Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 25 maja 2025 21:24
  • Data zakończenia: 25 maja 2025 21:50

Egzamin zdany!

Wynik: 22/40 punktów (55,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

Jakie jest medium robocze w systemie hydraulicznym?

A. powietrze sprężone
B. energia elektryczna
C. olej pod ciśnieniem
D. woda pod ciśnieniem
Olej pod ciśnieniem jest najczęściej stosowanym medium roboczym w układach hydraulicznych ze względu na swoje doskonałe właściwości smarne oraz zdolność do przenoszenia dużych obciążeń. W układach hydraulicznych olej działa jako nośnik energii, co pozwala na efektywne przekazywanie siły i momentu obrotowego. Dzięki dużej gęstości oraz niskiej kompresyjności, olej hydrauliczny zapewnia stabilność działania systemu hydraulicznego. Przykładem zastosowania oleju pod ciśnieniem może być hydraulika w maszynach budowlanych, takich jak koparki czy ładowarki, gdzie siły generowane przez siłowniki hydrauliczne są ogromne. W branży motoryzacyjnej olej hydrauliczny jest wykorzystywany w układach wspomagania kierownicy oraz w systemach hamulcowych. Praktyki dobrej konserwacji i regularnej wymiany oleju są kluczowe, aby zapewnić długowieczność i niezawodność systemów hydraulicznych, a także aby uniknąć awarii spowodowanych zanieczyszczeniami czy degradacją oleju.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Jakie urządzenie jest używane do mierzenia prędkości obrotowej wału silnika?

A. potencjometr obrotowy
B. mostek tensometryczny
C. prądnica tachometryczna
D. czujnik termoelektryczny
Czujnik termoelektryczny, mostek tensometryczny oraz potencjometr obrotowy, mimo że są to urządzenia pomiarowe, nie są przeznaczone do pomiaru prędkości obrotowej wału silnika. Czujniki termoelektryczne, takie jak termopary, służą do pomiaru temperatury, a ich zasada działania opiera się na efekcie Seebecka, gdzie różnica temperatury generuje napięcie. W kontekście pomiaru prędkości obrotowej, zastosowanie czujników termoelektrycznych jest niewłaściwe, ponieważ nie są one w stanie dokładnie rejestrować zmian w szybkości obrotu. Mostki tensometryczne są używane do pomiaru naprężeń i deformacji materiałów, co również nie jest związane z pomiarem prędkości obrotowej. Ich działanie bazuje na zjawisku zmiany oporu elektrycznego pod wpływem deformacji, co jest zupełnie innym rodzajem pomiaru. Potencjometry obrotowe, chociaż mogą być używane do pomiaru kątów obrotu, nie dostarczają informacji o prędkości obrotowej, ponieważ mierzą jedynie położenie wału w danym momencie, a nie jego szybkość obrotu. Typowym błędem myślowym jest mylenie pomiaru położenia z pomiarem prędkości, co prowadzi do nieporozumień w doborze odpowiednich narzędzi pomiarowych. Dlatego, aby prawidłowo zmierzyć prędkość obrotową, kluczowe jest stosowanie właściwych urządzeń, takich jak prądnice tachometryczne.

Pytanie 11

Jakie wymiary biorą pod uwagę dopuszczalne odchylenia w realizacji elementu mechanicznego?

A. Rzeczywiste
B. Jednostronne
C. Graniczne
D. Nominalne
Odpowiedzi "Nominalne", "Rzeczywiste" oraz "Jednostronne" nie uwzględniają prawidłowych koncepcji odnoszących się do tolerancji wykonania elementów mechanicznych. Wymiar nominalny to teoretyczna wartość, która nie bierze pod uwagę ewentualnych błędów wykonawczych. W praktyce, stosowanie jedynie wymiarów nominalnych prowadziłoby do niezgodności w produkcie, gdyż nie zabezpieczałoby to elementów przed nieprawidłowościami w procesie ich wytwarzania. Z kolei wymiary rzeczywiste opisują rzeczywisty wymiar wykonanej części, który może się różnić od wymiaru nominalnego oraz są wynikiem procesów produkcyjnych, a ich analiza jest istotna na etapie kontroli jakości. Wymiar jednostronny z kolei odnosi się do systemu tolerancji, który definiuje jedynie jeden kierunek tolerancji, co w wielu zastosowaniach nie jest wystarczające, ponieważ nie uwzględnia błędów w innym kierunku, co może prowadzić do problemów z pasowaniem. Stosowanie takich koncepcji w projektowaniu elementów mechanicznych często prowadzi do niewłaściwego zrozumienia zasad tolerancji oraz ich wpływu na finalną jakość produktu. Kluczowe jest zrozumienie, że tolerancje graniczne są niezbędne dla zapewnienia, że części będą funkcjonować poprawnie razem w odpowiednich warunkach eksploatacyjnych.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Wartością tarcia wewnętrznego cieczy dla oleju smarnego jest

A. utlenianie
B. lepkość
C. gęstość
D. smarność
Lepkość jest miarą oporu, jaki ciecz stawia podczas przepływu i jest kluczowym parametrem w ocenie właściwości olejów smarowych. Wysoka lepkość oznacza, że ciecz jest bardziej gęsta i oporna na przepływ, co jest korzystne w zastosowaniach wymagających skutecznego smarowania. Przykładowo, oleje silnikowe muszą mieć odpowiednią lepkość, aby skutecznie chronić silnik przed zużyciem oraz zapewniać odpowiednie smarowanie w różnych temperaturach pracy. Standardy, takie jak SAE, określają klasyfikacje lepkości, co pozwala na wybór odpowiedniego oleju do konkretnego zastosowania. Na przykład, olej 10W-40 ma różne właściwości lepkości w niskich i wysokich temperaturach, co czyni go wszechstronnym wyborem dla wielu silników. Ponadto, lepkość wpływa na inne parametry, takie jak temperatura krzepnięcia i przewodność cieplna, co jest istotne w kontekście efektywności energetycznej urządzeń mechanicznych.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

Używane wielokrotnie w ciągu jednej godziny przyrządy oraz narzędzia powinny być zgodnie z zasadami ergonomii w

A. zapleczu zakładu pracy.
B. zasięgu ręki.
C. pomieszczeniu, gdzie znajduje się stanowisko pracy.
D. widoczności.
Umieszczanie narzędzi w zasięgu wzroku może wydawać się ok, ale w rzeczywistości to nie wystarcza. Owszem, widzisz narzędzia, ale jeśli są daleko, musisz się przemieszczać, co zwiększa ryzyko kontuzji. Pracownicy często narzekają na ból związany z takim układem. A jak narzędzia są w magazynie, to trzeba tracić czas na ich szukanie, co jest nieefektywne. Czasem pomieszczenia nie są przystosowane do pracy, więc to nie jest idealne rozwiązanie. Współczesna ergonomia zaleca, żeby dobrze rozplanować stanowisko pracy i dostosować je do zadań, co jest zgodne z podejściem lean management i metodyką 5S, które mówią o porządku i ograniczaniu zbędnych ruchów.

Pytanie 17

Jaki rodzaj zaworu powinien zostać zainstalowany w systemie, aby umożliwić przepływ medium wyłącznie w jednym kierunku?

A. Odcinający
B. Bezpieczeństwa
C. Rozdzielający
D. Zwrotny
Zawór zwrotny, znany również jako zawór jednokierunkowy, jest kluczowym elementem w wielu systemach hydraulicznych oraz pneumatycznych, którego głównym zadaniem jest umożliwienie przepływu medium w jednym kierunku, jednocześnie zapobiegając cofaniu się go. Działa na zasadzie automatycznej regulacji, co oznacza, że nie wymaga zewnętrznego źródła energii do działania. Zawory te są powszechnie stosowane w aplikacjach takich jak pompy, gdzie zapobiegają cofaniu się cieczy do pompy, co mogłoby prowadzić do uszkodzenia urządzenia. W praktyce, instalacje, które wymagają ciągłego przepływu medium w określonym kierunku, korzystają z zaworów zwrotnych, aby zapewnić ich efektywność i bezpieczeństwo. Ponadto, stosowanie zaworów zwrotnych jest zgodne z dobrymi praktykami inżynieryjnymi, ponieważ minimalizuje ryzyko awarii systemu oraz zapewnia jego stabilność operacyjną. W związku z tym, zawory zwrotne są niezbędnymi komponentami w systemach, gdzie kontrola kierunku przepływu medium jest krytyczna.

Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

Które z poniższych urządzeń nie należy do kategorii mechatronicznych?

A. silnik indukcyjny klatkowy
B. chłodziarko-zamrażarka z cyfrowym sterowaniem
C. odtwarzacz płyt CD oraz DVD
D. drukarka laserowa
Wybór odpowiedzi, które wskazują na urządzenia mechatroniczne, raczej wynika z tego, że nie do końca rozumiesz, co to takiego. Przykłady jak drukarka laserowa, odtwarzacz płyt CD i DVD czy sterowana cyfrowo chłodziarko-zamrażarka to rzeczywiście łączą w sobie mechanikę, elektronikę i informatykę, przez co mogą być uznane za mechatroniczne. Przykładowo, drukarka laserowa to zaawansowane urządzenie, które łączy różne technologie – optykę, elektronikę i mechanikę – żeby drukować z dużą precyzją. Odtwarzacze płyt również wykorzystują mechanizmy do ładowania płyt i mają systemy laserowe do odczytu danych oraz elektroniki do przetwarzania dźwięku i obrazu. A te chłodziarko-zamrażarki, które są sterowane cyfrowo, to złożone systemy z czujnikami temperatury i mechaniką, które pomagają zarządzać temperaturą i oszczędzać energię. Warto, żebyś przy wyborze odpowiedzi pamiętał, że mechatronika to głównie systemy, gdzie mechanika spotyka elektronikę. Często popełniane błędy to takie, że zawężasz definicję mechatroniki tylko do mechaniki, przez co pomijasz ważne elektroniczne i cyfrowe elementy, które są kluczowe dla działania tych systemów.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Jakie narzędzie powinno się zastosować do przygotowania przewodu LgY 0,75 mm2 przed jego montażem w listwie zaciskowej?

A. Klucz dynamometryczny
B. Zaciskarkę tulejek
C. Zaciskarkę konektorów
D. Klucz płaski
Zaciskarka tulejek jest narzędziem przeznaczonym do trwałego łączenia przewodów z różnymi typami konektorów, co jest kluczowe w procesie przygotowania przewodu LgY 0,75 mm² do montażu w listwie zaciskowej. Użycie zaciskarki pozwala na uzyskanie solidnego i niezawodnego połączenia, które jest zgodne z normami bezpieczeństwa oraz standardami branżowymi, takimi jak PN-EN 60352. Przykładem zastosowania zaciskarki tulejek jest łączenie przewodów w instalacjach elektrycznych, gdzie wymagane jest zapewnienie wysokiej jakości połączeń elektrycznych, zwłaszcza w sytuacjach, gdy przewody są narażone na wibracje lub zmiany temperatury. Przeprowadzenie prawidłowego zaciskania pozwala na uzyskanie niskiej rezystancji połączenia, co jest kluczowe dla efektywności energetycznej oraz bezpieczeństwa użytkowania instalacji. Korzystając z dobrej jakości zaciskarki, można również uniknąć problemów związanych z luźnymi połączeniami, które mogą prowadzić do przegrzewania się przewodów i potencjalnych zagrożeń pożarowych.

Pytanie 22

Aby zredukować prędkość ruchu tłoczyska w pneumatycznym siłowniku dwustronnego działania, jakie urządzenie należy zastosować?

A. przełącznik obiegu
B. zawór dławiąco zwrotny
C. zawór szybkiego spustu
D. zawór podwójnego sygnału
Zawór dławiąco-zwrotny jest kluczowym elementem stosowanym w systemach pneumatycznych do regulacji prędkości ruchu tłoczyska siłownika dwustronnego działania. Działa na zasadzie ograniczenia przepływu powietrza, co pozwala na płynne i kontrolowane ruchy. Dzięki tej funkcji, procesy związane z załadunkiem, rozładunkiem oraz innymi operacjami mechanicznymi stają się bardziej precyzyjne i bezpieczne. W praktyce, zawory te są szeroko stosowane w automatyzacji przemysłowej, gdzie wymagania dotyczące powtarzalności i niezawodności są kluczowe. Na przykład, w maszynach pakujących, zawór dławiąco-zwrotny może spowolnić ruch tłoczyska, co zmniejsza ryzyko uszkodzenia produktów. Standardy, takie jak ISO 4414 dotyczące systemów pneumatycznych, zalecają stosowanie takich rozwiązań, aby zapewnić optymalne warunki pracy. Używanie odpowiednich zaworów przyczynia się również do zmniejszenia zużycia energii oraz wydłużenia żywotności systemów pneumatycznych.

Pytanie 23

Która z poniższych metod nie jest wykorzystywana do trwałego łączenia elementów z tworzyw sztucznych?

A. Zaginania
B. Spawania
C. Zgrzewania
D. Klejenia
Spawanie, zgrzewanie i klejenie to techniki, które są powszechnie stosowane do trwałego łączenia elementów wykonanych z tworzyw sztucznych, co czyni je nieodpowiednimi odpowiedziami na zadane pytanie. Spawanie polega na stosowaniu wysokiej temperatury w celu stopienia krawędzi dwóch elementów, co stoi w sprzeczności z celem pytania, ponieważ łączy je na trwałe. Zgrzewanie natomiast wykorzystuje ciepło i ciśnienie do połączenia materiałów, co jest typowe dla cienkowarstwowych tworzyw sztucznych, takich jak polietylen czy polipropylen. Te metody są szczególnie cenione w przemyśle, ponieważ pozwalają na uzyskanie mocnych i odpornych na czynniki zewnętrzne połączeń. Klejenie, z użyciem odpowiednich adhezyjnych substancji chemicznych, również umożliwia trwałe łączenie elementów z tworzyw sztucznych, a współczesne technologie oferują szeroki wachlarz klejów, które zapewniają różne właściwości, takie jak elastyczność czy odporność na wysokie temperatury. Typowe błędy myślowe prowadzące do wyboru tych odpowiedzi mogą wynikać z mylenia procesów formowania z procesami łączenia. Ważne jest zrozumienie, że każdy z tych procesów ma swoje specyficzne zastosowania i nie każdy z nich jest odpowiedni do trwałego łączenia elementów wykonanych z tworzyw sztucznych.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

Wzmacniacz charakteryzuje się pasmem przepustowym wynoszącym w = 12 750 Hz oraz częstotliwością górną fg= 13 500 Hz. Jaką minimalną wartość częstotliwości fd w zakresie przenoszenia sygnałów należy osiągnąć, aby były one wzmacniane?

A. Od 750 Hz
B. Od 350 Hz
C. Od 6 375 Hz
D. Od 6 750 Hz
Odpowiedź "Od 750 Hz" jest prawidłowa, ponieważ szerokość pasma przepustowego wzmacniacza jest określona jako różnica między częstotliwością górną fg a częstotliwością dolną fd. W tym przypadku szerokość pasma wynosi 12 750 Hz, a częstotliwość górna wynosi 13 500 Hz. Aby znaleźć częstotliwość dolną, możemy skorzystać z równania: fg - fd = w. Przekształcając to równanie, uzyskujemy fd = fg - w, co daje fd = 13 500 Hz - 12 750 Hz = 750 Hz. Oznacza to, że sygnały o częstotliwości 750 Hz i wyższej będą wzmacniane przez wzmacniacz. Praktyczne zastosowanie tej wiedzy jest kluczowe w wielu dziedzinach elektronicznych, takich jak audio, telekomunikacja czy systemy przetwarzania sygnałów, gdzie zrozumienie pasma przenoszenia urządzenia pozwala na optymalne dobieranie sygnałów. Właściwe zrozumienie parametrów wzmacniaczy umożliwia również projektowanie bardziej efektywnych układów elektronicznych, spełniających określone wymagania jakościowe i techniczne.

Pytanie 26

Jaki zawór powinien być użyty, aby umożliwić przepływ czynnika wyłącznie w jednym kierunku?

A. Zwrotny
B. Rozdzielający
C. Dławiący
D. Regulacyjny
Zawór zwrotny to kluczowy element w systemach hydraulicznych i pneumatycznych, który pozwala na przepływ czynnika roboczego tylko w jednym kierunku. Jego zasadniczą funkcją jest zapobieganie cofaniu się medium, co jest niezbędne w wielu zastosowaniach, takich jak instalacje wodociągowe, systemy grzewcze czy układy smarowania. Przykładowo, w instalacji rur do transportu wody, zawór zwrotny chroni przed cofaniem się wody, co mogłoby prowadzić do uszkodzeń lub nieefektywności systemu. Zawory te mogą być wykonane z różnych materiałów, w tym stali nierdzewnej, mosiądzu czy tworzyw sztucznych, w zależności od medium, jakie mają kontrolować. Standardy branżowe, jak PN-EN 12345, określają wymagania dla zaworów zwrotnych, w tym ich wydajność i trwałość. W praktyce, ich zastosowanie zapewnia nie tylko bezpieczeństwo, ale także efektywność energetyczną systemów, co jest istotne w kontekście nowoczesnych rozwiązań inżynieryjnych.

Pytanie 27

Do spawania metali za pomocą łuku elektrycznego wykorzystuje się zasilacz o

A. niskim napięciu i małym prądzie
B. niskim napięciu i dużym prądzie
C. wysokim napięciu i dużym prądzie
D. wysokim napięciu i małym prądzie
Spawanie metali za pomocą łuku elektrycznego to nie lada wyzwanie, ale jeśli dobrze dobierzesz parametry prądu, wszystko pójdzie gładko. Ważne jest, żeby ustawić niskie napięcie i dość wysoki prąd. Niskie napięcie zmniejsza ryzyko, że coś się przebije, a przy tym zapewnia stabilność łuku spawalniczego, co jest mega istotne. Wysoki prąd z kolei pozwala na topnienie materiałów, więc można uzyskać spoiny dobrej jakości. Jak wiesz, przy spawaniu MIG/MAG, TIG czy MMA, te zasady naprawdę obowiązują. Zgodnie z normami, takimi jak ISO 4063, odpowiednie ustawienia to klucz do trwałych i wytrzymałych spoin. Dzięki tym parametrom, tworzona złącza będą odporne na zmęczenie i różne uszkodzenia, co w przemyśle, np. przy budowie maszyn czy konstrukcjach stalowych, jest bardzo ważne.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Aby zdemontować stycznik zamocowany na szynie, należy wykonać czynności w odpowiedniej kolejności:

A. odłączyć napięcie, zdjąć stycznik z szyny, odkręcić przewody
B. odłączyć napięcie, odkręcić przewody, zdjąć stycznik z szyny
C. odkręcić przewody, zdjąć stycznik z szyny, odłączyć napięcie
D. zdjąć stycznik z szyny, odłączyć napięcie, odkręcić przewody
Poprawna odpowiedź, która wskazuje na odłączenie napięcia, odkręcenie przewodów, a następnie odpięcie stycznika z szyny, jest zgodna z najlepszymi praktykami w zakresie bezpieczeństwa elektrycznego. Pierwszym krokiem powinno być zawsze odłączenie zasilania. To kluczowe, aby uniknąć porażenia prądem oraz zapobiec uszkodzeniu sprzętu. Po odłączeniu zasilania można bezpiecznie przystąpić do odkręcania przewodów, co minimalizuje ryzyko zwarcia. Na końcu, po bezpiecznym odłączeniu przewodów, można zdemontować stycznik z szyny. Taki porządek działań jest zgodny z zaleceniami norm międzynarodowych, takich jak IEC 60204-1, które podkreślają znaczenie bezpieczeństwa podczas prac elektrycznych. Wiedza na temat prawidłowego demontażu urządzeń elektrycznych jest nie tylko istotna dla zapewnienia bezpieczeństwa, ale również dla efektywności i prawidłowego funkcjonowania systemów elektrycznych.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Jakie są kolejne kroki w przygotowaniu sprężonego powietrza do systemu pneumatycznego?

A. osuszenie oraz filtrowanie powietrza, obniżenie ciśnienia do wartości wymaganej w systemie, nasycenie mgłą olejową
B. nasycenie mgłą olejową (jeśli jest to potrzebne), osuszenie oraz filtrowanie powietrza, obniżenie ciśnienia do wartości wymaganej w systemie
C. obniżenie ciśnienia do wartości wymaganej w systemie, osuszenie oraz filtrowanie powietrza, nasycenie mgłą olejową
D. nasycenie mgłą olejową, obniżenie ciśnienia do wartości wymaganej w systemie, osuszenie oraz filtrowanie powietrza
No cóż, wiesz, przygotowanie sprężonego powietrza to nie taka prosta sprawa. W swojej odpowiedzi pomyliłeś kolejność działań. Najpierw powinno się osuszyć i przefiltrować powietrze, a dopiero potem nasycać je olejem. Jak zrobisz to inaczej, to wprowadzasz zanieczyszczenia do układu, co może potem prowadzić do sporych problemów. Przykładowo, zanieczyszczony olej może zatykać elementy pneumatyczne, i później tylko kłopoty. A jeśli chodzi o redukcję ciśnienia, to też ważne jest, żeby zrobić to po osuszeniu, bo inaczej wilgoć zostaje w powietrzu, a to już w ogóle nie powinno mieć miejsca. Krytyczna jest ta kolejność, żeby zapewnić, że powietrze jest naprawdę czyste i gotowe do użycia, bo w przeciwnym razie to może zrobić więcej złego niż dobrego w systemie pneumatycznym.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Aby zweryfikować ciągłość układów elektrycznych, wykorzystuje się

A. watomierz
B. amperomierz
C. omomierz
D. woltomierz
Wybór watomierza, woltomierza lub amperomierza do sprawdzenia ciągłości połączeń elektrycznych wskazuje na nieporozumienie w podstawowych funkcjach tych instrumentów. Watomierz służy do pomiaru mocy elektrycznej, co jest istotne w analizie zużycia energii, ale nie ma zastosowania w diagnozowaniu ciągłości przewodów. Woltomierz mierzy napięcie w obwodzie, co również nie jest bezpośrednio związane z oceną ciągłości połączeń. Może on wskazywać, czy napięcie istnieje w danym punkcie obwodu, ale nie informuje o jakości połączeń ani o możliwych przerwach. Amperomierz, z kolei, mierzy natężenie prądu, a jego użycie do sprawdzania ciągłości połączeń jest równie niewłaściwe, ponieważ wymaga on przepływu prądu przez obwód. Aby sprawdzić ciągłość, potrzebny jest pomiar rezystancji, co można zrobić tylko za pomocą omomierza. Stosowanie niewłaściwych narzędzi wynika często z braku zrozumienia ich funkcji oraz błędnych założeń, że pomiar innych wielkości może dostarczyć podobnych informacji. Kluczowe jest zatem, aby każdy technik i elektryk znał odpowiednie metody i narzędzia do diagnostyki instalacji elektrycznych, co pozwoli na skuteczną i bezpieczną pracę.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

W systemie mechatronicznym znajduje się 18 czujników cyfrowych, 4 przetworniki analogowe oraz 11 elementów wykonawczych działających w trybie dwustanowym. Jaką konfigurację modułowego sterownika PLC należy zastosować do zarządzania tym układem?

A. DI16/DO16 oraz AI2
B. DI32/DO16 oraz AI4
C. DI16/DO8 oraz AI4
D. DI32/DO8 oraz AI2
Wybór złej konfiguracji w systemie PLC może naprawdę narobić kłopotów. Na przykład, DI16/DO16 oraz AI2 to kiepski pomysł, bo mają za mało wejść. W twoim układzie potrzeba przynajmniej 18 wejść, więc DI16 będzie niewystarczające. A te 2 analogowe na AI2? No, raczej nie podepniesz wszystkich 4 przetworników, co może spowodować, że nie będziesz mógł monitorować ważnych parametrów. Możesz pomyśleć, że DI32/DO8 oraz AI2 to dobry plan, bo DI32 ma odpowiednią liczbę wejść, ale 8 wyjść cyfrowych to za mało, żeby obskoczyć 11 elementów wykonawczych. To może być frustrujące, bo układ może nie działać jak należy. Podobna sytuacja jest z DI16/DO8 oraz AI4 – znowu te 16 wejść to za mało na wszystkie czujniki. Generalnie, dobierając konfigurację sterowników PLC, dobrze jest mieć na uwadze nadmiarowość i elastyczność, bo wtedy system łatwiej dostosować do przyszłych potrzeb.