Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 15 maja 2025 22:28
  • Data zakończenia: 15 maja 2025 22:47

Egzamin zdany!

Wynik: 20/40 punktów (50,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Podczas inspekcji systemu podnośnika hydraulicznego zauważono, że olej się spienia i jest wydobywany przez odpowietrznik zbiornika. Co może być przyczyną tej usterki?

A. Nieszczelność w przewodzie ssawnym pompy
B. Wytarte pierścienie uszczelniające rozdzielaczy
C. Wytarte pierścienie uszczelniające tłokowe
D. Nieszczelność zaworu bezpieczeństwa
Nieszczelność w przewodzie ssawnym pompy jest kluczową przyczyną spieniania się oleju w układzie hydraulicznym. Gdy przewód ssawny jest nieszczelny, powietrze dostaje się do układu, co powoduje, że olej nie jest prawidłowo zasysany przez pompę. W efekcie powietrze miesza się z olejem, co prowadzi do jego spienienia i wytworzenia bąbelków powietrza. To zjawisko obniża wydajność hydrauliczną systemu oraz może prowadzić do uszkodzenia pompy i innych komponentów. W praktyce, aby zapobiec takim problemom, należy regularnie kontrolować stan przewodów ssawnych oraz ich połączeń, zgodnie z zaleceniami producentów maszyn i norm branżowych. Dobrą praktyką jest również stosowanie systemów monitorujących, które informują o ewentualnych nieszczelnościach lub spadkach ciśnienia. Właściwe uszczelnienie przewodów jest kluczowe dla zapewnienia długotrwałej i efektywnej pracy układu hydraulicznego, co jest istotne w zastosowaniach przemysłowych oraz budowlanych, gdzie niezawodność sprzętu jest priorytetem.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Aby zabezpieczyć połączenia gwintowe przed niekontrolowanym odkręceniem, należy zastosować przeciwnakrętkę oraz wykorzystać

A. jednym kluczem nasadowym
B. dwoma kluczami nasadowymi
C. dwoma kluczami płaskimi
D. jednym kluczem płaskim
Wybór jednego klucza płaskiego do zabezpieczenia połączeń gwintowych jest niewłaściwą strategią, ponieważ nie zapewnia równomiernego i stabilnego mocowania. Klucz płaski, używany w pojedynkę, nie może skutecznie zapobiec odkręceniu się nakrętki, szczególnie w sytuacjach narażonych na wibracje lub zmiany temperatury, które mogą powodować luzowanie się połączeń. Użycie jednego klucza płaskiego prowadzi do zwiększonego ryzyka uszkodzenia gwintu, ponieważ siła zastosowana do obracania nakrętki może być niestabilna i wymuszać nieprawidłowe obciążenia na połączeniu. Podobnie, korzystanie z dwóch kluczy nasadowych lub jednego klucza nasadowego w takim kontekście również nie jest optymalne. Klucze nasadowe, choć mogą być efektywne w kilku zastosowaniach, nie zapewniają takiego samego poziomu kontroli nad obydwoma elementami gwintowymi jak klucze płaskie. Klucze nasadowe mogą łatwo zsuwać się z nakrętek, zwłaszcza przy zmieniających się obciążeniach, co dodatkowo zwiększa ryzyko poluzowania. W praktyce, kluczowe jest zrozumienie, że odpowiednie narzędzia i techniki zabezpieczania połączeń gwintowych odgrywają kluczową rolę w zapewnieniu ich trwałości i funkcjonalności. Zachowanie standardów montażowych oraz konserwacyjnych jest istotnym elementem w inżynierii, który wpływa na bezpieczeństwo i wydajność całych konstrukcji.

Pytanie 8

Silnik elektryczny o mocy 4 kW generuje na wale moment obrotowy 13,1 Nm przy jakiej prędkości obrotowej?

A. 2916 obr/min
B. 305 obr/min
C. 5487 obr/min
D. 524 obr/min
Często, jak wybiera się prędkość obrotową silnika, to można się zaplątać w zrozumieniu, jak moc, moment obrotowy i prędkość się ze sobą łączą. Wiesz, czasem ludzie myślą, że jak moment obrotowy jest większy, to automatycznie prędkość obrotowa też rośnie, a to nie do końca tak działa. Musisz pamiętać, że prędkość obrotowa i moment obrotowy mają odwrotną zależność: jak moc zostaje stała, to większy moment oznacza niższą prędkość i na odwrót. Jeszcze zdarza się, że ludzie mylą jednostki; na przykład, moc mamy w watach, a nie w niutonometrach, i to może prowadzić do różnych pomyłek. Tak samo z prędkością, jak się źle przelicza, to wychodzą błędy. Jeśli chodzi o inżynierię elektryczną i mechaniczną, to ważne jest, żeby stosować właściwe wzory i rozumieć, jak różne parametry wpływają na działanie silników. W praktyce, złe obliczenia mogą skutkować nieodpowiednim doborem części, co potem przekłada się na to, jak efektywnie działa cały system i jego trwałość w czasie.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Jakie urządzenie jest używane do pomiaru ciśnienia w systemach hydraulicznych?

A. manometr
B. tensometr
C. zawór nadążny
D. przepływomierz
Manometr to urządzenie pomiarowe, które służy do określania ciśnienia w cieczy lub gazie w systemach hydraulicznych. Działa na zasadzie przetwarzania ciśnienia na przemieszczenie mechaniczne, które jest następnie odczytywane na skali. Manometry są kluczowe w wielu zastosowaniach przemysłowych, w tym w hydraulice, gdzie precyzyjne pomiary ciśnienia są niezbędne dla zapewnienia prawidłowego funkcjonowania maszyn i urządzeń. Przykładowo, w hydraulicznych systemach roboczych, takich jak prasy czy podnośniki, manometry pozwalają na monitorowanie ciśnienia roboczego, co jest istotne dla bezpieczeństwa oraz efektywności pracy. Ponadto, stosowanie manometrów zgodnych z normami, takimi jak PN-EN 837, zapewnia ich niezawodność oraz dokładność pomiarów, co jest zgodne z najlepszymi praktykami w branży. Właściwe użycie manometrów przyczynia się do optymalizacji procesów produkcyjnych oraz minimalizacji ryzyka awarii związanych z nieprawidłowym ciśnieniem w układzie hydraulicznym.

Pytanie 12

Co koniecznie trzeba skonfigurować w urządzeniu, aby mogło funkcjonować w sieci Ethernet?

A. Z szybkość przesyłania danych
B. Adres serwera DNS
C. Niepowtarzalny adres IP
D. Bity stopu
W kontekście pracy urządzenia w sieci Ethernet, wiele osób może uważać, że inne parametry, takie jak prędkość transmisji, adres serwera DNS czy bity stopu, są równie istotne. Jednak w rzeczywistości są to elementy, które nie są bezpośrednio związane z podstawową funkcjonalnością urządzenia w sieci Ethernet. Prędkość transmisji, na przykład, odnosi się do szybkości, z jaką dane mogą być przesyłane w sieci, ale sama w sobie nie stanowi identyfikatora dla urządzenia. W większości standardowych konfiguracji Ethernet prędkość jest ustalana na poziomie portów switcha i jest zgodna z określonymi standardami, takimi jak 100BASE-T czy 1000BASE-T. Adres serwera DNS jest kluczowy dla rozwiązywania nazw domenowych i umożliwia dostęp do zasobów internetowych, ale nie ma wpływu na wewnętrzną komunikację w lokalnej sieci Ethernet, w której to komunikacja odbywa się za pomocą adresów IP. Bity stopu, z drugiej strony, są elementem protokołu komunikacyjnego, a nie konfiguracji sieciowej, i dotyczą bardziej transmisji danych w kontekście połączeń szeregowych, a nie sieci Ethernet. Typowym błędem jest zatem mylenie różnych warstw architektury sieciowej oraz niezrozumienie, że każde z tych ustawień ma swoje specyficzne zastosowanie, które nie zastępuje potrzeby posiadania unikalnego adresu IP w sieci Ethernet.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Której z podanych metod nie wykorzystuje się do trwałego łączenia elementów wykonanych z plastiku?

A. Zgrzewania
B. Zaginania
C. Spawania
D. Klejenia
Spawanie to technika, która polega na łączeniu dwóch elementów poprzez ich lokalne stopienie, co umożliwia uzyskanie trwałego połączenia. W kontekście tworzyw sztucznych, spawanie często wykorzystuje się w procesach produkcyjnych, gdzie materiał jest podgrzewany do temperatury topnienia, a następnie łączony z innym elementem. Ta metoda jest szczególnie ceniona w przypadku dużych konstrukcji, gdzie wymagana jest wysoka wytrzymałość połączeń. Klejenie, z drugiej strony, polega na zastosowaniu specjalnych substancji, które penetrują powierzchnie materiałów i tworzą silne wiązania chemiczne. Kleje stosowane do tworzyw sztucznych są projektowane tak, aby zapewnić optymalne wiązanie, co czyni je odpowiednimi do użycia w różnych warunkach. Zgrzewanie, podobnie jak spawanie, jest procesem, który wykorzystuje ciepło do połączenia elementów, co sprawia, że jest efektywną techniką w przemyśle, szczególnie przy produkcji komponentów z tworzyw sztucznych. Typowe błędy myślowe, które mogą prowadzić do mylnych wniosków, obejmują mylenie zginania z technikami łączenia. Zginanie, mimo że może być użyteczne w formowaniu materiałów, nie wprowadza trwałych połączeń, co jest kluczowe w kontekście postawionego pytania. W związku z tym, niezrozumienie różnicy pomiędzy modyfikacją kształtu a łączeniem elementów może prowadzić do błędnych wyborów w procesie projektowania i produkcji.

Pytanie 15

Wskaż jednostkę głównego parametru prądnicy tachometrycznej (stałej prądnicy)?

A. Hz
B. V/(obr./min)
C. obr./min
D. V
Odpowiedź V/(obr./min) jest poprawna, ponieważ jednostka ta odzwierciedla zależność napięcia wyjściowego prądnicy tachometrycznej od prędkości obrotowej. Prądnice tachometryczne to urządzenia, które przekształcają ruch obrotowy w sygnał elektryczny, a ich zastosowanie jest kluczowe w systemach automatyki i kontroli procesów. Wartość wyjściowa, mierzona w woltach, jest proporcjonalna do prędkości obrotowej wyrażonej w obrotach na minutę. Dlatego stosunek V/(obr./min) idealnie charakteryzuje tę zależność. Na przykład, w aplikacjach takich jak regulacja prędkości silników elektrycznych, prądnice tachometryczne dostarczają istotnych informacji o prędkości obrotowej, co pozwala na precyzyjne sterowanie i monitorowanie systemów. W branży inżynieryjnej wykorzystuje się standardy, takie jak ISO 9001, które zapewniają jakość i niezawodność urządzeń pomiarowych, w tym prądnic tachometrycznych.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Najważniejszym parametrem opisującym kondensator jest

A. indukcyjność
B. rezystancja
C. ładunek
D. pojemność
Pojemność jest podstawowym parametrem charakteryzującym kondensator, który określa zdolność tego elementu do magazynowania ładunku elektrycznego. Pojemność kondensatora, oznaczana symbolem C, wyrażana jest w faradach (F) i definiowana jest jako stosunek zgromadzonego ładunku (Q) do przyłożonego napięcia (U). W praktycznych zastosowaniach kondensatory odgrywają kluczową rolę w różnych dziedzinach, takich jak filtry, układy zasilania, czy obwody rezonansowe. Na przykład w zasilaczach impulsowych kondensatory stabilizują napięcie wyjściowe, a w obwodach audio są używane do odfiltrowania niepożądanych częstotliwości. W związku z tym, znajomość pojemności kondensatora jest niezbędna dla inżynierów i techników pracujących w elektronice. Dodatkowo, standardy takie jak IEC 60384 określają wymagania dotyczące kondensatorów, co potwierdza ich istotność w projektowaniu oraz produkcji urządzeń elektronicznych.

Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

Wyłącznik silnikowy może zadziałać na skutek

A. braku jednej fazy zasilającej silnik
B. połączenia uzwojeń silnika w gwiazdę zamiast w trójkąt
C. użycia stałego napięcia w obwodzie sterowania silnika
D. uruchomienia silnika przy niewielkim obciążeniu
Brak jednej fazy zasilającej silnik jest jedną z najczęstszych przyczyn zadziałania wyłącznika silnikowego. Silniki asynchroniczne, zwłaszcza te zasilane prądem trójfazowym, są zaprojektowane do pracy w równowadze, co oznacza, że każda z faz dostarcza równą część energii. Gdy jedna z faz przestaje działać, silnik może zacząć pracować w trybie niepełnym, co prowadzi do nadmiernych prądów w pozostałych fazach. W stanach awaryjnych silnik nie ma wystarczającej mocy do rozpoczęcia pracy lub może się przegrzewać, co skutkuje zadziałaniem wyłącznika silnikowego w celu ochrony samego silnika oraz systemu zasilającego. W praktyce, zapobieganie takim sytuacjom jest kluczowe i wymaga stosowania odpowiednich przekaźników zabezpieczających, które wykrywają brak fazy i automatycznie wyłączają silnik. Dobre praktyki obejmują regularne monitorowanie stanu zasilania oraz instalację systemów alarmowych, które informują o ewentualnych przerwach w zasilaniu.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Jaką funkcję spełnia urządzenie, którego dane techniczne przedstawiono w tabeli?

Ciecz roboczaJednostkaOlej mineralny
Wydajnośćdm³/min47 przy n = 1450 min⁻¹, p = 1 MPa
Ciśnienie na wlocieMPa- 0,02 (podciśnienie) do 0,5 (nadciśnienie)
Ciśnienie na wylocieMPamaks 10
Ciśnienie przeciekówMPamaks 0,2
Moment obrotowyNmmaks. 2,5
Prędkość obrotowaobr/min1000 do 1800
Optymalna temperatura pracy (cieczy w zbiorniku)K313-328
Filtracjaμm16

A. Steruje kierunkiem przepływu cieczy.
B. Otwiera i zamyka przepływ cieczy roboczej.
C. Wytwarza strumień oleju w układach i urządzeniach hydraulicznych.
D. Utrzymuje stałe ciśnienie niezależnie od kierunku przepływu cieczy.
Wybór odpowiedzi sugerującej, że urządzenie utrzymuje stałe ciśnienie niezależnie od kierunku przepływu cieczy, nie uwzględnia podstawowych zasad działania pomp hydraulicznych. Pompy nie pełnią funkcji stabilizowania ciśnienia, a ich głównym zadaniem jest generowanie przepływu oleju. Utrzymywanie stałego ciśnienia w systemie hydrauliczny jest osiągane przez zastosowanie innych komponentów, takich jak zawory ciśnieniowe czy regulatory. Kolejna nieprawidłowa koncepcja sugeruje, że urządzenie steruje kierunkiem przepływu cieczy. Choć dostęp do określonych kierunków przepływu może być istotny w układach hydraulicznych, zadanie to leży w gestii zaworów kierunkowych, a nie pomp. Ostatnia błędna odpowiedź, dotycząca otwierania i zamykania przepływu cieczy roboczej, również jest mylna, ponieważ te funkcje realizowane są przez zawory sterujące. Typowe błędy myślowe prowadzące do tego rodzaju mylnych wniosków obejmują pomieszanie funkcji różnych elementów systemu hydraulicznego, co jest częstym problemem wśród osób uczących się o hydraulice. Ważne jest zrozumienie, że każdy komponent w układzie hydraulicznym odgrywa specyficzną rolę, a pompy są dedykowane do generowania przepływu, a nie do regulacji ciśnienia czy kierunku przepływu.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Jaką odległość określa skok siłownika?

A. odległość między obudową siłownika a końcem tłoczyska w pozycji wysunięcia
B. odległość pomiędzy krućcem zasilającym a końcem tłoczyska, gdy jest w wysuniętej pozycji
C. odległość między skrajnymi położeniami końca tłoczyska (w stanie wsunięcia i wysunięcia)
D. odległość między obudową siłownika a końcem tłoczyska, gdy jest w pozycji wsuniętej
Zrozumienie skoku siłownika jest fundamentalne dla prawidłowego funkcjonowania układów hydraulicznych i pneumatycznych. Odpowiedzi, które sugerują inne definicje skoku, mogą prowadzić do istotnych nieporozumień w projektowaniu i użytkowaniu tych systemów. W szczególności odpowiadając na definicje oparte na odległości między obudową siłownika a końcem tłoczyska, niezależnie od jego stanu, nie uwzględniają one kluczowego aspektu, jakim jest zmiana długości tłoczyska podczas jego pracy. Każdy siłownik ma dwa skrajne położenia, które są istotne dla określenia jego skoku. Definiowanie skoku jako odległości od krućca zasilającego również nie uwzględnia rzeczywistego ruchu tłoczyska, co jest kluczowe w mechanice płynów. Typowym błędem myślowym jest koncentrowanie się na elementach zewnętrznych siłownika, zamiast na jego wewnętrznej mechanice. Niezrozumienie tego, co oznacza pełny ruch tłoczyska w obu skrajnych położeniach, może prowadzić do niewłaściwego doboru komponentów, co z kolei może skutkować awariami w systemach automatyki. Dlatego fundamentalne jest, aby rozumieć, że skok siłownika to nie tylko prosty parametr, lecz kluczowy wymiar w kontekście wydajności i bezpieczeństwa działania układów automatycznych.

Pytanie 34

Ile jednostek napędowych użyto w manipulatorze, którego diagram pokazano na rysunku?

A. 5 jednostek napędowych
B. 4 jednostki napędowe
C. 6 jednostek napędowych
D. 3 jednostki napędowe
Wybór innej liczby napędów, takich jak trzy, cztery lub sześć, może wynikać z nieporozumień dotyczących podstawowych zasad działania manipulatorów. Trzy napędy mogą wydawać się wystarczające w prostych aplikacjach, jednak w praktyce ograniczają one zakres ruchu i precyzję, co nie jest wystarczające w bardziej złożonych zadaniach. Warto zauważyć, że manipulatory zwykle wymagają co najmniej czterech napędów, aby uzyskać podstawowe możliwości ruchowe. Jednak cztery napędy mogą prowadzić do obszarów martwych, gdzie manipulator nie jest w stanie osiągnąć określonych pozycji. Z kolei wybór sześciu napędów, chociaż teoretycznie może zwiększyć możliwości robota, może prowadzić do nadmiaru i skomplikowania systemu, co nie zawsze jest uzasadnione w kontekście efektywności i kosztów. Niekiedy zaawansowane systemy operacyjne mogą wprowadzać dodatkowe trudności w programowaniu i konfiguracji robota. W praktyce, wybór liczby napędów powinien być starannie przemyślany w kontekście specyficznych wymagań aplikacji oraz zgodności z normami branżowymi, takimi jak ISO 9283, które podkreślają znaczenie optymalizacji w projektowaniu systemów robotycznych. Właściwe dobranie liczby napędów jest kluczowe dla uzyskania równowagi między wydajnością a prostotą operacyjną, co jest istotne dla każdego inżyniera zajmującego się robotyką.

Pytanie 35

Przedstawiony program sterowniczy to program napisany w języku

LI 0.00
OQ 0.00
AI 0.01
=Q 0.00
EP

A. IL
B. FBD
C. LAD
D. ST
Wybór niewłaściwego języka programowania może wynikać z niepełnego zrozumienia charakterystyk i zastosowań poszczególnych języków sterowników PLC. FBD (Function Block Diagram) jest językiem graficznym, który używa bloków funkcyjnych do modelowania systemów, co czyni go bardziej wizualnym, ale nie zawsze efektywnym w operacjach wymagających dużej precyzji, jak to ma miejsce w IL. Z kolei ST (Structured Text) to język tekstowy, ale bardziej przypominający tradycyjne języki programowania, co może wprowadzać w błąd użytkowników, którzy szukają prostoty i zwięzłości, jaką oferuje IL. LAD (Ladder Diagram) jest kolejnym językiem graficznym, który jest szczególnie przyjazny dla inżynierów przyzwyczajonych do schematów elektrycznych. Każdy z tych języków ma swoje mocne strony, ale nie można ich stosować zamiennie w sytuacjach, gdy precyzyjna manipulacja danymi jest kluczowa. Typowym błędem myślowym jest przekonanie, że język graficzny może zastąpić język tekstowy w kontekście programowania niskopoziomowego. W rzeczywistości, języki tekstowe, takie jak IL, oferują większą kontrolę nad procesem, co pozwala na optymalizację kodu i lepsze dostosowanie do specyficznych wymagań aplikacji. Dlatego istotne jest, aby inżynierowie automatyki dobrze rozumieli różnice między językami oraz ich zastosowania w praktyce, co pomoże uniknąć nieporozumień i błędnych wyborów w przyszłych projektach.

Pytanie 36

Jakie jest medium robocze w systemie hydraulicznym?

A. powietrze sprężone
B. energia elektryczna
C. woda pod ciśnieniem
D. olej pod ciśnieniem
Olej pod ciśnieniem jest najczęściej stosowanym medium roboczym w układach hydraulicznych ze względu na swoje doskonałe właściwości smarne oraz zdolność do przenoszenia dużych obciążeń. W układach hydraulicznych olej działa jako nośnik energii, co pozwala na efektywne przekazywanie siły i momentu obrotowego. Dzięki dużej gęstości oraz niskiej kompresyjności, olej hydrauliczny zapewnia stabilność działania systemu hydraulicznego. Przykładem zastosowania oleju pod ciśnieniem może być hydraulika w maszynach budowlanych, takich jak koparki czy ładowarki, gdzie siły generowane przez siłowniki hydrauliczne są ogromne. W branży motoryzacyjnej olej hydrauliczny jest wykorzystywany w układach wspomagania kierownicy oraz w systemach hamulcowych. Praktyki dobrej konserwacji i regularnej wymiany oleju są kluczowe, aby zapewnić długowieczność i niezawodność systemów hydraulicznych, a także aby uniknąć awarii spowodowanych zanieczyszczeniami czy degradacją oleju.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Napięcie testowe, strata dielektryczna, maksymalne napięcie, opór izolacji, temperatury współczynnik pojemności - to parametry znamionowe

A. kondensatora
B. diody pojemnościowej
C. rezystora
D. solenoidu
Kondensator jest elementem elektronicznym, który gromadzi ładunek elektryczny, a jego zachowanie jest określane przez szereg parametrów znamionowych, takich jak napięcie probiercze, stratność dielektryczna, dopuszczalna wartość napięcia, rezystancja izolacji oraz temperaturowy współczynnik pojemności. Napięcie probiercze odnosi się do maksymalnego napięcia, które kondensator może wytrzymać bez uszkodzeń. Stratność dielektryczna jest miarą strat energii w dielektryku, co wpływa na efektywność kondensatora. Dopuszczalna wartość napięcia to maksymalne napięcie robocze, przy którym kondensator działa prawidłowo. Rezystancja izolacji jest istotna dla przewodności dielektryka, a temperaturowy współczynnik pojemności wskazuje, jak wartość pojemności zmienia się w funkcji temperatury. W praktyce kondensatory są wykorzystywane w filtrach, układach czasowych, oraz w stabilizacji napięcia w zasilaczach, co czyni je niezbędnymi w wielu zastosowaniach elektronicznych. W branży istnieją normy, takie jak IEC 60384, które definiują wymagania dotyczące jakości i bezpieczeństwa kondensatorów.