Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 5 maja 2025 14:38
  • Data zakończenia: 5 maja 2025 15:07

Egzamin zdany!

Wynik: 26/40 punktów (65,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Mianowanie roztworu KMnO4 następuje według poniższej procedury:
Około 0,2 g szczawianu sodu, ważonego z dokładnością ±0,1 mg, przenosi się do kolby stożkowej, rozpuszcza w około 100 cm3 wody destylowanej, następnie dodaje się 10 cm3 roztworu kwasu siarkowego(VI) i podgrzewa do temperatury około 70 °C. Miareczkowanie przeprowadza się roztworem KMnO4 do momentu uzyskania trwałego, jasnoróżowego koloru.
Powyższa procedura odnosi się do miareczkowania

A. alkacymetrycznego
B. kompleksometrycznego
C. redoksymetrycznego
D. potencjometrycznego
Miareczkowanie alkacymetryczne, potencjometryczne oraz kompleksometryczne to trzy różne techniki analizy chemicznej, które różnią się zasadami działania oraz rodzajem reakcji, które są stosowane. Miareczkowanie alkacymetryczne koncentruje się na zmianach pH roztworu oraz zastosowaniu wskaźników kwasowo-zasadowych, co jest nieodpowiednie w przypadku reakcji redoks, jak ta z manganianem(VII) potasu, gdzie zmiany kolorystyczne są spowodowane reakcjami utleniania i redukcji, a nie zmianą pH. Potencjometryczne metody pomiaru polegają na stosowaniu elektrody do pomiaru potencjału elektrochemicznego, co również nie pasuje do opisanego przypadku, ponieważ nie wykorzystuje się elektrochemicznych pomiarów do oceny końcowego punktu miareczkowania. Z kolei miareczkowanie kompleksometryczne opiera się na tworzeniu kompleksów między metalami a ligandami, co jest również nieadekwatne do działania manganianu(VII), który działa jako utleniacz. Właściwe zrozumienie tych technik jest kluczowe, aby uniknąć zamieszania i oszczędzić czas w laboratoriach, gdzie precyzyjne pomiary są niezbędne do uzyskania wiarygodnych wyników analitycznych. Często błędne rozumienie różnic między tymi metodami może prowadzić do niewłaściwej interpretacji wyników oraz nieprawidłowego doboru odczynników, co może mieć poważne konsekwencje w badaniach chemicznych.

Pytanie 2

Symbol "In" znajduje się na

A. kolbach miarowych i wskazuje na sprzęt kalibrowany "na wlew"
B. pipetach i oznacza sprzęt kalibrowany "na wylew"
C. kolbach miarowych i wskazuje na sprzęt kalibrowany "na wylew"
D. biuretach i oznacza sprzęt kalibrowany "na wlew"
Dobra robota! Odpowiedź, którą wybrałeś, jest całkiem trafna. Symbol 'In' rzeczywiście oznacza kolby miarowe, które służą do dokładnego mierzenia objętości cieczy. Kalibracja 'na wlew' jest kluczowa, bo chodzi o to, żeby zmierzyć ciecz do poziomu krawędzi menisku. To ma ogromne znaczenie, zwłaszcza w chemii, gdzie precyzja jest na wagę złota. W laboratoriach często korzysta się z kolb, żeby mieć pewność, że każdy eksperyment jest powtarzalny i wyniki są wiarygodne. Jak napełniasz kolbę do oznaczenia, to wiesz, że używasz całej tej objętości cieczy, co minimalizuje ryzyko błędów. Dlatego warto znać te symbole, bo to podstawa w pracy każdego chemika.

Pytanie 3

W przypadku kontaktu ze stężonym roztworem zasady, co należy zrobić jak najszybciej?

A. polać 3% roztworem wody utlenionej
B. skorzystać z amoniaku
C. zastosować 5% roztwór wodorowęglanu sodu
D. zmyć bieżącą wodą
W przypadku oblania się stężonym roztworem zasady kluczowe jest jak najszybsze zneutralizowanie i usunięcie kontaktu z substancją. Zmycie bieżącą wodą jest najbardziej efektywną i odpowiednią metodą, ponieważ pozwala na rozcieńczenie zasady oraz fizyczne usunięcie jej z powierzchni skóry lub materiału. Woda działa jako rozpuszczalnik, który zmniejsza stężenie zasady, co z kolei minimalizuje ryzyko uszkodzenia tkanek. W praktyce, zaleca się pod bieżącą wodą przepłukać obszar kontaktu przez co najmniej 15 minut, aby zapewnić skuteczne usunięcie substancji. Ponadto, w sytuacjach laboratoryjnych, przestrzega się standardów BHP, które nakładają obowiązek posiadania odpowiednich stacji do płukania oczu i ciała, aby szybko reagować na takie wypadki. Warto również pamiętać o noszeniu odpowiednich środków ochrony osobistej, takich jak rękawice i gogle, co może zminimalizować ryzyko kontaktu z niebezpiecznymi substancjami. Tylko w przypadku, gdy zasada nie jest zmyta, można myśleć o dalszym postępowaniu, jednak zawsze należy wrócić do podstawowej metody usuwania substancji.

Pytanie 4

Podaj kolejność odczynników chemicznych według rosnącego stopnia czystości?

A. Czysty do analizy, chemicznie czysty, czysty spektralnie, czysty
B. Czysty, czysty do analizy, chemicznie czysty, czysty spektralnie
C. Czysty spektralnie, chemicznie czysty, czysty do analizy, czysty
D. Czysty, chemicznie czysty, czysty do analizy, czysty spektralnie
Twoje uszeregowanie odczynników chemicznych jako 'Czysty, czysty do analizy, chemicznie czysty, czysty spektralnie' jest całkiem trafne. To widać, bo pokazuje to, jak rośnie czystość tych substancji. Zaczynając od 'Czysty', to jest taki poziom czystości, który może mieć zanieczyszczenia. Potem mamy 'czysty do analizy' - ta substancja była oczyszczona na tyle, że można ją używać w analizach chemicznych, gdzie te zanieczyszczenia naprawdę mogą namieszać wyniki. 'Chemicznie czysty' to taki poziom, który nie ma zanieczyszczeń chemicznych, więc nadaje się do bardziej wymagających zastosowań. I na koniec, 'czysty spektralnie' oznacza, że dana substancja jest wolna od zanieczyszczeń, które mogą zepsuć analizy spektroskopowe. W laboratoriach chemicznych często korzysta się z takich preparatów do uzyskiwania wiarygodnych wyników. Czyli, jak widać, odpowiednie standardy czystości są mega ważne dla powtarzalności i precyzji w eksperymentach i analizach.

Pytanie 5

Aby przeprowadzać ręczną obróbkę szkła w laboratorium, konieczne jest posiadanie okularów ochronnych oraz rękawic.

A. płócienne
B. zapewniające izolację termiczną
C. chroniące przed substancjami chemicznymi
D. zwykłe gumowe
Wybór odpowiednich rękawic do pracy ze szkłem laboratoryjnym to naprawdę ważna sprawa, bo chodzi o bezpieczeństwo. Takie rękawice muszą chronić przed wysokimi temperaturami, co jest kluczowe, gdy na przykład podgrzewamy szkło czy pracujemy z gorącymi elementami. Są zaprojektowane z materiałów, które dobrze znoszą ciepło, więc możesz być spokojny, że Twoje dłonie są chronione przed oparzeniami. W laboratoriach, gdzie obrabia się szkło, takie rękawice są niezbędne, szczególnie podczas odlewania czy formowania. Co więcej, przepisy BHP zalecają używanie specjalistycznych rękawic, które nie tylko chronią przed ciepłem, ale też są odporne na chemikalia. To dodatkowo podnosi poziom bezpieczeństwa. Dlatego warto dobrze przemyśleć, jakie rękawice wybierasz, żeby zadbać o swoje zdrowie i bezpieczeństwo w pracy.

Pytanie 6

Odpady, które w przeważającej mierze składają się z osadów siarczków metali ciężkich, nazywa się

A. stałe, palne
B. toksyczne, palne
C. stałe, niepalne
D. bardzo toksyczne, niepalne
Klasyfikacja odpadów jako stałe, palne, stałe, niepalne czy toksyczne, palne, wskazuje na pewne nieporozumienia dotyczące charakterystyki materiałów odpadowych. Odpady z osadami siarczków metali ciężkich są zdecydowanie niebezpieczne, jednak nie można ich zakwalifikować jako palne. Substancje te, ze względu na swoje chemiczne właściwości, nie ulegają zapłonowi w tradycyjnym sensie, co wyklucza klasyfikację jako palne. Klasyfikowanie tych odpadów jako stałe, palne, może prowadzić do błędnych praktyk w zarządzaniu odpadami, gdzie niewłaściwe metody unieszkodliwienia mogłyby skutkować poważnymi konsekwencjami dla zdrowia publicznego i środowiska. Podejście to ignoruje również istotne regulacje prawne, które wymagają stosowania odpowiednich metod zarządzania odpadami niebezpiecznymi. Z kolei klasyfikacja jako stałe, niepalne czy toksyczne, palne, może nie uwzględniać pełnej gamy zagrożeń związanych z obecnością metali ciężkich, które są bardzo toksyczne i nie powinny być lekceważone. Błędne rozumienie kategorii odpadowych może prowadzić do niewłaściwych działań, takich jak niewłaściwe składowanie czy transport, co stwarza dodatkowe ryzyko zanieczyszczenia środowiska. Dlatego kluczowe jest, aby przy klasyfikacji odpadów kierować się odpowiednimi normami, które uwzględniają wszystkie aspekty ich wpływu na zdrowie ludzi oraz środowisko.

Pytanie 7

Przedstawiony schemat ideowy ilustruje proces syntezy z propanu C3H8 → C3H7Cl → C3H6 → C3H6(OH)2 → C3H5(OH)2Cl → C3H5(OH)3

A. glicyny
B. glikolu etylowego
C. glicerolu
D. glikolu propylowego
Wybór glicyny, glikolu propylowego lub glikolu etylowego wskazuje na pewne nieporozumienia w zakresie chemii organicznej oraz procesów syntezy chemicznej. Glicyna jest aminokwasem, a nie alkoholem, co oznacza, że jej struktura chemiczna i właściwości nie są zgodne z wymaganiami procesu syntezy glicerolu. Glicyna jest podstawowym składnikiem białek oraz pełni rolę w metabolizmie jako prekursor wielu ważnych związków, jednak nie bierze udziału w opisanym procesie chemicznym, który dotyczy syntezy alkoholu trójwodorotlenowego. Glikol propylowy i glikol etylowy są związkami chemicznymi, które również nie odpowiadają strukturze glicerolu. Mimo że są to alkohole, ich powiązania z procesem syntezy glicerolu są znikome, a ich zastosowania są różne – glikol propylowy jest powszechnie stosowany jako rozpuszczalnik oraz substancja nawilżająca, a glikol etylowy głównie w chłodnictwie i jako składnik płynów hamulcowych. Zrozumienie różnic pomiędzy tymi substancjami oraz ich właściwościami chemicznymi jest niezwykle istotne dla skutecznego podejścia do syntez chemicznych. Zastosowanie właściwych terminów i zrozumienie ich funkcji w procesie produkcji substancji chemicznych jest kluczowe w pracy chemika i inżyniera chemicznego.

Pytanie 8

Aspirator jest urządzeniem wykorzystywanym do pobierania próbek

A. gleby
B. powietrza
C. ścieków
D. wody
Aspirator powietrza to urządzenie wykorzystywane do pobierania próbek gazów i powietrza w różnych zastosowaniach, w tym w monitorowaniu jakości powietrza, badaniach środowiskowych oraz analizach przemysłowych. Dzięki aspiratorom można uzyskać reprezentatywne próbki powietrza, co jest kluczowe w ocenie zanieczyszczeń atmosferycznych, takich jak pyły, gazy i toksyczne substancje chemiczne. Przykładowo, w branży ochrony środowiska aspiratory służą do oceny stężenia substancji lotnych w powietrzu, co jest istotne dla przestrzegania norm emisji określonych przez przepisy prawa, w tym standardy Unii Europejskiej. Dobre praktyki w używaniu aspiratorów obejmują regularne kalibracje urządzeń oraz stosowanie filtrów, które zwiększają dokładność pobierania próbek. Dodatkowo, aspiratory są często wykorzystywane w laboratoriach do badania powietrza w pomieszczeniach, co ma na celu ochronę zdrowia ludzi oraz zapewnienie odpowiednich warunków pracy.

Pytanie 9

Który z etapów przygotowania próbek do analizy opisano w ramce?

Proces polegający na usuwaniu wody z zamrożonego materiału na drodze sublimacji lodu, tzn. bezpośredniego jego przejścia w stan pary z pominięciem stanu ciekłego.

A. Liofilizację.
B. Wstępne suszenie.
C. Utrwalanie.
D. Oznaczanie wilgoci.
Liofilizacja jest procesem, który polega na sublimacji lodu z zamrożonego materiału, co oznacza, że woda przechodzi bezpośrednio w stan pary, omijając fazę ciekłą. Jest to kluczowa technika stosowana w wielu dziedzinach, w tym w biologii komórkowej, farmacji oraz produkcji żywności. Liofilizacja pozwala na zachowanie struktury oraz właściwości chemicznych materiału, co czyni ją idealnym rozwiązaniem dla preparatów, które są wrażliwe na temperaturę oraz wilgoć. Proces ten jest często stosowany do konserwacji próbek biologicznych, takich jak komórki, białka czy enzymy. Przykładowo, w przemyśle farmaceutycznym, liofilizowane leki są bardziej stabilne i mają dłuższy okres przydatności do spożycia. Dodatkowo, liofilizacja ułatwia transport i przechowywanie próbek, gdyż zmniejsza ich masę i objętość, co jest korzystne w logistyce. Zgodnie ze standardami branżowymi, dobry proces liofilizacji powinien być ściśle kontrolowany, aby zminimalizować ryzyko degradacji cennych substancji.

Pytanie 10

W laboratoriach roztwór potasu dichromianu(VI) w stężonym kwasie siarkowym(VI) wykorzystuje się do

A. wytrącania trudno rozpuszczalnych soli w wodzie
B. czyszczenia szkła laboratoryjnego
C. odkamieniania urządzeń wodnych
D. roztwarzania różnych stopów
Wybór odpowiedzi na temat wytrącania soli trudno rozpuszczalnych w wodzie jest błędny, ponieważ dichromian(VI) potasu nie jest stosowany w procesie wytrącania soli, lecz głównie w myciu szkła. W kontekście chemii, wytrącanie soli polega na mieszaniu rozpuszczalników i reagentów w takich warunkach, które sprzyjają krystalizacji, co jest procesem chemicznym zupełnie odmiennym od działania dichromianu(VI), który nie powoduje tworzenia osadów. Roztwór dichromianu potasu w stężonym kwasie siarkowym nie jest również odpowiedni do roztwarzania stopów, ponieważ jego działanie utleniające nie przekształca metali w formę rozpuszczalną. Przy roztwarzaniu stopów najczęściej wykorzystuje się kwasy o silniejszym działaniu, takie jak kwas azotowy, które są w stanie rozpuścić metale. Z kolei zastosowanie dichromianu w odkamienianiu łaźni wodnych jest również niepoprawne. W tego rodzaju procesach stosuje się zazwyczaj kwasy takie jak kwas solny, które skutecznie usuwają osady kamienia, a nie utleniacze. Użycie dichromianu w tych kontekstach sugeruje brak zrozumienia podstawowych reakcji chemicznych oraz ich zastosowań, co prowadzi do błędnych wniosków i może skutkować nieefektywnymi lub wręcz niebezpiecznymi praktykami laboratoryjnymi, dlatego ważne jest, aby mieć na uwadze odpowiednie metody oraz dobre praktyki laboratoryjne przy wyborze substancji do określonych zadań.

Pytanie 11

Która z metod pozwala na oddzielanie składników mieszaniny na podstawie różnic w ich zachowaniu w układzie składającym się z dwóch faz, z których jedna jest fazą stacjonarną, a druga porusza się w określonym kierunku względem niej?

A. Krystalizacja
B. Sublimacja
C. Destylacja
D. Chromatografia
Chromatografia to technika analityczna, która wykorzystuje różnice w zachowaniu się poszczególnych związków chemicznych w układzie dwufazowym. W tym procesie jedna z faz, nazywana fazą stacjonarną, jest nieruchoma, podczas gdy druga faza, faza ruchoma, przemieszcza się w określonym kierunku. Działa to na zasadzie interakcji między składnikami mieszaniny a tymi fazami. Różne substancje w mieszaninie mają różne affinności do fazy stacjonarnej, co prowadzi do ich rozdzielenia. Przykładem zastosowania chromatografii jest analiza składników chemicznych w próbkach wody, gdzie różne zanieczyszczenia mogą być oddzielane i identyfikowane. Chromatografia jest szeroko stosowana w przemyśle farmaceutycznym, biotechnologii oraz w laboratoriach analitycznych do oceny czystości substancji chemicznych. Technika ta jest zgodna z międzynarodowymi standardami jakości, co czyni ją kluczowym narzędziem w badaniach i kontrolach jakości.

Pytanie 12

Czy próbkę laboratoryjną przechowuje się w lodówce, gdy występuje w niej

A. rozpad promieniotwórczy
B. degradacja termiczna
C. chłonięcie wody
D. utrata lotnych składników
Rozpatrując odpowiedzi dotyczące przechowywania próbki laboratoryjnej, warto zauważyć, że niektóre podejścia są mylące i mogą prowadzić do nieprawidłowych wniosków. Rozpad promieniotwórczy nie jest procesem, który można kontrolować przez działanie temperatury, gdyż jest to zjawisko fizyczne związane z czasem połowicznego rozpadu izotopów. Przechowywanie próbek w lodówce nie ma wpływu na ten proces, ponieważ nie eliminuje on promieniotwórczości. Podobnie, chłonięcie wody, które jest raczej zjawiskiem związanym z adsorpcją lub dyfuzją, nie jest bezpośrednio związane z degradacją termiczną. Wysoka wilgotność może wpływać na niektóre próbki, ale nie jest to główny powód, dla którego próbki przechowuje się w chłodniach. Utrata lotnych składników, chociaż może być istotna, dotyczy raczej zjawisk, które są efektem obróbki lub analizy, a nie samym procesem przechowywania. Właściwe przechowywanie próbek jest zatem kluczowe, aby uniknąć degradacji termicznej, a nie zjawisk związanych z promieniotwórczością czy adsorpcją. W praktyce, nieprawidłowe zrozumienie tych procesów może prowadzić do błędów w analizach laboratoryjnych, co w konsekwencji wpływa na diagnostykę medyczną i wyniki badań. Przechowywanie próbek w odpowiednich warunkach zgodnych z wytycznymi branżowymi jest kluczowe dla zapewnienia ich stabilności i właściwej analizy.

Pytanie 13

Błąd związany z odczytem poziomu cieczy w kolbie miarowej, spowodowany niewłaściwą pozycją oka w stosunku do skali, nazywany jest błędem

A. instrumentalnym
B. paralaksy
C. dokładności
D. losowym
Wybór 'paralaksy' to strzał w dziesiątkę! To dotyczy błędu w odczycie, który ma związek z tym, jak nasze oczy widzą coś z określonego kąta. Tak naprawdę paralaksa to ciekawe zjawisko optyczne – jakby obiekt wydaje się zmieniać, kiedy patrzymy na niego z różnych miejsc. W laboratorium, przy pomiarach cieczy w kolbie miarowej, bardzo ważne jest, żeby dobrze ustawić wzrok na menisku. Jak nie patrzymy z odpowiedniego poziomu, to możemy źle odczytać, ile płynu mamy. To jest kluczowe, zwłaszcza w chemii, gdzie dokładność to podstawa. No i jest kilka standardów, jak ISO 8655, które mówią, jak powinno się to robić, żeby wyniki były wiarygodne. Także pamiętaj, patrząc na menisk, rób to na wysokości oczu, żeby uniknąć błędów – to naprawdę robi różnicę.

Pytanie 14

Po rozpuszczeniu substancji w kolbie miarowej, należy odczekać przed dopełnieniem jej wodą "do kreski" miarowej. Taki sposób postępowania jest uzasadniony

A. opóźnieniem w osiągnięciu równowagi dysocjacji
B. koniecznością dokładnego wymieszania roztworu
C. potrzebą wyrównania temperatury roztworu z otoczeniem
D. opóźnieniem w ustaleniu się kontrakcji objętości
Podczas analizy niepoprawnych odpowiedzi warto zauważyć, że zwłoka w ustaleniu się równowagi dysocjacji, choć istotna w kontekście niektórych roztworów, nie jest głównym powodem oczekiwania przed dopełnieniem roztworu. Dysocjacja substancji chemicznych, takie jak kwasów czy zasad, rzeczywiście może wymagać czasu, ale w kontekście dopełniania do kreski w kolbie miarowej, kluczowe jest wyrównanie temperatury. Ponadto, wskazanie na konieczność dobrego wymieszania roztworu nie jest wystarczające, gdyż samo wymieszanie nie uwzględnia wpływu temperatury na objętość cieczy. Koncentracje i właściwości roztworów są ściśle związane z temperaturą, co oznacza, że dopełnienie w momencie, gdy roztwór ma różne temperatury od otoczenia, może prowadzić do błędów w pomiarach. Wspomniana zwłoka w ustaleniu się kontrakcji objętości dotyczy bardziej specyficznych sytuacji, które nie są powszechnie rozpatrywane w kontekście standardowych praktyk przygotowywania roztworów. Typowe błędy myślowe w tym przypadku mogą obejmować brak zrozumienia, jak temperatura wpływa na objętość cieczy oraz jakie są konsekwencje niedopasowania temperatury dla właściwości roztworu. Kluczowe jest zrozumienie, że każde przygotowywanie roztworu wymaga staranności i uwagi na detale, aby zapewnić dokładność i niezawodność wyników analitycznych.

Pytanie 15

Z uwagi na higroskopijne właściwości tlenku fosforu(V) powinien on być przechowywany w warunkach bez dostępu

A. ciepła
B. światła
C. powietrza
D. tlenu
Tlenek fosforu(V), czyli P2O5, ma naprawdę mocne właściwości higroskopijne, więc potrafi wciągać wilgoć z otoczenia. Dlatego najlepiej trzymać go w suchym miejscu, z dala od powietrza – to ważne, żeby nie doszło do reakcji z wodą, bo wtedy może stracić swoje właściwości. Jak jest za wilgotno, P2O5 może zacząć tworzyć kwas fosforowy, a to zmienia jego charakterystykę i może być problem, gdy chcesz go używać. Ten związek jest często stosowany w produkcji nawozów fosforowych oraz w chemii organicznej, a także w procesach suszenia. Dlatego w chemii ważne są dobre praktyki przechowywania takich substancji, czyli hermetyczne pakowanie i osuszacze. Wiedza o tym, jak prawidłowo składować tlenek fosforu(V), jest kluczowa, żeby zachować jego jakość i skuteczność w różnych zastosowaniach, zarówno przemysłowych, jak i laboratoryjnych.

Pytanie 16

Do systemu odprowadzania ścieków, w formie rozcieńczonego roztworu wodnego o maksymalnej masie 100 g na raz, można wprowadzić

A. NaCl
B. Pb(NO3)2
C. BaCl2
D. AgF
NaCl, czyli chlorek sodu, jest substancją, która doskonale nadaje się do wprowadzania do systemu kanalizacyjnego w formie rozcieńczonego roztworu wodnego. Jest to związek chemiczny, który jest w pełni rozpuszczalny w wodzie i nie niesie ze sobą ryzyka wprowadzenia do środowiska toksycznych substancji. W kontekście standardów ochrony środowiska, NaCl jest szeroko stosowany w różnych dziedzinach, od przemysłu spożywczego po przemysł chemiczny, dzięki czemu jego obecność w kanalizacji jest akceptowalna. NaCl jest także stosowany do wspomagania procesów oczyszczania w oczyszczalniach ścieków, ponieważ wspiera działanie mikroorganizmów odpowiedzialnych za biodegradację organicznych zanieczyszczeń. Bezpieczeństwo stosowania soli kuchennej w ilości do 100 g jednorazowo jest zgodne z dobrymi praktykami w zakresie zarządzania odpadami, co czyni ją idealnym rozwiązaniem w tej sytuacji.

Pytanie 17

W celu wydania świadectwa kontroli jakości odczynnika chemicznego - jodku potasu cz.d.a. przeprowadzono jego analizę. Wymagania oraz wyniki badań zapisano w tabeli:
Z analizy danych zawartych w tabeli wynika, że jodek potasu cz.d.a.

WymaganiaWynik badania
Zawartość KImin. 99,5%99,65%
Wilgoćmax. 0,1%0,075%
Substancje nierozpuszczalne w wodziemax. 0,005%0,002%
pH (5%, H2O)6 ÷ 86,8
Azot ogólny (N)max. 0,001%0,0007%
Chlorki i bromki (j. Cl)max. 0,01%0,004%
Fosforany (PO4)max. 0,001%0,0006%
Jodany (IO3)max. 0,0003%0,0001%
Siarczany (SO4)max. 0,001%0,0004%
Metale ciężkie (j. Pb)max. 0,0005%0,00025%
Arsen (As)max. 0,00001%0,000006%
Magnez (Mg)max. 0,001%0,0004%
Sód (Na)max. 0,05%0,015%
Wapń (Ca)max. 0,001%0,0006%
Żelazo (Fe)max. 0,0003%0,0003%

A. nie spełnia wymagań pod względem zawartości żelaza.
B. spełnia wymagania i można wydać świadectwo jakości.
C. nie spełnia wymagań pod względem pH i zawartości jodanów.
D. nie spełnia wymagań pod względem zawartości metali ciężkich.
Twoja odpowiedź jest na pewno trafna. Jodek potasu cz.d.a. rzeczywiście spełnia normy jakościowe, co jest bardzo ważne, gdy mówimy o wydaniu świadectwa kontroli jakości. W badaniach wyszło, że zawartość jodku potasu wynosi 99,65%, co jest lepsze niż wymagane 99,5%. To świetny wynik! Poza tym inne parametry, takie jak pH, wilgotność czy substancje nierozpuszczalne w wodzie, też są w normie. Z mojego doświadczenia, spełnianie norm to kluczowa sprawa, zwłaszcza w farmacji czy chemii analitycznej. Świadectwo jakości potwierdza, że produkt jest nie tylko zgodny z normami, ale również można go bezpiecznie używać. W laboratoriach warto regularnie sprawdzać i dokumentować wyniki, żeby mieć pewność, że wszystko jest na czasie z obowiązującymi standardami i zasadami bezpieczeństwa.

Pytanie 18

Mianowanie roztworu o stężeniu przybliżonym można wykonać poprzez

A. miareczkowanie innym roztworem mianowanym o ściśle określonym stężeniu.
B. zmierzenie gęstości tego roztworu.
C. miareczkowanie tym samym roztworem mianowanym o ściśle określonym stężeniu.
D. miareczkowanie innym roztworem, który nie jest mianowany.
Mianowanie roztworu o stężeniu przybliżonym można skutecznie przeprowadzić poprzez miareczkowanie innym roztworem mianowanym o ściśle określonym stężeniu, ponieważ pozwala to na precyzyjne określenie ilości molesów substancji czynnej w analizowanym roztworze. W praktyce, podczas miareczkowania wykorzystuje się znany roztwór o dokładnie zmierzonym stężeniu, co pozwala na dokładne obliczenia i analizę wyników. Na przykład, w laboratoriach chemicznych często wykorzystuje się miareczkowanie kwasu solnego roztworem wodorotlenku sodu o znanym stężeniu, co umożliwia precyzyjne określenie stężenia kwasu. Zgodnie z normami branżowymi, takimi jak ISO 8655, precyzyjne miareczkowanie jest kluczowe dla uzyskania wiarygodnych wyników analitycznych. Dodatkowo, stosowanie roztworów mianowanych eliminuje wiele zmiennych, które mogłyby wpłynąć na wynik, takich jak niejednorodność roztworów niemianowanych, co czyni je bardziej niezawodnymi w kontekście stosowania w analizach laboratoryjnych.

Pytanie 19

Który z podanych związków chemicznych można wykorzystać do oceny całkowitego usunięcia jonów chlorkowych z osadu?

A. KNO3
B. Al(NO3)3
C. Cu(NO3)2
D. AgNO3
AgNO3, czyli azotan srebra, jest powszechnie stosowanym reagentem w chemii analitycznej, który umożliwia identyfikację i oznaczanie jonów chlorkowych. Jony srebra z azotanu srebra reagują z jonami chlorkowymi, tworząc nierozpuszczalny osad chlorku srebra (AgCl). Ta reakcja jest zasadnicza w procesach, w których kontrola czystości chemicznej jest kluczowa, na przykład w laboratoriach analitycznych oraz w przemyśle chemicznym. W praktyce, próbka z osadu, w której podejrzewa się obecność jonów chlorkowych, może zostać poddana działaniu AgNO3. Po dodaniu reagentu, wystąpienie białego osadu AgCl wskazuje na obecność chlorków. Procedura ta jest zgodna z normami określonymi w analizach chemicznych, co czynią ją wiarygodną metodą w różnych zastosowaniach. Ponadto, reakcja ta jest również wykorzystywana w edukacji chemicznej do demonstrowania właściwości reakcji podwójnej wymiany, co czyni ją ważnym elementem programu nauczania w szkołach wyższych oraz technicznych.

Pytanie 20

Aby zebrać próbki gazów, wykorzystuje się

A. aspiratory
B. detektory gazów
C. miarki cylindryczne
D. butelki z plastikowym wieczkiem
Aspiratory są urządzeniami zaprojektowanymi specjalnie do pobierania próbek gazowych w kontrolowanych warunkach. Ich działanie polega na wykorzystaniu podciśnienia do zasysania gazów z określonego otoczenia, co pozwala na zbieranie reprezentatywnych prób do dalszej analizy. W laboratoriach chemicznych oraz w przemyśle petrochemicznym aspiratory są niezbędne do monitorowania jakości powietrza, a także do wykrywania zanieczyszczeń gazowych. Przykładem zastosowania aspiratorów jest ich użycie w badaniach środowiskowych, gdzie ocenia się stężenie szkodliwych substancji w atmosferze. Standardy, takie jak ISO 16000, określają metody pobierania próbek gazowych, a stosowanie aspiratorów jest zgodne z najlepszymi praktykami w tej dziedzinie, zapewniając dokładność i wiarygodność wyników analitycznych. Ponadto, aspiratory mogą być używane do analizy gazów wydechowych w przemyśle motoryzacyjnym, co jest kluczowe dla oceny emisji i przestrzegania norm ekologicznych.

Pytanie 21

W trakcie kalibracji stężenia roztworu kwasu solnego na przynajmniej przygotowany roztwór zasady sodowej ma miejsce reakcja

A. wytrącania osadu
B. redoks
C. zobojętniania
D. hydrolizy
Odpowiedź 'zobojętniania' jest prawidłowa, ponieważ podczas reakcji pomiędzy kwasem solnym (HCl) a zasadowym roztworem sodowym (NaOH) dochodzi do neutralizacji, co jest klasycznym przykładem reakcji zobojętniania. W tej reakcji protony (H+) z kwasu reagują z jonami hydroksylowymi (OH-) z zasady, tworząc cząsteczki wody (H2O) oraz sól (NaCl). Proces ten jest fundamentalny w chemii analitycznej, szczególnie w titracji, gdzie precyzyjne określenie stężenia kwasu czy zasady jest kluczowe. Stosując mianowany roztwór NaOH do titracji HCl, uzyskujemy dokładny wynik, który jest niezbędny w laboratoriach do opracowywania roztworów o znanym stężeniu. Reakcje zobojętnienia są powszechnie wykorzystywane w różnych dziedzinach, w tym w przemyśle chemicznym, farmaceutycznym oraz w produkcji żywności, aby kontrolować pH i zapewnić właściwe warunki dla procesów chemicznych.

Pytanie 22

W którym wierszu tabeli podano ilości substancji i wody, potrzebne do sporządzenia 350 g roztworu o stężeniu 7%?

Masa substancjiMasa wody
A.24,5 g350 g
B.24,5 g325,5 g
C.7 g343 g
D.7 g350 g

A. D.
B. C.
C. B.
D. A.
Odpowiedź B jest poprawna, ponieważ została obliczona zgodnie z zasadami dotyczących stężenia roztworów. Stężenie 7% oznacza, że w 100 g roztworu znajduje się 7 g substancji rozpuszczonej. W przypadku 350 g roztworu, masa substancji wynosi 7% z 350 g, co daje 24.5 g. Różnica między masą całkowitą roztworu a masą substancji, czyli 350 g - 24.5 g, daje 325.5 g wody. Takie obliczenia są zgodne z fundamentalnymi zasadami chemii i są powszechnie stosowane w laboratoriach chemicznych, farmaceutycznych i różnych dziedzinach przemysłu, gdzie precyzyjne przygotowanie roztworów jest kluczowe. Zrozumienie obliczeń stężenia roztworów pozwala na dokładne przygotowania roztworów o określonych właściwościach, co jest istotne w procesach analitycznych oraz produkcyjnych.

Pytanie 23

Roztwór o dokładnej masie z odważki analitycznej powinien być sporządzony

A. w zlewce
B. w kolbie stożkowej
C. w cylindrze miarowym
D. w kolbie miarowej
Roztwór mianowany z odważki analitycznej należy przygotować w kolbie miarowej, ponieważ ta szklana naczynie jest zaprojektowane do precyzyjnego przygotowywania roztworów o określonych objętościach. Kolby miarowe są wyposażone w wyraźne oznaczenia, które pozwalają na dokładne odmierzenie objętości cieczy, co jest kluczowe w chemii analitycznej. Przygotowując roztwór, należy najpierw rozpuścić odważoną ilość substancji w niewielkiej objętości rozpuszczalnika, a następnie uzupełnić do oznaczonej objętości. Dzięki temu otrzymujemy roztwór o znanym stężeniu, co jest niezbędne w różnych analizach chemicznych. Przykładem praktycznym jest przygotowanie roztworu buforowego, gdzie precyzyjne stężenie reagentów wpływa na efektywność reakcji chemicznych. Standardy przygotowania roztworów, takie jak ISO 8655, podkreślają znaczenie stosowania odpowiednich naczyń do uzyskania wiarygodnych wyników.

Pytanie 24

Do wykrywania pierwiastków w niskich stężeniach w badaniach spektrograficznych należy używać reagentów

A. czystych
B. spektralnie czystych
C. chemicznie czystych
D. czystych do badań
Odpowiedź 'spektralnie czyste' jest prawidłowa, ponieważ oznaczanie pierwiastków śladowych w metodach spektrograficznych wymaga stosowania reagentów o wysokiej czystości, które nie zawierają zanieczyszczeń mogących wpływać na wyniki analizy. Spektralna czystość reagentów odnosi się do minimalizacji obecności innych pierwiastków, które mogłyby wprowadzać błędy w pomiarach, co jest kluczowe w przypadku analiz o niskich granicach detekcji. Standardowe praktyki w laboratoriach chemicznych wskazują na konieczność stosowania reagentów, które były poddawane odpowiednim procesom oczyszczania, takim jak destylacja czy chromatografia, aby uzyskać ich spektralne czystości. Przykładem mogą być reakcje analityczne w spektrometrii mas, gdzie nawet drobne zanieczyszczenia mogą prowadzić do fałszywych identyfikacji i ilościowych pomiarów. W ten sposób, zachowanie standardów spektralnej czystości reagentów w praktyce laboratoryjnej jest niezbędne dla uzyskania wiarygodnych wyników analizy.

Pytanie 25

Do przechowywania stężonego kwasu azotowego(V) w laboratorium należy stosować:

A. Metalową puszkę bez wieczka
B. Aluminiowy termos laboratoryjny
C. Szczelnie zamknięte butelki z ciemnego szkła
D. Otwarty plastikowy pojemnik
Kwas azotowy(V) to substancja wyjątkowo agresywna chemicznie i niebezpieczna. Przechowuje się go w szczelnie zamkniętych butelkach z ciemnego szkła, bo to materiał odporny na jego działanie oraz chroniący przed światłem. Światło przyspiesza rozkład kwasu azotowego, a ciemne szkło ogranicza ten proces, co ma kluczowe znaczenie dla zachowania jego właściwości. Dodatkowo szczelne zamknięcie zapobiega uwalnianiu się szkodliwych par oraz absorpcji wilgoci z powietrza, co mogłoby prowadzić do niepożądanych reakcji i obniżenia stężenia. To rozwiązanie zgodne z większością norm BHP i zaleceniami producentów odczynników chemicznych. W praktyce laboratoryjnej stosowanie ciemnych butelek jest po prostu standardem, bo minimalizuje ryzyko zarówno dla ludzi jak i samej substancji. Warto pamiętać, że kwas azotowy atakuje większość metali oraz niektóre tworzywa sztuczne, dlatego szkło jest tu najbezpieczniejsze. Dodatkowo – dobra praktyka to trzymać takie butelki w szafkach chemoodpornych, najlepiej z wentylacją. Moim zdaniem, jeśli ktoś planuje pracę w laboratorium, powinien znać te zasady na pamięć.

Pytanie 26

Podczas reakcji chlorku żelaza(III) z wodorotlenkiem potasu dochodzi do wytrącenia wodorotlenku żelaza(III) w formie

A. galaretowatego osadu
B. drobnokrystalicznego osadu
C. serowatego osadu
D. grubokrystalicznego osadu
Wybór odpowiedzi dotyczący serowatego, grubokrystalicznego lub drobnokrystalicznego osadu opiera się na nieprawidłowym zrozumieniu mechanizmów wytrącania i struktury fizycznej osadów. Serowaty osad sugeruje odmienną teksturę, która jest charakterystyczna dla innych reakcji, na przykład związanych z osadzaniem koloidalnym, gdzie cząsteczki tworzą bardziej stałe, twarde struktury. Grubokrystaliczny osad natomiast wskazuje na obecność dużych, wyraźnych kryształów, co jest typowe dla reakcji krystalizacji o niskiej rozpuszczalności, a nie dla wodorotlenku żelaza(III), który ma tendencję do formowania się w postaci bardziej jednorodnej, galaretowatej. Drobnokrystaliczny osad może być mylący, ponieważ sugeruje, że produkt reakcji ma bardzo małe, jednorodne kryształy, co znów nie odnosi się do rzeczywistej natury wodorotlenku żelaza(III), który w warunkach reakcji z wodorotlenkiem potasu przyjmuje bardziej złożoną, galaretowatą formę. Takie nieporozumienia mogą wynikać z błędnego postrzegania roli pH i stężenia reagentów w procesie wytrącania, co jest kluczowe dla zrozumienia właściwości chemicznych osadów. Zachęcam do przestudiowania literatury dotyczącej chemii koordynacyjnej oraz procesów osadzania, aby lepiej zrozumieć te zjawiska.

Pytanie 27

Wodę do badań mikrobiologicznych powinno się pobierać do butelek

A. sterylnych
B. zanurzonych wcześniej na 2-3 minuty w alkoholu etylowym
C. starannie wypłukanych, na przykład po niegazowanej wodzie mineralnej
D. umytych wodorotlenkiem sodu
Pobieranie próbek wody do badań mikrobiologicznych powinno odbywać się wyłącznie w sterylnych butelkach, co ma kluczowe znaczenie dla uzyskania wiarygodnych wyników. Sterylność opakowania eliminuje ryzyko kontaminacji próbki przez mikroorganizmy z otoczenia. W praktyce, butelki do pobierania wody mikrobiologicznej są zazwyczaj produkowane z materiałów, które można wysterylizować, a ich zamknięcia są zaprojektowane tak, aby zapobiegać wszelkim kontaktom z zanieczyszczeniami. Ponadto, w przypadku badań mikrobiologicznych, takie wymagania są zgodne z normami, takimi jak ISO 5667, które określają procedury pobierania wody. Użycie sterylnych pojemników jest szczególnie istotne, gdyż mikroorganizmy mogą być obecne w różnych formach, a nawet niewielka ilość zanieczyszczeń może prowadzić do fałszywych wyników. Dlatego w laboratoriach oraz w trakcie inspekcji sanitarno-epidemiologicznych stosuje się ściśle określone procedury, aby zapewnić wysoką jakość i wiarygodność badań.

Pytanie 28

Temperatura wrzenia aniliny przy normalnym ciśnieniu wynosi 457,13 K. W trakcie jej oczyszczania metodą destylacji prostej pod ciśnieniem atmosferycznym należy zebrać frakcję wrzącą w przedziale temperatur

A. 181 °C - 185 °C
B. 178 °C - 182 °C
C. 185 °C - 190 °C
D. 175 °C - 179 °C
Odpowiedź 181 °C - 185 °C jest poprawna, ponieważ temperatura wrzenia aniliny wynosząca 457,13 K odpowiada 184 °C. W procesie destylacji prostej, aby skutecznie oddzielić substancję, należy zbierać frakcję wrzącą wokół tej wartości, co oznacza, że optymalny zakres do zbierania frakcji to 181 °C - 185 °C. W praktyce, aby zapewnić wysoką czystość destylatu, zwykle ustawia się zakres tak, aby obejmował temperatury bliskie wartości wrzenia, z uwzględnieniem ewentualnych wahań związanych z ciśnieniem atmosferycznym i zanieczyszczeniami. Przykładem zastosowania tej wiedzy jest przemysł chemiczny, gdzie oczyszczanie substancji chemicznych, takich jak anilina, jest kluczowe dla uzyskania wysokiej jakości produktów. Standardy branżowe, takie jak ISO 9001, podkreślają znaczenie dokładności pomiarów temperatury i stosowania odpowiednich metod oczyszczania, co jest niezbędne dla zapewnienia jakości i bezpieczeństwa procesów chemicznych.

Pytanie 29

Aby uzyskać Cr2O3, dichromian(VI) amonu został poddany rozkładowi. Po rozpoczęciu, egzotermiczna reakcja rozkładu przebiega samorzutnie.
(NH4)2Cr2O7 → Cr2O3 + 4 H2O + N2 Jak oceniasz zakończenie tej reakcji?

A. W otrzymanym zielonym proszku Cr2O3 nie powinny być widoczne pomarańczowe kryształy substratu
B. Ocena nie jest potrzebna, ponieważ tego typu reakcja zawsze zachodzi do końca
C. Woda, po dodaniu szczypty uzyskanego preparatu, nie zabarwi się na pomarańczowo niewykorzystanym dichromianem (VI)
D. Ocena nie jest potrzebna, ponieważ wytworzone produkty są w stanie gazowym w temperaturze reakcji
Oceny dotyczące zakończenia reakcji nie można podejmować wyłącznie na podstawie obecności gazów, ponieważ niektóre reakcje mogą prowadzić do powstawania produktów w stanie stałym lub cieczy, które nie ulegają dalszym przemianom. Niepoprawne jest twierdzenie, że w przypadku reakcji rozkładu dichromianu (VI) amonu, sama egzotermiczność oznacza, że reakcja zawsze dobiegnie końca bez dalszych ocen. Niezrozumienie tego aspektu może prowadzić do błędnych wniosków, zwłaszcza gdy reakcji towarzyszy wydzielanie gazów. Ponadto, ocena obecności pomarańczowych kryształów może prowadzić do mylnych wniosków, gdyż nie każdy związek chromu prezentuje te same właściwości barwne. Kryształy dichromianu (VI) mają charakterystyczny kolor pomarańczowy, ale po zakończeniu reakcji i uzyskaniu tlenku chromu (III) nie powinny być już widoczne. Dlatego też, w praktyce chemicznej, powinniśmy korzystać z bardziej rzetelnych metod oceny, takich jak analizy spektroskopowe czy chromatograficzne, które pozwalają na dokładną identyfikację produktów reakcji i eliminację ryzyka błędnej interpretacji wyników. Uczenie się na błędach analitycznych oraz stosowanie dobrych praktyk laboratoryjnych to kluczowe elementy, które powinny być zawsze brane pod uwagę podczas oceny końcowego efektu reakcji chemicznych.

Pytanie 30

W przypadku rozlania żrącego odczynnika chemicznego na skórę pierwszym poprawnym działaniem jest:

A. Pocieranie miejsca kontaktu papierowym ręcznikiem
B. Zaklejenie miejsca plastrem
C. Natychmiastowe spłukanie miejsca kontaktu dużą ilością wody
D. Posypanie miejsca solą kuchenną
Postępowanie w przypadku kontaktu skóry z substancją żrącą jest jednym z podstawowych elementów bezpieczeństwa w laboratorium chemicznym. Najważniejsze jest, żeby działać szybko i skutecznie. Od razu po rozlaniu żrącego odczynnika trzeba spłukać miejsce kontaktu dużą ilością wody – najlepiej bieżącej. To nie tylko rozcieńcza szkodliwy związek, ale przede wszystkim usuwa go z powierzchni skóry, zmniejszając ryzyko głębszych uszkodzeń tkanek. Praktyka ta wynika z ogólnych zasad BHP obowiązujących w laboratoriach oraz wytycznych instytutów takich jak CIOP czy OSHA. Efektywność tej metody potwierdzają liczne badania. Szybka reakcja pozwala ograniczyć wchłanianie substancji i minimalizuje skutki poparzeń chemicznych. Nawet jeśli żrący środek wydaje się mało agresywny, nie wolno tego bagatelizować. Dobrze mieć też pod ręką prysznic bezpieczeństwa lub zestaw do płukania oczu, zwłaszcza w laboratoriach chemicznych. Warto pamiętać, że niektóre substancje wymagają dłuższego płukania – nawet do 15 minut. Dodatkowo po takim incydencie zawsze należy zgłosić zdarzenie przełożonemu i skonsultować się z lekarzem. Z mojego doświadczenia, szybkie działanie i wiedza o pierwszej pomocy to rzeczy, które naprawdę robią różnicę w laboratoriach. Ostatecznie – lepiej spłukać odczynnik za długo, niż za krótko. To jedna z tych zasad, które zawsze warto mieć z tyłu głowy podczas pracy z chemikaliami.

Pytanie 31

Na podstawie zamieszczonych w tabeli opisów metod rozdzielania mieszanin, dobierz odpowiadające im nazwy.

Tabela. Metody rozdzielania mieszanin
Lp.Opis metody
I.Zlewanie cieczy znad osadu.
II.Przeprowadzenie ciekłego rozpuszczalnika w stan pary.
III.Wyodrębnianie z mieszaniny ciał stałych lub cieczy składnika przy pomocy rozpuszczalnika tak dobranego, aby rozpuszczał żądany związek chemiczny.
IV.Powolne opadanie cząstek substancji stałej w cieczy pod wpływem własnego ciężaru.

A. I – sedymentacja II– krystalizacja, III – ekstrakcja, IV – dekantacja.
B. I – dekantacja, II – sublimacja, III – filtracja, IV – sedymentacja.
C. I – sedymentacja, II – sublimacja, III – destylacja, IV – dekantacja.
D. I – dekantacja, II – odparowanie, III – ekstrakcja, IV – sedymentacja.
Wybór niepoprawnej odpowiedzi może wynikać z nieprawidłowego zrozumienia metod separacji mieszanin. Dekantacja to nie tylko proste zlewanie cieczy, lecz także bardziej zaawansowany proces, który wymaga znajomości odpowiednich technik, aby skutecznie oddzielić ciecz od osadu. Z kolei sublimacja, jako proces przejścia substancji z fazy stałej w gazową, ma swoje szczególne zastosowanie, ale nie jest stosowana do oddzielania mieszanych substancji w sposób opisany w pytaniu. Krystalizacja i ekstrakcja to również różne metody separacji, które mają swoje unikalne zastosowania, jednak ich definicje zostały pomieszane. Odparowanie jest procesem, który dokonuje się przez podgrzanie cieczy, a nie poprzez prostą separację. Dodatkowo, sedymentacja jako proces opadania cząstek ciał stałych pod wpływem grawitacji, nie może być mylona z innymi metodami. Kluczowe jest, aby nie mylić terminologii oraz zasad działania tych metod, gdyż każda z nich ma swoje specyficzne zastosowanie w różnych dziedzinach nauki i przemysłu. Zrozumienie różnic między tymi procesami jest niezbędne do ich prawidłowego stosowania i efektywnej pracy w laboratoriach czy zakładach przemysłowych.

Pytanie 32

Dekantacja to metoda

A. opadania cząstek ciała stałego w wyniku działania siły ciężkości, które są rozproszone w cieczy
B. oddzielania cieczy od osadu, która polega na zlaniu cieczy znad osadu
C. oddzielania cieczy od osadu, która polega na odparowaniu cieczy
D. oddzielania cieczy lub gazu od cząstek ciała stałego, które są w nich zawieszone, polegająca na przepuszczeniu zawiesiny przez przegrodę filtracyjną
Dekantacja to taki sposób oddzielania cieczy od osadu, polegający na tym, że wlewasz ciecz znad osadu do innego naczynia. Jest super popularna w laboratoriach chemicznych i w różnych branżach, szczególnie przy oczyszczaniu i separacji. Głównym celem tego procesu jest zdobycie czystej cieczy i pozbycie się osadu, który ląduje na dnie. Przykłady? No to na przykład wino – dekantuje się je, żeby oddzielić osad, który powstaje przy fermentacji. W laboratoriach też często używają dekantacji, żeby pozbyć się osadu po reakcjach chemicznych. To prosta i skuteczna metoda, co czyni ją jedną z podstawowych technik w chemii. Ważne jest, żeby robić to ostrożnie, żeby nie zmieszać cieczy z osadem. Dobrze jest też używać odpowiednich naczyń, które pomogą ci w precyzyjnym zlaniu cieczy.

Pytanie 33

Do kolby destylacyjnej wprowadzono 200 cm3 zanieczyszczonego acetonu o gęstości d = 0,9604 g/cm3 oraz czystości 90% masowych. W celu oczyszczenia przeprowadzono proces destylacji, w wyniku czego uzyskano 113,74 g czystego acetonu. Jakie były straty acetonu podczas destylacji?

A. 18,33%
B. 34,20%
C. 81,77%
D. 65,80%
Wybierając inne odpowiedzi, można napotkać kilka typowych pułapek myślowych. Często zdarza się, że studenci mylnie zakładają, iż straty acetonu można obliczyć jako prostą różnicę między masą początkową a masą końcową bez uwzględnienia rzeczywistej zawartości czystego acetonu. W takich przypadkach dochodzi do nieprawidłowego założenia co do ilości czystego acetonu w początkowej próbce. Ponadto, niektóre osoby mogą błędnie oszacować straty, nie uwzględniając gęstości substancji oraz jej czystości, co prowadzi do znacznych odchyleń w obliczeniach. Straty mogą być również źle interpretowane jako różnica objętości, co nie jest adekwatne, gdyż konieczne jest przejście na jednostki masy dla porównania. Aby uniknąć tych błędów, ważne jest, by przy każdej analizie chemicznej szczegółowo zrozumieć, jakie dane są potrzebne do prawidłowego obliczenia. Rekomenduje się także stosowanie standardowych procedur analitycznych oraz dokumentację każdego kroku procesu, co zwiększa transparentność i umożliwia identyfikację potencjalnych błędów. Dobre praktyki w laboratoriach chemicznych zakładają również regularne szkolenie personelu oraz dbałość o dokładność pomiarów, co może znacząco wpłynąć na jakość uzyskiwanych wyników.

Pytanie 34

Jakie urządzenie wykorzystuje się do pomiaru lepkości cieczy?

A. aparat Boetiusa
B. piknometr
C. kriometr
D. wiskozymetr
Wiskozymetr to narzędzie, które służy do pomiaru lepkości cieczy, co jest naprawdę ważne w różnych branżach, jak chemia, inżynieria materiałowa czy nawet przemysł spożywczy. Lepkość to w sumie miara tego, jak bardzo ciecz opiera się zmianom. W praktyce ma to znaczenie podczas mieszania, transportu czy przerabiania cieczy. Wiskozymetry działają na różne sposoby. Na przykład, wiskozymetr kinematyczny mierzy czas, w którym ciecz przepływa przez określony przekrój, a wiskozymetr dynamiczny oblicza lepkość na podstawie siły potrzebnej do przepływu. Przykładowo, w przemyśle farmaceutycznym ważne, żeby lepkość była odpowiednia, bo to wpływa na działanie leków. W przemyśle spożywczym natomiast, lepkość ma spory wpływ na to, jak mają smakować i wyglądać produkty. Poza tym, wiskozymetry są często spotykane w laboratoriach, a metody pomiaru lepkości są nawet określone przez normy ISO.

Pytanie 35

Jaką masę siarczanu(VI) miedzi(II)-woda(1/5) należy poddać suszeniu, aby otrzymać 300 g soli bezwodnej?

CuSO4 · 5H2O → CuSO4 + 5H2O
(MCuSO4·5H2O = 249,5 g/mol, MCuSO4 = 159,5 g/mol, MH2O = 18,0 g/mol)

A. 469,3 g
B. 584,1 g
C. 390,5 g
D. 210,0 g
Odpowiedź 469,3 g jest prawidłowa, ponieważ obliczenia opierają się na stosunku mas molowych soli bezwodnej i uwodnionej. Siarczan(VI) miedzi(II) w postaci uwodnionej (CuSO4·5H2O) zawiera cząsteczki wody, które muszą zostać usunięte podczas procesu suszenia, aby uzyskać sól bezwodną (CuSO4). Masy molowe: CuSO4 wynoszą około 159,61 g/mol, a CuSO4·5H2O to 249,68 g/mol. Stosując proporcje, można ustalić, że masa siarczanu(VI) miedzi(II)-woda, potrzebna do uzyskania 300 g soli bezwodnej, wynosi około 469,3 g. Praktyczne zastosowanie tej wiedzy jest istotne w laboratoriach chemicznych, gdzie precyzyjne przygotowanie roztworów i soli jest kluczowe dla uzyskania wiarygodnych wyników badań. Dobre praktyki laboratoryjne sugerują, aby zawsze przeprowadzać obliczenia masy przed rozpoczęciem doświadczenia, co pozwala uniknąć błędów i strat materiałowych.

Pytanie 36

Opis w ramce przedstawia sposób oczyszczania substancji poprzez

Próbke substancji stałej należy umieścić w kolbie kulistej, zaopatrzonej w chłodnicę zwrotną, dodać rozpuszczalnika - etanolu i delikatnie ogrzewać do wrzenia. Po lekkim ostudzeniu dodać do roztworu niewielką ilość węgla aktywnego, zagotować i przesączyć na gorąco. Przesącz pozostawić do ostygnięcia, a wydzielony osad odsączyć pod zmniejszonym ciśnieniem, przemyć niewielką ilością rozpuszczalnika, przenieść na szalkę, pozostawić do wyschnięcia, a następnie zważyć.

A. krystalizację.
B. destylację.
C. ekstrakcję.
D. sublimację.
Destylacja, ekstrakcja, sublimacja i krystalizacja to różne techniki separacji substancji, które często są mylone ze względu na ich podobieństwa, ale zasadniczo różnią się mechanizmem działania. Destylacja polega na wykorzystaniu różnicy temperatur wrzenia substancji, co pozwala na oddzielenie cieczy o różnych punktach wrzenia. W kontekście oczyszczania substancji, destylacja jest skuteczna, kiedy substancje mają znacznie różniące się temperatury wrzenia, co nie jest celem procesu opisanego w pytaniu. Ekstrakcja z kolei opiera się na rozpuszczalności różnych substancji w różnych rozpuszczalnikach, ale nie prowadzi do uzyskania czystych kryształów, jak w przypadku krystalizacji. Sublimacja, czyli przejście substancji ze stanu stałego w gazowy, a następnie z powrotem w stały, również nie jest odpowiednia w tym kontekście, ponieważ dotyczy tylko substancji, które mogą sublimować, a nie wszystkich substancji chemicznych. Typowym błędem myślowym jest założenie, że wszystkie procesy oczyszczania prowadzą do uzyskania czystych substancji w formie stałej, co nie jest prawdą. Znajomość różnic pomiędzy tymi procesami jest kluczowa dla skutecznego stosowania technik oczyszczania w laboratoriach i przemyśle chemicznym. Dlatego ważne jest, aby rozróżniać te metody i stosować je w odpowiednich sytuacjach.

Pytanie 37

Aby podnieść temperaturę roztworu do 330 K, jakie wyposażenie jest potrzebne?

A. statywu, siatki, zlewki, termometru z zakresem temperatur 0--50°C
B. trójnogu, siatki ceramicznej, zlewki, termometru z zakresem temperatur 0--0°C
C. statywu, siatki, zlewki, termometru z zakresem temperatur 0+100°C
D. trójnogu, siatki ceramicznej, zlewki, termometru z zakresem temperatur 0-+100°C
Wybór narzędzi i urządzeń do ogrzewania roztworu jest kluczowy dla przeprowadzenia eksperymentu w sposób bezpieczny i efektywny. Odpowiedzi, które zawierają termometry z zakresami, które nie obejmują temperatury 330 K, wskazują na fundamentalne nieporozumienia w zakresie odpowiedniego pomiaru temperatury. Na przykład, termometr o zakresie 0-0°C nie jest w ogóle przydatny do jakiegokolwiek zastosowania, które wymaga przekroczenia temperatury zera, co jest oczywiste w kontekście ogrzewania do 330 K. Podobnie, termometr z zakresem 0-50°C jest niewystarczający, ponieważ nie obejmuje wymaganej temperatury, co prowadzi do ryzyka uszkodzenia urządzenia lub błędnych odczytów. Ogrzewanie roztworu do takiej temperatury wymaga staranności w doborze sprzętu, a niektóre z podanych odpowiedzi pokazują brak zrozumienia podstawowych zasad działania termometrów i ich zastosowań. Użycie statywu zamiast trójnogu również może być nieodpowiednie, ponieważ statyw nie zawsze zapewnia stabilność, szczególnie przy dużych pojemnikach z cieczą, co może prowadzić do wypadków. W laboratoriach chemicznych ważne jest, aby korzystać z odpowiednich narzędzi, które nie tylko umożliwiają osiągnięcie pożądanych warunków eksperymentalnych, ale także gwarantują bezpieczeństwo pracy, co ma istotne znaczenie w kontekście odpowiedzialności za zdrowie i życie użytkowników.

Pytanie 38

Wskaź zestaw reagentów oraz przyrządów wymaganych do przygotowania 0,5 dm3 roztworu HCl o stężeniu 0,2 mol/dm3?

A. Kolba pomiarowa na 1000 cm3, cylinder pomiarowy na 500 cm3, 4 odważki analityczne HCl 0,1 mol/dm3
B. Kolba pomiarowa na 500 cm3, 1 odważka analityczna HCl 0,1mol/dm3
C. Kolba pomiarowa na 1000 cm3, cylinder pomiarowy na 500 cm3, 1 naważka analityczna HCl
D. Kolba pomiarowa na 500 cm3, 2 odważki analityczne HCl 0,1 mol/dm3
Przy wyborze zestawu odczynników i sprzętu do sporządzenia 0,5 dm³ roztworu HCl o stężeniu 0,2 mol/dm³ ważne jest zrozumienie, dlaczego inne opcje są niewłaściwe. Na przykład, użycie kolby miarowej na 1000 cm³ w połączeniu z cylinder miarowym na 500 cm³ oraz jedną naważką analityczną HCl nie odpowiada wymaganiom tego zadania. Takie podejście może sugerować marnotrawstwo materiałów, gdyż nie jest konieczne posiadanie większej kolby do przygotowania mniejszych objętości roztworu. Ponadto, to może prowadzić do błędów w odmierzeniu HCl, co jest kluczowe w kontekście uzyskania pożądanego stężenia. Niepoprawne mieszanie odczynników może skutkować niewłaściwym przygotowaniem roztworu, co może wpłynąć na dalsze eksperymenty oraz wyniki badań. Użycie czterech odważek analitycznych HCl 0,1 mol/dm³ w innym zestawie również jest zbędne, gdyż konieczne są tylko jedne odważki dla uzyskania żądanej ilości moli. Takie nadmierne wyposażenie w sprzęt oraz reagenty może prowadzić do nieefektywności oraz zwiększenia ryzyka błędów w laboratorium. W kontekście dobrych praktyk laboratoryjnych istotne jest dążenie do minimalizacji użycia materiałów oraz przestrzeganie zasad precyzyjnego pomiaru, co jest kluczowe w chemii analitycznej.

Pytanie 39

Metoda oczyszczania substancji oparta na różnicach w rozpuszczalności poszczególnych składników w określonym rozpuszczalniku to

A. chromatografia
B. destylacja
C. krystalizacja
D. adsorpcja
Wybór innych metod oczyszczania substancji, takich jak chromatografia, destylacja czy adsorpcja, wskazuje na niewłaściwe zrozumienie różnic między tymi technikami a krystalizacją. Chromatografia polega na separacji składników mieszaniny w oparciu o różne stopnie ich adsorpcji na materiale stacjonarnym, a nie na różnicach w rozpuszczalności. Jest to technika szeroko stosowana w analityce chemicznej, jednak nie jest dedykowana do oddzielania substancji na podstawie ich rozpuszczalności. Destylacja, z kolei, opiera się na różnicach w temperaturach wrzenia składników, co czyni ją odpowiednią do separacji cieczy, a nie stałych substancji. W procesie destylacji, ciecz o niższej temperaturze wrzenia odparowuje jako pierwsza, a następnie kondensuje, co nie jest związane z rozpuszczalnością substancji. Adsorpcja odnosi się do przyciągania cząsteczek na powierzchnię ciała stałego lub cieczy i również nie dotyczy rozpuszczalności. Wybierając te metody, można popełnić błąd polegający na myleniu podstawowych zasad chemii, co prowadzi do nieefektywnego oczyszczania substancji. Aby skutecznie oczyszczać substancje, kluczowe jest zrozumienie właściwości fizykochemicznych substancji oraz dopasowanie procesu oczyszczania do ich specyfiki.

Pytanie 40

Materiał uzyskany przez zmieszanie prób pobranych w ustalonych odstępach czasu określa się mianem próbki

A. proporcjonalnej
B. ogólną okresową
C. złożonej
D. ogólnej
Odpowiedź "ogólną okresową" jest prawidłowa, ponieważ odnosi się do próbek, które są zbierane z określonymi odstępami czasowymi, co pozwala na uzyskanie reprezentatywnego obrazu danego zjawiska lub procesu w określonym czasie. Próbki te są kluczowe w wielu dziedzinach, takich jak monitorowanie jakości środowiska, analizy chemiczne czy badania statystyczne. Przykładem może być analiza jakości wody, gdzie próbki są pobierane regularnie, aby ocenić zmiany w zanieczyszczeniu w czasie. W praktyce, stosowanie próbek ogólnych okresowych pozwala na zminimalizowanie wpływu przypadkowych zjawisk i uzyskanie bardziej wiarygodnych danych. Przy takich badaniach istotne jest również przestrzeganie norm ISO, które zalecają określone metody pobierania próbek, aby zapewnić ich jednorodność i reprezentatywność. Zrozumienie tego konceptu jest kluczowe dla profesjonalistów zajmujących się badaniami, jakością oraz kontrolą procesów.