Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 14 maja 2025 06:13
  • Data zakończenia: 14 maja 2025 06:16

Egzamin niezdany

Wynik: 10/40 punktów (25,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Licznik impulsów rewersyjnych to urządzenie

A. które wykonuje dodawanie i odejmowanie impulsów
B. które dokonuje odejmowania impulsów
C. które zapisuje w pamięci określoną liczbę impulsów
D. które zajmuje się dodawaniem impulsów
Wybór odpowiedzi, która ogranicza się do dodawania impulsów, nie oddaje pełnego zakresu funkcji rewersyjnego licznika impulsów. Liczniki te, jak sama nazwa wskazuje, mają zdolność do rewersji, co oznacza, że mogą nie tylko akumulować impulsy, ale także je odejmować. Podejście, które koncentruje się wyłącznie na dodawaniu, pomija kluczowy aspekt ich wszechstronności, co jest niezwykle istotne w zastosowaniach przemysłowych. W kontekście pomiarów, na przykład w systemach automatyki, często potrzebne jest nie tylko zliczanie, ale także korekta błędów, co wymaga funkcji odejmowania. Zrozumienie zasady działania rewersyjnych liczników impulsów jest kluczowe, aby uniknąć nieporozumień dotyczących ich zastosowania. Próba wyboru opcji, która mówi tylko o zliczaniu impulsów w pamięci, również jest myląca, ponieważ nie oddaje ona dynamiki działania takich urządzeń. W praktyce, liczniki te muszą reagować na zmieniające się warunki operacyjne, co wymaga zarówno dodawania, jak i odejmowania impulsów. Ignorowanie tej funkcji prowadzi do uproszczonego postrzegania złożonych systemów automatyki, co może skutkować błędnymi decyzjami w inżynierii i projektowaniu układów sterujących.

Pytanie 2

Do metod oceny stanu łożysk tocznych nie zalicza się pomiaru

A. ciepłoty
B. prędkości
C. wibracji
D. hałasów
Wybór pomiaru drgań, szumów czy temperatury do oceny stanu łożysk tocznych wydaje się sensowny, ale pomiar prędkości nie ma tak solidnych podstaw. Drgania są kluczowe w diagnostyce maszyn, bo ich analiza może pomóc w wczesnym wykrywaniu problemów, jak uszkodzenia czy niewłaściwe ustawienie. Pomiar szumów też jest ważny, bo może ujawniać nieprawidłowości w pracy łożysk. Monitorowanie temperatury jest istotne, żeby zapobiec przegrzewaniu łożysk, co jest ważne dla ich trwałości. Samo mierzenie prędkości obrotowej nie daje wystarczających informacji o stanie łożysk, bo nie bierze pod uwagę czynników, które mogą wpływać na ich wydajność, jak uszkodzenia czy zużycie. Te dwa pojęcia często się myli, co prowadzi do błędnych wniosków. Lepiej skupić się na kompleksowej analizie drgań, która lepiej oddaje stan łożysk. Warto zrozumieć, że diagnostyka łożysk wymaga różnych metod, a nie tylko pomiaru prędkości.

Pytanie 3

W układzie do przygotowania sprężonego powietrza, reduktor ciśnienia

A. łączy sprężone powietrze z mgłą olejową
B. zmniejsza ilość zanieczyszczeń w sprężonym powietrzu
C. zapewnia stałe ciśnienie robocze
D. generuje mgłę olejową
Odpowiedzi wskazujące na mieszanie sprężonego powietrza z mgłą olejową oraz na wytwarzanie mgły olejowej są mylące, ponieważ reduktor ciśnienia nie pełni tych funkcji. Mieszanie sprężonego powietrza z olejem odbywa się w oddzielnym module, takim jak smarownica, która zapewnia odpowiedni poziom smarowania w systemach pneumatycznych. Wytwarzanie mgły olejowej również nie jest zadaniem reduktora, a olej w postaci mgły jest wprowadzany do układu, aby zredukować tarcie w elementach roboczych. Utrzymanie stałego ciśnienia roboczego jest kluczowe, ponieważ zbyt niskie lub zbyt wysokie ciśnienie może prowadzić do uszkodzenia urządzeń oraz obniżenia efektywności produkcji. Właściwe ciśnienie robocze zapewnia optymalne warunki dla pracy narzędzi pneumatycznych, co jest istotne dla ich wydajności oraz trwałości. W kontekście redukcji zanieczyszczeń, choć jest to ważny aspekt przygotowania sprężonego powietrza, reduktor nie jest urządzeniem odpowiedzialnym za filtrację. Oczyszczanie sprężonego powietrza z zanieczyszczeń odbywa się przy użyciu filtrów, które współpracują z innymi elementami systemu, co pozwala na uzyskanie czystego medium niezbędnego do prawidłowego funkcjonowania maszyn. Właściwe zrozumienie roli reduktora ciśnienia jest kluczowe dla zapewnienia niezawodności i efektywności systemów pneumatycznych.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

Który rodzaj smaru powinien być regularnie uzupełniany w smarownicy pneumatycznej?

A. Pastę
B. Proszek
C. Olej
D. Silikon
Niektóre błędne odpowiedzi mogą sugerować, że inne materiały smarne, takie jak proszek, silikon czy pasta, mogą być stosowane w smarownicach pneumatycznych, ale to nie jest zgodne z zasadami ich funkcjonowania. Proszek nie jest odpowiednim środkiem smarnym, ponieważ nie ma zdolności do tworzenia warstwy smarnej, co jest kluczowe dla redukcji tarcia. Stosowanie proszku może prowadzić do uszkodzenia części mechanicznych przez zatykanie systemu, co wpływa na efektywność smarowania. Silikon, mimo że jest często używany w różnych aplikacjach, nie jest zalecany do smarownic pneumatycznych, ponieważ jego właściwości mogą nie zapewnić odpowiedniego smarowania w ruchomych częściach oraz mogą wchodzić w reakcje z innymi materiałami w systemie. Podobnie, pasta smarna, chociaż użyteczna w niektórych zastosowaniach, nie jest przeznaczona do smarownic pneumatycznych, ponieważ może prowadzić do zatykania filtrów i innych elementów, co negatywnie wpływa na pracę całego układu. Kluczowe jest, aby stosować odpowiednie środki smarne zgodne z zaleceniami producentów oraz standardami branżowymi, aby uniknąć problemów związanych z efektywnością i żywotnością urządzeń.

Pytanie 6

Aby zabezpieczyć połączenia gwintowe przed niekontrolowanym odkręceniem, należy zastosować przeciwnakrętkę oraz wykorzystać

A. jednym kluczem nasadowym
B. jednym kluczem płaskim
C. dwoma kluczami płaskimi
D. dwoma kluczami nasadowymi
Wybór jednego klucza płaskiego do zabezpieczenia połączeń gwintowych jest niewłaściwą strategią, ponieważ nie zapewnia równomiernego i stabilnego mocowania. Klucz płaski, używany w pojedynkę, nie może skutecznie zapobiec odkręceniu się nakrętki, szczególnie w sytuacjach narażonych na wibracje lub zmiany temperatury, które mogą powodować luzowanie się połączeń. Użycie jednego klucza płaskiego prowadzi do zwiększonego ryzyka uszkodzenia gwintu, ponieważ siła zastosowana do obracania nakrętki może być niestabilna i wymuszać nieprawidłowe obciążenia na połączeniu. Podobnie, korzystanie z dwóch kluczy nasadowych lub jednego klucza nasadowego w takim kontekście również nie jest optymalne. Klucze nasadowe, choć mogą być efektywne w kilku zastosowaniach, nie zapewniają takiego samego poziomu kontroli nad obydwoma elementami gwintowymi jak klucze płaskie. Klucze nasadowe mogą łatwo zsuwać się z nakrętek, zwłaszcza przy zmieniających się obciążeniach, co dodatkowo zwiększa ryzyko poluzowania. W praktyce, kluczowe jest zrozumienie, że odpowiednie narzędzia i techniki zabezpieczania połączeń gwintowych odgrywają kluczową rolę w zapewnieniu ich trwałości i funkcjonalności. Zachowanie standardów montażowych oraz konserwacyjnych jest istotnym elementem w inżynierii, który wpływa na bezpieczeństwo i wydajność całych konstrukcji.

Pytanie 7

Wskaź zasady, która stosowana jest wyłącznie przy demontażu urządzenia o złożonej konstrukcji?

A. Ustalić lokalizację poszczególnych zespołów i oddzielić je, pozostawiając w całości
B. Rozmontować kolejno każdą część urządzenia, nie uwzględniając ich przynależności do podzespołów urządzenia
C. Przygotować plan demontażu i wymontować jedynie wybrane podzespoły
D. Opracować plan demontażu i rozłożyć poszczególne zespoły urządzenia, a następnie zdemontować podzespoły na części
Poprawna odpowiedź odnosi się do kluczowych zasad demontażu skomplikowanych urządzeń, które są kluczowe dla zapewnienia bezpieczeństwa oraz efektywności całego procesu. Wykonanie planu demontażu jest istotne, ponieważ pozwala na zrozumienie struktury urządzenia, co z kolei umożliwia bezpieczne i uporządkowane rozmontowywanie poszczególnych zespołów. Przy takiej procedurze, każdy zespół jest najpierw demontowany w całości, co minimalizuje ryzyko uszkodzenia podzespołów i ułatwia ich późniejszy montaż lub konserwację. Przykładem zastosowania tej zasady może być demontaż skomplikowanych systemów elektronicznych, takich jak komputery czy maszyny przemysłowe, gdzie precyzyjne rozpoznanie kolejności demontażu, na podstawie schematów, może zapobiec zniszczeniu delikatnych komponentów. Zgodnie z najlepszymi praktykami, taki plan demontażu powinien być udokumentowany oraz regularnie aktualizowany, aby uwzględniał zmiany w konstrukcji urządzeń oraz nowe technologie.

Pytanie 8

Do sposobów oceny stanu łożysk tocznych nie wlicza się pomiaru

A. prędkości
B. temperatury
C. drgań
D. szumów
Wszystkie wymienione metody, takie jak pomiar drgań, szumów i temperatury, są uznawane za kluczowe w ocenie stanu łożysk tocznych, co może prowadzić do mylnego przekonania o znaczeniu pomiaru prędkości. Pomiar drgań jest jedną z najczęściej stosowanych technik w diagnostyce stanu maszyn, pozwalającą na szybkie wykrycie anomalii, które mogą prowadzić do awarii. Drgania generowane przez łożyska mogą być analizowane w różnych zakresach częstotliwości, co umożliwia identyfikację konkretnego problemu, jak na przykład uszkodzenia bieżni. Pomiar szumów, choć mniej powszechny, także może dostarczać cennych informacji o stanie łożysk, pomagając w identyfikacji problemów związanych z zużyciem lub zanieczyszczeniami. Z kolei pomiar temperatury jest kluczowy dla zachowania optymalnych warunków pracy łożysk, gdyż przekroczenie normy temperatury może wskazywać na problemy z wentylacją lub niedostateczne smarowanie. Dlatego ważne jest, aby mieć na uwadze, że wszelkie pomiary związane z ocena łożysk powinny być prowadzone zgodnie z najlepszymi praktykami i standardami branżowymi, aby zapewnić ich niezawodność i długowieczność. Wnioskując, pomiar prędkości nie wnosi istotnych informacji do analizy stanu łożysk, co czyni go mniej użytecznym w tym kontekście.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Proces oceny stanu technicznego elementu mechanicznego zaczyna się od

A. montażu
B. obróbki
C. oględzin
D. pomiarów
W ocenie stanu technicznego podzespołów mechanicznych kluczowe jest zrozumienie, że każdy etap procesu diagnostycznego ma swoje miejsce i znaczenie. Rozpoczęcie od obróbki, pomiarów czy montażu jest niepoprawne, ponieważ te działania zakładają wcześniejsze zweryfikowanie ogólnego stanu urządzenia. Obróbka podzespołów, na przykład, odbywa się zazwyczaj po stwierdzeniu, że są one w odpowiednim stanie do dalszych działań. Pomiar, z kolei, bez uprzednich oględzin, może prowadzić do niepoprawnych wniosków, gdyż istotne niedoskonałości mogą zniekształcać wyniki. Montaż zestawów mechanicznych bez wcześniejszej analizy stanu podzespołów może skutkować niewłaściwym działaniem finalnego produktu, co jest niezwykle kosztowne i czasochłonne w naprawie. W praktyce inżynierskiej istotne jest stosowanie metodologii, które zaczynają się od detekcji widocznych problemów, co wpływa na efektywność całego procesu oceny i konserwacji. Prawidłowe podejście do diagnostyki jest kluczowe dla zapewnienia długotrwałej żywotności i niezawodności podzespołów, co jest zgodne z najlepszymi praktykami w branży.

Pytanie 15

W jakiej maksymalnej odległości od czoła czujnika powinien znajdować się przedmiot, aby został wykryty przez czujnik o parametrach podanych w tabeli?

Napięcie zasilania: 12 ÷ 24V DC
Zasięg: 8 mm
Typ wyjścia: NPN N.O., NPN N.C., PNP N.O., PNP N.C.
Rodzaj czoła: odkryte
Obudowa czujnika: M18
Przyłącze: przewód 2 m
Maksymalny prąd pracy: 100 mA
Czas odpowiedzi układu: max. 2 ms
Materiał korpusu: metal
Stopień ochrony: IP66
Temperatura pracy: -20°C ÷ +60°C

A. 12mm
B. 66mm
C. 2mm
D. 8mm
Wybór odpowiedzi innej niż 8 mm może prowadzić do poważnych nieporozumień w zakresie działania czujników. Odpowiedzi takie jak 12 mm, 2 mm czy 66 mm nie są zgodne z rzeczywistymi parametrami czujnika. Przy wyborze 12 mm można sądzić, że czujnik wykrywa obiekty z większej odległości, co jest błędem, ponieważ jego zasięg to 8 mm. W sytuacji, gdy obiekt znajduje się dalej niż 8 mm, czujnik nie będzie w stanie go wykryć, co może skutkować awarią systemów, które polegają na dokładnym monitorowaniu otoczenia. Odpowiedź 2 mm z kolei sugeruje, że czujnik może skutecznie wykrywać obiekty w bardzo bliskiej odległości, co nie jest błędne, ale nie wykorzystuje w pełni potencjału detekcyjnego czujnika. Zbyt bliskie podejście do czujnika może prowadzić do nieprawidłowego działania, na przykład uszkodzenia czujnika lub obiektu, który ma być wykrywany. Ponadto, odpowiedź 66 mm wskazuje na całkowitą ignorancję specyfikacji technicznych czujników, które są projektowane z określonym zasięgiem detekcji. W praktyce, brak znajomości tych parametrów może prowadzić do nieefektywnego zaprojektowania systemu, co w przypadku aplikacji przemysłowych może skutkować znacznymi stratami finansowymi. Zrozumienie specyfiki detekcji czujników i ich parametrów jest kluczowe dla inżynierów i techników, aby zapewnić prawidłowe działanie systemów automatyzacji.

Pytanie 16

Jakie elementy znajdują się w zespole przygotowania powietrza?

A. sprężarka, filtr, manometr, smarownica
B. filtr, zawór redukcyjny, manometr, smarownica
C. sprężarka, filtr, zawór redukcyjny, manometr
D. filtr, zawór dławiący, manometr, smarownica
Nieprawidłowe odpowiedzi dotyczą elementów, które nie są standardowo częścią zespołu przygotowania powietrza. Odpowiedzi takie jak sprężarka i zawór dławiący wskazują na pewne nieporozumienia. Sprężarka jest urządzeniem odpowiedzialnym za wytwarzanie sprężonego powietrza, ale nie jest elementem przygotowania powietrza; jest to zatem pierwszy krok w procesie, a nie jego część. W kontekście branżowym, elementy te powinny być rozróżniane, aby uniknąć błędów w projektowaniu systemów pneumatycznych. Zawór dławiący jest zazwyczaj używany do regulacji przepływu, ale nie spełnia funkcji zaworu redukcyjnego, który jest kluczowy do utrzymania stabilnego ciśnienia. Zawory dławiące mogą prowadzić do niestabilności w systemie, gdyż nie kontrolują ciśnienia, tylko jego przepływ. W przypadku zrozumienia układów pneumatycznych, istotne jest, by mieć na uwadze, że właściwe przygotowanie powietrza jest kluczowe dla efektywności całego systemu. Niewłaściwy dobór komponentów może prowadzić do zwiększonego zużycia energii, uszkodzeń urządzeń oraz obniżenia wydajności, co jest zgodne z najlepszymi praktykami branżowymi, które podkreślają znaczenie precyzyjnej konstrukcji i konserwacji systemów pneumatycznych. Dlatego kluczowe jest nie tylko posiadanie odpowiednich elementów, ale także ich integralne zrozumienie i zastosowanie w praktyce.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

Jakie wymiary biorą pod uwagę dopuszczalne odchylenia w wykonaniu elementu mechanicznego?

A. Nominalne
B. Rzeczywiste
C. Graniczne
D. Jednostronne
Wybór odpowiedzi, która nie odnosi się do wymiarów granicznych, może prowadzić do nieporozumień w zakresie tolerancji wykonania elementów mechanicznych. Odpowiedź 'Rzeczywiste' sugeruje skupienie na wymiarach, które są mierzone po zakończeniu produkcji. To podejście, choć istotne, nie definiuje dopuszczalnych błędów wykonania, a jedynie rzeczywiste wyniki pomiarów, które mogą być poza akceptowalnymi limitami, co prowadzi do problemów z jakością. Odpowiedź 'Nominalne' odnosi się do idealnych wymiarów projektowych, które są podstawą do określenia wymiarów granicznych, ale nie stanowią one o tolerancjach wykonania. Z kolei 'Jednostronne' sugeruje podejście do tolerancji, które nie jest standardowo stosowane w produkcie, ponieważ rzeczywiste aplikacje często wymagają tolerancji dwustronnych dla zapewnienia pełnej funkcjonalności i bezpieczeństwa komponentów. Poprzez takie myślenie, można nieświadomie wprowadzać błędy do procesu projektowania i produkcji, prowadząc do nieprzewidzianych błędów montażowych oraz awarii mechanicznych. Dlatego kluczowe jest zrozumienie, że tolerancje graniczne odgrywają fundamentalną rolę w inżynierii i produkcji, a ich pominięcie może skutkować krytycznymi problemami operacyjnymi.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Siłownik, który przesuwa tłok w jedną stronę dzięki sprężonemu powietrzu, a powrót tłoka jest wymuszany przez sprężynę, określamy jako siłownik pneumatyczny

A. jednostronnej pracy.
B. dwustronnej pracy, bez amortyzacji.
C. różnicowy.
D. dwustronnej pracy.
Wybór odpowiedzi związanej z siłownikami dwustronnego działania wskazuje na pewne nieporozumienia dotyczące podstawowych zasad działania tych urządzeń. Siłowniki dwustronnego działania mogą przesuwać tłok w obie strony, co jest kluczowe w wielu zastosowaniach przemysłowych, gdzie wymagane jest dynamiczne działanie. Ich mechanizm opiera się na zastosowaniu sprężonego powietrza do ruchu tłoka w dwóch kierunkach, co pozwala na bardziej elastyczne zastosowanie w różnych procesach. Odpowiedzi takie jak 'bez amortyzacji' bądź 'różnicowy' mogą sugerować, że użytkownik nie rozumie różnicy między amortyzacją a mechanizmem działania siłownika. Amortyzacja w siłownikach odnosi się do sposobu, w jaki tłok zatrzymuje się na końcu swojego ruchu, co ma na celu zredukowanie wstrząsów i hałasu, ale nie wpływa na sam mechanizm jednostronnego lub dwustronnego działania. Także siłowniki różnicowe działają na zasadzie zmiennego ciśnienia, co również nie odpowiada opisowi siłownika jednostronnego działania. Typowe błędy myślowe w tym przypadku mogą wynikać z mylenia funkcji siłowników i ich zastosowania w różnych systemach automatyzacji, co podkreśla konieczność zrozumienia podstawowych zasad działania oraz ich praktycznych zastosowań w przemyśle.

Pytanie 24

Jakie rozszerzenie nazwy pliku w systemie Windows wskazuje na pliki wykonywalne?

A. sys
B. bmp
C. ini
D. exe
Rozszerzenia .ini, .sys i .bmp nie mają nic wspólnego z plikami, które uruchamiają programy, więc łatwo można się w tym pogubić. Pliki .ini za to są do ustawień aplikacji – tam programy zapisują różne preferencje, takie jak rozmiar okna czy inne opcje. Natomiast pliki .sys to sterowniki urządzeń, które łączą sprzęt z systemem, ale nie służą do uruchamiania aplikacji. A pliki .bmp? To format obrazów używany do grafiki, a nie do wykonywania kodu. Często występują błędy w myśleniu o plikach wykonywalnych – można pomylić .sys z .exe, myśląc, że mają takie same funkcje, ale to nieprawda. Musimy zrozumieć, że tylko pliki .exe mogą być uruchamiane, a inne mają swoje specyficzne zastosowania. Dobrze jest wiedzieć, jakie rozszerzenia istnieją, żeby móc sprawnie korzystać z komputera.

Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Jakiego typu przewód jest zalecany do komunikacji w magistrali CAN?

A. Przewodu koncentrycznego
B. Przewodu dziewięciożyłowego
C. Skrętki czteroparowej, ekranowanej
D. Skrętki dwuprzewodowej
Skrętka dwuprzewodowa jest preferowanym wyborem do komunikacji w magistrali CAN (Controller Area Network) ze względu na jej zdolność do minimalizacji zakłóceń oraz zapewnienia odpowiedniej jakości sygnału. W systemach CAN, które są często używane w automatyce przemysłowej i motoryzacji, ważne jest, aby przewód miał niską impedancję i był odporny na zakłócenia elektromagnetyczne. Skrętka dwuprzewodowa, dzięki swoim właściwościom, pozwala na zastosowanie metody różnicowej, co oznacza, że sygnał jest przesyłany na dwóch przewodach o przeciwnych napięciach. Takie rozwiązanie znacząco poprawia odporność na zakłócenia zewnętrzne oraz pozwala na dłuższe odległości transmisji, co jest kluczowe w systemach, gdzie urządzenia mogą być rozmieszczone na dużych przestrzeniach. W przypadku komunikacji w magistrali CAN, standardy takie jak ISO 11898 określają parametry techniczne, które muszą być spełnione przez przewody, co dodatkowo podkreśla znaczenie wyboru właściwego typu kabla. Dobrze wykonana instalacja z użyciem skrętki dwuprzewodowej zapewnia stabilność sieci oraz wysoką niezawodność przesyłanych danych.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

Który z elementów tyrystora ma funkcję sterowania?

A. Katoda
B. Źródło
C. Bramka
D. Anoda
Bramka tyrystora, znana również jako terminal bramkowy, odgrywa kluczową rolę w jego działaniu, pełniąc funkcję sterującą. W momencie dostarczenia sygnału sterującego na bramkę, dochodzi do zainicjowania przewodzenia prądu pomiędzy anodą a katodą. Tyrystory są szeroko stosowane w aplikacjach wymagających precyzyjnego zarządzania dużymi prądami i napięciami, takich jak prostowniki, regulatory mocy oraz układy przełączające. Dzięki możliwości sterowania prądem za pomocą niskiego napięcia na bramce, tyrystory pozwalają na zdalne zarządzanie obciążeniem bez konieczności stosowania skomplikowanych układów mechanicznych. W praktyce, tyrystory z bramką są kluczowe w systemach automatyki przemysłowej, gdzie stabilna i efektywna kontrola mocy jest niezbędna do zapewnienia prawidłowego funkcjonowania maszyn.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Która z wymienionych działań, które są częścią montażu osłon przy użyciu wielu mocowań śrubowych, powinna być realizowana ściśle zgodnie z wytycznymi?

A. Polerowanie ręczne powierzchni
B. Smarowanie odpowiednim smarem
C. Dobór narzędzi
D. Dokręcanie śrub
Dokręcanie śrub jest kluczowym etapem montażu osłon za pomocą połączeń śrubowych, ponieważ ma na celu zapewnienie odpowiedniej siły i stabilności całej konstrukcji. Zgodnie z normami branżowymi, każde połączenie mechaniczne powinno być dokręcone zgodnie z zaleceniami producenta oraz przy użyciu odpowiednich narzędzi, które gwarantują dokładność momentu dokręcania. Przykładowo, w przypadku zastosowania połączeń śrubowych w motoryzacji, niewłaściwe dokręcenie może prowadzić do wibracji, uszkodzeń komponentów oraz w konsekwencji do poważnych awarii. Ważne jest również, aby stosować się do procedur, takich jak sekwencyjne dokręcanie, które ma na celu równomierne rozłożenie sił i minimalizację ryzyka deformacji elementów. Ponadto, zastosowanie momentomierzy jest rekomendowane, aby uzyskać powtarzalność i zgodność z wymaganiami technicznymi. Takie podejście nie tylko zwiększa bezpieczeństwo, ale również przedłuża żywotność montowanych osłon, co jest kluczowe w kontekście efektywności i niezawodności mechanizmów.