której wierzchołki są połączone w sposób umożliwiający ich zamknięcie, jednakże jednocześnie nie może mieć więcej niż dwóch boków ze względu na reguły geometrii. W przypadku odpowiedzi wskazujących na 3 boki, 4 boki czy 5 boków, pojawia się typowy błąd myślowy związany z interpretacją poligonu jako figury wielokątnej, co wprowadza w błąd. Tego typu koncepcje są powszechnie spotykane, szczególnie w kontekście nauczania geometrii, gdzie uczniowie często mylą definicje figur. Aby wyjaśnić, dlaczego te odpowiedzi są nieprawidłowe, warto zaznaczyć, że każdy dodany bok w rzeczywistości przekształca jednostronnie nawiązany poligon w inną klasę figur, co narusza definicję jednostronnych poligonów. Z tego powodu, dla prawidłowego rozumienia koncepcji geometrycznych, kluczowe jest precyzyjne zaznajomienie się z definicjami i regułami rządzącymi poszczególnymi typami figur, co jest istotne w kontekście nauk matematycznych i inżynierskich.

Pytanie 11

Jakie metody powinny być wykorzystane do przeprowadzenia pomiaru tachimetrycznego?

A. Ortogonalną oraz niwelacji geometrycznej
B. Ortogonalną oraz niwelacji trygonometrycznej
C. Biegunową oraz niwelacji geometrycznej
D. Biegunową oraz niwelacji trygonometrycznej
W analizie błędnych odpowiedzi na pytanie o metody pomiaru tachimetrycznego istotne jest zrozumienie, że każda z nich zawiera niepoprawne koncepcje dotyczące zastosowania i łączenia metod. W szczególności, metoda niwelacji geometrycznej, na którą wskazują niektóre odpowiedzi, jest ograniczona w kontekście pomiarów w terenie, gdyż opiera się głównie na pomiarze różnic wysokości pomiędzy punktami przy zachowaniu linii poziomej. Ta technika nie może być skutecznie używana w połączeniu z pomiarem kątów, co jest kluczowe dla uzyskania dokładnych wyników w tachimetrycznym pomiarze. Ortogonalna metoda również nie jest odpowiednia, gdyż zakłada, że pomiar jest wykonywany w kierunku prostym do linii podstawowej, co nie pozwala na efektywne zbieranie danych w trudnych warunkach terenowych. Typowe błędy myślowe, które prowadzą do takich wniosków, często wynikają z niedostatecznej znajomości różnic między metodami oraz ich specyfiką zastosowania. Kluczowe znaczenie ma zrozumienie, że pomiar tachimetryczny wymaga zintegrowania pomiarów kątów i odległości w jeden proces, co w przypadku zaproponowanych odpowiedzi nie zostało spełnione. Zatem nieprawidłowe połączenie metod prowadzi do niespójności i obniża jakość uzyskiwanych wyników.

Pytanie 12

Na podstawie pomiarów niwelacyjnych uzyskano wysokości punktów 1, 2, 3, 4, 5 oraz 6:

H1 = 214,34 m; H2 = 215,32 m; H3 = 213,78 m; H4 = 217,09 m; H5 = 216,11 m; H6 = 212,96 m.

Jaką z wymienionych wysokości należy uznać jako poziom odniesienia przy rysowaniu profilu terenu, który biegnie wzdłuż tych punktów?

A. 217,00 m
B. 215,00 m
C. 211,00 m
D. 213,00 m
Wybór wartości 213,00 m, 215,00 m lub 217,00 m jako poziomu porównawczego przy wykreślaniu profilu terenu w kontekście podanych wysokości jest nieadekwatny. Wybierając wartość, która znajduje się powyżej najniżej położonego punktu pomiarowego, tworzysz zbiór danych, który może prowadzić do zniekształceń i błędnych interpretacji w analizach terenu. Na przykład, jeżeli przyjmiemy 213,00 m, różnice wysokości dla punktów 3, 5 i 6 będą ujemne, co może wprowadzać w błąd i utrudniać właściwą interpretację wyniku. Rekomendowane jest, aby poziom porównawczy zawsze znajdował się poniżej wszystkich analizowanych wysokości, co zapewnia nie tylko przejrzystość, ale i ułatwia dalsze prace inżynieryjne. W kontekście standardów i najlepszych praktyk w geodezji, kluczowe jest, aby posługiwać się poziomami bazowymi, które odzwierciedlają najniższe punkty badane na danym obszarze, co umożliwia rzetelną analizę. Ponadto, błędne podejście do określenia poziomu porównawczego może prowadzić do poważnych pomyłek w dalszych etapach projektowania i realizacji inwestycji, co podkreśla znaczenie właściwego doboru tego poziomu w pracy geodetów i inżynierów.

Pytanie 13

Jakie wartości przyjmują kąty zenitalne (z)?

A. 0° – 400°
B. 0° – 200°
C. 0° – 300°
D. 0° – 100°
Kąty zenitalne, oznaczane jako 'z', to miary kątów, które wskazują położenie obiektów w przestrzeni w stosunku do zenitu, czyli punktu na niebie znajdującego się bezpośrednio nad obserwatorem. Kąty te przyjmują wartości od 0° do 200°. Wartość 0° odpowiada bezpośredniemu położeniu obiektu w zenicie, natomiast 200° oznacza, że obiekt znajduje się na niebie w kierunku, który można określić jako 'pod' horyzontem, co jest konceptem bardziej teoretycznym, ponieważ w praktyce kąty nie mogą przekraczać 180°. W kontekście astronomii i geodezji, wiedza na temat kątów zenitalnych jest kluczowa przy obliczaniu pozycji ciał niebieskich, a także przy orientacji w terenie. Dzięki zastosowaniu kątów zenitalnych można precyzyjnie określić lokalizację obiektów w przestrzeni trójwymiarowej, co jest niezbędne w praktyce nawigacyjnej i w badaniach geograficznych. Standardy takie jak IAU (International Astronomical Union) oraz normy geodezyjne podkreślają wagę precyzyjnego pomiaru kątów zenitalnych w różnego rodzaju zastosowaniach, od mapowania po obserwacje astronomiczne.

Pytanie 14

Jaką wartość ma azymut przeciwny do azymutu wynoszącego 327g12c35cc?

A. 127g12c35cc
B. 27g12c35cc
C. 527g12c35cc
D. 227g12c35cc
Wartość azymutu odwrotnego do azymutu wynoszącego 327°12'35'' można obliczyć poprzez dodanie 180° do pierwotnego azymutu. W przypadku azymutów, które są wyrażane w stopniach, minutach i sekundach, dodanie 180° często wymaga konwersji, jeśli suma przekracza 360°. W tym przypadku dodajemy 180° do 327°, co daje 507°. Następnie, musimy odjąć 360°, aby uzyskać wynik w odpowiednim zakresie: 507° - 360° = 147°. Teraz pozostaje nam dodać pozostałe wartości minut i sekund. Ostatecznie zatem uzyskujemy azymut 127°12'35''. W kontekście nawigacji i geodezji, umiejętność obliczania azymutów odwrotnych jest kluczowa, ponieważ pozwala na dokładne śledzenie kierunków i nawigację w terenie. Takie umiejętności są niezbędne w różnych dziedzinach, od turystyki po inżynierię i architekturę.

Pytanie 15

Wykonano pomiary niwelacyjne w celu utworzenia punktu szczegółowego osnowy wysokościowej. Jaka jest maksymalna długość tego ciągu, jeśli składa się z 4 stanowisk i nie zostały przekroczone dozwolone długości celowych?

A. 150 m
B. 400 m
C. 600 m
D. 250 m
Wybór długości 250 m, 600 m lub 150 m nie uwzględnia kluczowych zasad dotyczących niwelacji oraz akceptowalnych standardów pomiarowych. W przypadku niwelacji, każdy pomiar powinien być dostosowany do konkretnych warunków, takich jak teren, używany sprzęt oraz wymagania dotyczące dokładności. Odpowiedzi 250 m oraz 150 m są zbyt krótkie, aby optymalnie wykorzystać dostępny sprzęt, co może prowadzić do nieefektywności w procesie pomiarowym. Krótsze ciągi zazwyczaj nie umożliwiają pełnego wykorzystania możliwości niwelacji, co jest kluczowe w kontekście projektów budowlanych czy geodezyjnych. Z kolei odpowiedź 600 m przekracza dopuszczalne limity długości stanowisk, co może prowadzić do znacznego wzrostu błędów pomiarowych, szczególnie w trudnych warunkach terenowych, takich jak nierówności czy zmienne warunki atmosferyczne. Przekroczenie maksymalnej długości stanowiska wymagałoby stosowania dodatkowych technik kompensacyjnych, co zwiększa złożoność pomiaru oraz może wpłynąć na jego dokładność. Dlatego ważne jest, aby przy planowaniu ciągów niwelacyjnych korzystać z uznawanych norm i standardów, które pomagają w zapewnieniu precyzyjnych i wiarygodnych wyników.

Pytanie 16

Które z wymienionych obiektów przestrzennych są zaliczane do drugiej kategorii szczegółów terenowych?

A. Linie brzegowe
B. Ściany oporowe
C. Tory kolejowe
D. Boiska sportowe
Ściany oporowe, linie brzegowe oraz tory kolejowe, mimo że są istotnymi elementami infrastruktury, nie należą do drugiej grupy szczegółów terenowych, co może prowadzić do błędnych konkluzji. Ściany oporowe to struktury zaprojektowane w celu utrzymywania gruntów i zapobiegania erozji, a ich głównym celem jest stabilizacja terenu. Nie mają one bezpośredniego związku z rekreacją czy sportem, co wyklucza je z omawianej grupy. Linie brzegowe, będące granicami akwenów wodnych, również nie są obiektami, które spełniają funkcję aktywności fizycznej, chociaż są istotne w kontekście ekosystemów wodnych i ochrony środowiska. Tory kolejowe, z kolei, są infrastrukturą transportową, która związana jest z transportem lądowym i również nie wchodzi w skład terenów rekreacyjnych. Typowym błędem myślowym jest postrzeganie obiektów przestrzennych jako równorzędnych w kontekście ich funkcjonalności. W rzeczywistości, klasyfikacja obiektów terenowych powinna opierać się na ich zastosowaniu w codziennym życiu, co oznacza, że obiekty związane z infrastrukturą transportową i ochroną terenu nie są częścią grupy obiektów rekreacyjnych, jakimi są boiska sportowe. Zrozumienie tej klasyfikacji jest kluczowe dla prawidłowego planowania przestrzennego oraz podejmowania decyzji dotyczących inwestycji w infrastrukturę.

Pytanie 17

Jaki opis, używany na mapie zasadniczej, odnosi się do przewodu kanalizacyjnego sanitarnego o średnicy
20 cm, zmierzonego na osnowę?

A. ksP200
B. ksB20
C. ks200
D. ks20
Odpowiedzi ksP200, ks20 oraz ksB20 są nieprawidłowe z kilku istotnych powodów. Oznaczenie ksP200 sugeruje, że jest to przewód o średnicy 200 mm, ale dodatek 'P' może wprowadzać w błąd, ponieważ nie jest to standardowe oznaczenie dla przewodów kanalizacyjnych sanitarnych. Przypisanie dodatkowych liter do oznaczenia może wskazywać na inny typ materiału lub zastosowanie, co nie ma odzwierciedlenia w standardowej klasyfikacji przewodów sanitarnych. Odpowiedź ks20 również jest myląca; chociaż wskazuje na średnicę, to jednak brakująca końcówka '0' nie spełnia wymogu podania średnicy w milimetrach. W kontekście standardów branżowych, przyjęte jest, aby średnice były zapisane w pełnej formie, co natychmiastowo wyklucza takie oznaczenia. Ostatnia odpowiedź, ksB20, również zawiera niepoprawny prefiks 'B', co może sugerować, że jest to przewód innego typu. Tego rodzaju oznaczenia mogą prowadzić do dezorientacji w projektowaniu oraz realizacji budów, a także mogą wprowadzać błędy w obliczeniach hydraulicznych. Dlatego ważne jest, aby stosować się do uznanych norm i dobrych praktyk, które zapewniają precyzyjność i jednoznaczność w identyfikacji elementów systemów kanalizacyjnych.

Pytanie 18

Który z dokumentów jest konieczny do zlokalizowania w terenie punktu osnowy geodezyjnej?

A. Szkic polowy osnowy
B. Opis topograficzny punktu
C. Dziennik pomiaru długości boków osnowy
D. Dziennik pomiaru kątów osnowy
Szkic polowy osnowy, dziennik pomiaru długości boków osnowy oraz dziennik pomiaru kątów osnowy są dokumentami, które mogą być użyteczne w różnych aspektach pracy geodezyjnej, jednak nie są one wystarczające do bezpośredniego odnalezienia punktu osnowy w terenie. Szkic polowy osnowy zazwyczaj przedstawia układ punktów oraz relacje między nimi, jednak nie dostarcza precyzyjnych informacji o ich lokalizacji, co czyni go niewystarczającym narzędziem w kontekście poszukiwania konkretnego punktu. Dzienniki pomiarowe, zarówno długości, jak i kątów, są narzędziami do rejestrowania wyników pomiarów, a nie do ich lokalizacji. Z założenia mają one na celu zbieranie danych, które następnie są wykorzystywane do obliczeń i tworzenia map, ale nie zawierają informacji, które pomogłyby w odnalezieniu punktów w rzeczywistości. Typowe błędy w myśleniu polegają na myleniu dokumentacji pomiarowej z dokumentacją lokalizacyjną, co prowadzi do nieporozumień w zakresie tego, co jest naprawdę potrzebne w terenie. W praktyce geodezyjnej kluczowe jest zrozumienie, że skuteczna lokalizacja punktu osnowy wymaga szczegółowych opisów, a nie tylko zapisu przeprowadzonych pomiarów.

Pytanie 19

Jaki rodzaj mapy stosuje się do przedstawienia ukształtowania terenu miasta?

A. Mapa topograficzna
B. Mapa hydrogeologiczna
C. Mapa klimatyczna
D. Mapa katastralna
Mapa topograficzna jest nieocenionym narzędziem w geodezji i urbanistyce, ponieważ szczegółowo przedstawia ukształtowanie terenu. Dzięki niej można zobaczyć, jak kształtują się różnice wysokości w terenie, co jest kluczowe przy planowaniu infrastruktury miejskiej, budowy dróg czy projektowaniu nowych osiedli. Takie mapy wykorzystują poziomice do pokazania wysokości nad poziomem morza, co pozwala na wizualne zrozumienie krajobrazu. Poziomice są izoliniami, które łączą punkty o tej samej wysokości, co pozwala na łatwe zinterpretowanie nachyleń i różnic wysokości. W praktyce, podczas projektowania systemów odwadniających czy planowania zieleni miejskiej, zrozumienie topografii terenu jest kluczowe. Mapa topograficzna dostarcza także informacji o naturalnych i sztucznych obiektach, co jest nieocenione podczas planowania przestrzennego. Z mojego doświadczenia, korzystanie z map topograficznych pozwala uniknąć wielu problemów, które mogą pojawić się w trakcie realizacji projektów budowlanych.

Pytanie 20

Określ wartość poziomu odniesienia profilu podłużnego, jeśli maksymalna wysokość zaznaczonego na tym profilu punktu wynosi 225,85 m, a minimalna 185,20 m?

A. 200,00 m
B. 180,00 m
C. 230,00 m
D. 225,00 m
Wartość poziomu porównawczego profilu podłużnego oblicza się na podstawie różnicy pomiędzy najwyższą a najniższą wysokością punktów. W tym przypadku najwyższa wysokość wynosi 225,85 m, a najniższa 185,20 m. Aby określić poziom porównawczy, należy wziąć pod uwagę dolne granice terenu, które są istotne w kontekście inżynierii lądowej i budowlanej. Poziom porównawczy powinien znajdować się poniżej najwyższej wartości, ale bliżej dolnej wartości, aby uwzględnić zmiany w terenie i ułatwić dalsze prace projektowe. Odpowiedzią 180,00 m ustalamy wartość, która zapewnia nie tylko wygodę w operacjach inżynieryjnych, ale również odpowiada praktycznym wymaganiom budowlanym, takim jak odwodnienie i wznoszenie konstrukcji. W ogólnej praktyce, ustalanie odpowiedniego poziomu porównawczego jest kluczowe dla zapewnienia bezpieczeństwa i efektywności projektów budowlanych, co podkreślają standardy związane z projektowaniem infrastruktury. Przykładem zastosowania tej wiedzy może być projektowanie dróg, gdzie poziom porównawczy musi uwzględniać różnice w wysokościach, aby zapobiec problemom z odprowadzaniem wód opadowych oraz zapewnić stabilność konstrukcji.

Pytanie 21

Jakie jest pole powierzchni działki o wymiarach 20,00 m x 40,00 m na mapie zasadniczej wykonanej w skali 1:500?

A. 32,00 cm2
B. 0,32 cm2
C. 320,00 cm2
D. 3,20 cm2
Wybór błędnych odpowiedzi wynika głównie z nieprawidłowej interpretacji skali oraz prostej omyłki w obliczeniach. Na przykład, odpowiedź 3,20 cm² sugeruje znacząco zaniżoną wartość wyniku, co może wynikać z niepoprawnego przeliczenia wymiarów działki z jednostek metrycznych na centymetrowe jednostki mapy. Działka o wymiarach 20,00 m x 40,00 m ma pole 800,00 m² w rzeczywistości, co w skali 1:500 przelicza się na 32,00 cm². Odpowiedzi takie jak 0,32 cm² są także wynikiem błędów w przeliczeniach, gdzie dwukrotnie pominięto proces przeliczenia długości działania na mapie, co prowadzi do znacznie zaniżonej wartości wyniku. Niezrozumienie zasad skali może prowadzić do błędnych oszacowań, które są krytyczne w projektach budowlanych i urbanistycznych. Ponadto, odpowiedzi takie jak 320,00 cm² mogą powstać w wyniku pomyłki przy mnożeniu, co jest typowym błędem w obliczeniach geometrycznych. Dlatego istotne jest, aby zrozumieć podstawy konwersji jednostek oraz właściwe przeliczanie wymiarów działki na mapie, aby uniknąć takich pomyłek w praktycznych zastosowaniach zawodowych.

Pytanie 22

W jakiej skali sporządza się mapy zasadnicze dla niewielkich miejscowości, obszarów metropolitalnych i stref przemysłowych?

A. 1 : 1000
B. 1 : 500
C. 1 : 2000
D. 1 : 5000
Odpowiedź 1 : 1000 jest poprawna, ponieważ mapy zasadnicze małych miast, aglomeracji miejskich i obszarów przemysłowych sporządzane są w skali 1 : 1000, co oznacza, że 1 jednostka na mapie odpowiada 1000 jednostkom w rzeczywistości. Przykładowo, jeśli na mapie widoczna jest odległość 1 cm, w rzeczywistości jest to 1000 cm, czyli 10 m. Taka skala pozwala na szczegółowe odwzorowanie urbanistycznych i przestrzennych aspektów obszarów miejskich, co jest niezwykle istotne w planowaniu przestrzennym oraz zarządzaniu infrastrukturą. Przykłady zastosowania obejmują analizy gęstości zabudowy, lokalizację nowych inwestycji, a także ochronę środowiska. Zgodnie z obowiązującymi standardami, mapy zasadnicze powinny być aktualizowane regularnie, aby odzwierciedlały zmiany w zagospodarowaniu przestrzennym, co zwiększa ich użyteczność w praktyce.

Pytanie 23

Jaką czynność należy wykonać podczas przeprowadzania wywiadu terenowego, który poprzedza pomiary sytuacyjne i wysokościowe?

A. Identyfikację w terenie punktów osnowy geodezyjnej
B. Sporządzenie szkicu polowego z mierzonego terenu
C. Zgłoszenie pracy geodezyjnej geodecie powiatowemu
D. Pomiar kontrolny szczegółów terenowych
Identyfikacja w terenie punktów osnowy geodezyjnej jest kluczowym etapem przed przystąpieniem do pomiarów sytuacyjnych i wysokościowych. Osnowa geodezyjna stanowi fundament, na którym opierają się wszystkie inne pomiary. Jej odpowiednie zidentyfikowanie pozwala na precyzyjne odniesienie danych pomiarowych do układu współrzędnych, co jest niezbędne w geodezji. Przykładowo, podczas wykonywania pomiarów dla nowego projektu budowlanego, geodeta najpierw lokalizuje punkty osnowy, aby móc ustawić instrumenty pomiarowe w odpowiednich miejscach. Takie praktyki są zgodne z normami, takimi jak PN-EN ISO 17123, które podkreślają znaczenie stabilności i precyzji punktów osnowy dla efektywnego i wiarygodnego pomiaru. Właściwa identyfikacja punktów osnowy geodezyjnej nie tylko zwiększa dokładność pomiarów, ale również przyczynia się do redukcji błędów w późniejszych analizach i projektach.

Pytanie 24

Jakie jest pole powierzchni kwadratowej działki na mapie w skali 1:2000, jeżeli na mapie w skali 1:500 wynosi ono 4,00 cm2?

A. 25 mm2
B. 50 mm2
C. 5 mm2
D. 10 mm2
Aby obliczyć pole powierzchni działki na mapie w innej skali, należy najpierw zrozumieć, jak zmienia się pole w zależności od skali. W przypadku mapy w skali 1:500, pole powierzchni wynosi 4,00 cm². Przeliczając to pole na mm², otrzymujemy 400 mm² (ponieważ 1 cm² to 100 mm²). Gdy zmieniamy skalę na 1:2000, wartość skali zmienia się w stosunku do oryginalnej. W przypadku skali 1:2000, rzeczywista powierzchnia działki jest czterokrotnie większa, co oznacza, że powiększa się stosunek powierzchni w skali kwadratowej: (2000/500)² = 16. Dlatego, aby obliczyć pole powierzchni w nowej skali, dzielimy oryginalne pole powierzchni przez 16, co daje 400 mm² / 16 = 25 mm². To obliczenie jest kluczowe w planowaniu przestrzennym oraz w inżynierii, gdzie precyzyjne pomiary i ich przeliczenia są niezbędne do dokładnych analiz i projektów.

Pytanie 25

Podczas określania miejsca punktów szczegółowej osnowy poziomej przy użyciu metody poligonizacji, długości boków w ciągach poligonowych powinny wynosić od 150 do maksymalnie

A. 300 m
B. 400 m
C. 500 m
D. 600 m
Wybieranie długości boków w poligonach na 300 m, 400 m albo 600 m to nie najlepszy pomysł. Przy takich długościach możemy natknąć się na naprawdę dużo problemów, które mogą zaburzyć pomiar. Zwłaszcza te powyżej 500 m mocno zwiększają ryzyko błędów, a te są trudne do naprawienia. Jak mamy długie odcinki, jak na przykład 600 m, to różne czynniki, jak pogoda, mogą łatwo wpłynąć na wyniki, co sprawia, że stają się mniej pewne. Trudniej też wtedy zapewnić dobre odniesienia w pomiarach, co jest mega ważne, gdy robimy poligonizację. Pamiętaj, żeby dbać o równomierny rozkład punktów, żeby uniknąć błędów i uzyskać bardziej wiarygodne dane. W praktyce, geodeci zazwyczaj wybierają długości w zakresie 150 m do 500 m, co jest zgodne z branżowymi standardami. Jeśli wybierzesz nieodpowiednie długości, to możesz zaszkodzić dokładności późniejszych analiz i map.

Pytanie 26

Lokalizacja charakterystycznych punktów w terenie w procesie niwelacji punktów rozprzestrzenionych ustalana jest za pomocą metody

A. ortogonalnej
B. przedłużeń
C. biegunowej
D. tachimetrycznej
Odpowiedzi tachimetryczna, ortogonalna oraz przedłużeń wskazują na różne podejścia w pomiarze i niwelacji, które nie są właściwe w kontekście określenia położenia punktów rozproszonych. Metoda tachimetryczna, choć użyteczna do pomiarów kątów i odległości, nie jest optymalna dla precyzyjnego określania lokalizacji punktów w rozproszonym terenie, ponieważ koncentruje się głównie na pomiarach punktów z jednego stanowiska oraz może prowadzić do błędów w przypadku przeszkód terenowych. Z kolei metoda ortogonalna, która zakłada stosowanie prostokątnych układów współrzędnych, jest bardziej odpowiednia dla zadań, gdzie punkty są poukładane w regularny sposób, a nie w sposób rozproszony. Przedłużenia, w swoim podstawowym sensie, polegają na wydłużaniu linii przez konkretne punkty, co nie odpowiada na potrzeby związane z niwelacją punktów rozproszonych. Wybór niewłaściwej metody może prowadzić do znaczących błędów w pomiarach, co jest szczególnie problematyczne w projektach budowlanych, gdzie precyzja jest kluczowa. Zrozumienie, kiedy i jak stosować konkretne techniki pomiarowe, jest kluczowe dla osiągnięcia sukcesu w obszarze geodezji i inżynierii lądowej.

Pytanie 27

Który z wymienionych programów nie nadaje się do tworzenia mapy zasadniczej?

A. Microstation
B. C-Geo
C. Winkalk
D. Mikro-Map
Winkalk to program, który nie jest przeznaczony do wykreślania mapy zasadniczej, ponieważ jego funkcjonalność jest ukierunkowana głównie na obliczenia inżynieryjne i kosztorysowanie, a nie na tworzenie map. Mapy zasadnicze są opracowywane na podstawie danych geodezyjnych, a ich tworzenie wymaga specjalistycznych narzędzi do analizy i wizualizacji tych danych. Programy takie jak C-Geo, Mikro-Map i Microstation są odpowiednie do takich zadań, ponieważ oferują zaawansowane funkcje geodezyjne, w tym integrację z systemami GPS, obsługę plików CAD oraz możliwość generowania map w standardach obowiązujących w geodezji. Przykładowo, C-Geo jest często stosowany przez geodetów do przygotowywania map do celów prawnych i budowlanych, co czyni go odpowiednim wyborem do wykreślania mapy zasadniczej.

Pytanie 28

Niwelacja geometryczna wymaga, aby pomiar na każdym stanowisku był wykonywany dwukrotnie z różną wysokością osi celowej. Jaka jest maksymalna dopuszczalna różnica pomiędzy tymi wynikami?

A. 0,04 m
B. 0,004 m
C. 0,01 m
D. 0,001 m
Wybór błędnych wartości maksymalnej różnicy między pomiarami niwelacyjnymi może prowadzić do znacznych problemów w praktyce geodezyjnej. Wartości takie jak 0,001 m, 0,04 m oraz 0,01 m nie odpowiadają standardom wymaganym w geodezji i mogą wskazywać na niezrozumienie kluczowych zasad dotyczących precyzji pomiarów. Zbyt mała dopuszczalna różnica, jak 0,001 m, nie uwzględnia naturalnych błędów pomiarowych, które mogą wynikać z różnych czynników, takich jak zmiany temperaturowe, niestabilność instrumentów czy błędy ludzkie. Z kolei zbyt duża różnica, jak 0,04 m, z pewnością przyczyniłaby się do istotnych nieścisłości, które mogą zagrażać dokładności wszystkich prac budowlanych, a także obniżyć jakość projektów inżynieryjnych. Typowe błędy myślowe obejmują brak zrozumienia, jak ważne jest odpowiednie dobieranie tolerancji w zależności od rodzaju terenu i specyfiki wykonywanych pomiarów. W praktyce, geodeci muszą nie tylko znać normy, ale także umieć je zastosować w odpowiednich kontekstach, co wymaga doświadczenia i wiedzy o instrumentach pomiarowych oraz metodach niwelacji. W związku z tym, zrozumienie i stosowanie odpowiednich wartości tolerancji jest kluczowe dla zapewnienia wysokiej jakości wyników oraz bezpieczeństwa projektów inżynieryjnych.

Pytanie 29

Do I grupy charakterystycznych detali terenowych, które można jednoznacznie zidentyfikować w terenie i które przejawiają długotrwałą stabilność, zalicza się między innymi

A. wał przeciwpowodziowy
B. jezioro o naturalnej linii brzegowej
C. boisko sportowe
D. budynek szkoły
Budynek szkoły jest przykładem obiektu, który można jednoznacznie zidentyfikować w terenie i który zachowuje długookresową niezmienność. W kontekście analizy terenowej, grupy szczegółów terenowych mogą obejmować obiekty stałe, które mają znaczenie dla planowania przestrzennego i zarządzania infrastrukturą. Budynki publiczne, takie jak szkoły, są zazwyczaj zarejestrowane w systemach GIS (Geographic Information Systems) oraz w dokumentacji urbanistycznej, co pozwala na ich skuteczną lokalizację i analizę w kontekście urbanistyki. Przykładowo, w procesie planowania przestrzennego, informacje o lokalizacji szkół są kluczowe dla ustalania stref oddziaływania, dostępności usług edukacyjnych oraz analizy ruchu uczniów. Dodatkowo, budynki takie jak szkoły są często objęte normami i regulacjami dotyczącymi bezpieczeństwa oraz dostępu, co podkreśla ich znaczenie jako stabilnych elementów infrastruktury społecznej.

Pytanie 30

Który z poniższych obiektów wymaga obowiązkowego wytyczenia geodezyjnego oraz inwentaryzacji powykonawczej?

A. Ogrodzenie stałe.
B. Plac zabaw.
C. Przyłącze wodociągowe
D. Sygnał drogowy.
Przyłącze wodociągowe podlega obowiązkowemu wytyczeniu geodezyjnemu oraz inwentaryzacji powykonawczej, ponieważ jest to element infrastruktury technicznej, który ma istotne znaczenie dla organizacji przestrzennej oraz funkcjonowania sieci wodociągowej. Wytyczenie geodezyjne pozwala na precyzyjne określenie jego lokalizacji w terenie, co jest kluczowe dla uniknięcia kolizji z innymi instalacjami, co może prowadzić do kosztownych napraw i zakłóceń w dostawie wody. Inwentaryzacja powykonawcza ma na celu dokumentację stanu przyłącza po zakończeniu prac budowlanych, co jest istotne z punktu widzenia zarządzania infrastrukturą oraz jej późniejszej eksploatacji. Przykładem może być sytuacja, w której inwestor budowlany zleca wykonanie przyłącza wodociągowego, a następnie po zakończeniu prac geodeta przeprowadza inwentaryzację, aby potwierdzić zgodność wykonanego przyłącza z projektem. Zgodnie z obowiązującymi w Polsce przepisami prawa budowlanego oraz standardami geodezyjnymi, takie działania są niezbędne w celu zapewnienia bezpieczeństwa użytkowania oraz ochrony interesów publicznych.

Pytanie 31

Do trwałych metod stabilizacji punktów osnowy poziomej nie zaliczają się

A. rurki stalowe
B. trzpienie metalowe
C. paliki drewniane
D. słupy betonowe
Paliki drewniane nie są odpowiednie do trwałego sposobu stabilizacji punktów osnowy poziomej z kilku powodów. Przede wszystkim, drewno jako materiał jest podatne na degradację, zwłaszcza w warunkach atmosferycznych, co prowadzi do utraty stabilności i dokładności pomiarów geodezyjnych. Z czasem paliki mogą gnić, ulegać deformacji lub przesuwać się w wyniku zmian wilgotności i temperatury. W praktyce geodezyjnej preferuje się materiały o wysokiej trwałości i odporności na czynniki zewnętrzne, takie jak metale i beton, które zapewniają długoterminową stabilność punktów osnowy. Na przykład, trzpienie metalowe i rurki stalowe, wykorzystywane w stabilizacji punktów, są odporne na korozję i mechaniczne uszkodzenia, co czyni je bardziej niezawodnymi w długim okresie. Zgodnie z normami geodezyjnymi, zastosowanie stałych punktów o wysokiej trwałości jest niezbędne do zapewnienia dokładności pomiarów i ich powtarzalności w czasie, co jest kluczowe w projektowaniu i realizacji inwestycji budowlanych oraz infrastrukturalnych.

Pytanie 32

Rezultaty pomiarów kątów i kierunków dotyczące geodezyjnych pomiarów sytuacyjnych oraz wysokościowych zapisuje się z dokładnością

A. 0,0010g
B. 0,0001g
C. 0,0100g
D. 0,1000g
Pomiar kierunków i kątów w geodezyjnych pomiarach sytuacyjnych i wysokościowych wymaga bardzo wysokiej precyzji, co znajduje odzwierciedlenie w poprawnej odpowiedzi 0,0001g. Taka dokładność jest niezbędna w wielu zastosowaniach geodezyjnych, szczególnie w projektach wymagających precyzyjnego określenia pozycji i wysokości. Standardy takie jak ISO 17123 określają metody oraz wymagania dla pomiarów geodezyjnych, w tym dokładność sprzętu pomiarowego. Przykładem zastosowania precyzyjnych pomiarów jest budownictwo, gdzie nawet najmniejsze odchylenia mogą prowadzić do poważnych błędów w konstrukcji. Geodeci często używają poziomów optycznych i tachimetrów, które umożliwiają uzyskanie wyników z dokładnością do dziesiątych części milimetry. W praktyce, inwestycje w sprzęt o wysokiej precyzji oraz stosowanie normatywnych procedur pomiarowych zwiększa jakość i niezawodność danych geodezyjnych, co jest kluczowe dla sukcesu projektów budowlanych oraz inżynieryjnych.

Pytanie 33

Średni błąd pomiaru długości odcinka 200 m wynosi ±5 cm. Jaki jest błąd względny tego pomiaru?

A. 1:400
B. 1:4000
C. 1:40
D. 1:4
Obliczanie błędu względnego wymaga zrozumienia, na czym polega ten termin oraz jak odpowiednio zinterpretować wartości błędu. Nieprawidłowe odpowiedzi sugerują błędne podejście do obliczeń lub do zrozumienia zasadności stosowania błędu względnego. Na przykład, odpowiedzi 1:40, 1:4 i 1:400 mogą wynikać z nieprawidłowego podziału błędu na jednostki lub pomijania istotnych przeliczeń. Często błąd myślowy polega na mylnym przyjęciu, że błąd pomiaru jest bezpośrednio porównywalny z całkowitym wynikiem bez uwzględnienia, że błąd ten powinien być proporcjonalny do faktycznej wielkości mierzonych. Dodatkowo, może to być wynik nieumiejętności przekształcania jednostek lub błędnego przyjęcia, że im mniejszy błąd pomiaru, tym większy błąd względny. Prawidłowe podejście do tego zagadnienia wymaga umiejętności analizy i przemyślenia powiązań pomiędzy wartością pomiaru a jego błędem, co ma kluczowe znaczenie w kontekście praktycznych zastosowań pomiarowych. Warto zatem zwrócić uwagę na metody analizy błędów oraz ich wpływ na końcowe wyniki pomiarów w różnych dziedzinach nauki i techniki.

Pytanie 34

Do projekcji prostokątnej wyznaczonych punktów na linię wykorzystuje się

A. łaty niwelacyjne
B. piony optyczne
C. dalmiarze elektromagnetyczne
D. węgielnice pryzmatyczne
Węgielnice pryzmatyczne to narzędzia wykorzystywane w geodezji i budownictwie do precyzyjnego rzutowania punktów na określoną prostą. Działają one na zasadzie wykorzystania właściwości optycznych pryzmatu, co pozwala na dokładne odwzorowanie zdefiniowanej linii na terenie. Dzięki swojej konstrukcji, węgielnice te umożliwiają wytyczanie osi budynków oraz elementów infrastruktury, co jest kluczowe w procesie budowlanym. W praktyce, węgielnice pryzmatyczne są często używane w połączeniu z dalmierzami, co zwiększa dokładność pomiarów. Standardy branżowe, takie jak normy geodezyjne, zalecają stosowanie węgielnic pryzmatycznych w pracach wymagających dużej precyzji. Ich właściwe użycie pozwala na minimalizację błędów rzutowania, co jest niezbędne dla prawidłowego funkcjonowania całego projektu budowlanego.

Pytanie 35

Długość boku kwadratowej działki zmierzona w terenie wynosi 10 m. Jaka jest powierzchnia tej działki na mapie w skali 1:500?

A. 4,0 cm2
B. 0,4 cm2
C. 400,0 cm2
D. 40,0 cm2
Poprawna odpowiedź to 4,0 cm², ponieważ aby obliczyć powierzchnię działki kwadratowej w skali 1:500, musimy najpierw przeliczyć rzeczywiste wymiary działki. Długość boku działki wynosi 10 m, co w skali 1:500 przekłada się na 10 m / 500 = 0,02 m, czyli 2 cm na mapie. Powierzchnia kwadratu obliczana jest jako długość boku podniesiona do kwadratu, zatem 2 cm * 2 cm = 4 cm². Przykładowo, w planowaniu przestrzennym i geodezji, ważne jest, aby stosować odpowiednie skale, aby uzyskać dokładne odwzorowanie wymiarów rzeczywistych na mapach, co ma kluczowe znaczenie w procesach takich jak podział gruntów czy przygotowanie projektów budowlanych. Zastosowanie skal pozwala na precyzyjne przedstawienie dużych obszarów na małej powierzchni, co jest niezbędne w dokumentacji geodezyjnej oraz urbanistycznej.

Pytanie 36

Mapa zasadnicza to rodzaj map

A. społecznych
B. gospodarczych
C. fizjologicznych
D. sozologicznych
Wybór map sozologicznych, społecznych czy fizjologicznych to rzeczywiście nie jest najlepszy pomysł. Mapy sozologiczne są bardziej nastawione na ochronę środowiska i zasoby naturalne, a nie na pokazanie cech terenu w ujęciu ekonomicznym. Właściwie, one nie dostarczają informacji o infrastrukturze gospodarczej, więc nie mogą być w zasadzie uznawane za mapę zasadniczą. Mapy społeczne, no, one mówią o demografii i podziale ludności, a więc też są zupełnie gdzie indziej. A co do map fizjologicznych – takie coś w kartografii w ogóle nie istnieje! Fajnie jest znać te pojęcia, ale trzeba je dobrze rozróżniać, bo nie mają one wiele wspólnego z funkcją mapy zasadniczej. Warto po prostu zrozumieć, jakie są różnice między tymi rodzajami map, żeby nie wprowadzać się w błąd.

Pytanie 37

Jaką precyzję terenową ma punkt sytuacyjny na mapie o skali 1:5000, jeżeli precyzja graficzna jego umiejscowienia wynosi 0,1 mm?

A. ±0,05 m
B. ±5,00 m
C. ±50,00 m
D. ±0,50 m
Wybór innych odpowiedzi może wynikać z niepełnego zrozumienia przeliczeń związanych z różnymi skalami map. Odpowiedzi ±5,00 m oraz ±50,00 m są znacznie przeszacowane w kontekście skali 1:5000, co wskazuje na fundamentalny błąd w przeliczeniach. Przykładowo, ±5,00 m oznaczałoby, że punkt mógłby znajdować się w odległości 5 metrów od rzeczywistej lokalizacji, co jest nieakceptowalne w kontekście precyzyjnych pomiarów terenowych. Z kolei odpowiedź ±0,05 m mogłaby sugerować nadmierną dokładność, która jest niemożliwa do osiągnięcia przy podanej dokładności graficznej. Błąd ten wynika często z nieznajomości zasad przeliczeń w różnych skalach oraz z niedostatecznej wiedzy na temat wpływu skali na dokładność pomiarów. Kluczowe jest więc, aby uwzględniać zarówno skalę mapy, jak i metodykę pomiaru, aby poprawnie zinterpretować dane sytuacyjne. Prawidłowe zrozumienie tych zależności jest niezbędne dla każdego specjalisty w dziedzinach związanych z geodezją, kartografią czy inżynierią lądową.

Pytanie 38

Konstrukcja przestrzennego wcięcia w przód opiera się na połączeniu kątowego wcięcia w przód z techniką

A. biegunową
B. niwelacji geometrycznej
C. tachimetryczną
D. niwelacji trygonometrycznej
Wielu ludzi może mieć problem z różnicowaniem metod niwelacji, co czasami prowadzi do złych wyborów. Metoda biegunowa, która opiera się na pomiarze kątów i odległości z jednego punktu, nie bierze pod uwagę kilku ważnych spraw przy przestrzennym wcięciu w przód. Moim zdaniem, trochę mylące jest też myślenie, że metoda tachimetryczna, mimo swojego zaawansowania, dotyczy tylko pomiaru kątów i odległości, a to jakoś nie wystarcza do dokładnych obliczeń wysokości. A jeśli chodzi o niwelację geometryczną, to chociaż działa w pomiarze różnic wysokości, to nie wykorzystuje kątów w taki sposób, żeby skutecznie zastosować wcięcie w przód. Często też mylą się pojęcia związane z tymi metodami, co prowadzi do pomyłek i źle dobranych technik w pracy geodezyjnej. Ważne jest, żeby zrozumieć, że każda z tych metod ma swoje plusy i minusy, a niwelacja trygonometryczna to tylko jedno z wielu narzędzi, które umożliwiają precyzyjne pomiary w terenie. Dobrze zrozumiane podstawy tych metod i ich odpowiednie zastosowanie są kluczowe dla każdego geodety.

Pytanie 39

Na podstawie przedstawionych w ramce wyników z czterokrotnego pomiaru kąta, z jednakową dokładnością, określ najbardziej prawdopodobną wartość tego kąta.

a1 = 76° 56' 21''
a1 = 76° 56' 15''
a1 = 76° 56' 14''
a1 = 76° 56' 18''

A. 76° 56' 14''
B. 76° 56' 18''
C. 76° 56' 17''
D. 76° 56' 19''
Odpowiedź 76g 56c 17cc jest tą, która najlepiej pasuje do średniej arytmetycznej tych pomiarów. W pomiarach kątów to obliczenie średniej jest dość ważne, bo daje nam najwiarygodniejszy wynik. W inżynierii czy architekturze, gdzie musimy być pewni pomiarów, precyzja kątów jest mega istotna. Jak na przykład w budownictwie, źle policzone kąty mogą naprawde narobić kłopotów podczas stawiania konstruktów. Dlatego mamy różne normy, jak ISO 17123, które mówią, że najlepiej jest liczyć średnią, żeby zminimalizować błędy w pomiarach. W analizach statystycznych z pomiarami kątów, wyliczenie średniej to podstawowy krok, który pokazuje, jak ważna jest ta technika w różnych dziedzinach nauki.

Pytanie 40

W miejscowym planie zagospodarowania przestrzennego obszary przeznaczone na sport i rekreację powinny być oznaczane symbolem literowym

A. MW
B. US
C. U
D. ZP
Wprowadzenie w błąd przez wybór innego symbolu może mieć poważne konsekwencje dla planowania przestrzennego. Symbol U oznacza tereny usługowe, co nie precyzuje rodzaju usług, które mogą być tam świadczone; to może prowadzić do niejasności w kontekście działalności sportowej, która wymaga specyficznych warunków. Z kolei symbol MW oznacza tereny zabudowy mieszkaniowej wielorodzinnej, co jest absolutnie niezgodne z przeznaczeniem obszarów rekreacyjnych. Tereny te powinny być dedykowane dla aktywności fizycznej i rekreacji, a nie dla budownictwa mieszkaniowego, co mogłoby negatywnie wpłynąć na jakość życia mieszkańców. Symbol ZP, który oznacza tereny zieleni publicznej, również nie oddaje pełnej specyfiki obiektów sportowych, które są bardziej złożone niż sama zieleń. Wybór nieodpowiednich symboli może prowadzić do nieprawidłowego zagospodarowania przestrzeni, co w praktyce skutkuje brakiem odpowiednich obiektów sportowych i rekreacyjnych w danym regionie. Warto pamiętać, że każdy symbol w planie zagospodarowania przestrzennego ma swoje konkretne znaczenie i przeznaczenie, dlatego kluczowe jest zrozumienie ich funkcji oraz trzymanie się uznanych standardów i norm. Ignorowanie tych zasad może skutkować nieefektywnym wykorzystaniem przestrzeni i frustracją społeczności lokalnych, które oczekują dostępu do profesjonalnych obiektów sportowych.