Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik geodeta
  • Kwalifikacja: BUD.18 - Wykonywanie pomiarów sytuacyjnych, wysokościowych i realizacyjnych oraz opracowywanie wyników tych pomiarów
  • Data rozpoczęcia: 29 maja 2025 08:25
  • Data zakończenia: 29 maja 2025 08:46

Egzamin zdany!

Wynik: 32/40 punktów (80,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Średni błąd pomiaru długości odcinka 200 m wynosi ±5 cm. Jaki jest błąd względny tego pomiaru?

A. 1:4
B. 1:4000
C. 1:400
D. 1:40
Błąd względny pomiaru oblicza się jako stosunek średniego błędu pomiaru do wartości mierzonych, wyrażony w formie ułamka. W tym przypadku średni błąd wynosi ±5 cm, a długość odcinka to 200 m (czyli 20000 cm). Obliczamy błąd względny według wzoru: błąd względny = (błąd pomiaru / wartość) = (5 cm / 20000 cm) = 0,00025. Przekształcając to wyrażenie do postaci ułamka, otrzymujemy 1:4000. Taki sposób obliczania błędu względnego jest powszechnie stosowany w praktyce pomiarowej, szczególnie w inżynierii i naukach przyrodniczych, gdzie precyzyjne pomiary są kluczowe. Błąd względny daje nam informację o dokładności pomiaru w odniesieniu do wielkości mierzonych, co jest niezwykle ważne w ocenie jakości danych pomiarowych. To narzędzie pozwala na porównywanie różnych pomiarów i ocenę ich niezawodności, co jest szczególnie istotne w kontekście standardów metrologicznych i dobrych praktyk w inżynierii.

Pytanie 2

Jakiego skrótu należy użyć na mapie zasadniczej w przypadku opisu drogi, która nie ma swojej nazwy?

A. ul.
B. pl.
C. al.
D. dr.
Skrót "dr." oznacza "droga" i jest prawidłowo stosowany w kontekście opisywania dróg, które nie mają przypisanej nazwy. W polskiej terminologii kartograficznej skróty stosowane na mapach zasadniczych muszą być zgodne z określonymi standardami, aby zapewnić czytelność i zrozumiałość dla użytkowników. Na przykład, w przypadku dróg o charakterze lokalnym, które nie posiadają nazwy, zastosowanie skrótu "dr." jest powszechnie akceptowane. To podejście wspiera jednolitą komunikację w dokumentacji geodezyjnej oraz w planowaniu przestrzennym. W praktyce, na mapach miejskich czy wiejskich, skrót "dr." pozwala na szybkie identyfikowanie typów dróg, co jest istotne zarówno dla mieszkańców, jak i dla służb ratunkowych czy dostawczych. Warto dodać, że stosowanie odpowiednich skrótów przyczynia się do jednoznaczności i precyzji w interpretacji danych przestrzennych, co jest kluczowe w procesach decyzyjnych.

Pytanie 3

Na podstawie zamieszczonych w tabeli współrzędnych punktów kontrolowanych, wyznaczonych w wyniku pomiarów, oblicz liniowe przemieszczenie punktu nr 21.

Nr punktuPomiar pierwotnyPomiar wtórny
Xp [m]Yp [m]Xw [m]Yw [m]
20130,220242,256130,225242,255
21125,212258,236125,220258,240
22134,515234,515134,510234,510
23138,310230,025138,313230,026

A. p = 9 mm
B. p = 10 mm
C. p = 5 mm
D. p = 3 mm
Poprawna odpowiedź to p = 9 mm. Aby obliczyć liniowe przemieszczenie punktu nr 21, kluczowe jest zrozumienie, jak różnice w współrzędnych X i Y wpływają na obliczenie przemieszczenia. Najpierw musimy znaleźć różnice pomiędzy współrzędnymi pierwotnymi a wtórnymi. Po ich obliczeniu, korzystamy ze wzoru na odległość między dwoma punktami w układzie kartezjańskim, który oparty jest na twierdzeniu Pitagorasa. Zastosowanie tego podejścia nie tylko pozwala na precyzyjne wyznaczenie przemieszczenia, ale także jest zgodne z międzynarodowymi standardami pomiarów geodezyjnych. W praktyce, takie obliczenia są niezbędne w wielu aplikacjach inżynieryjnych, takich jak monitorowanie deformacji budynków, infrastruktury czy w analizach związanych ze zmianami środowiskowymi. Regularne stosowanie tej metody zapewnia wysoką jakość pomiarów oraz ich wiarygodność.

Pytanie 4

Jakie prace geodezyjne zawsze wymagają przeprowadzenia wywiadu terenowego oraz przygotowania mapy porównawczej z rzeczywistością?

A. Obsługę inwestycji budowlanej
B. Pomiar objętości mas ziemnych
C. Pomiar kontrolny wychylenia komina
D. Aktualizację bazy danych obiektów topograficznych i mapy zasadniczej
Aktualizacja bazy danych obiektów topograficznych oraz mapy zasadniczej to proces, który zawsze wymaga przeprowadzenia wywiadu terenowego oraz przygotowania mapy porównawczej z terenem. Wywiad terenowy polega na zbieraniu informacji o aktualnym stanie obiektów w terenie oraz ich zmianach, co pozwala na dokładne odzwierciedlenie rzeczywistej sytuacji w systemach informacji geograficznej (GIS). Przykładem zastosowania tej praktyki mogą być projekty związane z urbanizacją, gdzie zmiany w infrastrukturze, takie jak nowe drogi czy budynki, muszą być uwzględnione w aktualizowanych mapach. Standardy, takie jak INSPIRE w Europie, nakładają obowiązek regularnego aktualizowania danych przestrzennych, co podkreśla znaczenie rzetelnego wywiadu terenowego przed przystąpieniem do aktualizacji. Dobre praktyki branżowe wskazują, że dokładne przygotowanie mapy porównawczej z terenem ułatwia identyfikację różnic oraz weryfikację jakości danych, co jest kluczowe dla zapewnienia wiarygodności i użyteczności systemów GIS.

Pytanie 5

W bazie danych dotyczącej obiektów topograficznych BDOT500 opisano sieć kanalizacyjną sanitarną oznaczeniami ksX300. Jakie jest źródło danych dotyczących lokalizacji tej sieci?

A. pochodzi z materiałów archiwalnych
B. jest nieokreślone
C. jest trudne do ustalenia
D. pochodzi z materiałów nieaktualnych
Wybór odpowiedzi sugerujących, że źródło danych pochodzi z materiałów archiwalnych, jest trudne do określenia lub jest nieaktualne, opiera się na błędnym rozumieniu charakterystyki i jakości danych w systemach geoinformacyjnych. Materiały archiwalne mogą zawierać wartościowe informacje, jednak ich wykorzystanie wiąże się z koniecznością krytycznej oceny ich aktualności oraz precyzyjności. W przypadku danych o sieci kanalizacyjnej, które są kluczowe dla planowania infrastruktury miejskiej, istotne jest, aby odnosić się do najnowszych i potwierdzonych zasobów. Uznanie, że źródło danych jest trudne do określenia, wskazuje na brak wiedzy na temat metod zbierania i weryfikacji danych, co jest istotnym elementem analizy przestrzennej. W kontekście praktycznym, takie podejście może prowadzić do poważnych błędów w projektowaniu i zarządzaniu sieciami, co jest niezgodne z normami branżowymi, które kładą nacisk na transparentność i weryfikowalność danych. Warto zwrócić uwagę, że w dużych projektach budowlanych, brak rzetelnych danych może prowadzić do nieprzewidzianych kosztów oraz opóźnień w realizacji, co podkreśla znaczenie dobrej praktyki w dokumentacji i aktualizacji danych geoinformacyjnych.

Pytanie 6

Na czym umieszcza się współrzędne X oraz Y punktów osnowy realizacyjnej?

A. szkicu inwentaryzacyjnym
B. mapie zasadniczej
C. szkicu dokumentacyjnym
D. mapie ewidencyjnej
Szkic inwentaryzacyjny, mapa ewidencyjna i mapa zasadnicza to dokumenty, które mają różne role w geodezji i kartografii, ale nie nadają się do nanoszenia współrzędnych punktów osnowy realizacyjnej tak, jak szkic dokumentacyjny. Szkic inwentaryzacyjny pokazuje stan obiektów budowlanych i infrastruktury, a jego głównym celem jest odzwierciedlenie stanu fizycznego obiektów. Mapa ewidencyjna zajmuje się rejestracją danych o gruntach i ich użytkowaniu, a nie tak dokładnym przedstawieniem współrzędnych punktów osnowy. Mapa zasadnicza w ogóle dostarcza ogólnych informacji o terenie, pokazując cechy topograficzne i administracyjne, ale nie sprawdzi się przy dokumentacji dokładnych pomiarów. Dużo ludzi myśli, że te mapy i szkice można używać zamiennie, co wprowadza w błąd i może prowadzić do problemów przy późniejszych pracach geodezyjnych. Ważne, żeby rozumieć różnice między tymi dokumentami i ich zastosowaniem, bo to klucz do wiarygodnych wyników w geodezji i zgodności ze standardami w branży.

Pytanie 7

Przeprowadzając pomiar kąta w dwóch pozycjach lunety, możliwe jest zredukowanie błędu

A. urządzenia odczytowego
B. libelli okrągłej
C. pionu optycznego
D. kolimacji
Odpowiedź "kolimacji" jest poprawna, ponieważ kolimacja odnosi się do procesu ustawiania instrumentów pomiarowych w taki sposób, aby ich osie były zgodne z osią referencyjną. W kontekście pomiarów kątowych, wykonywanie pomiaru w dwóch położeniach lunety pozwala na eliminację błędów związanych z niewłaściwą kolimacją lunety. Przykładowo, jeśli luneta jest źle skalibrowana, można to uwidocznić i skorygować, wykonując pomiar w dwóch różnych położeniach, co zapewnia lepszą dokładność i powtarzalność wyników. W praktyce, takie działania są zgodne z najlepszymi praktykami stosowanymi w geodezji i inżynierii, gdzie precyzyjne pomiary są kluczowe dla uzyskania wiarygodnych danych. Ponadto, standardy takie jak normy ISO dla instrumentów pomiarowych kładą duży nacisk na kalibrację i kolimację jako podstawowe elementy zapewnienia jakości pomiarów.

Pytanie 8

Osnowy geodezyjne klasyfikuje się na różne grupy na podstawie ich precyzji oraz metody zakładania, jakich używa się do ich tworzenia?

A. podstawowe, podstawowe bazowe, pomiarowe
B. podstawowe fundamentalne, podstawowe bazowe, szczegółowe
C. fundamentalne, podstawowe bazowe, sytuacyjne
D. poziome bazowe, podstawowe wysokościowe, sytuacyjne
Wybór odpowiedzi, która nie uwzględnia klasyfikacji podstawowych fundamentalnych oraz szczegółowych osnow geodezyjnych, wskazuje na niezrozumienie różnic pomiędzy poszczególnymi typami sieci oraz ich zastosowań. Osnowy fundamentalne są kluczowe w tworzeniu systemów geodezyjnych, gdyż zapewniają stabilne punkty odniesienia, które są niezbędne do precyzyjnego mapowania. Odpowiedzi sugerujące podziały na grupy, takie jak 'poziome bazowe, podstawowe wysokościowe, sytuacyjne' czy 'fundamentalne, podstawowe bazowe, sytuacyjne', mylą kategorie pojęciowe oraz ich funkcje. Poziome i wysokościowe odniesienia są jedynie różnymi wymiarami tej samej osnowy i nie stanowią odrębnych grup. Klasyfikując osnowy według kryterium dokładności, istotne jest, aby zrozumieć, że każda z nich ma określone przeznaczenie oraz różne poziomy precyzji. Typowe błędy myślowe w tej kwestii obejmują pomijanie roli osnowy fundamentalnej jako podstawy dla wszystkich innych pomiarów oraz nieumiejętność rozróżnienia między osnowami służącymi do ogólnych pomiarów a tymi dedykowanymi do bardziej szczegółowych zastosowań. W praktyce, stosowanie nieodpowiednich osnow w projektach geodezyjnych prowadzi do błędów pomiarowych, co może mieć poważne konsekwencje w inżynierii i budownictwie.

Pytanie 9

Godło mapy 6.115.27.25.3.4 w systemie współrzędnych PL-2000 reprezentuje mapę w skali

A. 1:5000
B. 1:2000
C. 1:500
D. 1:1000
Wybór odpowiedzi 1:5000 jako właściwej w kontekście godła mapy 6.115.27.25.3.4 w układzie współrzędnych PL-2000 jest zgodny z powszechnie przyjętymi standardami kartograficznymi. Mapa w skali 1:5000 oznacza, że jeden jednostkowy pomiar na mapie odpowiada 5000 jednostkom w rzeczywistości. Tego rodzaju skala jest często stosowana w planowaniu przestrzennym oraz w dokumentacji budowlanej, co czyni ją niezwykle użyteczną w praktyce. Na przykład, w planowaniu urbanistycznym, mapy w skali 1:5000 pozwalają na dokładną analizę terenu, co jest kluczowe dla projektowania infrastruktury i oceny wpływu na środowisko. Ponadto, w Polsce standardy kartograficzne wskazują, że skale takie jak 1:5000 są odpowiednie dla oznaczania szczegółowych informacji, takich jak granice działek, lokalizacja budynków czy infrastruktura drogowa. Dlatego wiedza na temat skal mapy i ich zastosowania jest niezbędna dla profesjonalistów w dziedzinie geodezji, architektury i planowania przestrzennego.

Pytanie 10

Długość boku kwadratowej działki zmierzona w terenie wynosi 10 m. Jaka jest powierzchnia tej działki na mapie w skali 1:500?

A. 0,4 cm2
B. 4,0 cm2
C. 400,0 cm2
D. 40,0 cm2
Poprawna odpowiedź to 4,0 cm², ponieważ aby obliczyć powierzchnię działki kwadratowej w skali 1:500, musimy najpierw przeliczyć rzeczywiste wymiary działki. Długość boku działki wynosi 10 m, co w skali 1:500 przekłada się na 10 m / 500 = 0,02 m, czyli 2 cm na mapie. Powierzchnia kwadratu obliczana jest jako długość boku podniesiona do kwadratu, zatem 2 cm * 2 cm = 4 cm². Przykładowo, w planowaniu przestrzennym i geodezji, ważne jest, aby stosować odpowiednie skale, aby uzyskać dokładne odwzorowanie wymiarów rzeczywistych na mapach, co ma kluczowe znaczenie w procesach takich jak podział gruntów czy przygotowanie projektów budowlanych. Zastosowanie skal pozwala na precyzyjne przedstawienie dużych obszarów na małej powierzchni, co jest niezbędne w dokumentacji geodezyjnej oraz urbanistycznej.

Pytanie 11

W niwelacji trygonometrycznej przewyższeniem określamy różnicę wysokości między

A. punktem celowania a stanowiskiem instrumentu
B. reperami a punktem celowania
C. sąsiednimi reperami
D. punktem celowania a horyzontem instrumentu
W przypadku niwelacji trygonometrycznej nie każdy pomiar różnicy wysokości pomiędzy różnymi punktami jest traktowany jako przewyższenie. Odpowiedzi, które wskazują na różnice pomiędzy reperami a punktem celowania, pomiędzy punktem celowania a stanowiskiem instrumentu czy sąsiednimi reperami, wprowadzają w błąd, ponieważ nie oddają istoty tego, co oznacza przewyższenie. Repery są punktami o znanej wysokości, które służą jako odniesienie w pomiarach. Chociaż ważne jest określenie różnicy wysokości pomiędzy nimi, to w kontekście przewyższenia istotny jest pomiar w odniesieniu do poziomu horyzontu instrumentu. Często popełnianym błędem jest mylenie różnych punktów odniesienia, co prowadzi do nieprawidłowej interpretacji wyników pomiarów. W geodezji kluczowe jest ścisłe przestrzeganie definicji oraz terminologii, aby unikać nieporozumień, które mogą skutkować poważnymi konsekwencjami w realizowanych projektach. Zrozumienie różnicy między różnicą wysokości a przewyższeniem jest fundamentalne dla każdego geodety oraz inżyniera, który zajmuje się pomiarami terenu oraz projektowaniem, dlatego tak istotne jest przyswojenie właściwych koncepcji i pojęć. Dobre praktyki w branży zalecają ciągłe szkolenie i aktualizację wiedzy w tym zakresie.

Pytanie 12

Długość odcinka zmierzonego na mapie o skali 1:2000 wynosi 11,1 cm. Jaką długość ma ten odcinek w rzeczywistości?

A. 5,55 m
B. 55,50 m
C. 2,22 m
D. 22,20 m
Odpowiedź 22,20 m jest prawidłowa, ponieważ w przypadku skali 1:2000 oznacza, że 1 cm na mapie odpowiada 2000 cm w terenie. Aby obliczyć długość odcinka w rzeczywistości, należy pomnożyć długość odcinka zmierzoną na mapie (11,1 cm) przez skalę. Zatem obliczenia wyglądają następująco: 11,1 cm * 2000 cm/cm = 22 200 cm. Przekształcając jednostki, otrzymujemy 22 200 cm = 222 m. Ostatecznie, aby uzyskać wynik w metrach, dzielimy przez 100, co daje nam 22,20 m. Ta umiejętność konwersji między długościami pomierzonymi na mapie a rzeczywistymi odległościami jest kluczowa w dziedzinach takich jak geodezja, urbanistyka czy kartografia. Przykładem zastosowania tej wiedzy może być zaplanowanie infrastruktury w terenie, gdzie precyzyjne pomiary są niezbędne do określenia lokalizacji budynków, dróg czy innych obiektów. W codziennym życiu również możemy wykorzystać tę wiedzę, na przykład, przy planowaniu podróży lub ocenie odległości podczas spaceru.

Pytanie 13

Który dokument jest podstawą do włączenia dokumentacji dostarczonej przez wykonawcę robót do rejestru geodezyjnego?

A. Wniosek złożony przez geodetę z adnotacją o pozytywnym wyniku kontroli
B. Wniosek złożony przez inwestora
C. Protokół końcowy kontroli sporządzony przez inspektora nadzoru
D. Protokół końcowy kontroli sporządzony przez wykonawcę robót geodezyjnych
Wniosek złożony przez geodetę z adnotacją o pozytywnym wyniku kontroli stanowi kluczowy dokument, który umożliwia włączenie dokumentacji geodezyjnej do zasobu geodezyjnego. Zgodnie z obowiązującymi standardami, dokumentacja geodezyjna, w tym mapy i inne opracowania, musi być poddana szczegółowej kontroli przed jej archiwizacją. Wniosek geodety, który zawiera adnotację o pozytywnym wyniku kontroli, potwierdza, że prace wykonano zgodnie z obowiązującymi przepisami oraz normami technicznymi. Przykładowo, w przypadku inwestycji budowlanych, takie kontrole są niezbędne do zapewnienia, że dokumentacja odzwierciedla rzeczywisty stan prawny i techniczny terenu. Z perspektywy dobrych praktyk, włączenie dokumentacji do zasobu geodezyjnego bez odpowiedniego wniosku mogłoby prowadzić do niezgodności, które mogłyby skutkować problemami prawnymi lub technicznymi w przyszłości. W związku z tym, prawidłowy obieg dokumentów oraz odpowiednie kontrole są niezbędne dla zapewnienia jakości i rzetelności bazy danych geodezyjnych.

Pytanie 14

Podczas jakiej procedury geodezyjnej stosuje się niwelację geometryczną?

A. Podczas wyznaczania kierunków magnetycznych w terenie.
B. Podczas pomiaru różnic wysokości między punktami.
C. Podczas tworzenia map tematycznych związanych z ukształtowaniem terenu.
D. Podczas pomiaru odległości w terenie za pomocą metod geodezyjnych.
W geodezji istnieje wiele metod pomiarowych, z których każda ma swoje specyficzne zastosowanie. Wyznaczanie kierunków magnetycznych w terenie jest czynnością związaną głównie z używaniem kompasu geodezyjnego lub innych urządzeń magnetycznych, a nie niwelacji geometrycznej. Kierunki magnetyczne pomagają w orientacji map i określaniu azymutów, ale nie mają bezpośredniego związku z pomiarem wysokości. Pomiar odległości w terenie za pomocą metod geodezyjnych zazwyczaj odbywa się przy użyciu dalmierzy, taśm mierniczych lub tachimetrów, które pozwalają na precyzyjne określenie odległości pomiędzy punktami, ale nie bezpośrednio różnic wysokości. Te metody mogą korzystać z niwelacji, ale tylko w kontekście uzupełniającym, a nie jako główna procedura pomiaru wysokości. Tworzenie map tematycznych związanych z ukształtowaniem terenu może korzystać z danych uzyskanych z niwelacji, ale samo w sobie nie jest procedurą pomiarową. Mapy tematyczne są wynikiem analizy danych geodezyjnych i kartograficznych, które mogą wykorzystywać różne źródła danych, w tym dane wysokościowe, ale nie ograniczają się tylko do niwelacji geometrycznej. Każda z tych odpowiedzi wskazuje na błędne rozumienie zastosowania niwelacji geometrycznej, co jest typowym błędem wynikającym z niepełnego zrozumienia specyfiki geodezyjnych procedur pomiarowych.

Pytanie 15

Na podstawie przedstawionych w ramce wyników z czterokrotnego pomiaru kąta, z jednakową dokładnością, określ najbardziej prawdopodobną wartość tego kąta.

a1 = 76° 56' 21''
a1 = 76° 56' 15''
a1 = 76° 56' 14''
a1 = 76° 56' 18''

A. 76° 56' 18''
B. 76° 56' 17''
C. 76° 56' 14''
D. 76° 56' 19''
Odpowiedź 76g 56c 17cc jest tą, która najlepiej pasuje do średniej arytmetycznej tych pomiarów. W pomiarach kątów to obliczenie średniej jest dość ważne, bo daje nam najwiarygodniejszy wynik. W inżynierii czy architekturze, gdzie musimy być pewni pomiarów, precyzja kątów jest mega istotna. Jak na przykład w budownictwie, źle policzone kąty mogą naprawde narobić kłopotów podczas stawiania konstruktów. Dlatego mamy różne normy, jak ISO 17123, które mówią, że najlepiej jest liczyć średnią, żeby zminimalizować błędy w pomiarach. W analizach statystycznych z pomiarami kątów, wyliczenie średniej to podstawowy krok, który pokazuje, jak ważna jest ta technika w różnych dziedzinach nauki.

Pytanie 16

Wysokości elementów infrastruktury terenu na mapach geodezyjnych podaje się z dokładnością

A. 0,1 m
B. 0,5 m
C. 0,01 m
D. 0,05 m
Wysokości elementów naziemnych uzbrojenia terenu na mapach zasadniczych podawane są z dokładnością do 0,01 m, co wynika z potrzeby zachowania precyzji w dokumentacji geodezyjnej. Taka dokładność jest szczególnie istotna w kontekście prac budowlanych, inżynieryjnych oraz planowania przestrzennego. Umożliwia to nie tylko dokładne odwzorowanie terenu, ale także wspiera podejmowanie decyzji na podstawie precyzyjnych danych. Na przykład, w przypadku budowy infrastruktury, umiejętność dokładnego określenia wysokości elementów terenu ma kluczowe znaczenie dla projektowania systemów odwodnienia czy układania dróg. Stosowanie się do tej normy jest zgodne z wytycznymi określonymi w Polskiej Normie PN-EN ISO 19100, która dotyczy geoinformatyki. Praktyka ta również podnosi jakość usług geodezyjnych, co jest kluczowe w kontekście zaufania do dokumentacji oraz jej wykorzystania w późniejszych etapach inwestycji.

Pytanie 17

Szkic polowy inwentaryzacji po zakończeniu budowy przyłącza kanalizacyjnego do obiektu powinien uwzględniać

A. średnicę przewodu.
B. kąt nachylenia przewodu.
C. materiał, z którego wykonano przewód.
D. rysunek instalacji wewnętrznej w budynku.
Wybierając inne odpowiedzi, można wpaść w pułapkę i myśleć, że wie się, co jest naprawdę ważne w inwentaryzacji powykonawczej przyłącza kanalizacyjnego. Nachylenie przewodu, mimo że ważne, wcale nie jest kluczową sprawą na szkicu, bo bardziej chodzi o jego rozmieszczenie w terenie i efektywne odprowadzanie ścieków. Z kolei nazwa materiału, z którego zrobiony jest przewód, jest ważna przy ocenie jakości instalacji, ale nie ma wpływu na funkcjonalność czy przepustowość całego układu, więc w kontekście inwentaryzacji jest to raczej mało efektywna informacja. Co do szkicu instalacji wewnątrz budynku – mimo że daje przydatne info o rozkładzie systemu, to w etapie inwentaryzacji zewnętrznego przyłącza nie jest to potrzebne. Z doświadczenia wiem, że wybierając złe odpowiedzi, można mieć mylne pojęcie o tym, jak działa instalacja kanalizacyjna, co w przyszłości może prowadzić do błędnych wniosków podczas projektowania czy audytów. Trzeba zrozumieć, że każda wartość w dokumentacji ma swoje miejsce, ale nie wszystkie są kluczowe do polowego szkicu, co jest niezbędne, żeby utrzymać dobre standardy w branży budowlanej.

Pytanie 18

Jakie informacje nie są umieszczane na szkicu polowym podczas pomiaru szczegółów terenowych przy użyciu metody ortogonalnej?

A. Wysokości punktów terenu
B. Numery obiektów budowlanych
C. Domiary prostokątne
D. Sytuacyjne szczegóły terenowe
Wysokości punktów terenu nie są zamieszczane na szkicu polowym z pomiaru szczegółów terenowych metodą ortogonalną, ponieważ ten rodzaj szkicu koncentruje się głównie na przedstawieniu szczegółów sytuacyjnych oraz relacji przestrzennych między obiektami. W praktyce, szkic polowy ma na celu odwzorowanie układu budynków, dróg oraz innych istotnych elementów terenu, co pozwala na ich identyfikację i późniejsze odtworzenie w dokumentacji technicznej. Przykładem zastosowania szkicu ortogonalnego może być sporządzanie planów zagospodarowania przestrzennego, gdzie kluczowe jest przedstawienie układu funkcjonalnego terenu, a nie jego wysokości. Dodatkowo, w standardach geodezyjnych, takich jak Zasady Techniki Geodezyjnej (PTG), wskazuje się, że szkice polowe powinny być zwięzłe i zawierać tylko najistotniejsze informacje, co wyklucza konieczność umieszczania danych o wysokościach."

Pytanie 19

Jakie informacje są konieczne do zlokalizowania w terenie punktu geodezyjnego?

A. Godło odpowiedniego arkusza mapy zasadniczej
B. Szkic polowy wykonania osnowy
C. Zestawienie szkiców terenowych
D. Opis topograficzny punktu
Opis topograficzny punktu geodezyjnego jest kluczowym dokumentem potrzebnym do jego identyfikacji i odnalezienia w terenie. Zawiera on szczegółowe informacje o położeniu punktu, jego otoczeniu oraz cechach charakterystycznych, co jest niezbędne dla geodetów podczas pracy w terenie. Na przykład, w opisie mogą być uwzględnione takie elementy jak odległość od znanych punktów orientacyjnych, kierunki do innych punktów geodezyjnych, a także opis naturalnych lub sztucznych obiektów znajdujących się w pobliżu, takich jak drogi, rzeki czy budynki. Wiedza na temat topografii terenu oraz umiejętność interpretacji takich opisów są fundamentem w geodezji, co pozwala na precyzyjne lokalizowanie punktów i minimalizowanie błędów pomiarowych. Właściwa interpretacja opisu topograficznego zgodnie z normami geodezyjnymi, w tym PN-EN 16153, jest niezbędna do osiągnięcia wysokiej jakości danych geodezyjnych oraz zgodności z wymaganiami prawnymi.

Pytanie 20

Jakie grupy błędów, mających wpływ na wyniki pomiarów, są wyróżniane w geodezji?

A. Błędy grube, błędy systematyczne, błędy przypadkowe
B. Błędy osobowe, błędy systematyczne, błędy losowe
C. Błędy grube, omyłki, błędy stałe
D. Błędy stałe, omyłki, błędy systematyczne
W geodezji mamy trzy główne grupy błędów, które mogą wpłynąć na to, co zmierzymy. Po pierwsze, są błędy grube, które mocno psują wyniki. Często wynikają z tego, że coś źle odczytaliśmy albo popełniliśmy błąd przy obsłudze sprzętu. Na przykład, zawsze trzeba uważać, żeby dobrze wpisać wartości do systemu, bo jeden zły krok i wszystko się sypie. Potem są błędy systematyczne. To takie błędy, które sobie powtarzają przez to, że narzędzie pomiarowe może być źle kalibrowane. Jak coś jest źle ustawione, to za każdym razem będziemy dostawać ten sam zły wynik. A na końcu mamy błędy przypadkowe. To te, które się zdarzają bez żadnego ostrzeżenia, jak zmiany pogody czy losowe wahania w wynikach. W geodezji ważne jest, żeby te błędy identyfikować i minimalizować, bo w projektach budowlanych czy geodezyjnych precyzyjne pomiary to klucz do sukcesu.

Pytanie 21

Do projekcji prostokątnej wyznaczonych punktów na linię wykorzystuje się

A. dalmiarze elektromagnetyczne
B. węgielnice pryzmatyczne
C. piony optyczne
D. łaty niwelacyjne
Węgielnice pryzmatyczne to narzędzia wykorzystywane w geodezji i budownictwie do precyzyjnego rzutowania punktów na określoną prostą. Działają one na zasadzie wykorzystania właściwości optycznych pryzmatu, co pozwala na dokładne odwzorowanie zdefiniowanej linii na terenie. Dzięki swojej konstrukcji, węgielnice te umożliwiają wytyczanie osi budynków oraz elementów infrastruktury, co jest kluczowe w procesie budowlanym. W praktyce, węgielnice pryzmatyczne są często używane w połączeniu z dalmierzami, co zwiększa dokładność pomiarów. Standardy branżowe, takie jak normy geodezyjne, zalecają stosowanie węgielnic pryzmatycznych w pracach wymagających dużej precyzji. Ich właściwe użycie pozwala na minimalizację błędów rzutowania, co jest niezbędne dla prawidłowego funkcjonowania całego projektu budowlanego.

Pytanie 22

Jaką wartość ma azymut przeciwny do azymutu wynoszącego 327g12c35cc?

A. 227g12c35cc
B. 127g12c35cc
C. 27g12c35cc
D. 527g12c35cc
Wartość azymutu odwrotnego do azymutu wynoszącego 327°12'35'' można obliczyć poprzez dodanie 180° do pierwotnego azymutu. W przypadku azymutów, które są wyrażane w stopniach, minutach i sekundach, dodanie 180° często wymaga konwersji, jeśli suma przekracza 360°. W tym przypadku dodajemy 180° do 327°, co daje 507°. Następnie, musimy odjąć 360°, aby uzyskać wynik w odpowiednim zakresie: 507° - 360° = 147°. Teraz pozostaje nam dodać pozostałe wartości minut i sekund. Ostatecznie zatem uzyskujemy azymut 127°12'35''. W kontekście nawigacji i geodezji, umiejętność obliczania azymutów odwrotnych jest kluczowa, ponieważ pozwala na dokładne śledzenie kierunków i nawigację w terenie. Takie umiejętności są niezbędne w różnych dziedzinach, od turystyki po inżynierię i architekturę.

Pytanie 23

Jakie jest zastosowanie pionownika optycznego w geodezyjnej obsłudze budowlanej?

A. Do tyczenia punktów głównych projektowanego obiektu
B. Do przenoszenia poziomu na dno wykopu
C. Do tyczenia wskaźników konstrukcyjnych na wyższych kondygnacjach
D. Do pomiaru boków tyczonego obiektu
Pionownik optyczny to naprawdę przydatne narzędzie, gdy jesteśmy w trakcie budowy i musimy przenosić punkty w pionie. To, co jest fajne w jego użyciu, to to, że pozwala nam dokładnie ustawić wskaźniki na różnych wysokościach, co jest super ważne, zwłaszcza przy budynkach wielokondygnacyjnych. Wiesz, to ma ogromne znaczenie dla stabilności całej konstrukcji. Na przykład, gdy budujemy coś, co ma kilka pięter, pionownik pomaga nam precyzyjnie określić wysokości poszczególnych kondygnacji. W praktyce, geodeta stawia instrument na odpowiedniej wysokości i korzysta z celownika, by wszystko było dokładnie w osi pionowej. Jest to zgodne z normami, które mówią, jak ważne są precyzyjne pomiary na każdym etapie budowy.

Pytanie 24

Jaką wartość ma poprawka kątowa do jednego kąta w zamkniętym ciągu poligonowym, jeśli ciąg zawiera 5 kątów, a odchylenie kątowe wynosi fα = +30cc?

A. Vkt = +5cc
B. Vkt = +6cc
C. Vkt = -5cc
D. Vkt = -6cc
Odpowiedź Vkt = -6cc jest poprawna, ponieważ poprawka kątowa do jednego kąta w ciągu poligonowym zamkniętym oblicza się, biorąc pod uwagę całkowitą odchyłkę kątową oraz liczbę kątów. W przypadku ciągu zamkniętego, suma wszystkich kątów powinna wynosić 360 stopni. W tym przypadku mamy 5 kątów i odchyłkę kątową fα równą +30cc. Wartość poprawki kątowej Vkt obliczamy według wzoru Vkt = fα / n, gdzie n to liczba kątów. Stąd Vkt = +30cc / 5 = +6cc. Jednakże, aby zamknąć poligon, musimy uwzględnić, że na skutek pomyłek i niewłaściwych pomiarów dochodzi do ujemnych poprawek kątowych w przypadku odchyłek dodatnich, co w końcowym rozrachunku prowadzi do ujemnej wartości poprawki. Tak więc, w tej sytuacji poprawka kątowa wynosi Vkt = -6cc. Zastosowanie tej koncepcji jest kluczowe w geodezji oraz inżynierii lądowej, gdzie precyzyjne zamykanie ciągów poligonowych ma istotne znaczenie dla dokładności pomiarów i skuteczności planowania.

Pytanie 25

Która z map przedstawia rozmieszczenie infrastruktury terenu?

A. Ewidencyjna
B. Zasadnicza
C. Sozologiczna
D. Topograficzna
Mapa zasadnicza jest kluczowym narzędziem w inżynierii i planowaniu przestrzennym, które przedstawia szczegółowe informacje o przestrzennym usytuowaniu sieci uzbrojenia terenu, takich jak drogi, sieci wodociągowe, kanalizacyjne i energetyczne. Mapa ta bazuje na normach i standardach geodezyjnych, takich jak PN-ISO 19131, które określają sposób przedstawiania i gromadzenia danych przestrzennych. Przykładem zastosowania mapy zasadniczej może być projektowanie nowych osiedli mieszkalnych, gdzie dokładna wiedza o już istniejącej infrastrukturze jest niezbędna do uniknięcia kolizji z istniejącymi sieciami. Mapa zasadnicza umożliwia także planowanie urbanistyczne oraz prowadzenie działań związanych z ochroną środowiska, ponieważ dostarcza ważnych informacji na temat lokalizacji istniejącej zabudowy oraz infrastruktury, co jest zgodne z dobrą praktyką w zakresie zrównoważonego rozwoju i planowania przestrzennego.

Pytanie 26

Jakie grupy lub grupy dokładnościowe obejmują detale terenowe, których pomiar można zrealizować za pomocą limy pomiarowej, opierając się z jednej strony na narożniku budynku, a z drugiej na latarni?

A. Tylko do I grupy
B. Tylko do II grupy
C. Do I i II grupy
D. Do II i III grupy
Odpowiedź wskazująca na przynależność szczegółów terenowych do II i III grupy jest poprawna, ponieważ obie te grupy obejmują pomiary, które można wykonać za pomocą limy pomiarowej. Grupa II odnosi się do pomiarów, które wymagają większej dokładności, typowych dla prac geodezyjnych związanych z inżynierią lądową i budownictwem, gdzie precyzyjne ustalenie lokalizacji elementów budowlanych jest kluczowe. Z kolei grupa III to pomiary o niższej precyzji, jednak nadal akceptowalne w kontekście podstawowych prac terenowych. W praktyce, dokładne pomiary związane z narożnikami budynków oraz ich relacją do latarni mogą mieć zastosowanie w różnych projektach budowlanych, takich jak planowanie i kontrola robót budowlanych, a także w geodezyjnych kontrolach jakości. Standardy, takie jak normy ISO 17123 dotyczące metod pomiarów w geodezji, podkreślają znaczenie stosowania odpowiednich narzędzi, jak lima pomiarowa, w celu zapewnienia wymaganej dokładności i powtarzalności pomiarów.

Pytanie 27

Miary określające lokalizację mierzonej pikiety nazywają się

A. kątami wierzchołkowymi
B. przecięciami
C. domiarami prostokątnymi
D. domiarami biegunowymi
Wybierając inne odpowiedzi, można napotkać na pewne nieporozumienia dotyczące terminologii geodezyjnej. Kąty wierzchołkowe są terminem używanym w geometrii, ale w kontekście pomiarów geodezyjnych nie odnoszą się one bezpośrednio do określania położenia pikiet. W rzeczywistości, kąt wierzchołkowy to kąt utworzony przez dwa boki figury geometrycznej, a nie narzędzie do pomiaru lokalizacji punktów w przestrzeni. Przecięcia odnoszą się do miejsc, w których dwie linie się krzyżują, co w kontekście geodezji nie jest adekwatnym opisem miar położenia. Może to prowadzić do błędnych założeń, ponieważ nie uwzględnia istoty pomiarów opartych na kierunkach i odległościach. Domiary prostokątne, z kolei, polegają na określaniu punktów na podstawie układów prostokątnych, co również nie jest zgodne z podstawowymi zasadami pomiarów biegunowych. Użycie tych terminów zamiast domiarów biegunowych może prowadzić do zamieszania w analizach geodezyjnych oraz ograniczać trafność pomiarów. Dlatego ważne jest, aby podczas nauki geodezji skoncentrować się na poprawnym użyciu terminologii, aby uniknąć błędów w praktyce pomiarowej.

Pytanie 28

Zbieranie, rejestrowanie, przechowywanie, udostępnianie oraz zabezpieczanie materiałów pochodzących z państwowego zasobu geodezyjnego i kartograficznego, odbywa się przy użyciu systemu

A. komunikacyjnego
B. ewidencyjnego
C. informacyjnego
D. teleinformatycznego
System teleinformatyczny jest kluczowym narzędziem w procesie pozyskiwania, ewidencjonowania, przechowywania, udostępniania oraz zabezpieczania materiałów z państwowego zasobu geodezyjnego i kartograficznego. Dzięki zastosowaniu nowoczesnych technologii informacyjnych, możliwe jest zautomatyzowanie wielu procesów, co przyspiesza i upraszcza pracę. Przykładem może być wykorzystanie systemów GIS (Geographic Information Systems), które umożliwiają analizowanie i wizualizowanie danych przestrzennych. W praktyce, instytucje takie jak ośrodki dokumentacji geodezyjnej i kartograficznej korzystają z teleinformatycznych systemów zarządzania danymi, co zapewnia ich aktualność, integralność oraz bezpieczeństwo. Zgodnie z normami ISO/IEC 27001, należy wdrażać odpowiednie środki ochrony danych, co jest realizowane poprzez technologie szyfrowania oraz systemy kontroli dostępu. Poprawne wdrożenie systemu teleinformatycznego znacząco podnosi jakość usług świadczonych przez administrację publiczną w zakresie geodezji i kartografii.

Pytanie 29

W teodolicie, okrąg lub ring z zaznaczonym podziałem kątowym określa się jako

A. celownikiem
B. spodarką
C. limbusem
D. alidadą
Limbus w teodolicie to element, który zawiera podziałką kątową, co pozwala na precyzyjne pomiary kątów poziomych i pionowych. W praktyce limbusem określa się okrągły lub pierścieniowy element instrumentu, na którym naniesione są wartości kątowe. Umożliwia on użytkownikowi łatwe odczytywanie zmierzonych kątów, co jest kluczowe w geodezji oraz inżynierii lądowej. Teodolit jest niezbędnym narzędziem w pomiarach terenowych, a limbusem posługują się geodeci do określania pozycji punktów i tworzenia map. Warto zaznaczyć, że zgodnie z normami geodezyjnymi, precyzja pomiarów wykonanych przy użyciu teodolitu jest kluczowa dla zapewnienia jakości realizowanych projektów. Użycie limbusa pozwala na uzyskanie dokładnych wyników, które są zgodne z wymaganiami branżowymi, a jego właściwa kalibracja i konserwacja są podstawą sukcesu w pomiarach.

Pytanie 30

Jakiego urządzenia należy użyć do określenia wysokości punktów osnowy realizacyjnej?

A. Teodolitu i tyczki
B. Dalmierza i łaty
C. Niwelatora i łaty
D. Taśmy i tyczki
Niwelator i łata to podstawowe narzędzia wykorzystywane do pomiaru wysokości punktów osnowy realizacyjnej, które są kluczowe w pracach geodezyjnych. Niwelator, jako instrument optyczny, pozwala na precyzyjne określenie różnic wysokości między różnymi punktami terenu. Użycie łaty, która jest długą, prostą miarą, umożliwia odczytanie wysokości w miejscach, gdzie niwelator jest ustawiony. W praktyce, aby zmierzyć wysokość danego punktu, geodeta ustawia niwelator na stabilnym statywie, a następnie mierzy wysokość za pomocą łaty, która jest umieszczana w odpowiednich miejscach. Zastosowanie tej metody jest zgodne z normami i najlepszymi praktykami w dziedzinie geodezji, co zapewnia wysoką precyzję pomiarów. Warto również podkreślić, że niwelacja jest używana w wielu dziedzinach, od budownictwa po inżynierię lądową, co czyni te narzędzia niezwykle uniwersalnymi.

Pytanie 31

Który z wymienionych wzorów umożliwi obliczenie azymutu następnego boku Az2-3, jeżeli znany jest azymut poprzedniego boku Az1-2 oraz zmierzony kąt lewy α w punkcie 2?

A. Az2-3 = Az1-2 + α - 200g
B. Az2-3 = Az2-1 + α - 200g
C. Az2-3 = Az2-1 – α + 200g
D. Az2-3 = Az1-2 – α + 200g
Odpowiedź Az2-3 = Az1-2 + α - 200g jest prawidłowa, ponieważ przy obliczaniu azymutu kolejnego boku w geodezji stosujemy wzór, który uwzględnia azymut boku poprzedniego oraz pomierzony kąt lewy. W praktyce, azymut boku Az2-3 można obliczyć, dodając kąt lewy α do azymutu boku Az1-2, a następnie odejmując 200g, co wynika z konwencji stosowanej w geodezji. Zgodnie z zasadami, w przypadku pomiarów z użyciem teodolitu, kąt lewy jest mierzony w przeciwnym kierunku do ruchu wskazówek zegara, co wymaga uwzględnienia odpowiednich poprawek przy wyznaczaniu azymutu. Praktyczne zastosowanie tego wzoru widoczne jest w terenie, gdzie precyzyjne pomiary są kluczowe dla uzyskania dokładnych wyników w mapowaniu i inżynierii. Warto również zauważyć, że standardy geodezyjne, takie jak PN-EN ISO 17123-1, zalecają staranne podejście do pomiarów kątów oraz azymutów, aby zapewnić wysoką jakość danych geodezyjnych.

Pytanie 32

Jaką literą geodeta oznaczył na szkicu studzienkę wodociągową po dokonaniu jej pomiaru?

A. w
B. k
C. z
D. s
Odpowiedź 'w' to strzał w dziesiątkę. W geodezji studzienka wodociągowa ma oznaczenie 'w' na szkicach. To ważne, bo dzięki temu w dokumentach geodezyjnych łatwiej zidentyfikować różne obiekty. Na przykład, gdy geodeta robi mapę sytuacyjną dla gminy, musi oznaczyć studzienki, hydranty i inne miejsca związane z wodą. Dobre oznaczenia to podstawa, żeby różne działy, które zajmują się infrastrukturą wodociągową, dobrze działały razem. Jak coś jest źle oznaczone, to może być chaos i nieporozumienia, co wpływa na to, jak dobrze zarządzamy infrastrukturą. W skrócie, trzymanie się reguł jest kluczowe w tej branży.

Pytanie 33

Jakie informacje nie są umieszczane na szkicu polowym podczas pomiaru szczegółów terenowych z zastosowaniem metody ortogonalnej?

A. Domiary prostokątne
B. Numery obiektów budowlanych
C. Szczegóły terenowe sytuacyjne
D. Wysokości punktów terenu
Poprawną odpowiedzią jest stwierdzenie, że na szkicu polowym z pomiaru szczegółów terenowych metodą ortogonalną nie zamieszcza się wysokości punktów terenu. Szkic polowy służy do przedstawienia szczegółów sytuacyjnych, takich jak numery budynków czy tereny użytkowe, które są kluczowe dla analizy zagospodarowania przestrzennego. W przypadku pomiaru ortogonalnego skupiamy się na odwzorowaniu kształtów i układów w pionie i poziomie, co ułatwia późniejsze prace geodezyjne i kartograficzne. Wysokości punktów terenu, które są istotne w kontekście modelowania terenu, są zazwyczaj rejestrowane osobno, w ramach pomiarów wysokościowych, a następnie łączone z danymi sytuacyjnymi w procesie tworzenia map. Takie podejście jest zgodne z normami geodezyjnymi, które promują precyzję i efektywność w zbieraniu danych.

Pytanie 34

Zmierzoną odległość 120 m określono z błędem średnim ±3 cm. Jaki jest błąd względny tej pomierzonej odległości?

A. 1/5000
B. 1/1000
C. 1/2000
D. 1/4000
Błąd względny jest miarą niepewności pomiaru, określającą jaką część pomiaru stanowi błąd. W tym przypadku mamy pomiar odległości wynoszący 120 m oraz średni błąd pomiaru wynoszący ±3 cm, co w przeliczeniu na metry daje ±0,03 m. Aby obliczyć błąd względny, należy podzielić błąd pomiaru przez wartość zmierzoną. Zatem: błąd względny = błąd / wartość zmierzona = 0,03 m / 120 m = 0,00025. W przeliczeniu na ułamek, błąd względny wynosi 1/4000. Tego rodzaju obliczenia są niezbędne w inżynierii oraz naukach przyrodniczych, gdzie precyzyjne pomiary mają kluczowe znaczenie, zwłaszcza w kontekście kalibracji urządzeń pomiarowych i zapewnienia jakości w procesach produkcyjnych. Należy pamiętać, że błąd względny pozwala na porównanie dokładności różnych pomiarów i jest szeroko stosowany w badaniach naukowych oraz w przemyśle.

Pytanie 35

Jak powinny zostać zapisane na szkicu tyczenia wyniki pomiarów kontrolnych?

A. Kolorem czarnym, w nawiasie
B. Kolorem czerwonym, w nawiasie
C. Kolorem czarnym, kursywą
D. Kolorem czerwonym, kursywą
Prawidłowa odpowiedź to 'Kolorem czarnym, w nawiasie', ponieważ zgodnie z przyjętymi standardami w dziedzinie geodezji i kartografii, wyniki pomiarów kontrolnych powinny być wpisywane w sposób czytelny i jednoznaczny. Użycie koloru czarnego zapewnia, że informacje te będą dobrze widoczne na szkicu, co jest kluczowe dla późniejszej interpretacji i analizy danych. Dodatkowo, wpisywanie wyników w nawiasach pozwala na ich wyraźne odróżnienie od innych informacji na szkicu, co minimalizuje ryzyko błędów w odczycie. Na przykład, podczas wykonywania tyczenia w terenie, geodeta może z łatwością zidentyfikować wyniki pomiarów kontrolnych, co przyspiesza proces weryfikacji i poprawy dokładności projektu. Dobre praktyki branżowe zalecają stosowanie jasno określonych konwencji zapisu, które są zgodne z normami, takimi jak PN-EN ISO 19115, co dodatkowo podkreśla rangę stosowania spójnych metod dokumentacji.

Pytanie 36

W teodolicie stała podstawa, która służy do jego ustawienia w poziomie, nazywana jest

A. pionem
B. limbusem
C. alidadą
D. spodarką
Spodarka jest kluczowym elementem teodolitu, którego funkcją jest zapewnienie stabilnej i wypoziomowanej podstawy dla urządzenia pomiarowego. Dzięki zastosowaniu spodarki, możliwe jest precyzyjne wykonywanie pomiarów kątów poziomych i pionowych, co jest niezwykle istotne w geodezji oraz budownictwie. Spodarka często jest konstruowana w sposób umożliwiający łatwe dostosowanie poziomu urządzenia, co jest niezbędne do uzyskania dokładnych wyników. W praktyce geodezyjnej, teodolity z odpowiednio dostosowaną spodarką pozwalają na realizację skomplikowanych pomiarów terenowych, takich jak wyznaczanie linii prostych, kątów oraz różnic wysokości. Istotne jest, aby podczas pracy z teodolitem, zwłaszcza w trudnym terenie, zachować ostrożność przy poziomowaniu spodarki, co z kolei wpływa na dokładność pomiarów. Dobre praktyki w tej dziedzinie obejmują regularne kalibracje i kontrole sprzętu, co zapewnia wysoką jakość wyników pomiarowych oraz zgodność z obowiązującymi standardami branżowymi.

Pytanie 37

Maksymalna różnica dwukrotnego pomiaru ΔH na jednym stanowisku, przeprowadzonego metodą niwelacji geometrycznej, powinna wynosić nie więcej niż

A. +/- 4 mm
B. +/- 5 mm
C. +/- 2 mm
D. +/- 3 mm
Różnica dwukrotnego pomiaru ΔH na pojedynczym stanowisku, wykonanego metodą niwelacji geometrycznej, nie powinna przekraczać +/- 4 mm, ponieważ taki zakres błędu jest zgodny z przyjętymi standardami branżowymi, takimi jak normy ISO dotyczące pomiarów geodezyjnych. W praktyce, podczas pomiarów inżynieryjnych, w tym budowy dróg czy mostów, precyzyjność pomiaru jest kluczowa dla zapewnienia stabilności i bezpieczeństwa konstrukcji. Metoda niwelacji geometrycznej polega na pomiarze różnic wysokości pomiędzy punktami przy użyciu teodolitu lub niwelatora, co wymaga skrupulatności i odpowiednich warunków pomiarowych. Właściwe przygotowanie stanowiska pomiarowego oraz eliminacja źródeł błędów, takich jak drgania czy zmiany atmosferyczne, wpływa na uzyskane wyniki. W kontekście praktycznym, akceptowalny poziom błędu +/- 4 mm umożliwia wykonanie niezbędnych korekt i dostarczenie wiarygodnych danych do dalszej analizy i projektowania.

Pytanie 38

Jeśli długość odcinka na mapie w skali 1:500 wynosi 20 cm, to jaka jest rzeczywista długość tego odcinka w terenie?

A. 500 m
B. 1000m
C. 100 m
D. 50 m
Odpowiedź 100 m jest poprawna, ponieważ w skali 1:500 każdy 1 cm na mapie reprezentuje 500 cm w rzeczywistości, co odpowiada 5 m. Aby obliczyć rzeczywistą długość odcinka, należy pomnożyć długość odcinka na mapie przez wartość skali. W tym przypadku: 20 cm (długość na mapie) x 500 cm (w rzeczywistości na 1 cm) = 10000 cm, co przelicza się na 100 m. Przykład zastosowania tej wiedzy można znaleźć w geodezji i kartografii, gdzie precyzyjne pomiary są niezbędne do tworzenia map i planów. Stosowanie skal w praktyce umożliwia inżynierom, architektom oraz planistom przestrzennym dokładne odwzorowywanie rzeczywistych odległości i powierzchni, co jest kluczowe dla efektywnego projektowania i realizacji inwestycji budowlanych oraz zarządzania przestrzenią. Wiedza ta jest również przydatna w czasie wędrówek czy nawigacji, gdzie umiejętność odczytywania map i przeliczania skal jest niezbędna dla bezpieczeństwa i orientacji w terenie.

Pytanie 39

W jakim celu stosuje się metodę biegunową w pomiarach geodezyjnych?

A. Do określania współrzędnych punktów na podstawie jednej odległości i dwóch kątów.
B. Do wykonywania pomiarów przemieszczeń w pionie w budownictwie.
C. Do określania kąta nachylenia powierzchni w projektach architektonicznych.
D. Do wyznaczania kątów poziomych pomiędzy punktami w terenie.
Metoda biegunowa to jedna z najważniejszych i najczęściej stosowanych metod w geodezji. Jej głównym celem jest określanie współrzędnych punktów w terenie na podstawie jednej odległości i dwóch kątów — poziomego i pionowego. Dzięki tej metodzie można precyzyjnie ustalić lokalizację punktów w przestrzeni, co jest kluczowe w wielu zastosowaniach inżynieryjnych i budowlanych. W praktyce geodezyjnej metoda ta jest nieoceniona ze względu na swoją dokładność i efektywność. Na przykład, przy realizacji projektów infrastrukturalnych, takich jak budowa dróg, mostów czy budynków, precyzyjne określenie położenia punktów względem siebie jest niezbędne do prawidłowego przebiegu prac. Metoda biegunowa jest również szeroko stosowana w kartografii oraz przy tworzeniu map topograficznych. W standardach branżowych i dobrych praktykach geodezyjnych uznawana jest za podstawową technikę pomiarową, której znajomość jest niezbędna dla każdego profesjonalnego geodety. Dzięki jej zastosowaniu możliwe jest unikanie błędów w lokalizacji i zapewnienie zgodności projektów budowlanych z planami.

Pytanie 40

Na podstawie przedstawionego raportu z wyrównania współrzędnych punktów osnowy realizacyjnej określ, ile wynosi błąd średni położenia punktu 1005.

Lp.Nr PX [m]Y [m]Mx [m]My [m]Mp [m]KL
11000843729.5930255814.63260.00790.01820.0198
21004843905.8055255769.88160.01440.01830.0233
31003843923.6493255717.15190.01660.01850.0248
41002843906.0657255712.58920.01790.01860.0258
51005843936.8654255729.41120.01580.01850.0243
61221843726.5500255606.63000.00000.00000.0000
7767845301.9800255940.35000.00000.00000.0000s
81336845312.2400255012.03000.00000.00000.0000s
91228844953.2000257194.25000.00000.00000.0000s

A. 15,8 mm
B. 24,3 mm
C. 23,4 mm
D. 18,5 mm
Błędne odpowiedzi wskazują na powszechne nieporozumienia dotyczące analizy danych pomiarowych oraz interpretacji raportów z wyrównania współrzędnych. Na przykład, podanie wartości 18,5 mm sugeruje, że pomiar został niedoszacowany, co może wynikać z pomyłki w odczycie lub z nieprawidłowego zrozumienia metodyki obliczeń. W przypadku odpowiedzi 23,4 mm oraz 15,8 mm, można zauważyć, że mogą one być wynikiem błędów w obliczeniach statystycznych, które często są stosowane do oceny precyzji pomiarów. Dobrze jest pamiętać, że błąd średni położenia to nie tylko suma błędów indywidualnych, ale również uwzględnia rozkład błędów w kontekście całego zbioru pomiarowego. Powszechnym błędem myślowym jest skupienie się na pojedynczych wartościach bez szerszej analizy raportu, co prowadzi do niesłusznych wniosków. Odpowiednia interpretacja raportów z wyrównania wymaga znajomości metod statystycznych oraz umiejętności analizy danych, co jest kluczowe w geodezji, aby zapewnić zgodność z przyjętymi standardami jakości oraz dokładności pomiarów.