Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 1 maja 2025 23:21
  • Data zakończenia: 1 maja 2025 23:54

Egzamin zdany!

Wynik: 30/40 punktów (75,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Jaki rodzaj czujnika, montowanego na metalowym cylindrze siłownika pneumatycznego, powinno się wykorzystać do monitorowania położenia tłoka?

A. Czujnik tensometryczny
B. Czujnik magnetyczny
C. Czujnik optyczny
D. Czujnik indukcyjny
Czujniki optyczne, indukcyjne i tensometryczne mają swoje specyficzne zastosowania, ale nie są odpowiednie do monitorowania położenia tłoka w metalowym cylindrze siłownika pneumatycznego. Czujniki optyczne wykorzystują promieniowanie świetlne do detekcji obiektów, co może być skuteczne w warunkach, gdzie nie ma przeszkód oraz działań środowiskowych mogących wpływać na sygnał, ale w przypadku tłoka w siłowniku pneumatycznym, mogą napotykać trudności, np. z zabrudzeniem soczewek lub przesłonięciem sygnału. Czujniki indukcyjne, z drugiej strony, są przeznaczone do wykrywania metalowych obiektów, jednak nie zapewniają one informacji o położeniu konkretnego tłoka, a jedynie detekcję obecności metalu. Mogą być używane w aplikacjach, gdzie istnieje potrzeba wykrycia przeszkód, lecz ich zastosowanie w pozycjonowaniu tłoka jest ograniczone. Tensometryczne czujniki mierzą odkształcenie, co sprawia, że są one bardziej odpowiednie do monitorowania siły lub obciążenia, a nie do detekcji położenia. Użycie tych czujników do kontroli pozycji tłoka w siłowniku mogłoby prowadzić do mylnej interpretacji danych, co z kolei może skutkować błędami w procesie sterowania. W praktyce, nieprawidłowy wybór czujnika do konkretnego zastosowania może prowadzić do nieefektywności w systemach automatyki, co jest sprzeczne z najlepszymi praktykami branżowymi, które zalecają dobór czujników zgodnie z ich specyfiką oraz wymaganiami aplikacji.

Pytanie 5

Jaką rolę pełni multiplekser?

A. Przesyłanie danych z jednego wejścia do wybranego wyjścia
B. Przesyłanie danych z wybranego wejścia na jedno wyjście
C. Porównywanie sygnałów podawanych na wejścia
D. Kodowanie sygnałów na wejściach
Multiplekser to kluczowy element w systemach cyfrowych, który umożliwia przesyłanie danych z jednego z kilku wejść do jednego wyjścia na podstawie sygnału kontrolnego. Dzięki tej funkcji, multipleksery są szeroko stosowane w telekomunikacji, gdzie pozwalają na efektywne zarządzanie pasmem i organizowanie ruchu danych. Na przykład, w systemach telewizyjnych, multipleksery pozwalają na wybór sygnału z różnych źródeł (np. anteny, kablówki, satelity) i kierowanie go do jednego wyjścia, aby zminimalizować potrzebne okablowanie i uprościć architekturę systemu. Ponadto, w kontekście inżynierii komputerowej, multipleksery są niezbędne do realizacji operacji arytmetycznych w jednostkach ALU (Arithmetic Logic Unit), gdzie wybierają odpowiednie dane do dalszej obróbki. Wykorzystanie standardów takich jak ITU-T G.703 w telekomunikacji pokazuje, jak ważne jest zastosowanie multiplekserów do synchronizacji i multiplexowania sygnałów w sieciach cyfrowych. Dobrze zaprojektowany multiplekser zwiększa wydajność systemów oraz pozwala na oszczędność miejsca i zasobów.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Ciecze hydrauliczne, które przekazują energię, lecz nie oferują ochrony przed korozją ani smarowania, to ciecze klasy

A. HH
B. HR
C. HG
D. HL
Ciecze hydrauliczne typu HL, HG i HR mocno różnią się od HH i mogą wprowadzać w błąd, jeśli chodzi o zastosowanie. Ciecze HL mają dodatki, które chronią przed korozją i smarują, więc są lepsze tam, gdzie trzeba dbać o elementy przed zużyciem. Gdy są stosowane w warunkach wysokiego ciśnienia i temperatury, ich smarujące właściwości mogą bardzo wpłynąć na żywotność hydrauliki. Jeśli chodzi o ciecze HG, to one są stworzone z myślą o ryzykownych środowiskach, jak przemysł petrochemiczny, gdzie istnieje większe zagrożenie pożarem. Z kolei ciecze HR, też chroniące przed korozją, sprawdzają się w bardziej skomplikowanych układach hydraulicznych, gdzie obciążenia są większe i warunki pracy trudniejsze. Często mylimy się przy wyborze cieczy hydraulicznych, bo nie rozumiemy ich specyficznych potrzeb, dlatego warto znać klasyfikacje i właściwości płynów, żeby dopasować je do wymagań, a takie normy jak ISO 11158 są tu bardzo pomocne.

Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Poziom przezroczystej, nieprzewodzącej cieczy w zbiorniku można zmierzyć za pomocą czujnika

A. ultradźwiękowego
B. refleksyjnego
C. piezoelektrycznego
D. indukcyjnego
Czujniki ultradźwiękowe to naprawdę fajne narzędzia do mierzenia poziomu cieczy, zwłaszcza w sytuacjach, gdy mamy do czynienia z przezroczystymi i nieprzewodzącymi rzeczami. Działają na takiej zasadzie, że wysyłają fale ultradźwiękowe, które zbijają się od powierzchni cieczy i wracają do czujnika. Dzięki temu, że możemy zmierzyć czas, jaki potrzebuje sygnał na powrót, możemy dokładnie określić, jak wysoki jest poziom cieczy. Na przykład, wykorzystuje się je w zbiornikach z wodą pitną czy różnymi cieczyami w przemyśle. Warto też zauważyć, że standardy jak ISO 9001 mówią o precyzyjnych pomiarach w produkcji, a te czujniki właśnie to potrafią. Mają też kilka zalet w porównaniu do innych technologii, jak brak kontaktu z cieczą, co zmniejsza ryzyko zanieczyszczenia czy korozji, a ponadto mogą działać w trudnych warunkach, co jest na pewno plusem.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Dobierz minimalny zestaw sterownika S7-200 do realizacji sterowania windą w budynku trzykondygnacyjnym. Wykorzystaj w tym celu opis elementów wejściowych/wyjściowych podłączonych do sterownika.

Elementy
wejściowe
jeden czujnik na każdej kondygnacji informujący o stanie drzwi zewnętrznych (otwarte/zamknięte)
jeden czujnik na każdej kondygnacji informujący o położeniu windy
jeden przycisk na każdej kondygnacji przywołujący windę
3 przyciski wewnątrz windy służące do wyboru kondygnacji
jeden przycisk wewnątrz windy informujący o awarii (AWARIA)
Elementy
wyjściowe
dwa styczniki załączające otwieranie i zamykanie drzwi
dwa styczniki uruchamiające jazdę kabiny na dół i jazdę kabiny do góry

A. S7-200 o 14 wejściach i 10 wyjściach
B. S7-200 o 24 wejściach i 16 wyjściach
C. S7-200 o 8 wejściach i 6 wyjściach
D. S7-200 o 6 wejściach i 4 wyjściach
Odpowiedź "S7-200 o 14 wejściach i 10 wyjściach" jest poprawna, ponieważ aby skutecznie zrealizować system sterowania windą w budynku trzykondygnacyjnym, należy uwzględnić liczbę niezbędnych wejść i wyjść. W przypadku takiego systemu potrzeba przynajmniej 13 wejść do monitorowania różnych czujników oraz 4 wyjścia do kontroli silników i sygnalizacji świetlnej. Sterownik S7-200 o 14 wejściach i 10 wyjściach zapewnia wystarczające zasoby, aby nie tylko zrealizować podstawowe funkcje, ale także pozostawia pewien zapas na przyszłe rozszerzenia lub dodatkowe czujniki. Praktyczne zastosowanie tego typu sterownika w budynkach wielokondygnacyjnych jest zgodne z normami automatyki budynkowej, które zalecają przy projektowaniu systemów zwracanie uwagi na elastyczność i możliwość rozbudowy. Warto również wspomnieć, że dobór odpowiednich komponentów jest kluczowy dla zapewnienia bezpieczeństwa użytkowników, co podkreśla znaczenie przestrzegania dobrych praktyk inżynieryjnych w projektowaniu systemów automatyki.

Pytanie 14

Ile watomierzy jest wymaganych do pomiaru mocy czynnej przy użyciu metody Arona w trójfazowych układach elektrycznych?

A. 4
B. 3
C. 2
D. 1
Pomiar mocy czynnej w układach trójfazowych metodą Arona wymaga zastosowania dwóch watomierzy. Ta metoda polega na pomiarze mocy czynnej w trzechfazowym obwodzie z równocześnie pracującymi watomierzami, co pozwala na obliczenie wartości mocy czynnej w całym układzie. Dwa watomierze są w stanie uchwycić różnice w obciążeniu oraz fazach, co jest kluczowe dla uzyskania dokładnych wyników. Na przykład, w układzie z równym obciążeniem gwiazdowym, watomierze łączy się w sposób pozwalający na zmierzenie mocy dwóch faz, a moc trzeciej fazy oblicza się jako różnicę od wartości całkowitej. Użycie dwóch przyrządów jest zgodne z normą IEC 60051, która mówi o technikach pomiarowych w systemach elektroenergetycznych. Dzięki tej metodzie można precyzyjnie ocenić efektywność energetyczną instalacji oraz zidentyfikować potencjalne straty energii, co jest istotne w kontekście zarządzania energią i optymalizacji wydajności w systemach przemysłowych.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Falownik to urządzenie przetwarzające moc, które konwertuje prąd

A. trój fazowy na prąd jednofazowy
B. stały na prąd zmienny o regulowanej częstotliwości
C. zmienny o częstotliwości 50 Hz na prąd stały
D. zmienny o regulowanej częstotliwości na prąd zmienny 50 Hz
Falownik jest kluczowym urządzeniem w systemach zasilania, które przekształca prąd stały (DC) na prąd zmienny (AC) o regulowanej częstotliwości. Ta funkcjonalność jest istotna w wielu zastosowaniach, w tym w napędach silników elektrycznych, gdzie regulacja prędkości i momentu obrotowego jest niezbędna do efektywnego działania. Falowniki są szeroko stosowane w przemyśle, na przykład w systemach HVAC (ogrzewanie, wentylacja, klimatyzacja), które wymagają elastycznej regulacji wydajności. Dzięki zastosowaniu falowników, użytkownicy mogą oszczędzać energię, co jest zgodne z zasadami zrównoważonego rozwoju oraz standardami efektywności energetycznej, takimi jak normy IEC 61800. Współczesne falowniki często wyposażone są w zaawansowane funkcje, takie jak kontrola wektora, co pozwala na osiąganie wysokiej precyzji w regulacji parametrów pracy. W praktyce, przekształcenie DC na AC umożliwia zasilanie różnych urządzeń zasilanych prądem zmiennym, co czyni falowniki niezbędnymi w nowoczesnych systemach automatyki oraz robotyki.

Pytanie 18

Jakim skrótem literowym określa się język drabinkowy?

A. IL
B. FBD
C. LD
D. STL
Język drabinkowy, znany jako LD, to jeden z najpopularniejszych języków w automatyce przemysłowej. Używa się go często do programowania sterowników PLC. Struktura tego języka wygląda jak drabinka, gdzie po bokach są zasilania, a w środku masz linie, które pokazują logikę działania. To strasznie ułatwia wszystko, bo dzięki temu operatorzy mogą szybko zrozumieć, co się dzieje w systemie. Przykładowo, jeśli chcemy, żeby silnik ruszał w zależności od czujnika, to właśnie w diagramie drabinkowym można to zobaczyć i łatwo poprawić, gdy coś nie działa. W praktyce LD jest zgodny z normą IEC 61131-3, która ustala zasady dla różnych języków programowania w automatyce, dlatego jest w zasadzie standardem w tej branży. W moim zdaniu to naprawdę dobry wybór do prostszych układów.

Pytanie 19

Jakie urządzenie powinno być zastosowane do zasilania silnika indukcyjnego klatkowego w układzie trójfazowym, aby umożliwić ustawienie maksymalnych wartości prądu rozruchowego oraz płynne dostosowanie prędkości obrotowej silnika?

A. Softstartu
B. Przemiennika częstotliwości
C. Przełącznika gwiazda-trójkąt
D. Prostownika sterowanego trójpulsowego
Przemiennik częstotliwości jest urządzeniem, które pozwala na płynną regulację prędkości obrotowej silnika indukcyjnego klatkowego poprzez zmianę częstotliwości zasilania. Dzięki temu możliwe jest dostosowanie parametrów pracy silnika do wymagań konkretnej aplikacji, co jest szczególnie istotne w procesach wymagających precyzyjnego zarządzania prędkością. Przemienniki częstotliwości mogą również ograniczać prąd rozruchowy, co z kolei zmniejsza obciążenie elektryczne w momencie uruchomienia silnika. Takie rozwiązanie znajduje zastosowanie w wielu branżach, takich jak przemysł spożywczy, tekstylny czy w systemach HVAC. W przypadku standardów, stosowanie przemienników częstotliwości jest zgodne z normami IEC 61800, które definiują wymagania dotyczące napędów elektrycznych oraz ich aplikacji. Przykładem praktycznego zastosowania przemiennika częstotliwości może być układ napędowy pompy, gdzie precyzyjna regulacja prędkości pozwala na efektywne zarządzanie przepływem wody.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Tachogenerator przy obrotach 1000 obr./min. wytwarza napięcie 30 V. Jaką wartość napięcia wygeneruje ten tachogenerator przy prędkości obrotowej 200 obr./min?

A. 15 V
B. 6 V
C. 3 V
D. 5 V
Prądnica tachometryczna działa na zasadzie generowania napięcia proporcjonalnego do prędkości obrotowej. W tym przypadku, przy prędkości obrotowej 1000 obr./min, prądnica generuje napięcie wynoszące 30 V. Możemy obliczyć napięcie przy niższej prędkości obrotowej, stosując proporcję. Zauważmy, że 200 obr./min to 20% 1000 obr./min. Jeśli napięcie jest proporcjonalne do prędkości, to przy 200 obr./min prądnica wygeneruje 20% z 30 V, co daje 6 V. Tego rodzaju obliczenia są powszechnie stosowane w inżynierii, szczególnie w systemach automatyki, gdzie precyzyjne pomiary napięcia są kluczowe dla prawidłowego działania urządzeń. Przykładowo, w systemach pomiarowych oraz w kontrolach zadań w automatyce przemysłowej, znajomość zależności między prędkością a generowanym napięciem pozwala na optymalizację procesów oraz zwiększenie efektywności energetycznej.

Pytanie 22

Spośród wymienionych zjawisk fizycznych, w urządzeniach przekształcających liniowe przemieszczenie na sygnał elektryczny, najczęściej stosowane jest zjawisko

A. magnotorezystancji (Gaussa)
B. piezoelektryczne
C. magnetooptyczne (Faradaya)
D. zwane efektem Dopplera
Zjawisko magnotorezystancji (Gaussa) jest szeroko stosowane w czujnikach przekształcających przemieszczenie liniowe na sygnał elektryczny ze względu na swoją wysoką czułość i precyzję. Magnotorezystancja polega na zmianie oporu elektrycznego materiału w wyniku działania pola magnetycznego. W praktyce, czujniki te mogą być wykorzystane w różnych aplikacjach, takich jak automatyka przemysłowa, robotyka oraz systemy pomiarowe. W standardach branżowych, takich jak IEC 61131, podkreśla się znaczenie precyzyjnych pomiarów w systemach automatyzacji, co czyni rozwiązania bazujące na magnotorezystancji preferowanym wyborem. Przykładem może być zastosowanie w czujnikach położenia w silnikach elektrycznych, gdzie dokładne informacje o przemieszczeniu są kluczowe dla efektywności i bezpieczeństwa operacji. Ponadto, magnotorezystancyjne czujniki są odporne na zakłócenia elektromagnetyczne, co zwiększa ich niezawodność w trudnych warunkach przemysłowych. Z tego względu, ich wykorzystanie w nowoczesnych systemach pomiarowych stanowi standard w wielu branżach.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Jakie wymiary biorą pod uwagę dopuszczalne odchylenia w realizacji elementu mechanicznego?

A. Jednostronne
B. Nominalne
C. Graniczne
D. Rzeczywiste
Odpowiedzi "Nominalne", "Rzeczywiste" oraz "Jednostronne" nie uwzględniają prawidłowych koncepcji odnoszących się do tolerancji wykonania elementów mechanicznych. Wymiar nominalny to teoretyczna wartość, która nie bierze pod uwagę ewentualnych błędów wykonawczych. W praktyce, stosowanie jedynie wymiarów nominalnych prowadziłoby do niezgodności w produkcie, gdyż nie zabezpieczałoby to elementów przed nieprawidłowościami w procesie ich wytwarzania. Z kolei wymiary rzeczywiste opisują rzeczywisty wymiar wykonanej części, który może się różnić od wymiaru nominalnego oraz są wynikiem procesów produkcyjnych, a ich analiza jest istotna na etapie kontroli jakości. Wymiar jednostronny z kolei odnosi się do systemu tolerancji, który definiuje jedynie jeden kierunek tolerancji, co w wielu zastosowaniach nie jest wystarczające, ponieważ nie uwzględnia błędów w innym kierunku, co może prowadzić do problemów z pasowaniem. Stosowanie takich koncepcji w projektowaniu elementów mechanicznych często prowadzi do niewłaściwego zrozumienia zasad tolerancji oraz ich wpływu na finalną jakość produktu. Kluczowe jest zrozumienie, że tolerancje graniczne są niezbędne dla zapewnienia, że części będą funkcjonować poprawnie razem w odpowiednich warunkach eksploatacyjnych.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

Jaką metodę łączenia materiałów należy wykorzystać do zestawienia stali nierdzewnej z mosiądzem?

A. Klejenie
B. Zgrzewanie
C. Lutowanie twarde
D. Lutowanie miękkie
Lutowanie twarde jest techniką, która idealnie nadaje się do łączenia stali nierdzewnej i mosiądzu, dzięki właściwościom materiałów oraz temperaturze lutowania. Lutowanie twarde polega na stosowaniu stopów lutowniczych, które mają wyższą temperaturę topnienia niż w przypadku lutowania miękkiego, co pozwala na uzyskanie mocniejszych połączeń. Technika ta jest szczególnie cenna w zastosowaniach przemysłowych, gdzie wymagana jest wysoka wytrzymałość mechaniczna i odporność na korozję. Przykładem mogą być elementy w instalacjach hydraulicznych, gdzie połączenie stali nierdzewnej z mosiężnymi złączkami pozwala na zapewnienie długotrwałej i szczelnej pracy. Warto również zauważyć, że lutowanie twarde jest zgodne z normami przemysłowymi, takimi jak ISO 17672, które określają wymagania dotyczące materiałów stosowanych w procesie lutowania. Dzięki tym właściwościom, lutowanie twarde stanowi najlepszy wybór do tego typu zastosowań.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Jakie urządzenie służy do pomiaru prędkości obrotowej wirnika silnika?

A. prądnica tachometryczna.
B. galwanometr.
C. resolver.
D. tensometr.
Tensometr to urządzenie służące do pomiaru odkształceń w materiałach, a nie prędkości obrotowej. Jego działanie opiera się na efekcie piezoelektrycznym lub zmiany oporu elektrycznego w zależności od naprężenia. Użycie tensometru w kontekście pomiaru prędkości obrotowej jest nieadekwatne, ponieważ ten typ sensora nie ma zdolności do bezpośredniego monitorowania ruchu obrotowego. Galwanometr, z kolei, jest przyrządem elektromechanicznym służącym do pomiaru prądu elektrycznego, a jego zastosowanie w pomiarze prędkości obrotowej jest ograniczone i nieefektywne. Galwanometry są użyteczne w aplikacjach wymagających pomiaru małych prądów, ale nie mogą dostarczać informacji o obrotach wirnika. Resolver, będący urządzeniem do pomiaru kątowego, także nie jest idealnym rozwiązaniem do pomiaru prędkości obrotowej, ponieważ jego głównym zadaniem jest określenie położenia kątowego, a nie bezpośredni pomiar prędkości. Często pojawiające się błędy w myśleniu polegają na myleniu zastosowań tych urządzeń, co prowadzi do niewłaściwych wyborów w kontekście pomiarów i automatyzacji. Zrozumienie specyfiki i przeznaczenia poszczególnych urządzeń pomiarowych jest kluczowe dla efektywnego projektowania układów automatyki i systemów kontrolnych.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

Który z przekształtników używanych w systemach zasilania dla urządzeń mechatronicznych przekształca energię prądu stałego na energię prądu przemiennego z regulowanymi wartościami częstotliwości i napięcia?

A. Regulator napięcia przemiennego
B. Rozruch progresywny
C. Prostownik
D. Falownik
Falownik to urządzenie elektroniczne, które konwertuje energię prądu stałego (DC) na energię prądu przemiennego (AC) o regulowanych wartościach częstotliwości i napięcia. Jego podstawowym zastosowaniem jest zasilanie silników elektrycznych w układach mechatronicznych, gdzie wymagana jest precyzyjna kontrola prędkości obrotowej oraz momentu obrotowego. Dzięki falownikom możliwe jest dostosowanie parametrów zasilania do rzeczywistych potrzeb aplikacji, co prowadzi do zwiększenia efektywności energetycznej oraz wydajności urządzenia. Falowniki są szeroko stosowane w różnych gałęziach przemysłu, takich jak automatyka przemysłowa, wentylacja, klimatyzacja czy transport. Warto również wspomnieć o standardach, takich jak IEC 61800, które definiują wymagania dotyczące napędów elektrycznych i systemów sterowania. Stosowanie falowników przyczynia się do minimalizacji zużycia energii, a także poprawy jakości pracy urządzeń, dlatego są one kluczowym elementem nowoczesnych systemów mechatronicznych.

Pytanie 38

Jakiego typu silnik należy wykorzystać do zasilania systemu, który wymaga bardzo wysokiego momentu rozruchowego (przekraczającego moment znamionowy)?

A. Krokowy
B. Szeregowy
C. Asynchroniczny
D. Bocznikowy
Silnik krokowy, mimo że ma swoje zastosowania w precyzyjnych systemach sterowania położeniem, nie jest optymalnym rozwiązaniem do aplikacji wymagających wysokiego momentu rozruchowego. Jego działanie opiera się na sekwencyjnym wzbudzaniu uzwojeń, co ogranicza jego zdolność do generowania dużych momentów na starcie. Silnik asynchroniczny, pomimo że jest powszechnie stosowany w przemyśle, nie charakteryzuje się odpowiednim momentem rozruchowym, ponieważ jego moment rozruchowy jest zazwyczaj mniejszy od momentu znamionowego. W silnikach asynchronicznych występuje zjawisko poślizgu, co powoduje, że przy rozruchu mogą mieć problemy z osiągnięciem wymaganej wydajności w ciężkich aplikacjach. Silnik bocznikowy, choć jest w stanie dostarczyć wyższy moment obrotowy niż silnik asynchroniczny, nie jest tak skuteczny jak silnik szeregowy w kontekście generowania dużego momentu przy rozruchu. W praktyce, wybór silnika do zadania powinien opierać się na szczegółowej analizie wymagań aplikacji, a nie tylko na ogólnych zaletach poszczególnych typów silników. Kluczowe jest zrozumienie, że silniki szeregowe mają unikalną konstrukcję, która czyni je bardziej odpowiednimi w specyficznych warunkach wymagających dużego momentu rozruchowego.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Elastyczny przewód elektryczny, służący do łączenia elementów systemu elektrycznego w aplikacjach mechatronicznych, powinien być

A. zakończony na końcach tulejkami
B. odizolowany na dowolną długość
C. równo przycięty na końcach
D. zaizolowany na końcach
Zakończenie przewodu giętkiego tulejkami to naprawdę ważna sprawa, zwłaszcza z perspektywy bezpieczeństwa i skuteczności połączeń w systemach mechatronicznych. Tulejki, czyli końcówki przewodów, dają mocne i trwałe połączenia, co zmniejsza ryzyko różnych awarii, zarówno mechanicznych, jak i elektrycznych. Jak dobrze wiemy, dzięki tulejkom żyły przewodów są lepiej chronione przed uszkodzeniami mechanicznymi czy korozją, co na pewno wydłuża ich żywotność. Poza tym, użycie tulejek ułatwia podłączanie przewodów do różnych elementów systemu, jak złącza czy komponente elektroniczne. To jest w sumie istotne w układach mechatronicznych, bo często trzeba coś zmieniać. I jeszcze jedno: stosowanie tulejek jest zgodne z branżowymi normami i standardami, a to ma znaczenie nie tylko dla bezpieczeństwa operatorów, lecz także dla niezawodności całego systemu. Dlatego warto korzystać z tulejek w zakończeniach przewodów giętkich, bo to po prostu najlepsza praktyka w tej dziedzinie.