Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 25 maja 2025 16:16
  • Data zakończenia: 25 maja 2025 16:27

Egzamin zdany!

Wynik: 36/40 punktów (90,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Maksymalny prąd nastawczy przekaźnika termobimetalowego, który chroni silnik pompy wodnej, przy prądzie znamionowym In = 10 A, nie powinien być wyższy niż

A. 10,50 A
B. 9,50 A
C. 10,10 A
D. 11,00 A
Odpowiedź 11,00 A jest prawidłowa, ponieważ prąd nastawczy zabezpieczenia termobimetalowego powinien być ustawiony z pewnym marginesem nad prądem znamionowym silnika, aby uniknąć niepożądanych wyłączeń. W praktyce, przekaźniki termobimetalowe stosowane do ochrony silników pompowych muszą być dostosowane tak, aby ich czułość była odpowiednia do warunków pracy, bez przekraczania dopuszczalnych wartości prądu. W przypadku silnika o prądzie znamionowym In = 10 A, ustawienie prądu nastawczego na 11,00 A zapewnia wystarczający zapas, aby uwzględnić chwilowe przeciążenia, które mogą wystąpić podczas rozruchu silnika lub w wyniku zmiennych warunków eksploatacyjnych. Dobrą praktyką jest również kierowanie się normami, takimi jak IEC 60947-4-1, która określa zasady doboru urządzeń zabezpieczających dla silników. W ten sposób można zapewnić niezawodność i bezpieczeństwo systemu, minimalizując ryzyko fałszywych alarmów oraz niepotrzebnych przestojów w pracy urządzeń.

Pytanie 2

Jakie czynności oraz w jakiej kolejności powinny zostać dokonane podczas wymiany uszkodzonego łącznika elektrycznego?

A. Odłączyć zasilanie, wymontować uszkodzony łącznik, sprawdzić ciągłość połączeń
B. Odłączyć zasilanie, sprawdzić brak napięcia, wymontować uszkodzony łącznik
C. Wymontować uszkodzony łącznik, odłączyć zasilanie, sprawdzić ciągłość połączeń
D. Załączyć zasilanie, sprawdzić ciągłość połączeń, wymontować uszkodzony łącznik
Odpowiedź "Odłączyć napięcie, sprawdzić brak napięcia, wymontować uszkodzony łącznik" jest prawidłowa, ponieważ obejmuje kluczowe kroki niezbędne do bezpiecznej wymiany łącznika elektrycznego. Pierwszym krokiem jest odłączenie napięcia, co jest absolutnie konieczne, aby zapobiec porażeniu prądem. Takie działanie jest zgodne z zasadą bezpieczeństwa elektrycznego, zgodnej z normą PN-IEC 60364. Następnie, sprawdzenie braku napięcia za pomocą odpowiednich narzędzi, takich jak wskaźnik napięcia, pozwala upewnić się, że instalacja jest całkowicie bezpieczna do pracy. To kluczowy krok, który chroni technika przed niebezpieczeństwem. Po potwierdzeniu braku napięcia można przystąpić do demontażu uszkodzonego łącznika. Dobrą praktyką jest również sprawdzenie stanu przewodów, co zapewnia, że nowy łącznik będzie poprawnie funkcjonować. Przykład zastosowania tej procedury można zaobserwować podczas serwisów i konserwacji instalacji elektrycznych w domach i biurach, gdzie przestrzeganie zasad bezpieczeństwa może zapobiec poważnym wypadkom.

Pytanie 3

Do jakiego celu wykorzystuje się przełącznik w układzie gwiazda-trójkąt w zasilaniu silnika trójfazowego?

A. Aby obniżyć prędkość obrotową
B. Aby zredukować prąd rozruchowy
C. Aby poprawić przeciążalność
D. Aby zwiększyć moment rozruchowy
Przełącznik gwiazda-trójkąt jest powszechnie stosowany w układach zasilania silników trójfazowych w celu ograniczenia prądu rozruchowego. Kiedy silnik jest uruchamiany w układzie gwiazdy, napięcie na każdej fazie wynosi tylko 1/√3 (około 58%) napięcia międzyfazowego, co powoduje znaczące zmniejszenie prądu rozruchowego, który jest proporcjonalny do napięcia. Dzięki temu unika się przeciążenia sieci zasilającej oraz zmniejsza ryzyko uszkodzenia silnika. Po osiągnięciu odpowiednich obrotów, przełącznik zmienia połączenie na układ trójkąta, co pozwala na uzyskanie pełnej mocy silnika. Stosowanie przełącznika gwiazda-trójkąt jest zgodne z normami, takimi jak IEC 60034, które regulują zasady stosowania silników elektrycznych. W praktyce, ten system jest niezwykle przydatny w aplikacjach, w których wymagany jest wysoki moment rozruchowy, np. w młynach, dźwigach czy kompresorach, gdzie kontrola prądu podczas rozruchu jest kluczowa dla zapewnienia bezpiecznej i efektywnej pracy.

Pytanie 4

Jaką minimalną liczbę osób należy zaangażować do pracy w warunkach szczególnego zagrożenia?

A. Trzy osoby
B. Cztery osoby
C. Jedna osoba
D. Dwie osoby
Minimalna liczba osób wykonujących prace w warunkach szczególnego zagrożenia powinna wynosić dwie osoby, co jest zgodne z zasadami bezpieczeństwa pracy oraz regulacjami prawnymi. W praktyce, obecność co najmniej dwóch pracowników zapewnia wzajemne wsparcie i możliwość szybkiej reakcji w sytuacjach awaryjnych. Na przykład, w przypadku prac w zamkniętych przestrzeniach, takich jak zbiorniki czy kanały, jeden pracownik może pełnić rolę osoby asekurującej, co jest niezbędne w przypadku wystąpienia zagrożenia zdrowia lub życia. Istotne jest, by w ramach tych prac, każdy z pracowników miał przypisane konkretne zadania oraz mógł efektywnie komunikować się z partnerem. Zgodnie z normami, takimi jak PN-N-18002 dotycząca zarządzania bezpieczeństwem i higieną pracy, pracodawcy są zobowiązani do zapewnienia odpowiednich warunków, które minimalizują ryzyko wypadków. W praktyce, w przypadku awarii sprzętu lub nagłych problemów zdrowotnych, obecność drugiej osoby może być kluczowa w zapewnieniu szybkiej pomocy oraz wezwania służb ratunkowych.

Pytanie 5

Który z poniższych środków ostrożności nie jest wymagany do bezpiecznego przeprowadzenia prac na linii napowietrznej odłączonej od zasilania?

A. Ogrodzenie obszaru pracy
B. Używanie sprzętu izolacyjnego
C. Zarządzanie pracą w grupie
D. Uziemienie odłączonej linii
Odpowiedź 'Stosowanie sprzętu izolacyjnego' jest prawidłowa, ponieważ w przypadku prac przy linii napowietrznej, która jest wyłączona spod napięcia, nie ma konieczności stosowania sprzętu izolacyjnego. Sprzęt izolacyjny, taki jak rękawice i narzędzia, jest niezbędny w sytuacjach, gdy istnieje ryzyko wystąpienia wysokiego napięcia. W przypadku linii, która jest bezpiecznie wyłączona, nie ma takiego ryzyka, co oznacza, że użycie sprzętu izolacyjnego nie jest wymagane. Mimo to, w praktyce zaleca się stosowanie sprzętu ochronnego dla pewności, zwłaszcza gdy pracownicy nie mają pełnej pewności co do stanu instalacji. Dodatkowo, w wielu branżach stosuje się zasady BHP, które zalecają zachowanie ostrożności i przygotowanie do ewentualnych awarii, nawet gdy urządzenia są wyłączone. Standardy, takie jak normy ISO i PN, podkreślają znaczenie bezpieczeństwa pracy oraz stosowania odpowiednich procedur i praktyk przy wszelkich czynnościach związanych z energią elektryczną.

Pytanie 6

Jaki stopień ochrony powinny mieć oprawy oświetleniowe w silnie zapylonych pomieszczeniach?

A. IP2X
B. IP4X
C. IP5X
D. IP3X
Stopień ochrony IP5X oznacza, że oprawa oświetleniowa jest pyłoszczelna, co jest kluczowe w pomieszczeniach mocno zapylonych. Oznaczenie IP (Ingress Protection) jest standardem międzynarodowym, który określa poziom ochrony urządzeń elektrycznych przed ciałami stałymi oraz cieczami. W przypadku IP5X urządzenie jest całkowicie chronione przed pyłem, co zapewnia jego niezawodność i długowieczność w trudnych warunkach. Przykładem zastosowania IP5X mogą być zakłady przemysłowe, magazyny, czy strefy produkcyjne, gdzie obecność pyłów może wpływać na działanie oświetlenia. Stosowanie opraw oświetleniowych z tym stopniem ochrony minimalizuje ryzyko uszkodzenia komponentów elektrycznych i zwiększa bezpieczeństwo pracy. Dodatkowo, zastosowanie opraw oświetleniowych z wysokim stopniem ochrony jest zgodne z normami takimi jak EN 60529, które regulują wymagania dotyczące stopni ochrony w sprzęcie elektrycznym. W praktyce, wybierając oświetlenie do zapylonych pomieszczeń, warto zawsze kierować się tymi standardami, aby zapewnić zarówno efektywność, jak i bezpieczeństwo działania urządzeń.

Pytanie 7

Aby zapewnić ochronę przeciwporażeniową uzupełniającą do podstawowej, obwody zasilające gniazda wtyczkowe z prądem do 32 A powinny być chronione wyłącznikiem RCD o znamionowym prądzie różnicowym

A. 30 mA
B. 100 mA
C. 1 000 mA
D. 500 mA
Wybór wyłącznika różnicowoprądowego (RCD) o znamionowym prądzie różnicowym 30 mA jest zgodny z aktualnymi normami bezpieczeństwa, takimi jak PN-EN 61008, które rekomendują jego zastosowanie w instalacjach zasilających obwody gniazd wtyczkowych, szczególnie w przypadku narażenia na porażenie prądem. Wyłącznik RCD 30 mA skutecznie minimalizuje ryzyko porażenia prądem przez szybkie odłączenie zasilania w przypadku wykrycia różnicy prądów, co jest istotne w obwodach o napięciu 230 V, gdzie ochrona osób jest priorytetem. Przykładem zastosowania wyłączników o tym znamionowym prądzie różnicowym jest instalacja w pomieszczeniach, gdzie wykorzystuje się urządzenia elektryczne w pobliżu wody, takie jak kuchnie czy łazienki. W takich miejscach, zgodnie z normami, zastosowanie RCD 30 mA jest koniecznością, co znacząco zwiększa bezpieczeństwo użytkowników i ogranicza ryzyko wypadków. Regularna kontrola i testowanie RCD zapewnia jego prawidłowe działanie oraz podnosi świadomość użytkowników na temat znaczenia ochrony przeciwporażeniowej w instalacjach elektrycznych.

Pytanie 8

Jakie środki ochrony przed porażeniem stosuje się w przypadku dotyku bezpośredniego w urządzeniach pracujących do 1 kV?

A. Usytuowanie części czynnych poza zasięgiem dłoni.
B. Izolacja elektryczna obwodu pojedynczego odbiornika.
C. Wykorzystanie izolacji podwójnej lub wzmocnionej.
D. Automatyczne odłączenie zasilania.
Separacja elektryczna obwodu pojedynczego odbiornika, mimo że jest praktyką stosowaną w niektórych aplikacjach, nie jest wystarczającą metodą ochrony przed dotykiem bezpośrednim. W rzeczywistości, ta technika skupia się na oddzieleniu obwodów, co może zredukować ryzyko zwarcia, ale nie eliminuje go całkowicie w kontekście kontaktu z częściami czynymi. Samoczynne wyłączenie zasilania jest ważnym mechanizmem zabezpieczającym, jednak polega na detekcji awarii, co oznacza, że może nie zadziałać w przypadku natychmiastowego kontaktu z prądem przed jego wyłączeniem. Zastosowanie izolacji podwójnej lub izolacji wzmocnionej z pewnością zwiększa bezpieczeństwo, ale również w tym przypadku nie gwarantuje ono, że użytkownik nie będzie miał dostępu do części czynnych. Kiedy myślimy o zagrożeniach związanych z porażeniem prądem, kluczowe jest zrozumienie, że każda z tych metod ma swoje ograniczenia. Mylne jest zakładanie, że jedna strategia może w pełni zabezpieczyć użytkowników. W kontekście projektowania instalacji elektrycznych, należy zawsze dążyć do zastosowania kombinacji różnych środków ochrony, zapewniając kompleksowe podejście do bezpieczeństwa, co jest zgodne z normami takimi jak PN-EN 61140, które nakładają obowiązek stosowania wielu warstw ochrony dla minimalizacji ryzyka.

Pytanie 9

Jakimi drutami nawojowymi można nawinąć uszkodzony transformator, aby zachował swoje parametry elektryczne, jeśli nie ma się drutu o takim samym polu przekroju poprzecznego jak pierwotny?

A. O średnicy dwa razy mniejszej, połączonymi równolegle
B. O przekroju dwa razy mniejszym, połączonymi równolegle
C. O średnicy dwa razy mniejszej, połączonymi szeregowo
D. O przekroju dwa razy mniejszym, połączonymi szeregowo
Odpowiedź, która sugeruje użycie drutu o przekroju dwa razy mniejszym, połączonym równolegle, jest prawidłowa ze względu na zasadę zachowania impedancji w transformatorach. Gdy zmniejszamy pole przekroju poprzecznego drutu nawojowego, zwiększa się jego oporność, co negatywnie wpływa na zdolność przewodzenia prądu. Aby zrekompensować tę utratę, łączenie dwóch lub więcej drutów równolegle pozwala na zwiększenie efektywnej powierzchni przekroju poprzecznego, co przeciwdziała wzrostowi oporności. W praktyce takie podejście jest zgodne z normami stosowanymi w rewitalizacji transformatorów, gdzie zachowanie parametrów elektrycznych jest kluczowe dla ich dalszego funkcjonowania. Dodatkowo, przy odpowiednim doborze materiałów izolacyjnych oraz średnicy drutów, można uzyskać wydajność bliską oryginalnym wartościom. Przykładem może być przezwojenie transformatora w elektrowniach, gdzie zastosowanie drutów o mniejszych średnicach, połączonych równolegle, skutkuje poprawą funkcjonowania urządzenia, a także wpływa na obniżenie kosztów materiałów. Takie praktyki są szeroko przyjęte w branży, co potwierdzają liczne publikacje i normy techniczne.

Pytanie 10

Którego z wymienionych pomiarów eksploatacyjnych w instalacji oświetleniowej nie można zrealizować standardowym miernikiem uniwersalnym?

A. Ciągłości przewodów ochronnych
B. Prądu pobieranego przez odbiornik
C. Napięć w poszczególnych fazach
D. Rezystancji izolacji przewodów
Pomiar rezystancji izolacji przewodów jest kluczowym aspektem utrzymania bezpieczeństwa i niezawodności instalacji elektrycznych. Aby dokładnie wykonać ten pomiar, używa się specjalistycznych mierników zwanych megomierzami, które generują wysokie napięcia (zwykle od 250V do 1000V). Tego rodzaju pomiar jest istotny, ponieważ pozwala ocenić, czy izolacja przewodów nie jest uszkodzona oraz czy nie występują upływy prądu, co mogłoby prowadzić do zagrożenia pożarowego lub porażenia elektrycznego. Standardy takie jak PN-EN 61557-1 opisują wymagania dotyczące testowania rezystancji izolacji, a ich przestrzeganie jest kluczowe w ramach regularnych przeglądów oraz konserwacji instalacji. Przykładowo, podczas testowania instalacji oświetleniowej w budynku użycie megomierza może pomóc w identyfikacji potencjalnych problemów zanim doprowadzą one do awarii lub zagrożenia dla użytkowników.

Pytanie 11

Który z poniższych elementów nie jest częścią transformatora energetycznego?

A. Izolatory ceramiczne
B. Rdzeń magnetyczny
C. Silnik synchroniczny
D. Uchwyty do podłączenia przewodów
Transformator energetyczny jest urządzeniem, które służy do zamiany napięcia elektrycznego przy pomocy zjawiska indukcji elektromagnetycznej. Kluczowymi częściami transformatora są rdzeń magnetyczny, uzwojenia oraz izolacja. Rdzeń magnetyczny wykonany z cienkich blach stalowych umożliwia efektywne przenoszenie strumienia magnetycznego. Uzwojenia, które są nawinięte na rdzeń, są wykonane z przewodników miedzianych lub aluminiowych i służą do przenoszenia prądu. Izolacja natomiast zabezpiecza przed zwarciami i przepięciami. Silnik synchroniczny, który jest urządzeniem przetwarzającym energię elektryczną na mechaniczną, nie jest częścią transformatora. Transformator nie posiada elementów ruchomych ani nie generuje momentu obrotowego, co jest charakterystyczne dla silników. Wiedza o różnicach między tymi urządzeniami jest kluczowa dla zrozumienia ich działania i zastosowania w przemyśle energetycznym. Transformator jako urządzenie statyczne jest bardziej efektywny w aplikacjach wymagających zmiany napięcia, podczas gdy silniki synchroniczne są używane do napędzania maszyn.

Pytanie 12

Jaką czynność można wykonać przy lokalizacji uszkodzeń w trakcie funkcjonowania instalacji oraz urządzeń elektrycznych w obszarach narażonych na wybuch?

A. Pomiar temperatury zewnętrznych powierzchni obudów silników
B. Demontaż obudów urządzeń
C. Dokręcanie luźnych śrub w osłonach urządzeń
D. Wymiana źródeł oświetlenia
Pomiar temperatury powierzchni obudów silników jest czynnością, która może być wykonywana w czasie pracy instalacji i urządzeń elektrycznych w strefach zagrożonych wybuchem, ponieważ nie narusza to integralności obudowy ani nie wprowadza potencjalnych źródeł zapłonu. W praktyce pomiar ten jest kluczowy dla oceny stanu operacyjnego silników i identyfikacji potencjalnych problemów, takich jak przegrzewanie, które mogłoby prowadzić do awarii. W strefach zagrożonych wybuchem, przestrzeganie przepisów takich jak ATEX (Dyrektywa 2014/34/UE) oraz IECEx jest niezbędne, by zminimalizować ryzyko wybuchu. Wskazanie anomalii w temperaturze może pozwolić na szybką interwencję, zanim dojdzie do poważniejszych usterek, co jest zgodne z najlepszymi praktykami w zakresie utrzymania bezpieczeństwa i efektywności operacyjnej. Przykładowo, termografia bezdotykowa może być używana do monitorowania temperatury w czasie rzeczywistym, co zwiększa bezpieczeństwo w strefach zagrożonych.

Pytanie 13

Jakie wymagania muszą być spełnione podczas pomiaru rezystancji izolacyjnej w instalacji elektrycznej po wcześniejszym odłączeniu zasilania?

A. Wyłączone urządzenia z gniazd wtyczkowych, aktywne łączniki oświetleniowe, zamontowane źródła światła
B. Wyłączone urządzenia z gniazd wtyczkowych, aktywne łączniki oświetleniowe, usunięte źródła światła
C. Włączone urządzenia do gniazd wtyczkowych, aktywne łączniki oświetleniowe, usunięte źródła światła
D. Włączone urządzenia do gniazd wtyczkowych, aktywne łączniki oświetleniowe, zamontowane źródła światła
Prawidłowa odpowiedź wskazuje na konieczność wyłączenia odbiorników z gniazd wtyczkowych oraz wymontowania źródeł światła przed przystąpieniem do pomiaru rezystancji izolacji. To kluczowe kroki, które mają na celu zapewnienie bezpieczeństwa oraz dokładności pomiarów. W czasie testów rezystancji izolacji, włączenie odbiorników lub pozostawienie źródeł światła w obwodzie mogłoby prowadzić do błędnych wyników, które nie oddają rzeczywistego stanu izolacji. Przykładowo, podłączenie urządzeń może stworzyć drogę dla prądu, co zafałszuje pomiar rezystancji. W branży elektrycznej zaleca się, aby przed każdym pomiarem izolacji, upewnić się, że wszystkie urządzenia są odłączone, co jest zgodne z normą PN-EN 61557, która określa wymagania dotyczące pomiarów. Tylko w ten sposób można rzetelnie ocenić stan izolacji oraz wykryć ewentualne uszkodzenia, co jest kluczowe dla bezpieczeństwa użytkowników i integrności instalacji.

Pytanie 14

Podczas pracy młotowiertarki udarowej zaobserwowano intensywne iskrzenie na komutatorze. Co należy zrobić, aby uniknąć uszkodzenia narzędzia?

A. Wstrzymać pracę i wymienić szczotki
B. Po zakończeniu pracy należy skontrolować połączenie uzwojenia twornika z uzwojeniem wzbudzenia
C. Trzeba wstrzymać pracę i wymienić łącznik zasilający
D. Należy zatrzymać pracę i dokręcić połączenia kabli wewnątrz obudowy
Wymiana szczotek w młotowiertarce udarowej jest kluczowym krokiem, gdy zauważamy nadmierne iskrzenie na komutatorze. Iskrzenie to może być wynikiem zużycia szczotek, które są odpowiedzialne za przewodzenie prądu do wirnika silnika. W miarę eksploatacji, szczotki ulegają ścieraniu, co prowadzi do zwiększenia oporu elektrycznego, a w konsekwencji do iskrzenia. Wymiana szczotek powinna być przeprowadzana zgodnie z zaleceniami producenta, co często wiąże się z regularnymi inspekcjami technicznymi, aby zapobiec poważniejszym uszkodzeniom narzędzia. Przykładowo, w przypadku firmy produkującej młotowiertarki, regularne serwisowanie i monitorowanie stanu szczotek mogą znacząco wydłużyć żywotność narzędzia oraz zapewnić jego optymalne działanie. Praktyka ta nie tylko przyczynia się do bezpieczeństwa użytkownika, ale także utrzymuje wysoką wydajność pracy, co jest niezmiernie ważne w środowisku budowlanym czy remontowym. W ten sposób można uniknąć kosztownych napraw oraz przedłużyć okres użytkowania urządzenia.

Pytanie 15

Jakie uszkodzenie elektryczne może być przyczyną braku obrotów w lewą stronę w ręcznej wiertarce elektrycznej?

A. O zwarciu w uzwojeniach wirnika
B. O uszkodzeniu przełącznika kierunku prądu w wirniku
C. O przerwie w uzwojeniu stojana
D. O uszkodzeniu wyłącznika z regulatorem prędkości obrotowej
Odpowiedź o uszkodzeniu przełącznika kierunku prądu w wirniku jest prawidłowa, ponieważ brak obrotów w lewo w ręcznej wiertarce elektrycznej najczęściej oznacza, że mechanizm odpowiedzialny za zmianę kierunku obrotów nie działa poprawnie. Przełącznik kierunku prądu jest kluczowym elementem, który umożliwia zmianę kierunku obrotów silnika, co jest niezbędne do wykonywania prac w różnych warunkach. Przykładem zastosowania tej wiedzy jest potrzeba zmiany kierunku obrotów wiertarki podczas pracy z różnymi materiałami, gdzie w prawo i w lewo może być wymagane do usunięcia wiórów z otworu. Regularne sprawdzanie i konserwacja przełączników kierunkowych, zgodnie z zaleceniami producenta, może zapobiec awariom i zwiększyć żywotność narzędzia. W przypadku awarii przełącznika, najczęściej zauważalne są problemy z samym mechanizmem przełączania oraz opóźnienia w reakcjach przy zmianie kierunków. W praktyce, jeśli wiertarka działa w jednym kierunku, należy najpierw zdiagnozować przełącznik przed podejmowaniem innych działań naprawczych.

Pytanie 16

Jakie urządzenie wykorzystuje się do określenia prędkości obrotowej wału silnika?

A. induktor
B. przekładnik napięciowy
C. pirometr
D. prądnicę tachometryczną
Prądnica tachometryczna jest urządzeniem służącym do pomiaru prędkości obrotowej wału silnika poprzez generowanie napięcia elektrycznego proporcjonalnego do tej prędkości. Jej działanie opiera się na zasadzie elektromechanicznej, gdzie wirnik prądnicy obracany przez wał silnika wytwarza napięcie elektryczne, które jest bezpośrednio związane z prędkością obrotową. W praktyce, prądnice tachometryczne są szeroko stosowane w różnych zastosowaniach przemysłowych, takich jak automatyka, robotyka czy systemy sterowania silnikami. Dzięki ich wysokiej dokładności, stosowane są w precyzyjnych układach regulacji prędkości, co pozwala na optymalne zarządzanie procesami technologicznymi. W branży inżynieryjnej, prądnice tachometryczne są często preferowane ze względu na ich stabilność i niezawodność, co wpisuje się w najlepsze praktyki projektowania systemów z kontrolą prędkości. Dodatkowo, są one zgodne z normami IEC oraz ISO, co zapewnia ich uniwersalność i szerokie zastosowanie w przemyśle. Dzięki tym cechom, prądnice tachometryczne stanowią kluczowy element w nowoczesnych systemach pomiarowych i kontrolnych.

Pytanie 17

Jaką czynność powinno się wykonać podczas pomiaru rezystancji uzwojeń stojana oraz rezystancji izolacji silnika trójfazowego w celu zlokalizowania uszkodzeń?

A. Zewrzeć zaciski silnika z zaciskiem ochronnym
B. Obciążyć silnik momentem znamionowym
C. Podłączyć napięcie zasilające
D. Otworzyć łącznik załączający silnik
Wiesz, załączenie napięcia zasilającego podczas pomiaru rezystancji uzwojeń silnika trójfazowego to naprawdę zły pomysł. Moim zdaniem, taka sytuacja grozi uszkodzeniem sprzętu pomiarowego i może być niebezpieczna dla osoby, która to robi. Mierząc w czasie zasilania, łatwo o błędne odczyty, bo różne zjawiska, jak koronowe czy łukowe przeskoki mogą pokrzyżować nasze plany, szczególnie przy uszkodzonej izolacji. No i pomiar rezystancji uzwojeń powinno się robić tylko przy odłączonym zasilaniu, to naprawdę dobra praktyka według norm bezpieczeństwa, na przykład ISO 50001. W dodatku, obciążanie silnika momentem znamionowym podczas takich pomiarów to głupota, bo nie da się wtedy ocenić stanu izolacji. Dobrze by było rozumieć, że właściwe procedury pomiarowe to nie tylko techniczna konieczność, ale przede wszystkim coś, co ma ogromne znaczenie dla bezpieczeństwa przy pracy z urządzeniami elektrycznymi.

Pytanie 18

Podczas pomiaru rezystancji izolacji przewodów, jakie napięcie testowe jest zazwyczaj stosowane dla obwodów o napięciu znamionowym 230 V?

A. 230 V
B. 500 V
C. 100 V
D. 750 V
Pomiar rezystancji izolacji jest kluczowym krokiem w ocenie stanu technicznego instalacji elektrycznych. Dla obwodów o napięciu znamionowym 230 V zaleca się stosowanie napięcia testowego 500 V. Wybór tego napięcia wynika z norm i standardów, które nakładają wymogi dotyczące minimalnej wartości napięcia testowego, aby zapewnić wiarygodne wyniki pomiarów. Rozporządzenia takie jak PN-HD 60364-6:2016-07 wskazują, że dla obwodów o napięciu znamionowym do 500 V, napięcie testowe powinno wynosić 500 V. Zastosowanie wyższego napięcia testowego niż napięcie znamionowe jest konieczne, aby wykryć ewentualne uszkodzenia izolacji, które mogą pojawić się w warunkach rzeczywistej eksploatacji. Dzięki temu można zidentyfikować miejsca, gdzie izolacja może być osłabiona, co pozwala na podjęcie kroków naprawczych przed wystąpieniem awarii. To podejście jest powszechnie stosowane w branży, zapewniając bezpieczeństwo i niezawodność instalacji elektrycznej.

Pytanie 19

Który z poniższych przypadków prowadzi do nadmiernego iskrzenia na komutatorze w silniku szeregowym?

A. Zwarcie pomiędzy zwojami wirnika
B. Przegrzanie uzwojeń wirnika
C. Przegrzanie uzwojeń stojana
D. Zbyt wysokie obroty wirnika
Zwarcie pomiędzy zwojami wirnika to sytuacja, w której dochodzi do niezamierzonego połączenia elektrycznego między różnymi zwojami w obrębie uzwojenia wirnika. Tego rodzaju uszkodzenie powoduje, że prąd elektryczny nie przepływa w sposób przewidziany przez projekt, co prowadzi do zwiększenia wartości prądów roboczych. W wyniku tego zjawiska na komutatorze silnika szeregowym pojawia się nadmierne iskrzenie, ponieważ prąd nie jest równomiernie rozłożony po wszystkich zwojach wirnika. Iskrzenie na komutatorze nie tylko powoduje zużycie materiału, ale także prowadzi do dodatkowych strat energii, co z kolei obniża efektywność silnika. W praktyce, aby zminimalizować ryzyko zwarcia, stosuje się różne metody, takie jak odpowiednie dobieranie izolacji uzwojeń, regularne przeglądy stanu technicznego oraz testowanie wytrzymałości izolacji. Dbanie o te aspekty jest zgodne z normami branżowymi, takimi jak IEC 60034, które dotyczą silników elektrycznych.

Pytanie 20

Przedstawione w tabeli wyniki pomiarów rezystancji uzwojeń i izolacji silnika trójfazowego wskazują na

Pomiar między
zaciskami silnika
Rezystancja
U1 – U232 Ω
V1 – V232 Ω
W1 – W232 Ω
U1 – V10
V1 – W15 MΩ
U1– W15 MΩ
U1 – PE0
V1 – PE0
W1 – PE5 MΩ

A. przerwę w uzwojeniu U1 — U2
B. zwarcie między uzwojeniami U1 — U2 oraz W1 - W2
C. uszkodzoną izolację w uzwojeniach U1 — U2 oraz V1 — V2
D. zwarcie międzyzwojowe w uzwojeniu W1 — W2
Wybrałeś odpowiedź mówiącą o uszkodzonej izolacji w uzwojeniach U1 — U2 oraz V1 — V2, i to jest akurat słuszne. Wyniki pomiarów rezystancji pokazują wyraźne anomalie. Na przykład, rezystancja izolacji między uzwojeniem U1 a V1 wynosi 0 Ω, co jasno wskazuje, że izolacji tam nie ma. Prowadzi to do potencjalnego zagrożenia dla bezpieczeństwa zarówno urządzenia, jak i użytkowników. Z mojej perspektywy, dobrze jest pamiętać, że normy branżowe, jak IEC 60034 dotyczące silników elektrycznych, mówią, że odpowiednie wartości rezystancji są kluczowe dla bezpieczeństwa i niezawodności silnika. Regularne pomiary rezystancji izolacji powinny być częścią rutyny konserwacji, żeby móc wcześnie wykrywać problemy i unikać awarii. Dbanie o tę izolację jest naprawdę istotne, bo jej uszkodzenie może prowadzić do zwarcia, co może zrujnować silnik i inne elementy systemu zasilania. W praktyce, ważne jest, żeby trzymać się pewnych procedur pomiarowych i konserwacyjnych – to naprawdę fundament, by działać zgodnie z najlepszymi praktykami.

Pytanie 21

Która z poniższych przyczyn powoduje, że przekaźnik Buchholza działa na wyłączenie transformatora?

A. Niesymetryczne obciążenie transformatora
B. Brak uziemienia punktu neutralnego
C. Brak w uzwojeniu pierwotnym
D. Zwarcie między uzwojeniem pierwotnym a wtórnym
Zwarcie między uzwojeniem pierwotnym i wtórnym to jedna z najpoważniejszych awarii, które mogą wystąpić w transformatorze. Przekaźnik Buchholza jest specjalnie zaprojektowany do detekcji i reagowania na tego typu problemy. W momencie, gdy dochodzi do zwarcia, prąd płynący przez uzwojenia gwałtownie wzrasta, co powoduje nagłe zmiany w przepływie oleju w transformatorze. Czujniki w przekaźniku Buchholza wykrywają te zmiany, co skutkuje jego aktywacją i wyłączeniem transformatora. Takie działanie ma na celu ochronę urządzenia przed dalszymi uszkodzeniami oraz minimalizację ryzyka wystąpienia poważnych awarii. W praktyce, stosowanie przekaźnika Buchholza jest normą w przemyśle energetycznym, działając zgodnie z wytycznymi Międzynarodowej Komisji Elektrotechnicznej (IEC) oraz krajowymi standardami ochrony urządzeń elektroenergetycznych. Regularne inspekcje i testy przekaźników Buchholza są kluczowe dla zapewnienia ich niezawodności i skuteczności w diagnostyce awarii, co jest istotne dla ciągłości dostaw energii.

Pytanie 22

W jakim przypadku w instalacji elektrycznej niskiego napięcia powinno się wykonać pomiary kontrolne (sprawdzenie ciągłości przewodów, pomiary rezystancji izolacji, weryfikacja samoczynnego wyłączania napięcia)?

A. Po zadziałaniu zabezpieczeń
B. Po modernizacji instalacji
C. Po przeciążeniu urządzenia
D. Po naprawie zabezpieczeń
Prawidłowa odpowiedź "Po modernizacji instalacji" jest zgodna z przyjętymi standardami i dobrymi praktykami w zakresie bezpieczeństwa instalacji elektrycznych. Modernizacja instalacji, w tym zmiany w układzie, dodanie nowych obwodów lub urządzeń oraz wymiana komponentów, może wprowadzić nowe ryzyko. Dlatego po każdej modernizacji konieczne jest przeprowadzenie pomiarów kontrolnych, aby upewnić się, że instalacja spełnia wymogi norm i jest bezpieczna w użytkowaniu. Pomiary te obejmują sprawdzenie ciągłości przewodów, co jest niezbędne do zapewnienia, że nie ma przerw w obwodach, oraz pomiary rezystancji izolacji, które pomagają ocenić stan izolacji przewodów. Dodatkowo, sprawdzenie samoczynnego wyłączania napięcia jest kluczowe dla ochrony przed porażeniem elektrycznym. Przykładem zastosowania tej wiedzy jest sytuacja, w której po zainstalowaniu nowych gniazdek lub oświetlenia, technik elektryk przeprowadza te kontrole, aby zagwarantować, że wszelkie zmiany nie wpłynęły negatywnie na bezpieczeństwo instalacji.

Pytanie 23

Jaką wartość powinien mieć prąd znamionowy bezpiecznika aparatowego zamontowanego w obwodzie uzwojenia pierwotnego transformatora jednofazowego, którego parametry to: U1N = 230 V, U2N = 13 V, używanego w ładowarce do akumulatorów, jeżeli przewidywany prąd obciążenia podczas ładowania akumulatorów wynosi 15 A?

A. 6 A
B. 10 A
C. 16 A
D. 1 A
Poprawna odpowiedź wynosi 1 A, co jest zgodne z wartością prądu znamionowego, jaką powinien mieć bezpiecznik aparaturowy zainstalowany w obwodzie uzwojenia pierwotnego transformatora jednofazowego. Wartość prądu znamionowego bezpiecznika określa maksymalny prąd, jaki może płynąć przez obwód przed wystąpieniem uszkodzenia lub awarii. W przypadku transformatora, który pracuje w charakterze ładowarki do akumulatorów, kluczowe jest, aby dobrać odpowiednią wartość prądu zabezpieczenia. W analizowanej sytuacji, przy napięciu 230 V na uzwojeniu pierwotnym i przewidywanym prądzie obciążenia 15 A na uzwojeniu wtórnym, istotne jest uwzględnienie współczynnika wydajności oraz strat mocy. Zgodnie z normami, przyjmuje się, aby wartość prądu znamionowego bezpiecznika była co najmniej 20-25% wyższa od prądu obciążenia. W praktyce często stosuje się bezpieczniki o wartości 1 A dla obwodów, w których prąd nie przekracza 15 A. Takie podejście ma na celu zapewnienie dodatkowego marginesu bezpieczeństwa oraz ochrony urządzenia. Wartości te są zgodne z normami IEC 60269 oraz IEC 60947, które zalecają dobór odpowiednich zabezpieczeń w zależności od charakterystyki obciążenia.

Pytanie 24

Na podstawie podanych w tabeli wyników pomiarów rezystancji izolacji silnika asynchronicznego trójfazowego o danych UN = 230/400 V i PN = 3 kW można stwierdzić, że

RPE-U1RPE-V1RPE-W1RU1-V1RV1-W1RW1-U1
6,2 MΩ5,4 MΩ3,9 MΩ6,9 MΩ4,4 MΩ4,8 MΩ

A. w uzwojeniu U występuje zwarcie do obudowy.
B. pogorszyła się izolacja uzwojenia W.
C. w uzwojeniu V występuje przerwa.
D. wystąpiło zwarcie między uzwojeniami V i W.
Prawidłowa odpowiedź wskazuje na to, że pogorszenie izolacji uzwojenia W jest dostrzegalne w analizowanych wynikach pomiarów. Rezystancja izolacji między uzwojeniami powinna być zbliżona, co jest zgodne z normami bezpieczeństwa i jakości, takimi jak IEC 60364. W przypadku, gdy rezystancja izolacji uzwojenia W jest znacznie niższa niż dla uzwojeń U i V, świadczy to o osłabieniu izolacji, co może prowadzić do niebezpiecznych warunków pracy silnika. W praktyce, niezidentyfikowane problemy związane z izolacją mogą prowadzić do zwarć, przegrzewania się i w końcu awarii silnika, co wiąże się z kosztownymi naprawami oraz przestojami w pracy maszyn. Regularne pomiary rezystancji izolacji są kluczowe dla zapewnienia niezawodności urządzeń elektrycznych, a odpowiednia dokumentacja wyników pozwala na monitorowanie stanu technicznego uzwojeń. W przypadku wykrycia niskiej rezystancji, należy natychmiast podjąć kroki w celu oceny i naprawy uszkodzeń izolacji, co jest zgodne z dobrą praktyką w konserwacji urządzeń elektrycznych.

Pytanie 25

Jakie są maksymalne dopuszczalne odchylenia napięcia zasilającego dla elektrycznych urządzeń napędowych?

A. 7,5% Un
B. 10,0% Un
C. 5,0% Un
D. 2,5% Un
Maksymalne dopuszczalne odchylenia napięcia zasilającego elektryczne urządzenia napędowe wynoszą 5,0% Un, zgodnie z obowiązującymi normami i standardami branżowymi, takimi jak IEC 60038. Utrzymanie napięcia w tym zakresie jest istotne dla zapewnienia prawidłowego działania urządzeń, ich wydajności oraz bezpieczeństwa. Przykładowo, w przypadku silników elektrycznych, zbyt duże odchylenie napięcia może prowadzić do ich przegrzewania, spadku momentu obrotowego oraz obniżenia żywotności. Dopuszczalne odchylenie 5,0% jest uznawane za optymalne, ponieważ zapewnia równocześnie elastyczność w przyłączeniach do różnych źródeł zasilania oraz minimalizuje ryzyko uszkodzeń i awarii. W praktyce, na przykład w dużych zakładach przemysłowych, kontrolowanie napięcia zasilającego i jego odchyleń jest kluczowe dla zapewnienia ciągłości produkcji oraz efektywności energetycznej. Zastosowanie odpowiednich zabezpieczeń oraz monitorowanie parametrów zasilania pozwala na uniknięcie niekorzystnych skutków, co jest zgodne z najlepszymi praktykami inżynieryjnymi.

Pytanie 26

Jaka powinna być nominalna wartość prądu bezpiecznika aparatu zamontowanego w obwodzie pierwotnym transformatora jednofazowego o parametrach: U1N= 230 V, U2N= 13 V, używanego w ładowarce do akumulatorów, jeśli przewidywana wartość prądu ładowania akumulatorów wynosi 15 A?

A. 10A
B. 16A
C. 6A
D. 1A
Wartość prądu znamionowego bezpiecznika aparatowego powinna być odpowiednio dobrana do przewidywanego prądu obciążenia. W omawianym przypadku, transformator jednofazowy o parametrach znamionowych U1N= 230 V i U2N= 13 V, przy założonym prądzie obciążenia 15 A, wymaga zastosowania bezpiecznika o wartości prądowej nieco wyższej niż maksymalny prąd roboczy. Dlatego bezpiecznik o wartości 16 A będzie odpowiedni, ponieważ zapewnia margines bezpieczeństwa, chroniąc jednocześnie obwód przed przeciążeniem. W praktyce, dobierając bezpieczniki, należy kierować się zasadą, że ich wartość powinna być wyższa niż przewidywane prądy robocze, co jest zgodne z normą PN-EN 60947-3, która wskazuje na konieczność zapewnienia ochrony przed zwarciami i przeciążeniami. To podejście nie tylko zwiększa bezpieczeństwo systemu, ale także wydłuża żywotność urządzeń, w tym transformatorów i akumulatorów.

Pytanie 27

Której z poniższych czynności nie obejmuje zakres kontrolny badań instalacji elektrycznej?

A. Pomiarów oraz weryfikacji spadków napięć
B. Badania zabezpieczeń przed dotykiem pośrednim
C. Pomiarów rezystancji izolacji przewodów
D. Oględzin związanych z ochroną przeciwpożarową
Pomiarów i sprawdzania spadków napięć nie przewiduje zakres badań okresowych instalacji elektrycznej, ponieważ tego rodzaju pomiary są wykonywane w ramach diagnostyki systemów energetycznych, a nie standardowych przeglądów instalacji elektrycznych. W badaniach okresowych koncentruje się na ocenie stanu technicznego instalacji oraz zabezpieczeń, takich jak odporność izolacji przewodów. Pomiar rezystancji izolacji przewodów pozwala na ocenę stanu izolacji i identyfikację potencjalnych zagrożeń związanych z przebiciem. Badania ochrony przed dotykiem pośrednim są kluczowe dla zapewnienia bezpieczeństwa użytkowników, gdyż dotyczą oceny skuteczności systemów zabezpieczeń. Oględziny dotyczące ochrony przeciwpożarowej są niemniej istotne, gdyż pozwalają na wykrycie nieprawidłowości mogących prowadzić do pożaru. Standardy, takie jak PN-IEC 60364, określają szczegółowe wymagania dotyczące badań okresowych, co podkreśla znaczenie poszczególnych metod oceny stanu instalacji elektrycznych.

Pytanie 28

Jakie będą konsekwencje obniżenia wartości napięcia zasilającego silnik indukcyjny o kilka procent, gdy pracował on z napięciem znamionowym i obciążeniem mocą nominalną przy niezmiennej częstotliwości i stałym, niezależnym od prędkości obrotowej momencie obciążenia?

A. Spadek przeciążalności silnika oraz prądu pobieranego z sieci
B. Wzrost przeciążalności silnika oraz spadek prądu pobieranego z sieci
C. Spadek przeciążalności silnika oraz wzrostu prądu pobieranego z sieci
D. Wzrost przeciążalności silnika oraz prądu pobieranego z sieci
Odpowiedź wskazująca na zmniejszenie przeciążalności silnika i zwiększenie prądu pobieranego z sieci jest poprawna, ponieważ obniżenie napięcia zasilającego wpływa na moment obrotowy silnika indukcyjnego. Przy stałej wartości częstotliwości, zmniejszenie napięcia prowadzi do obniżenia momentu obrotowego, co ogranicza zdolność silnika do pracy w warunkach przeciążenia. W praktyce oznacza to, że silnik staje się mniej odporny na nagłe wzrosty obciążenia, co może prowadzić do jego przeciążenia i zadziałania zabezpieczeń. Zmniejszenie napięcia zasilającego skutkuje również wzrostem prądu, ponieważ zgodnie z prawem Ohma, przy stałym oporze zwiększa się natężenie prądu w przypadku zmniejszenia napięcia. W kontekście zastosowania w przemyśle, takie zjawisko może prowadzić do awarii silników lub ich niewłaściwej pracy. Przykładem może być zastosowanie silnika w aplikacjach wymagających wysokiej wydajności, takich jak wciągniki czy prasy hydrauliczne, gdzie precyzyjne ustawienie parametrów zasilania jest kluczowe dla efektywności operacyjnej. W normach dotyczących eksploatacji silników elektrycznych, takich jak IEC 60034, podkreśla się znaczenie odpowiedniego doboru napięcia zasilającego dla zapewnienia optymalnej pracy urządzeń.

Pytanie 29

W instalacjach oświetleniowych w mieszkaniach nie wolno używać opraw oświetleniowych stałych i regulowanych wykonanych w klasie ochronności

A. 0
B. I
C. II
D. III
Odpowiedź 0 jest ok, bo w mieszkaniach nie powinniśmy używać opraw oświetleniowych klasy ochronności 0. One nie mają żadnej dodatkowej izolacji, a to znaczy, że mogą być niebezpieczne, zwłaszcza gdy mówimy o kontaktach z prądem. Klasa ochronności 0 nie chroni przed prądami błądzącymi, a to niesie ryzyko, zwłaszcza tam, gdzie są wilgotne powierzchnie, jak w łazienkach. Z norm PN-IEC 61140 i PN-EN 60598 wynika, że najlepiej używać opraw przynajmniej klasy I, które mają uziemienie i dodatkowe zabezpieczenia. W praktyce, jeśli wybierzemy oprawy klasy I lub II, zwiększamy bezpieczeństwo, co w domowych warunkach jest bardzo ważne. W miejscach, gdzie może być woda, naprawdę warto postawić na oprawy odpowiedniej klasy, żeby zminimalizować ryzyko porażenia prądem.

Pytanie 30

Pomiar jakiego parametru umożliwia wykrycie przebicia izolacji uzwojeń silnika indukcyjnego trójfazowego w stosunku do obudowy?

A. prądu stanu jałowego
B. rezystancji uzwojeń stojana
C. prądu upływu
D. rezystancji przewodu ochronnego
Pomiar prądu upływu jest skuteczną metodą wykrywania przebicia izolacji uzwojeń silnika indukcyjnego trójfazowego względem obudowy. Prąd upływu to prąd, który przepływa z uzwojeń przez izolację do obudowy silnika. W przypadku uszkodzenia izolacji, wartość prądu upływu wzrasta, co może prowadzić do niebezpiecznych sytuacji, w tym do porażenia prądem. Praktyczne zastosowanie tej metody polega na wykorzystaniu specjalistycznych mierników, które rejestrują wartość prądu upływu podczas pracy silnika. Zgodnie z normą IEC 60364, dopuszczalne wartości prądu upływu powinny być ściśle przestrzegane, aby zapewnić bezpieczeństwo użytkowników oraz prawidłowe działanie urządzeń. Regularne pomiary prądu upływu mogą być również częścią procedur konserwacyjnych, co pozwala na wczesne wykrywanie problemów z izolacją i zapobieganiu awariom. Warto pamiętać, że pomiar ten powinien być przeprowadzany w warunkach pełnego obciążenia, aby uzyskać wiarygodne wyniki.

Pytanie 31

Które z poniższych rozwiązań gwarantuje podstawową ochronę przed porażeniem w grzejniku elektrycznym działającym w systemie TN-S?

A. Podłączenie obudowy do uziemienia ochronnego
B. Zastosowanie wyłącznika instalacyjnego nadprądowego w obwodzie zasilania
C. Zastosowanie wyłącznika różnicowoprądowego w obwodzie zasilania
D. Izolacja robocza
Podłączenie obudowy do uziemienia ochronnego jest często mylone z podstawową ochroną przeciwporażeniową, jednak w przypadku grzejnika elektrycznego pracującego w sieci TN-S to podejście nie jest wystarczające. Uziemienie ma na celu zabezpieczenie przed skutkami awarii w sytuacji, gdy izolacja robocza zawiedzie, jednak nie eliminuje konieczności stosowania izolacji jako pierwszej linii obrony. Uziemienie chroni użytkownika w przypadku, gdy obudowa urządzenia staje się naładowana wskutek uszkodzenia, ale nie chroni przed porażeniem w sytuacji, gdy elementy elektryczne są w kontakcie z użytkownikiem, zanim dojdzie do zadziałania systemu uziemiającego. Izolacja robocza zapewnia, że nawet w przypadku uszkodzenia, nie dojdzie do sytuacji, w której prąd elektryczny może przepłynąć przez obudowę grzejnika. Ponadto zastosowanie wyłącznika różnicowoprądowego lub instalacyjnego nadprądowego to metody zabezpieczające, które działają w momencie wykrycia nieprawidłowości, ale nie eliminują ryzyka podczas normalnej pracy urządzenia. Błędem może być zatem postrzeganie uziemienia lub wyłączników jako samodzielnych rozwiązań ochronnych, zamiast traktowania ich jako uzupełniających elementów systemu ochrony, który powinien zawsze obejmować odpowiednią izolację roboczą, jako fundamentalny wymóg bezpieczeństwa w instalacjach elektrycznych.

Pytanie 32

Kontrolne pomiary w instalacji elektrycznej niskiego napięcia powinny być wykonane po każdym

A. zadziałaniu wyłącznika różnicowoprądowego
B. zamontowaniu w oprawach nowych źródeł światła
C. zadziałaniu bezpiecznika
D. rozbudowaniu instalacji
Odpowiedź dotycząca przeprowadzenia pomiarów kontrolnych w instalacji elektrycznej niskiego napięcia po każdorazowym rozbudowaniu instalacji jest słuszna. Rozbudowa instalacji wiąże się z wprowadzeniem nowych elementów oraz modyfikacją istniejących, co może wpływać na bezpieczeństwo i funkcjonalność całego systemu. Z tego względu, standardy branżowe, takie jak PN-EN 60364, zalecają przeprowadzanie pomiarów kontrolnych po każdej rozbudowie, aby upewnić się, że instalacja spełnia wszystkie wymagania dotyczące bezpieczeństwa oraz nie stwarza zagrożenia dla użytkowników. Przykładowo, po dodaniu nowych obwodów czy urządzeń, ważne jest, aby sprawdzić ich poprawność pod względem rezystancji izolacji oraz ciągłości przewodów. Tego typu pomiary pozwalają na identyfikację potencjalnych usterek, takich jak niewłaściwe połączenia czy uszkodzenia izolacji, które mogą prowadzić do awarii lub zagrożeń pożarowych.

Pytanie 33

Który z poniższych rodzajów silników wyróżnia się najlepszą kontrolą prędkości obrotowej poprzez modyfikację wartości napięcia zasilającego?

A. Asynchroniczny klatkowy
B. Synchroniczny jawnobiegunowy
C. Prądu stałego
D. Asynchroniczny pierścieniowy
Silniki prądu stałego charakteryzują się doskonałą regulacją prędkości obrotowej, co czyni je idealnym wyborem w aplikacjach wymagających precyzyjnego sterowania. Dzięki prostocie zmiany napięcia zasilającego, można łatwo dostosować prędkość obrotową silnika do konkretnego zadania. Przykłady zastosowania obejmują napędy w robotyce, gdzie wymagana jest zmienna prędkość w zależności od zadań do wykonania, czy też w wentylatorach, gdzie regulacja obrotów wpływa na efektywność energetyczną. W przemyśle, silniki prądu stałego są wykorzystywane w maszynach takich jak dźwigi czy taśmociągi, gdzie precyzyjne zarządzanie prędkością jest kluczowe dla bezpieczeństwa i efektywności procesu. Dobre praktyki wskazują na wykorzystanie kontrolerów PWM (Pulse Width Modulation) do efektywnej regulacji napięcia oraz ograniczenia strat energii. Warto również zauważyć, że silniki te są bardziej odpowiednie do zadań, gdzie wymagana jest często zmiana kierunku obrotów, co również wpływa na ich popularność w różnorodnych aplikacjach.

Pytanie 34

Jaką funkcję pełni bocznik rezystancyjny używany podczas dokonywania pomiarów?

A. Daje możliwość zdalnego pomiaru energii elektrycznej
B. Umożliwia pomiar upływu prądu przez izolację
C. Zwiększa zakres pomiarowy woltomierza
D. Poszerza zakres pomiarowy amperomierza
Boczniki rezystancyjne są kluczowym elementem w pomiarach prądowych, ponieważ umożliwiają rozszerzenie zakresu pomiarowego amperomierzy, co jest szczególnie ważne w przypadku pomiarów dużych prądów. Działają na zasadzie dzielenia prądu na mniejsze wartości, co pozwala na precyzyjniejsze pomiary oraz ochronę urządzenia pomiarowego przed uszkodzeniem. Przykładem zastosowania bocznika rezystancyjnego może być pomiar prądów w instalacjach przemysłowych, gdzie wartości prądów mogą znacznie przekraczać możliwości standardowych amperomierzy. Dzięki zastosowaniu bocznika, możliwe jest przekształcenie dużych prądów na mniejsze napięcia, które mogą być bezpiecznie zmierzone. Dobrze zaprojektowane boczniki powinny być zgodne z normami, takimi jak IEC 61010, co zapewnia ich bezpieczeństwo i niezawodność w trudnych warunkach pracy. Właściwy dobór bocznika oraz jego parametry, takie jak wartość rezystancji i moc, mają kluczowe znaczenie dla dokładności pomiarów i ochrony urządzeń, co jest zgodne z najlepszymi praktykami inżynieryjnymi.

Pytanie 35

Co należy zrobić w przypadku przeciążenia silnika elektrycznego podczas pracy?

A. Zastosować dodatkowy filtr harmonicznych
B. Zwiększyć napięcie zasilające
C. Zwiększyć długość przewodów zasilających
D. Zredukować obciążenie lub sprawdzić wyłączniki termiczne
W przypadku przeciążenia silnika elektrycznego kluczowe jest szybkie zidentyfikowanie i zredukowanie obciążenia, które może być przyczyną problemu. Przeciążenie często wynika z nadmiernego zapotrzebowania na moc, co prowadzi do przegrzania i potencjalnego uszkodzenia silnika. Standardy branżowe zalecają, aby regularnie monitorować obciążenie silników i odpowiednio reagować na wszelkie nieprawidłowości. Dodatkowo, sprawdzenie wyłączników termicznych to dobra praktyka, która pozwala na wykrycie i zapobieganie dalszym uszkodzeniom. Wyłączniki termiczne są zabezpieczeniem, które automatycznie odłącza zasilanie w przypadku wykrycia nadmiernego wzrostu temperatury, co chroni silnik przed uszkodzeniem. Regularna konserwacja i kontrola tych elementów jest niezbędna, aby zapewnić bezpieczną i efektywną pracę silników elektrycznych. Praktyczne zastosowanie tej wiedzy pozwala na dłuższą żywotność urządzeń i zmniejszenie ryzyka kosztownych napraw.

Pytanie 36

W silniku odkurzacza po wyjęciu z obudowy i załączeniu pełnego napięcia w serwisie zauważono zmniejszone obroty i iskrzenie na komutatorze. Na podstawie zamieszczonej tabeli wskaż, prawidłową kolejność czynności przy wykrywaniu i naprawie uszkodzenia w silniku odkurzacza.

Czynność
1demontaż elementów silnika
2próbne uruchomienie silnika przy zmniejszonym napięciu i doszlifowanie szczotek
3sprawdzenie długości szczotek i ich prawidłowego docisku do komutatora
4wykonanie badania na obecność zwarć w wirniku
5wymiana uszkodzonych podzespołów
6montaż podzespołów silnika

A. 3, 4, 2, 1, 5, 6
B. 4, 1, 5, 3, 6, 2
C. 1, 4, 3, 5, 2, 6
D. 3, 1, 4, 5, 6, 2
W przypadku niepoprawnych odpowiedzi pojawiają się typowe błędy myślowe związane z kolejnością działań diagnostycznych. Zaczynanie od demontażu elementów silnika bez wcześniejszej weryfikacji stanu szczotek prowadzi do nieefektywnej pracy oraz zwiększonego ryzyka uszkodzenia innych podzespołów. Diagnostyka powinna zawsze zaczynać się od najprostszych do najtrudniejszych problemów; w tym przypadku sprawdzenie szczotek jest kluczowe. Idąc dalej, pominiecie etapu badania wirnika na obecność zwarć może skutkować dalszymi uszkodzeniami, które nie będą widoczne gołym okiem. Wymiana uszkodzonych elementów przed dokładnym zrozumieniem przyczyny awarii prowadzi do marnotrawstwa czasu i zasobów. Ostatecznie, przeprowadzanie próbnego uruchomienia silnika przed całkowitym złożeniem i wykonaniem wszystkich niezbędnych napraw jest także niewłaściwą praktyką, która może prowadzić do dalszych awarii. W kontekście standardów branżowych, zawsze należy przestrzegać metodologii diagnostycznej, która zakłada systematyczne podejście i eliminację potencjalnych źródeł problemów, zaczynając od najprostszych rozwiązań. Dobre praktyki wskazują na znaczenie odpowiedniego przygotowania przed przystąpieniem do skomplikowanych operacji serwisowych, co pozwala na minimalizowanie ryzyka i zwiększenie efektywności napraw.

Pytanie 37

Jakie jest prawidłowe postępowanie w przypadku podejrzenia obecności napięcia na obudowie urządzenia elektrycznego?

A. Odłączenie uziemienia, co jest niebezpieczne i niewłaściwe
B. Podłączenie dodatkowego obciążenia, co może pogorszyć sytuację
C. Natychmiastowe wyłączenie zasilania
D. Zmiana przewodów, chociaż to nie rozwiązuje problemu napięcia na obudowie
W przypadku podejrzenia obecności napięcia na obudowie urządzenia elektrycznego, najlepszym i najbezpieczniejszym działaniem jest natychmiastowe odłączenie zasilania. Jest to zgodne z podstawowymi zasadami bezpieczeństwa elektrycznego i normami BHP. Gdy urządzenie elektryczne ma napięcie na obudowie, może to oznaczać uszkodzenie izolacji lub inny problem techniczny, który stwarza ryzyko porażenia prądem. Szybkie odłączenie zasilania eliminuje to ryzyko i pozwala na dalsze, bezpieczne działania. Po odłączeniu zasilania należy również upewnić się, że urządzenie jest odpowiednio uziemione, aby uniknąć podobnych problemów w przyszłości. Następnie można przystąpić do diagnostyki i naprawy urządzenia przez wykwalifikowanego specjalistę, co jest zgodne z dobrą praktyką w branży elektrycznej. Ważne jest również, by regularnie sprawdzać stan techniczny urządzeń elektrycznych i ich uziemienia, aby uniknąć takich sytuacji w przyszłości. Moim zdaniem, wiedza o bezpiecznym postępowaniu w takich sytuacjach powinna być podstawą w każdej edukacji technicznej.

Pytanie 38

Jakiego rodzaju wyłączników RCD należy użyć do zabezpieczenia instalacji elektrycznej obwodu gniazd jednofazowych w pracowni komputerowej, gdzie znajdują się 15 zestawów komputerowych?

A. 25/4/300-A
B. 25/4/030-AC
C. 25/2/030-A
D. 25/2/030-AC
Wybranie wyłącznika RCD 25/2/030-A do zabezpieczenia obwodu gniazd jednofazowych w pracowni komputerowej jest właściwym wyborem, biorąc pod uwagę wymagania bezpieczeństwa oraz specyfikę użytkowania. Typ 25/2/030-A oznacza, że jest to wyłącznik różnicowoprądowy o prądzie znamionowym 30 mA, co jest standardem zalecanym do ochrony osób przed porażeniem prądem elektrycznym, szczególnie w miejscach narażonych na kontakt z wodą. W pracowni komputerowej, gdzie znajdują się urządzenia elektroniczne, a także potencjalnie wilgotne warunki, jest to kluczowe. Zastosowanie wyłącznika o prądzie różnicowym 30 mA jest zgodne z normą PN-EN 61008, która zaleca stosowanie tego typu zabezpieczeń w instalacjach z gniazdami użytkowymi. Dodatkowo, 25/2/030-A charakteryzuje się niskim prądem zadziałania, co zapewnia szybką reakcję w przypadku wykrycia upływu prądu, minimalizując ryzyko porażenia. Przykład zastosowania to sytuacja, w której pracownik korzysta z komputera, a w wyniku uszkodzenia przewodu zasilającego występuje przepływ prądu do ziemi – RCD natychmiast zareaguje, odcinając zasilanie.

Pytanie 39

Która z wymienionych czynności nie jest częścią oceny stanu technicznego podczas przeglądu układu napędowego z wykorzystaniem przekształtnika energoelektronicznego?

A. Weryfikacja jakości zabezpieczeń nadprądowych oraz zmiennozwarciowych
B. Ocena czystości filtrów powietrza chłodzącego
C. Sprawdzenie natężenia oświetlenia na stanowisku obsługi układu napędowego
D. Kontrola połączeń stykowych
Sprawdzanie natężenia oświetlenia na stanowisku obsługi układu napędowego to nie to samo, co przegląd stanu technicznego tego układu. Jak dla mnie, w takim przeglądzie powinniśmy skupić się na kluczowych aspektach, które wpływają na to, czy układ działa wydajnie i bezpiecznie. Na przykład, trzeba by sprawdzić zabezpieczenia nadprądowe i zmiennozwarciowe, bo one chronią urządzenia przed uszkodzeniem, gdy coś idzie nie tak, jak powinno. I nie zapominajmy o połączeniach stykowych, które odpowiadają za przekazywanie sygnałów elektrycznych. Filtry powietrza chłodzącego też mają ogromne znaczenie, bo odpowiednia temperatura pracy układu wpływa na jego długowieczność. Zadbanie o te wszystkie aspekty to klucz do efektywności operacyjnej oraz bezpieczeństwa użycia systemów z przekształtnikami. Przeglądy zgodne z normami, jak IEC 60204, mogą pomóc w uniknięciu awarii i sprawić, że układy napędowe będą działały jak należy.

Pytanie 40

Na jaką wartość krotności prądu znamionowego silnika klatkowego trójfazowego, który napędza hydrofor w gospodarstwie domowym, powinno się ustawić zabezpieczenie termiczne?

A. 2,2 ∙ In
B. 1,4 ∙ In
C. 1,1 ∙ In
D. 0,8 ∙ In
Odpowiedź 1,1 ∙ In jest poprawna, ponieważ zabezpieczenie termiczne silnika klatkowego trójfazowego powinno być dobrane w taki sposób, aby mogło one skutecznie chronić silnik przed przegrzaniem w normalnych warunkach pracy oraz w czasie rozruchu. W praktyce, standardowe ustawienie zabezpieczeń termicznych dla silników elektrycznych, zgodne z normami, zakłada, że maksymalne obciążenie nie powinno przekraczać 1,1-krotności prądu znamionowego In. Ustawienie to uwzględnia zarówno chwilowe przeciążenia, jak i okresy pracy silnika przy pełnym obciążeniu, zapewniając jednocześnie odpowiednią ochronę przed nadmiernym wzrostem temperatury. Ważne jest, aby zabezpieczenie termiczne nie było ustawione zbyt nisko, co mogłoby prowadzić do nadmiernych wyłączeń systemu, ani zbyt wysoko, co z kolei mogłoby skutkować uszkodzeniem silnika. Przykładowo, w instalacjach hydroforowych w gospodarstwach domowych, silniki często pracują w warunkach zmiennego obciążenia, dlatego dostosowanie ustawienia na poziomie 1,1 ∙ In zapewnia optymalną równowagę między ochroną a dostępnością mocy.