Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 2 maja 2025 15:40
  • Data zakończenia: 2 maja 2025 15:53

Egzamin niezdany

Wynik: 12/40 punktów (30,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Jaką masę NaCl uzyskuje się poprzez odparowanie do sucha 250 g roztworu 10%?

A. 0,25 g
B. 2,5 g
C. 25 g
D. 250 g
Aby obliczyć ilość NaCl w 250 g 10% roztworu, należy zastosować wzór na stężenie procentowe. Stężenie 10% oznacza, że w 100 g roztworu znajduje się 10 g substancji rozpuszczonej. Dla 250 g roztworu, proporcja ta jest taka sama, co można obliczyć, stosując przeliczenie: (10 g / 100 g) * 250 g = 25 g NaCl. W praktyce, takie obliczenia są niezwykle istotne w laboratoriach chemicznych oraz w przemyśle farmaceutycznym, gdzie precyzyjne przygotowanie roztworów jest kluczowe dla uzyskania odpowiednich reakcji chemicznych. Zrozumienie stężenia roztworów pozwala na ich prawidłowe stosowanie w różnych procedurach, takich jak przygotowanie leków, analiza chemiczna czy też wytwarzanie materiałów. Warto również znać zasady dotyczące przechowywania oraz rozcieńczania roztworów, co jest zgodne z najlepszymi praktykami laboratoryjnymi.

Pytanie 2

Ekstrakcję w trybie ciągłym przeprowadza się

A. w kolbie płaskodennej
B. w aparacie Soxhleta
C. w rozdzielaczu z korkiem
D. w zestawie do ogrzewania
Proces ekstrakcji w sposób ciągły odbywa się w aparacie Soxhleta, który jest standardowym urządzeniem stosowanym w chemii analitycznej oraz w laboratoriach badawczych. Działa na zasadzie cyklicznego przepływu rozpuszczalnika, który wielokrotnie przepływa przez materiał, z którego ma zostać wydobyty składnik aktywny. W aparacie Soxhleta, rozpuszczalnik jest podgrzewany do wrzenia, a jego opary skraplają się w kondensatorze, skąd spływają z powrotem do komory ekstrakcyjnej zawierającej próbkę. Ta efektywna cyrkulacja umożliwia skuteczniejsze rozpuszczanie substancji, co jest kluczowe w wielu zastosowaniach, takich jak wydobywanie olejków eterycznych, substancji czynnych z roślin czy w analizach chemicznych. Dobre praktyki w zakresie ekstrakcji obejmują także dobór odpowiedniego rozpuszczalnika oraz kontrolę temperatury, aby zminimalizować straty substancji i uzyskać wysoką czystość produktu końcowego. Ponadto, dzięki ciągłemu procesowi, możliwe jest uzyskanie większych ilości ekstraktu w krótszym czasie, co zwiększa efektywność laboratorium.

Pytanie 3

Na etykietach substancji chemicznych można znaleźć oznaczenia literowe R i S (zgodnie z regulacjami CLP: H i P), które wskazują

A. na ilość domieszek w składzie oraz datę przydatności
B. na obecność zanieczyszczeń oraz metody ich usuwania
C. na ryzyko wystąpienia zagrożeń i zasady postępowania z nimi
D. na pojemność oraz skład opakowania
Odpowiedzi, które sugerują, że oznaczenia R i S dotyczą zanieczyszczeń, pojemności opakowania lub ilości domieszek, nie uwzględniają kluczowego celu tych symboli, którym jest informowanie o zagrożeniach związanych z danymi substancjami chemicznymi oraz metodach postępowania w przypadku ich użycia. Oznaczenia te są częścią systemu klasyfikacji i oznakowania substancji chemicznych, którego celem jest zapewnienie bezpieczeństwa zarówno dla użytkowników substancji, jak i dla środowiska. Oznaczenia dotyczące zanieczyszczeń, takie jak poziomy czystości czy procesy ich usuwania, są całkowicie inną kwestią, która nie znajduje związku z systemem R i S. Z kolei informacje o pojemności i składzie opakowania mają znaczenie jedynie w kontekście transportu i przechowywania substancji, ale nie odnoszą się do ryzyka, które te substancje mogą stwarzać. Oznaczenia R i S dostarczają informacji o tym, jakie są potencjalne skutki zdrowotne i ekologiczne związane z substancją oraz jakie działania można podjąć w przypadku awarii czy kontaktu z substancją. Ignorowanie tych istotnych informacji może prowadzić do niebezpiecznych sytuacji w laboratoriach oraz podczas prac przemysłowych. Przykłady błędnych założeń mogą obejmować myślenie, że wystarczająca jest jedynie analiza składu chemicznego substancji, bez uwzględnienia ryzyk, co może prowadzić do tragicznych skutków. Dlatego tak ważne jest, aby osoby pracujące z substancjami chemicznymi były odpowiednio przeszkolone i znały obowiązujące przepisy oraz oznaczenia, co przekłada się na bezpieczeństwo w miejscu pracy.

Pytanie 4

Które z wymienionych reakcji chemicznych stanowi reakcję redoks?

A. 2 KMnO4 → K2MnO4 + MnO2 + O2
B. 2 NaOH + CuSO4 → Cu(OH)2 + Na2SO4
C. 3 Ca(OH)2 + 2 H3PO4 → Ca3(PO4)2 + 6 H2O
D. CaCO3 → CaO + CO2
Pozostałe podane reakcje nie są reakcjami redox, co można wyjaśnić poprzez zrozumienie podstawowych zasad dotyczących utleniania i redukcji. W reakcji 2 NaOH + CuSO4 → Cu(OH)2 + Na2SO4 mamy do czynienia z reakcją zobojętniania, w której nie następuje transfer elektronów, a zmiana stopni utlenienia nie zachodzi. Podobnie, w reakcji 3 Ca(OH)2 + 2 H3PO4 → Ca3(PO4)2 + 6 H2O mamy do czynienia z reakcją kwasowo-zasadową, a nie redox, ponieważ wszystkie atomy zachowują swoje stopnie utlenienia. Reakcja CaCO3 → CaO + CO2 również nie jest reakcją redox, choć zachodzi w niej dekompozycja, to nie obserwujemy zmian w stopniach utlenienia składników. Typowym błędem w analizie reakcji chemicznych jest koncentrowanie się tylko na pojawiających się produktach, zamiast na analizie stopni utlenienia reagentów przed i po reakcji. Niezrozumienie różnicy między reakcjami utleniającymi a innymi typami reakcji chemicznych prowadzi do mylnych wniosków, co jest istotne w kontekście nauczania chemii oraz praktycznego stosowania tej wiedzy w laboratoriach i przemyśle chemicznym.

Pytanie 5

Urządzenie pokazane na ilustracji jest przeznaczone do

A. sedymentacji
B. ekstrakcji ciecz-ciecz
C. ługowania
D. dekantacji
Dekantacja, ekstrakcja ciecz-ciecz oraz sedymentacja to techniki, które mają swoje specyficzne zastosowania i różnią się zasadniczo od ługowania. Dekantacja polega na oddzielaniu cieczy od ciał stałych lub od innych cieczy, które się ze sobą nie mieszają, poprzez powolne wylewanie górnej warstwy cieczy po jej osadzeniu. Typowym zastosowaniem dekantacji jest separacja wody od osadów w procesach oczyszczania ścieków. Ekstrakcja ciecz-ciecz natomiast polega na wydobywaniu substancji rozpuszczonej w jednej cieczy, przenosząc ją do innej cieczy, w której rozpuszcza się lepiej. Jest to technika często wykorzystywana w chemii organicznej do separacji związków chemicznych. Sedymentacja jest procesem, w którym cząstki stałe osiadają na dnie cieczy pod wpływem siły grawitacji. Zjawisko to jest stosowane w wielu dziedzinach, od geologii po inżynierię środowiska. Typowe błędy w rozumieniu tych procesów polegają na ich myleniu z ługowaniem; brak jest zrozumienia, że ługowanie wymaga zastosowania odpowiednich reagentów i jest procesem chemicznym, a nie tylko fizycznym oddzielaniem substancji. Każda z tych metod ma swoje miejsce w różnych aplikacjach przemysłowych i laboratoryjnych, dlatego ważne jest, aby dobrze rozumieć różnice między nimi, aby móc skutecznie dobierać odpowiednie techniki w zależności od potrzeb.

Pytanie 6

Aby uzyskać sole sodowe fenoli, należy stopić dany fenol z sodą (M = 106 g/mol), stosując 10% nadmiar w porównaniu do ilości stechiometrycznej, według równania:
2 ArOH + Na2CO3 → 2 ArONa + H2O + CO2 Ile sody jest wymagane do reakcji z 7,2 g 2-naftolu (M = 144 g/mol)?

A. 2,92 g
B. 2,65 g
C. 5,30 g
D. 5,83 g
Podczas rozwiązywania zadania, można się łatwo pomylić w obliczeniach dotyczących reagentów. Często się zdarza, że ktoś po prostu przyjmuje masę sody potrzebną do reakcji z 2-naftolem na podstawie masy 2-naftolu, nie patrząc na stechiometrię reakcji. Z równania to wiadomo, że na każdy 2 mole 2-naftolu potrzeba 1 mol Na2CO3. Jak się to ignoruje, to może się to skończyć błędami w obliczeniach. Często też pomijany jest nadmiar reagentu, co jest dość powszechnym błędem. W praktyce dodanie nadmiaru zapewnia, że reakcja przebiegnie do końca i zmniejsza ryzyko zostawienia nieprzereagowanych reagentów. Również niektórzy mogą się pomylić przy wyliczaniu masy molowej Na2CO3, co też prowadzi do złych wyników. Ważne, żeby dokładnie obliczyć masę molową i użyć odpowiednich wzorów chemicznych, bo nawet małe błędy tu mogą dać duże różnice w wynikach. W końcu, żeby dobrze to rozwiązać, trzeba aplikować zasady chemiczne i stechiometrię oraz skrupulatnie robić obliczenia.

Pytanie 7

Odczynnik, który w specyficznych warunkach reaguje wyłącznie z danym jonem, umożliwiając tym samym jego identyfikację w mieszance, to odczynnik

A. charakterystyczny
B. indywidualny
C. specyficzny
D. selektywny
Zrozumienie różnicy między terminami używanymi w chemii analitycznej jest kluczowe, aby uniknąć nieporozumień. Wybór odpowiedzi "indywidualny" może budzić wątpliwości, gdyż sugeruje, że odczynnik działa w sposób izolowany, co nie oddaje istoty specyficzności. Odczynnik indywidualny niekoniecznie wskazuje na umiejętność wykrywania tylko jednego jonu, a może oznaczać po prostu reagowanie z jednym typem substancji, co jest niewystarczające w kontekście analityki. Selektywny odczynnik natomiast wskazuje na zdolność do reagowania z grupą jonów, a nie tylko z jednym, co prowadzi do nieprecyzyjnych wyników, ponieważ niektóre inne jony mogą również reagować, zafałszowując analizę. Odpowiedź "charakterystyczny" pozostaje w bliskim sąsiedztwie, ale nie wyraża pełnej idei dotyczącej specyficzności, jako że odnosi się do ogólnych właściwości odczynnika, bez podkreślania jego zdolności do selektywnej reakcji. Błędy te mogą wynikać z niepełnego zrozumienia terminów oraz ich zastosowania w praktyce laboratoryjnej, co jest kluczowe w kontekście analizy chemicznej. Właściwe zrozumienie, jak i kiedy stosować odczynniki specyficzne, jest niezbędne dla zapewnienia dokładności i rzetelności wyników w każdej analizie chemicznej.

Pytanie 8

Podczas przygotowywania roztworu mianowanego kwasu solnego o określonym stężeniu należy:

A. najpierw rozcieńczyć kwas wodą w przybliżeniu, a dopiero potem odmierzyć potrzebną ilość roztworu
B. dokładnie odmierzyć odpowiednią objętość stężonego kwasu solnego i rozcieńczyć ją wodą destylowaną do pożądanej objętości końcowej, zachowując zasady bezpieczeństwa
C. zmieszać dowolną ilość kwasu z wodą i sprawdzić pH, aby uzyskać potrzebne stężenie
D. połączyć stężony kwas solny z przypadkowym innym roztworem, by osiągnąć wymagane stężenie
Przygotowanie roztworu mianowanego kwasu solnego o określonym stężeniu wymaga bardzo precyzyjnego działania, zgodnego z dobrą praktyką laboratoryjną i zasadami bezpieczeństwa chemicznego. Wszystko zaczyna się od dokładnego obliczenia ilości stężonego kwasu, którą trzeba pobrać, by po rozcieńczeniu uzyskać żądane stężenie roztworu. Takie działanie opiera się na wzorze C1V1 = C2V2, gdzie C1 i V1 to stężenie i objętość stężonego kwasu, a C2 i V2 – stężenie i objętość roztworu końcowego. Należy używać szkła miarowego (np. kolby miarowej, pipety), by zapewnić odpowiednią dokładność, a rozcieńczanie zawsze przeprowadza się poprzez powolne dodawanie kwasu do wody (nigdy odwrotnie!), co minimalizuje ryzyko gwałtownej reakcji i rozprysków. Ostateczna objętość powinna być uzupełniona wodą destylowaną do kreski na kolbie miarowej. Tak przygotowany roztwór może być dalej mianowany, czyli dokładnie określa się jego stężenie przez miareczkowanie z użyciem wzorca. Ta procedura gwarantuje powtarzalność i bezpieczeństwo oraz zgodność z wymaganiami CHM.03. W praktyce technik analityk bardzo często przygotowuje takie roztwory, np. do analiz miareczkowych czy kalibracji aparatury. To podstawa pracy w laboratorium chemicznym.

Pytanie 9

Podczas pomiaru masy substancji w naczyniu wagowym na wadze technicznej, dla zrównoważenia masy na szalce zastosowano odważniki: 10 g, 5 g, 500 mg, 200 mg, 200 mg, 50 mg, 20 mg, 10 mg oraz 10 mg. Masa substancji razem z naczynkiem wyniosła

A. 16,04 g
B. 16,94 g
C. 15,99 g
D. 15,94 g
Odpowiedzi 15,94 g, 16,04 g oraz 16,94 g są błędne z kilku powodów. Przede wszystkim, kluczowym błędem jest niepoprawne dodanie mas odważników. W przypadku pierwszej z błędnych odpowiedzi, założono, że suma mas wynosi 15,94 g, co sugeruje, że niektóre odważniki zostały pominięte lub źle zsumowane. Często zdarza się, że przy obliczeniach pomija się mniejsze wartości, co prowadzi do błędnych wyników. Z kolei wartość 16,04 g może wynikać z dodania nadmiarowej masy, co z kolei pokazuje, że osoba odpowiadająca mogła pomylić się w obliczeniach lub nie uwzględnić jednostek miary. Z kolei ostatnia odpowiedź, 16,94 g, może być wynikiem błędnego założenia o wadze substancji w naczyniu, co sugeruje, że zaniedbano kluczowe elementy procesu ważenia, takie jak uwzględnienie masy samego naczynia. W praktyce, aby uzyskać poprawny wynik, niezbędne jest dokładne zrozumienie zasady ważenia oraz umiejętność sumowania jednostek miary. Warto również pamiętać o stosowaniu zasad panujących w laboratoriach, takich jak ważenie substancji po zważeniu pustego naczynia i odjęcie tej wartości od wyniku. Systematyczne stosowanie dobrych praktyk w laboratoriach znacząco podnosi jakość wyników oraz redukuje margines błędu.

Pytanie 10

Który z poniższych czynników nie mógł przyczynić się do błędnego określenia całkowitej liczby drobnoustrojów w surowym mleku?

A. Nieodpowiednie mycie i dezynfekcja zbiorników do przechowywania mleka
B. Nieprawidłowe czyszczenie i dezynfekcja pipet do pobierania próbek pierwotnych
C. Transport próbki mleka w temperaturze 30°C
D. Pobranie nadmiernej liczby próbek pierwotnych
Transport próbki mleka w temperaturze 30°C może prowadzić do znacznych zmian w populacji drobnoustrojów, co może skutkować błędnym oznaczeniem ich liczby. W przypadku mleka, które zawiera składniki odżywcze, idealne warunki do rozwoju mikroorganizmów są osiągane w temperaturach powyżej 20°C. Jeśli próbka jest transportowana w tak wysokiej temperaturze, istnieje ryzyko namnażania się niepożądanych bakterii, co może zafałszować wyniki analizy. Również niewłaściwe mycie i dezynfekcja pipet do pobierania próbek oraz zbiorników do przechowywania mogą prowadzić do kontaminacji próbek, co również wpływa na dokładność wyników. Pipety, które nie zostały odpowiednio zdezynfekowane, mogą wprowadzać mikroorganizmy z otoczenia, co skutkuje błędnymi pomiarami. Zgodnie z wytycznymi dotyczącymi kontroli jakości w przemyśle mleczarskim, takie praktyki są absolutnie niewłaściwe i mogą prowadzić do poważnych konsekwencji zdrowotnych. Organizacje zajmujące się bezpieczeństwem żywności, takie jak WHO i FAO, podkreślają znaczenie przestrzegania rygorystycznych procedur przy pobieraniu i analizowaniu próbek. Właściwe zarządzanie próbkami, w tym ich transport w odpowiednich warunkach temperaturowych i dezynfekcja narzędzi, jest kluczowe dla uzyskania wiarygodnych wyników analitycznych.

Pytanie 11

Wykorzystując pipetę gazową, pobrano próbkę azotu (Mn2 = 28 g/mol) o objętości 250 cm3 w standardowych warunkach. Jaką masę ma zmierzony azot?

A. 0,3125 g
B. 1,5635 g
C. 3,1250 g
D. 0,1563 g
Niepoprawne odpowiedzi wynikają z błędów w obliczeniach związanych z masą gazu w warunkach normalnych. Wiele z podanych odpowiedzi może sugerować błędne podejście do obliczeń ilości moli lub nieprawidłowe konwersje jednostek. Na przykład, jeżeli ktoś obliczyłby masę gazu w oparciu o nieprawidłową objętość molową, np. 1 mol zajmujący objętość 1 litra, uzyskane wyniki byłyby znacznie niższe od rzeczywistych. Często także pomijana jest konwersja objętości z mililitrów na litry, co może prowadzić do znacznych rozbieżności. Innym częstym błędem jest niewłaściwe zastosowanie wzoru na masę, co prowadzi do nieadekwatnych wartości. W przypadku obliczeń chemicznych, kluczowe jest zrozumienie, że masa gazu jest ściśle związana z jego objętością oraz warunkami, w jakich się znajduje. Standardy laboratoryjne, takie jak korzystanie z odpowiednich objętości molowych i precyzyjnych pomiarów, są fundamentalne dla uzyskiwania wiarygodnych rezultatów. Praktyka ta jest niezbędna w codziennej pracy chemików, gdzie jakiekolwiek odstępstwo od norm może prowadzić do błędnych wyników oraz zafałszowania danych eksperymentalnych.

Pytanie 12

Na etykiecie kwasu siarkowego(VI) znajduje się zapis:
Określ gęstość kwasu siarkowego(VI).

KWAS SIARKOWY MIN. 95%
CZ.D.A.
H2SO4
M = 98,08 g/mol    1 l – 1,84 kg

A. 1,84 g/cm3
B. 1,84 g/dm3
C. 0,184 g/dm3
D. 0,184 g/cm3
Wybór błędnych odpowiedzi może świadczyć o nieporozumieniach dotyczących definicji gęstości oraz jednostek miary. W odpowiedziach takich jak 0,184 g/dm3 i 0,184 g/cm3, liczby te są nieprawidłowe, ponieważ pomijają kluczowy aspekt masy kwasu siarkowego(VI) w kontekście jego gęstości. W szczególności, warto zauważyć, że 0,184 g/dm3 jest równoznaczne z 0,000184 g/cm3, co jest zbyt niską wartością jak na gęstość stężonego kwasu siarkowego(VI). To podejście jest błędne, ponieważ nie uwzględnia rzeczywistej masy kwasu w 1 litrze, która wynosi 1840 g. Ponadto, 0,184 g/cm3 również jest nieprawidłowe, ponieważ sugeruje, że kwas siarkowy(VI) jest znacznie mniej gęsty niż w rzeczywistości. Typowe błędy myślowe, które prowadzą do takich nieprawidłowych odpowiedzi, to pomylenie jednostek oraz niewłaściwe przeliczenie masy na gęstość. Wiedza o gęstości substancji chemicznych jest kluczowa dla wielu procesów przemysłowych oraz laboratoryjnych; błędne zrozumienie tego pojęcia może prowadzić do niebezpiecznych sytuacji, takich jak niewłaściwe przygotowanie roztworów lub błędna klasyfikacja substancji w zakresie ich transportu. Dlatego tak ważne jest, aby dokładnie przestudiować dane zawarte na etykietach substancji chemicznych oraz wykorzystywać je w praktycznych zastosowaniach w zgodzie z obowiązującymi normami i najlepszymi praktykami.

Pytanie 13

Podczas pobierania próby wody do oznaczania metali ciężkich zaleca się stosowanie butelek wykonanych z:

A. polietylenu wysokiej gęstości (HDPE)
B. aluminium
C. ceramiki
D. szkła sodowego
Wybór szkła sodowego jako materiału na butelki do pobierania próbek wody przeznaczonej do oznaczania metali ciężkich to dość częsty błąd, wynikający z przekonania, że szkło jest zupełnie obojętne chemicznie. Niestety, szkło sodowe może uwalniać do badanej próbki niektóre pierwiastki, jak sód, wapń czy ołów, zwłaszcza jeśli próbka jest lekko kwaśna lub przechowywana przez dłuższy czas. Może też dochodzić do adsorpcji jonów metali na ściankach butelki, co skutkuje fałszywie zaniżonymi wynikami. Aluminium z kolei jest materiałem wysoce reaktywnym – nawet cienka warstwa tlenków nie gwarantuje pełnej ochrony próbki. Aluminium potrafi ulegać korozji w kontakcie z wodą, a już zwłaszcza z próbkami zakwaszonymi (co często się stosuje, by ustabilizować metale). Przez to do próbki mogą przedostawać się dodatkowe jony aluminium, a inne metale mogą też być adsorbowane przez ścianki. Butelki ceramiczne to raczej ciekawostka niż praktyka laboratoryjna. Ceramika jest porowata, trudna do sterylizacji, a jej powierzchnia może adsorbować jony metali lub je wymieniać z próbką, co zupełnie dyskwalifikuje ją w precyzyjnych analizach śladowych. W praktyce najlepsze efekty daje stosowanie tworzyw sztucznych odpornych chemicznie, takich jak HDPE – wszystkie inne materiały niosą spore ryzyko zafałszowania próbki na etapie pobierania lub transportu. To właśnie te niuanse decydują o wiarygodności wyników, a nie tylko wygoda czy dostępność pojemników.

Pytanie 14

Laboratoryjna apteczka powinna zawierać m.in.

A. bandaż, watę higroskopijną, gips
B. gazę opatrunkową, wodę utlenioną, plaster
C. alkohol etylowy, perhydrol, płyn Lugola
D. adrenalinę, bandaż, wodę utlenioną
Poprawna odpowiedź to gazę opatrunkową, wodę utlenioną i plaster, ponieważ te elementy są kluczowe w przypadku udzielania pierwszej pomocy w laboratoriach. Gazę opatrunkową można wykorzystać do pokrywania ran, aby zabezpieczyć je przed zanieczyszczeniem oraz zminimalizować ryzyko infekcji. Woda utleniona jest skutecznym środkiem dezynfekującym, który może być użyty do oczyszczania ran, usuwania zanieczyszczeń oraz wspomagania procesu gojenia. Plaster z kolei jest niezbędny do zabezpieczenia drobnych ran i otarć, a także może służyć do ochrony miejsca urazu przed dalszym uszkodzeniem. Zgodnie z normami BHP oraz dobrymi praktykami w zakresie bezpieczeństwa pracy, apteczka laboratoryjna powinna być kompletnie zaopatrzona w te podstawowe materiały pierwszej pomocy, aby szybko reagować na sytuacje awaryjne i minimalizować ryzyko poważniejszych urazów. Warto również pamiętać o regularnym sprawdzaniu dat ważności tych produktów oraz ich dostępności w apteczce, aby zapewnić skuteczność udzielanej pomocy.

Pytanie 15

Na rysunku przedstawiono wagę

Ilustracja do pytania
A. automatyczną.
B. mikroanalityczną.
C. precyzyjną.
D. hydrostatyczną.
Odpowiedzi na pytania dotyczące wag laboratoryjnych mogą prowadzić do nieporozumień, szczególnie w kontekście różnych typów wag. Wagi hydrostatyczne, choć użyteczne w specjalistycznych zastosowaniach, działają na innej zasadzie i są stosowane głównie do pomiaru gęstości cieczy. Wykorzystują one zjawisko wyporu, co jest kluczowe w zastosowaniach takich jak pomiar gęstości substancji. Z kolei wagi automatyczne, które automatyzują proces ważenia, nie są tożsame z wagami precyzyjnymi, mimo że mogą również oferować wysoką dokładność. Wagi mikroanalityczne, chociaż również precyzyjne, są przeznaczone do bardziej specyficznych zadań, takich jak ważenie bardzo małych ilości substancji (zazwyczaj poniżej 1 mg) i różnią się konstrukcją oraz funkcjami od wag precyzyjnych. Wybór odpowiedniego typu wagi zależy od specyfiki zadań, które mają być realizowane w laboratorium, a zrozumienie tych różnic jest kluczowe dla osiągnięcia wiarygodnych wyników. Typowe błędy myślowe, takie jak utożsamianie wag z różnymi funkcjami bez uwzględnienia ich zastosowań, mogą prowadzić do nieprawidłowych wniosków i wyborów w kontekście technologii laboratoryjnej.

Pytanie 16

Wskaż zbiór substancji, które po rozpuszczeniu w wodzie stają się elektrolitami?

A. Chlorek sodu, wodorotlenek sodu, kwas siarkowy(VI)
B. Cukier, sól stołowa, ocet
C. Glukoza, kwas azotowy(V), wodorotlenek wapnia
D. Kwas solny, gliceryna, tlenek siarki(VI)
Wybór substancji, które nie są elektrolitami, może prowadzić do licznych nieporozumień, dlatego warto zrozumieć, dlaczego odpowiedzi te są błędne. Cukier, sól kuchenna i ocet wydają się być substancjami rozpuszczalnymi w wodzie, jednak tylko sól kuchenna może być uznana za elektrolit. Cukier (sacharoza) rozpuszcza się w wodzie, tworząc roztwór, ale nie dissocjuje na jony, co oznacza, że nie przewodzi prądu elektrycznego. Takie substancje są nazywane substancjami nieelektrolitycznymi. Podobnie, gliceryna i tlenek siarki(VI) nie są elektrolitami - gliceryna jest organicznym alkoholem, który również nie dissocjuje w wodzie na jony, a tlenek siarki(VI) reaguje z wodą, tworząc kwas siarkowy, ale w swojej pierwotnej formie nie jest elektrolitem. W przypadku glukozy, jej rozpuszczenie w wodzie prowadzi do powstania roztworu, który nie wykazuje przewodnictwa elektrycznego, ponieważ glukoza również nie dissocjuje na jony. Niewłaściwe postrzeganie substancji jako elektrolitów może wynikać z błędnego rozumienia ich właściwości chemicznych oraz różnicy między substancjami, które po rozpuszczeniu w wodzie prowadzą do powstania naładowanych cząsteczek, a tymi, które tego nie robią. Kluczowe jest zrozumienie mechanizmów dysocjacji oraz właściwości chemicznych różnych substancji, aby uniknąć takich nieporozumień w chemii i pokrewnych dziedzinach.

Pytanie 17

Proces nastawiania miana kwasu solnego na wodorowęglan potasu KHCO3 przebiega zgodnie z następującą instrukcją:
Na wadze analitycznej odmierzyć 1 g KHCO3 (z precyzją 0,00001 g) i przesypać go ilościowo do kolby stożkowej, dodać około 50 cm3 destylowanej wody i dokładnie wymieszać roztwór. Następnie dodać kilka kropel roztworu czerwieni metylowej. Przeprowadzić miareczkowanie kwasem aż do pierwszej zmiany koloru wskaźnika.
W tym przypadku titrantem jest

A. czerwień metylowa
B. woda destylowana
C. roztwór wodorowęglanu potasu
D. kwas
Czerwony metylowy, wodorowęglan potasu oraz woda destylowana nie są titrantami w kontekście miareczkowania opisanego w pytaniu. Czerwień metylowa jest wskaźnikiem pH, który zmienia kolor w zależności od kwasowości roztworu, jednak nie bierze udziału w samym procesie miareczkowania jako reagent. Używa się jej jedynie do wizualizacji końca miareczkowania, co jest istotne dla interpretacji wyników, ale nie wpływa na reakcję chemiczną, która się odbywa. Wodorowęglan potasu jest substancją, którą miareczkujemy, a nie titrantem; jego rola jest pasywna, jako że reaguje z kwasem, a nie dostarcza go do roztworu. Woda destylowana służy jedynie jako rozpuszczalnik, ułatwiający rozprowadzenie wodorowęglanu potasu w kolbie, ale sama w sobie nie ma roli reagenta w miareczkowaniu. Zrozumienie ról różnych substancji w procesie miareczkowania jest kluczowe, aby prawidłowo przeprowadzać eksperymenty chemiczne. Umiejętność ta wymaga znajomości nie tylko reagujących substancji, ale również mechanizmów reakcji oraz odpowiednich wskaźników, co pozwala na uzyskanie dokładnych wyników analitycznych.

Pytanie 18

Technika kwartowania (ćwiartkowania) pozwala na redukcję masy próbki ogólnej

A. ciekłej
B. stałej
C. gazowej
D. półciekłej
Wybierając odpowiedzi na temat kwartowania w kontekście gazów, cieczy czy półciekłych substancji, można się trochę pogubić. Bo w przypadku gazów, nie da się tak łatwo ich kwarcować. Gazy nie mają wyraźnych granic, więc nie można ich podzielić na mniejsze kawałki jak stałe. Co do cieczy, to w zasadzie można by je podzielić, ale używa się do tego innych metod, takich jak pipetowanie czy rozcieńczanie. Natomiast półciekłe substancje, takie jak błoto czy gęste emulsje, nie nadają się do kwartowania, bo ich struktura może prowadzić do niejednorodnych prób. Jak zastosujesz niewłaściwą metodę, to wyniki mogą być błędne, co serio ma znaczenie w laboratoriach. Dlatego dobrze jest wiedzieć, które metody pasują do danego stanu skupienia, żeby nie wpaść w pułapki i nie wyciągać złych wniosków.

Pytanie 19

W standardowym układzie destylacyjnym, który ma ukośną chłodnicę, wykorzystuje się chłodnicę

A. kulistą
B. prostą
C. spiralną
D. palcową
Wybór chłodnicy do procesu destylacji jest kluczowy dla efektywności całego procesu. Chłodnica kulkowa, chociaż popularna w niektórych zastosowaniach, jest nieodpowiednia w przypadku standardowej destylacji w zestawie o skośnym usytuowaniu, ponieważ jej budowa ogranicza skuteczność wymiany ciepła. Chłodnice kulkowe są przeważnie stosowane w sytuacjach, gdzie wymagana jest duża powierzchnia kontaktu z cieczą, co nie jest priorytetem w klasycznej destylacji. Z kolei zastosowanie chłodnicy spiralnej może prowadzić do nieefektywnego skraplania par w przypadku niskich wydajności, ponieważ spirale generują większy opór dla przepływających gazów, co może skutkować niepełnym kondensowaniem par. Chłodnica palcowa również nie pasuje do tego kontekstu, ze względu na złożoną strukturę, która może być mniej efektywna przy małych przepływach. Wybór chłodnicy powinien opierać się na analizie wymagań konkretnego procesu, uwzględniając zarówno charakterystykę substancji, jak i parametry operacyjne. Typowe błędy myślowe w tej kwestii obejmują nadmierne poleganie na ogólnych właściwościach chłodnic oraz brak zrozumienia znaczenia efektywności wymiany ciepła w kontekście osiągania wysokiej czystości destylatów.

Pytanie 20

W przypadku odczynnika, w którym nawet najczulsze techniki analizy chemicznej nie są w stanie wykryć zanieczyszczeń, a jego badanie wymaga zastosowania metod opartych na zjawiskach fizycznych, zalicza się on do kategorii czystości

A. czysty
B. chemicznie czysty
C. techniczny
D. czysty do analizy
Odpowiedzi "czysty do analizy", "techniczny" oraz "czysty" nie są właściwe w kontekście omawianego pytania, ponieważ nie oddają one precyzyjnie specyfiki czystości chemicznej. "Czysty do analizy" może sugerować, że substancja jest wystarczająco czysta do przeprowadzenia analizy, ale nie gwarantuje, że zanieczyszczenia są na poziomie, który pozwala na stosowanie metod analitycznych wymagających wysokiej klasy czystości. Termin "techniczny" odnosi się zazwyczaj do substancji, które są odpowiednie do zastosowań przemysłowych, ale mogą zawierać zanieczyszczenia, które są akceptowalne w kontekście procesów technologicznych, jednak nie nadają się do zastosowań wymagających wysokiej czystości. Z kolei "czysty" jest terminem ogólnym, który nie precyzuje klasy czystości substancji, co sprawia, że nie jest zastosowaniem właściwe w kontekście szczególnych wymagań analitycznych. Użytkownicy mogą popełnić błąd, myśląc, że wszystkie te terminy są równoważne, podczas gdy w rzeczywistości różnią się one znacząco. Kluczowe jest zrozumienie różnic w wymaganiach dotyczących czystości, aby móc właściwie dobierać substancje do konkretnego zastosowania w laboratoriach chemicznych i przemysłowych.

Pytanie 21

Sączków o najmniejszych średnicach, nazywanych "twardymi" i oznaczonych kolorem niebieskim, używa się do filtracji osadów?

A. galaretowatych
B. grubokrystalicznych
C. drobnokrystalicznych
D. serowatych
Sączki o najmniejszych porach, oznaczane kolorem niebieskim, są przeznaczone do sączenia osadów drobnokrystalicznych. Te sączki charakteryzują się wysoką zdolnością do zatrzymywania cząstek stałych o niewielkich rozmiarach, co czyni je idealnym narzędziem w procesach laboratoryjnych i przemysłowych, gdzie wymagana jest wysoka jakość filtracji. Przykładem zastosowania takich sączków może być oczyszczanie roztworów chemicznych w laboratoriach analitycznych, gdzie istotne jest usunięcie wszelkich zanieczyszczeń, które mogą wpłynąć na wyniki pomiarów. Ponadto, w branży farmaceutycznej, sączki te są wykorzystywane do filtracji substancji aktywnych, co zapewnia ich czystość i skuteczność. Stosowanie sączków z odpowiednią porowatością zgodnie z wymaganiami procesu filtracji jest zgodne z normami ISO i innymi standardami branżowymi, co podkreśla znaczenie ich właściwego doboru.

Pytanie 22

Aby uzyskać wodorotlenek wapnia, odważono 30 g węglanu wapnia, który następnie wyprażono. Powstały tlenek wapnia dodano do 100 cm3 wody, a otrzymany osad wysuszono i zważono, uzyskując 18,5 g wodorotlenku wapnia. Jaką wydajność miała ta reakcja?

Ca – 40 g/mol; O – 16 g/mol; C – 12 g/mol; H – 1 g/mol

A. 80%
B. 75%
C. 93%
D. 83%
Wydajność reakcji to kluczowy parametr, który często mylony jest z innymi pojęciami, takimi jak sprawność czy konwersja. Wybór błędnych odpowiedzi może wynikać z niezrozumienia właściwego sposobu obliczania wydajności, co prowadzi do chaosu w analizie wyników reakcji chemicznych. Na przykład, wiele osób może pomylić teoretyczną masę produktu z masą rzeczywiście uzyskaną. Obliczając wydajność, istotne jest posługiwanie się poprawnymi jednostkami i jednostkowym podejściem do obliczeń. Do obliczenia wydajności należy wyjść od teorii reakcji, w której określamy możliwą masę produktu, a następnie porównujemy ją z masą rzeczywistą. Może się zdarzyć, że wyliczenia prowadzą do wartości 75%, 80% czy nawet 93%, co jest wynikiem pomyłek w obliczeniach lub niewłaściwego rozumienia masy molowej użytych reagentów. Istotnym błędem jest również pominięcie wpływu czynników zewnętrznych, takich jak temperatura czy ciśnienie, które mogą wpływać na wydajność reakcji. W praktyce, dokładność w obliczeniach oraz znajomość teorii reakcji chemicznych są kluczowe dla osiągnięcia jak najwyższej wydajności procesów chemicznych, co jest szczególnie ważne w przemyśle oraz laboratoriach badawczych.

Pytanie 23

Do 200 g roztworu NaOH (M = 40 g/mol) o stężeniu 10 % dodano wodę destylowaną w kolbie miarowej o pojemności 500 cm3 do znaku. Jakie jest stężenie molowe powstałego roztworu?

A. 0,5 mol/dm3
B. 0,1 mol/dm3
C. 1,0 mol/dm3
D. 4,0 mol/dm3
Błędne odpowiedzi często opierają się na niepoprawnym zrozumieniu pojęcia stężenia oraz na niewłaściwym obliczeniu liczby moli substancji w roztworze. Dla odpowiedzi wskazujących na stężenie 0,5 mol/dm³, można zauważyć, że mogą one wynikać z błędnego założenia, że 200 g roztworu zawiera mniej moli NaOH, niż wynika to z obliczeń. Inną typową pomyłką jest zakładanie, że rozcieńczenie wpływa na całkowitą ilość moli w roztworze, co jest nieprawdziwe. Po rozcieńczeniu liczba moli pozostaje niezmieniona, a zmienia się tylko objętość roztworu, co prowadzi do błędnych wyników stężenia. Odpowiedzi wskazujące na 4,0 mol/dm³ mogą wynikać z mylnego przeliczenia masy substancji na mole bez uwzględnienia objętości roztworu, co jest kluczowe przy obliczaniu stężeń. Niezrozumienie metody obliczania stężenia molowego prowadzi do niepoprawnych wniosków, a także wykazuje brak znajomości podstawowych zasad chemii, takich jak prawo zachowania masy czy zasady przygotowywania roztworów. W praktyce laboratoryjnej ważne jest, aby dokładnie obliczać zarówno masy, jak i objętości, aby uzyskać poprawne wyniki analizy i zapewnić jakość badań.

Pytanie 24

Sączenie na gorąco powinno być użyte, aby

A. nie doszło do rozpuszczenia substancji obecnych w roztworze
B. miało miejsce wydzielanie kryształów z roztworu
C. nie miało miejsca wydzielanie kryształów z roztworu
D. doszło do rozpuszczenia substancji obecnych w roztworze
Odpowiedzi, które sugerują, że sączenie na gorąco ma na celu rozpuszczenie substancji zawartych w roztworze lub zapobieganie ich wydzielaniu w postaci kryształów, nie uwzględniają rzeczywistych zasad fizykochemicznych, które rządzą tym procesem. Sącząc na gorąco, dąży się do tego, aby zminimalizować ryzyko krystalizacji, a nie do rozpuszczania substancji. W rzeczywistości, podczas podgrzewania roztworu, substancje, które są mniej rozpuszczalne w wyższych temperaturach, mogą zacząć wytrącać się w postaci kryształów, co jest niepożądane w kontekście oczyszczania. Sącząc na gorąco, kluczowe jest również zrozumienie, że proces ten pozwala na przeprowadzenie filtracji w warunkach, które zapobiegają osadzaniu się zanieczyszczeń na dnie naczynia, co może prowadzić do błędnych wniosków analitycznych. W praktyce laboratoryjnej ignorowanie tych aspektów może prowadzić do nieefektywnego oczyszczania i uzyskiwania produktów o niższej jakości, co jest niezgodne z dobrymi praktykami w chemii analitycznej. Zrozumienie zasad działania sączenia na gorąco jest kluczowe dla prawidłowego przeprowadzania analiz chemicznych oraz procesów syntezy.

Pytanie 25

Jakie jest stężenie roztworu NaOH, który zawiera 4 g wodorotlenku sodu w 1 dm3 (masa molowa NaOH = 40 g/mol)?

A. 0,1 mol/dm3
B. 1 mol/dm3
C. 0,01 mol/dm3
D. 0,001 mol/dm3
Stężenie roztworu NaOH wyliczamy dzieląc liczbę moli substancji przez objętość roztworu w decymetrach sześciennych. W przypadku 4 g wodorotlenku sodu, najpierw musimy policzyć, ile mamy moli, korzystając z masy molowej NaOH, która to wynosi 40 g/mol. To wygląda tak: 4 g podzielone przez 40 g/mol daje nam 0,1 mola. A ponieważ nasze objętość roztworu wynosi 1 dm³, stężenie okaże się 0,1 mol / 1 dm³, co daje 0,1 mol/dm³. Te obliczenia są super ważne w laboratoriach chemicznych, bo precyzyjne przygotowywanie roztworów jest kluczowe dla dobrej jakości wyników eksperymentów. W praktyce stężenie roztworu oddziałuje na reakcje chemiczne, ich tempo i efektywność, więc rozumienie tych zasad leży u podstaw chemii analitycznej i w różnych aplikacjach przemysłowych, jak synteza chemiczna czy proces oczyszczania.

Pytanie 26

Przy transporcie próbek wody zaleca się, aby próbki były

A. zakwaszone do pH < 6
B. zalkalizowane
C. schłodzone do temperatury 2 - 5°C
D. narażone na działanie światła
Schłodzenie próbek wody do temperatury 2 - 5°C to naprawdę ważny krok, gdy transportujemy te próbki. Chodzi o to, żeby zmniejszyć wszelkie zmiany w ich składzie chemicznym i biologicznym. Niska temperatura spowalnia mikroorganizmy i różne reakcje chemiczne, które mogą zniszczyć próbki. W praktyce, według wytycznych takich organizacji jak EPA albo ISO, próbki powinny być transportowane w termosach czy chłodnicach, żeby zachować ich właściwości fizykochemiczne. Na przykład, jeśli analizujemy wodę pitną, to dobre utrzymanie temperatury jest konieczne dla dokładnych wyników badań, co jest kluczowe dla zdrowia publicznego. Dodatkowo, schłodzenie próbek pomaga też w zachowaniu ich wartości analitycznej, co jest ważne, zwłaszcza w kontekście monitorowania jakości wód w środowisku. Dlatego naprawdę trzeba trzymać się tych standardów, żeby uzyskać wiarygodne wyniki.

Pytanie 27

Proces chemiczny, który polega na przejściu substancji w stanie stałym do roztworu, związany z reakcją tej substancji z rozpuszczalnikiem, to

A. rozpuszczanie
B. roztwarzanie
C. krystalizacja
D. ekstrakcja
Rozpuszczanie, krystalizacja i ekstrakcja to zjawiska, które mogą być mylone z roztwarzaniem, jednak każde z nich ma swoje unikalne cechy oraz przeznaczenie. Rozpuszczanie odnosi się ogólnie do procesu, w którym substancja stała przechodzi w stan roztworu, ale nie zawsze wiąże się z aktywną reakcją chemiczną z rozpuszczalnikiem. Krystalizacja to proces odwrotny do roztwarzania, w wyniku którego substancja przechodzi ze stanu rozpuszczonego do stałego, co jest kluczowe w otrzymywaniu czystych kryształów substancji chemicznych. Ekstrakcja natomiast odnosi się do procesu, w którym substancje są wyodrębniane z mieszanki, na przykład poprzez użycie rozpuszczalnika, ale nie oznacza to, że te substancje muszą ulegać reakcjom chemicznym. Typowym błędem myślowym jest mylenie tych pojęć, gdyż można sądzić, że wszelkie procesy związane z przemieszczaniem się substancji w roztworze są tożsame. Zrozumienie różnic pomiędzy tymi terminami jest kluczowe dla właściwego zarządzania procesami chemicznymi, szczególnie w kontekście przemysłu chemicznego, gdzie precyzyjne operacje są niezbędne do uzyskania pożądanych produktów o wysokiej jakości.

Pytanie 28

Do przechowywania stężonego kwasu azotowego(V) w laboratorium należy stosować:

A. Metalową puszkę bez wieczka
B. Szczelnie zamknięte butelki z ciemnego szkła
C. Otwarty plastikowy pojemnik
D. Aluminiowy termos laboratoryjny
Kwas azotowy(V) to substancja wyjątkowo agresywna chemicznie i niebezpieczna. Przechowuje się go w szczelnie zamkniętych butelkach z ciemnego szkła, bo to materiał odporny na jego działanie oraz chroniący przed światłem. Światło przyspiesza rozkład kwasu azotowego, a ciemne szkło ogranicza ten proces, co ma kluczowe znaczenie dla zachowania jego właściwości. Dodatkowo szczelne zamknięcie zapobiega uwalnianiu się szkodliwych par oraz absorpcji wilgoci z powietrza, co mogłoby prowadzić do niepożądanych reakcji i obniżenia stężenia. To rozwiązanie zgodne z większością norm BHP i zaleceniami producentów odczynników chemicznych. W praktyce laboratoryjnej stosowanie ciemnych butelek jest po prostu standardem, bo minimalizuje ryzyko zarówno dla ludzi jak i samej substancji. Warto pamiętać, że kwas azotowy atakuje większość metali oraz niektóre tworzywa sztuczne, dlatego szkło jest tu najbezpieczniejsze. Dodatkowo – dobra praktyka to trzymać takie butelki w szafkach chemoodpornych, najlepiej z wentylacją. Moim zdaniem, jeśli ktoś planuje pracę w laboratorium, powinien znać te zasady na pamięć.

Pytanie 29

Oblicz masę wapienia, który został rozłożony, jeśli w trakcie reakcji uzyskano 44,8 dm3 CO2 (w warunkach standardowych).
MC = 12 g/mol, MCa = 40 g/mol, MO = 16 g/mol

A. 200g
B. 250g
C. 150g
D. 100g
W odpowiedziach, które nie są prawidłowe, można dostrzec kilka powszechnych błędów myślowych. Jednym z typowych błędów jest niewłaściwe zrozumienie proporcji reagentów w reakcji chemicznej. Na przykład, wybór 100 g, 150 g lub 250 g jako masy wapienia może wynikać z błędnego założenia dotyczącego ilości wytworzonego dwutlenku węgla lub nieprawidłowego przeliczenia objętości gazu na moles. Warto pamiętać, że każda reakcja chemiczna ma swoje specyficzne współczynniki stechiometryczne, które powinny być dokładnie przestrzegane. Drugim problemem może być nieuwzględnienie, że w warunkach normalnych 1 mol gazu zajmuje 22,4 dm3, co jest kluczowym elementem w obliczeniach ilości gazu. Wiele osób pomija ten krok lub używa przybliżenia, co prowadzi do niepoprawnych wyników. Wreszcie, wybór 250 g może wynikać z mylnego założenia, że masa węglanu wapnia jest znacznie wyższa, niż ma to miejsce w rzeczywistości. Ważne jest, aby pamiętać, że precyzyjne obliczenia w chemii są kluczowe dla uzyskania właściwych wyników, a każdy błąd w tych obliczeniach może prowadzić do poważnych konsekwencji w praktyce przemysłowej i badawczej. Dlatego należy kłaść duży nacisk na dokładność i zrozumienie chemicznych zasad rządzących przeprowadzanymi reakcjami.

Pytanie 30

Aby przygotować 500 g roztworu o stężeniu 10% (m/m), ile substancji należy odważyć?

A. 10 g substancji
B. 50 g substancji
C. 5 g substancji
D. 100 g substancji
Aby sporządzić roztwór o stężeniu 10% (m/m), należy zrozumieć, że stężenie to oznacza, że na każde 100 g roztworu przypada 10 g substancji rozpuszczonej. W przypadku przygotowywania 500 g roztworu, można obliczyć potrzebną ilość substancji, stosując proporcję. 10% z 500 g to 50 g substancji: 500 g * 0,10 = 50 g. Taki sposób obliczenia jest zgodny z zasadami chemii analitycznej, gdzie dokładność i precyzja są kluczowe. W praktyce, przygotowując roztwory, należy zawsze stosować odpowiednie wagi analityczne oraz zapewnić odpowiednie warunki do ich mieszania, aby uzyskać jednorodny roztwór. Ważne jest również, aby znać właściwości substancji, które są wykorzystywane do sporządzania roztworów, aby uniknąć niebezpieczeństw związanych z ich stosowaniem, co jest zgodne z dobrą praktyką laboratoryjną.

Pytanie 31

W przypadku zanieczyszczeń szklanych naczyń osadami o charakterze nieorganicznym, takimi jak wodorotlenki, tlenki oraz węglany, do ich oczyszczania używa się

A. płynu do zmywania naczyń
B. wody destylowanej
C. kwasu solnego
D. roztworu KMnO4 z dodatkiem kwasu solnego
Woda destylowana, mimo że wydaje się czysta, to nie ma tych właściwości chemicznych, które mogłyby skutecznie poradzić sobie z osadami nieorganicznymi. Zazwyczaj używamy jej do rozcieńczania, a nie jako aktywnego środka czyszczącego. Płyn do mycia naczyń także nie jest najlepszym rozwiązaniem, bo on zajmuje się głównie usuwaniem tłuszczu i zanieczyszczeń organicznych, a nie mineralnych, jak tlenki czy węglany. Roztwór KMnO4 z kwasem solnym brzmi ciekawie, ale też nie jest praktycznym sposobem na czyszczenie naczyń szklanych z tych osadów, bo mogą się pojawić niepożądane reakcje i produkty uboczne. W laboratoriach trzeba mieć na uwadze ryzyko niewłaściwego używania kwasów i substancji utleniających, bo to może prowadzić do dość poważnych wypadków. Używanie nieodpowiednich metod czyszczenia to dość powszechny błąd, przez który można zniszczyć drogie narzędzia i popsuć wyniki eksperymentów, więc warto znać odpowiednie techniki i chemikalia do różnych rodzajów zanieczyszczeń.

Pytanie 32

Jakie środki stosuje się do czyszczenia szkła miarowego, które zostało zanieczyszczone substancjami tłustymi?

A. słabą zasadę
B. gorącą wodę
C. słaby kwas
D. mieszaninę chromową
Słaby kwas nie jest skutecznym środkiem do usuwania tłuszczów, ponieważ nie wykazuje wystarczającej siły w reakcji z grubsza zbudowanymi cząsteczkami organicznymi, jakie występują w tłuszczach. Tego typu substancje chemiczne, jak na przykład kwas octowy czy kwas cytrynowy, mogą jedynie częściowo rozkładać niektóre zanieczyszczenia, ale nie są wystarczająco efektywne w przypadku tłuszczów. Również słaba zasada, chociaż może działać w niektórych przypadkach, nie jest optymalnym rozwiązaniem, ponieważ wiele tłuszczów jest hydrofobowych i nie reaguje z zasadowymi roztworami. Gorąca woda, mimo że potrafi rozpuścić pewne zanieczyszczenia, jest niewystarczająca w przypadku substancji tłustych, które wymagają zastosowania silniejszych reagentów. Mieszanina chromowa oferuje unikalną zdolność do utleniania i rozkładu tłuszczów, co czyni ją niezbędnym środkiem w laboratoriach chemicznych. Niezrozumienie potrzeby stosowania odpowiednich reagentów może prowadzić do niedostatecznego oczyszczenia sprzętu, co w efekcie wpływa na dokładność pomiarów, a tym samym na wyniki eksperymentów. W praktyce laboratoryjnej kluczowe jest stosowanie się do standardów czyszczenia, aby zapewnić rzetelność wyników i bezpieczeństwo w pracy z chemikaliami.

Pytanie 33

W celu usunięcia drobnych zawiesin z roztworu przed analizą spektrofotometryczną stosuje się:

A. suszenie roztworu w suszarce laboratoryjnej
B. dekantację bez sączenia
C. podgrzewanie roztworu do wrzenia
D. sączenie przez sączek o drobnych porach lub filtr membranowy
Sączenie przez sączek o drobnych porach lub filtr membranowy to standardowa metoda przygotowania próbek do analiz spektrofotometrycznych, szczególnie gdy zależy nam na usunięciu nawet najmniejszych cząstek zawieszonych. W branży laboratoryjnej takie podejście uchodzi za dobrą praktykę, bo pozwala skutecznie oddzielić fazę ciekłą od niepożądanych drobin, które mogłyby rozpraszać światło i zakłócać pomiar. Filtry membranowe wyróżniają się bardzo drobną porowatością (np. 0,22–0,45 µm), przez co nawet mikroskopijne cząstki nie przechodzą dalej. Użycie sączka o drobnych porach jest też bezpieczne dla składu chemicznego roztworu, nie powoduje dodatkowych reakcji i nie wpływa na wyniki analizy. Moim zdaniem, to wręcz obowiązkowa czynność przed większością analiz spektrofotometrycznych, szczególnie gdy pracujemy z próbkami środowiskowymi, farmaceutycznymi czy biologicznymi. Warto wspomnieć, że profesjonalne laboratoria stosują filtry strzykawkowe lub sączki z tworzyw sztucznych, bo są wygodne i minimalizują ryzyko zanieczyszczeń. Odpowiednia filtracja gwarantuje, że absorbancja mierzona spektrofotometrycznie odzwierciedla wyłącznie skład roztworu, a nie „szum” od cząstek zawieszonych. Takie przygotowanie próbek to po prostu podstawa rzetelnych wyników.

Pytanie 34

Naczynia miarowe, skalibrowane "na wlew" (IN) to:

A. biurety
B. kolby miarowe
C. kolby destylacyjne
D. pipety jednomiarowe o obj. 25 cm3
Wykorzystanie innych naczyń miarowych, takich jak kolby destylacyjne, pipety jednomiarowe czy biurety, do pomiarów objętości w kontekście kalibracji na wlew, może prowadzić do nieporozumień. Kolby destylacyjne są projektowane głównie do procesów destylacji, gdzie istotne jest oddzielanie substancji na podstawie różnicy w temperaturach wrzenia, a nie do precyzyjnego pomiaru objętości. Pipety jednomiarowe, z kolei, mają precyzyjnie określoną objętość, ale są kalibrowane na wypływ, co oznacza, że ich objętość jest mierzona, gdy ciecz jest wydobywana, co nie jest zgodne z kalibracją 'na wlew'. Biurety są natomiast używane do titracji, gdzie ważne jest stopniowe dodawanie reagentu, ale również nie są kalibrowane na wlew. Te naczynia mają swoje specyficzne zastosowania i nie powinny być mylone z kolbami miarowymi, które są dedykowane do precyzyjnego pomiaru objętości cieczy. Niezrozumienie tych różnic może prowadzić do błędnych wyników w eksperymentach oraz w trudności z osiągnięciem pożądanej dokładności w badaniach chemicznych.

Pytanie 35

Roztwory, które wykorzystuje się do kalibracji pehametrów, to

A. kalibracyjne
B. zasadowe
C. kwasowe
D. buforowe
Wybór zasadowych lub kwasowych roztworów jako opcji kalibracyjnych jest błędny, ponieważ nie mają one zdolności do stabilizowania wartości pH. Roztwory zasadowe mogą podnieść pH w próbce, co prowadzi do fałszywych odczytów, a roztwory kwasowe mogą je obniżyć, co również zniekształca wyniki. Kalibracja pehametru polega na wprowadzeniu znanych wartości pH, co nie jest możliwe przy użyciu roztworów, które zmieniają pH w trakcie pomiaru. Używanie roztworów kalibracyjnych, choć brzmi sensownie, jest mylące, ponieważ kalibracyjne odnoszą się do roztworów buforowych, które są właściwymi substancjami do kalibracji pehametrów. Zrozumienie, dlaczego nie można stosować zasadowych lub kwasowych roztworów, wymaga znajomości mechanizmu działania buforów, które działają na zasadzie równowagi chemicznej, co nie jest typowe dla roztworów o skrajnych wartościach pH. Typowym błędem myślowym jest mylenie pojęć kalibracji, pomiaru i stabilizacji pH. Użycie niewłaściwych substancji w tym kontekście może prowadzić do poważnych konsekwencji w analizach chemicznych, gdzie precyzyjne wartości są kluczowe dla uzyskania wiarygodnych wyników. W kontekście standardów laboratoryjnych, przestrzeganie zasad dotyczących kalibracji pehametrów jest podstawą zapewnienia jakości w badaniach analitycznych.

Pytanie 36

Na diagramie przedstawiającym proces pobierania prób środowiskowych do analizy literą Y oznaczono próbkę

A. laboratoryjną
B. wtórną
C. do analizy
D. ogólną
Odpowiedzi takie jak ogólna, wtórna czy do analizy mogą wydawać się poprawne w kontekście pobierania próbek, ale w rzeczywistości nie oddają istoty klasyfikacji próbek w kontekście laboratoryjnym. Próbka ogólna jest zbiorem różnych elementów, które mogą nie odzwierciedlać dokładnych warunków danego miejsca, co może prowadzić do błędnych wniosków. Próbki wtórne z kolei są pobierane z już przetworzonych lub istniejących próbek, co uniemożliwia ich bezpośrednią analizę w pierwotnych warunkach. Odpowiedź sugerująca próbkę do analizy odnosi się do ogólnego pojęcia, które nie precyzuje, w jaki sposób próbka ma być wykorzystana ani jakie są jej wymagania. Błędne przekonanie może prowadzić do mylnego założenia, że każda próbka nadaje się do analizy, podczas gdy rzeczywistość wymaga rygorystycznych standardów pobierania, transportu i przechowywania, aby zapewnić integralność wyników. Prawidłowe określenie rodzaju próbki jest kluczowe dla sukcesu analitycznego, ponieważ różne typy próbek wymagają różnych metod przygotowania i analizy. W związku z tym, zrozumienie różnicy między próbą laboratoryjną a innymi typami próbek jest niezbędne dla praktyków zajmujących się analityką środowiskową.

Pytanie 37

Aby zebrać próbki gazów, wykorzystuje się

A. butelki z plastikowym wieczkiem
B. miarki cylindryczne
C. aspiratory
D. detektory gazów
Aspiratory są urządzeniami zaprojektowanymi specjalnie do pobierania próbek gazowych w kontrolowanych warunkach. Ich działanie polega na wykorzystaniu podciśnienia do zasysania gazów z określonego otoczenia, co pozwala na zbieranie reprezentatywnych prób do dalszej analizy. W laboratoriach chemicznych oraz w przemyśle petrochemicznym aspiratory są niezbędne do monitorowania jakości powietrza, a także do wykrywania zanieczyszczeń gazowych. Przykładem zastosowania aspiratorów jest ich użycie w badaniach środowiskowych, gdzie ocenia się stężenie szkodliwych substancji w atmosferze. Standardy, takie jak ISO 16000, określają metody pobierania próbek gazowych, a stosowanie aspiratorów jest zgodne z najlepszymi praktykami w tej dziedzinie, zapewniając dokładność i wiarygodność wyników analitycznych. Ponadto, aspiratory mogą być używane do analizy gazów wydechowych w przemyśle motoryzacyjnym, co jest kluczowe dla oceny emisji i przestrzegania norm ekologicznych.

Pytanie 38

Podczas analizowania zmienności składu wód płynących w skali rocznej, próbki wody powinny być zbierane i badane przynajmniej raz na

A. miesiąc
B. tydzień
C. rok
D. pół roku
Prawidłowa odpowiedź to pobieranie próbek wody co najmniej raz w miesiącu, co jest zgodne z najlepszymi praktykami w monitorowaniu jakości wód. Badania takie pozwalają na uchwycenie sezonowych zmian w składzie chemicznym i biologicznym wody, które mogą być wynikiem zmieniających się warunków pogodowych, działalności rolniczej lub przemysłowej oraz naturalnych cykli ekosystemu. Stosowanie miesięcznych interwałów pobierania próbek jest standardem w wielu programach monitorowania ekologicznego, ponieważ umożliwia dokładne śledzenie dynamiki zmian oraz identyfikację potencjalnych zagrożeń dla ekosystemu wodnego. Przykładowo, w przypadku rzek czy jezior, różne pory roku mogą wpływać na stężenia składników odżywczych, co ma kluczowe znaczenie dla zdrowia biocenozy. Regularne badania w odstępach miesięcznych wspierają nie tylko prawidłową ocenę jakości wody, ale także umożliwiają szybką reakcję na zmiany, które mogą być wynikiem zanieczyszczeń lub innych niekorzystnych zjawisk.

Pytanie 39

Gęstość cieczy w próbce określa się bezpośrednio za pomocą

A. potencjometru
B. kolorymetru
C. konduktometru
D. areometru
Konduktometr jest urządzeniem służącym do pomiaru przewodności elektrycznej cieczy, a nie jej gęstości. W praktyce, konduktometry są używane do oceny stężenia jonów w wodzie, co jest kluczowe w analizach chemicznych i środowiskowych. Użytkownicy mogą mylnie sądzić, że przewodnictwo jest bezpośrednio związane z gęstością, jednak te dwa parametry są odrębne. Kolorymetr natomiast służy do pomiaru intensywności koloru cieczy i jest wykorzystywany głównie w analizie jakościowej substancji chemicznych. Jego zastosowanie nie ma związku z gęstością, co może prowadzić do mylnych interpretacji wyników. Potencjometr to narzędzie do pomiaru napięcia elektrycznego, które również nie ma zastosowania w określaniu gęstości cieczy. W kontekście analizy próbek, istotne jest rozróżnienie pomiędzy różnymi typami urządzeń pomiarowych, gdyż niepoprawne ich zastosowanie może prowadzić do błędnych wniosków. Zrozumienie właściwego zastosowania narzędzi pomiarowych jest kluczowe dla uzyskania dokładnych i wiarygodnych wyników, a także dla przestrzegania standardów laboratoryjnych.

Pytanie 40

Jaką objętość zasady sodowej o stężeniu 1,0 mol/dm3 należy dodać do 56,8 g kwasu stearynowego, aby otrzymać mydło sodowe (stearynian sodu)?

C17H35COOH + NaOH → C17H35COONa + H2O
(MC17H35COOH = 284 g/mol, MC17H35COONa = 306 g/mol, MNaOH = 40 g/mol, MH2O= 18 g/mol)

A. 250 cm3
B. 150 cm3
C. 100 cm3
D. 200 cm3
Odpowiedzi takie jak 250 cm3, 100 cm3 i 150 cm3 wynikają z niepoprawnych obliczeń lub niepełnego zrozumienia reakcji chemicznej zachodzącej podczas saponifikacji. Dodanie 250 cm3 zasady sodowej do 56,8 g kwasu stearynowego skutkowałoby nadmiarem zasady, co mogłoby prowadzić do powstawania niepożądanych produktów ubocznych oraz nadmiernej alkaliczności końcowego mydła. Taki nadmiar reagentu jest niezgodny z zasadami dobrych praktyk laboratoryjnych, które wymagają precyzyjnego dawkowania reagentów. Z kolei wybór 100 cm3 lub 150 cm3 zasady sodowej również nie zapewnia pełnej reakcji neutralizacji, co skutkuje niedostatecznym przekształceniem kwasu w mydło. W praktyce, niedobór zasady może prowadzić do niepełnej reakcji, co z kolei wpływa na jakość końcowego produktu. W kontekście branżowym, produkcja mydeł wymaga ścisłej kontroli procesów chemicznych oraz monitorowania stosunków molowych reagentów, aby zapewnić zgodność z normami i jakością produktów. Całość procesu saponifikacji powinna być przeprowadzana z zachowaniem odpowiednich standardów, aby uniknąć problemów z jakością oraz bezpieczeństwem końcowego mydła.