Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 22 maja 2025 16:20
  • Data zakończenia: 22 maja 2025 16:42

Egzamin zdany!

Wynik: 24/40 punktów (60,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Jak przebiega procedura unieszkodliwiania rozlanego kwasu siarkowego(VI)?

A. dokładnym spłukaniu miejsc z kwasem roztworem wodorotlenku sodu
B. dokładnym spłukaniu miejsc z kwasem roztworem węglanu sodu
C. zbieraniu kwasu tlenkiem wapnia w celu późniejszej utylizacji
D. spłukaniu miejsc z kwasem gorącą wodą
Odpowiedź wskazująca na zebranie kwasu tlenkiem wapnia jest prawidłowa, ponieważ tlenek wapnia (CaO) reaguje z kwasem siarkowym(VI) (H2SO4) w procesie neutralizacji, tworząc siarczan wapnia (CaSO4), który jest niegroźnym osadem. Taka metoda unieszkodliwiania kwasu jest zgodna z zasadami ochrony środowiska i bhp, ponieważ minimalizuje ryzyko dalszego uszkodzenia przez kwas oraz pozwala na bezpieczne usunięcie odpadów. Przykład praktycznego zastosowania tej metody można zaobserwować w laboratoriach chemicznych oraz zakładach przemysłowych, gdzie niezbędne jest zarządzanie substancjami niebezpiecznymi. Zgodnie z normami, takimi jak ISO 14001, odpowiednie procedury zarządzania substancjami chemicznymi powinny obejmować metody neutralizacji, a zastosowanie tlenku wapnia to jedna z najskuteczniejszych technik w tym zakresie. Warto również pamiętać, że po neutralizacji, powstały siarczan wapnia powinien być poddany odpowiedniej utylizacji zgodnie z obowiązującymi przepisami, co zabezpiecza przed zanieczyszczeniem środowiska.

Pytanie 3

Proces przesiewania próbki prowadzi się za pomocą urządzenia przedstawionego na rysunku

Tabela. Sposoby utrwalania próbek wody i ścieków, miejsce analizy, dopuszczalny czas przechowywania próbek
Oznaczany parametrRodzaj naczynia do przechowywania próbkiSposób utrwalania próbkiMiejsce wykonania analizyDopuszczalny czas przechowywania próbki
Chlorkiszklane
lub polietylenowe
-laboratorium96 godzin
Chlor pozostałyszklane-w miejscu
pobrania próbki
-
ChZTszklanezakwaszenie do pH<2,
schłodzenie
do temperatury 2-5°C
laboratorium24 godziny
Kwasowośćszklane
lub polietylenowe
schłodzenie
do temperatury 2-5°C
laboratorium4 godziny
Manganszklane
lub polietylenowe
zakwaszenie do pH<2,
schłodzenie
do temperatury 2-5°C
laboratorium48 godzin

A. D.
B. B.
C. C.
D. A.
Wybór odpowiedzi A, B lub D wskazuje na pewne nieporozumienia dotyczące podstawowych zasad przesiewania próbki. Odpowiedzi te mogą sugerować, że użytkownik nie rozumie, że proces przesiewania wymaga zastosowania odpowiednich narzędzi, które są specjalnie zaprojektowane do tego celu. Na przykład, odpowiedzi A i B mogą być mylone z ideą użycia innych metod mechanicznych, takich jak mieszanie czy szarpanie, które nie są właściwe do oddzielania cząstek według ich rozmiaru. W rzeczywistości, metody te nie zapewniają wymaganej precyzji, ponieważ nie segregują one cząstek na podstawie ich właściwości fizycznych. Odpowiedź D sugeruje z kolei inne techniki separacji, takie jak filtracja, która jest stosowana do usuwania większych zanieczyszczeń z cieczy, a nie do przesiewania ciał stałych. Kluczowym błędem myślowym, który może prowadzić do takich odpowiedzi, jest nieporozumienie dotyczące zasad mechaniki ciał stałych i procesów separacji. Przesiewanie i filtracja to dwa różne procesy, które mają swoje specyficzne zastosowania. Zrozumienie tego rozróżnienia jest niezbędne dla prawidłowego podejścia do analizy materiałów sypkich oraz do stosowania norm branżowych, które gwarantują skuteczność i dokładność wyników.

Pytanie 4

Jakie jest pH 0,001-molowego roztworu NaOH?

A. 11
B. 1
C. 3
D. 13
pH 0,001-molowego roztworu NaOH wynosi 11, bo NaOH to mocna zasada, która całkowicie rozdziela się w wodzie na jony Na+ i OH-. W takim roztworze stężenie tych jonów OH- to 0,001 mol/L. Jak wyliczysz pOH używając wzoru pOH = -log[OH-], dostaniesz -log(0,001), co równa się 3. Pamiętaj, że jest związek między pH i pOH, który można zapisać jako pH + pOH = 14. Więc pH = 14 - pOH = 14 - 3 = 11. To, jak się to wszystko ze sobą wiąże, ma dużą wagę w chemii analitycznej i w laboratoriach, ponieważ pH pokazuje, czy roztwór jest kwasowy czy zasadowy. W wielu dziedzinach, jak biochemia, farmacja czy inżynieria chemiczna, ta wiedza to podstawa. Na przykład, w neutralizacji i różnych reakcjach chemicznych, kontrola pH może znacząco wpłynąć na skuteczność tych procesów.

Pytanie 5

Na podstawie informacji zawartej na pipecie, została ona skalibrowana na

A. wlew.
B. gorąco.
C. wylew.
D. zimno.
Odpowiedź 'wylew' jest prawidłowa, ponieważ oznacza, że pipecie nadano skalę pomiarową, która jest używana do precyzyjnego dozowania cieczy. W kontekście laboratoriów i procedur naukowych, pipecie, zwanej również pipetą, należy przypisać odpowiednią kalibrację, aby zapewnić dokładność i powtarzalność wyników. Standardy ISO oraz normy, takie jak ISO 8655, podkreślają znaczenie kalibracji pipet, co jest kluczowe w analizach chemicznych oraz biologicznych. W praktyce, pipecie skalibrowanej na 'wylew' przypisuje się objętość, którą można precyzyjnie odmierzyć i przenieść z jednego naczynia do drugiego, co ma istotne zastosowanie w produkcji leków oraz testach laboratoryjnych. Przykładem może być przygotowanie roztworu, gdzie każdy mililitr musi być dokładnie odmierzone, by uniknąć błędów w badaniach. Ponadto, kalibracja na 'wylew' pozwala na minimalizację strat cieczy, co jest niezbędne w przypadku drobnych reagentów o wysokich kosztach.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Aspirator jest urządzeniem wykorzystywanym do pobierania próbek

A. ścieków
B. gleby
C. wody
D. powietrza
Aspirator powietrza to urządzenie wykorzystywane do pobierania próbek gazów i powietrza w różnych zastosowaniach, w tym w monitorowaniu jakości powietrza, badaniach środowiskowych oraz analizach przemysłowych. Dzięki aspiratorom można uzyskać reprezentatywne próbki powietrza, co jest kluczowe w ocenie zanieczyszczeń atmosferycznych, takich jak pyły, gazy i toksyczne substancje chemiczne. Przykładowo, w branży ochrony środowiska aspiratory służą do oceny stężenia substancji lotnych w powietrzu, co jest istotne dla przestrzegania norm emisji określonych przez przepisy prawa, w tym standardy Unii Europejskiej. Dobre praktyki w używaniu aspiratorów obejmują regularne kalibracje urządzeń oraz stosowanie filtrów, które zwiększają dokładność pobierania próbek. Dodatkowo, aspiratory są często wykorzystywane w laboratoriach do badania powietrza w pomieszczeniach, co ma na celu ochronę zdrowia ludzi oraz zapewnienie odpowiednich warunków pracy.

Pytanie 8

Na etykiecie odważki analitycznej znajduje się napis: Z odważki tej można przygotować

Odważka analityczna

azotan(V) srebra(I)

AgNO3

0,1 mol/dm3

A. dwie kolby miarowe o pojemności 500 cm3 mianowanego roztworu AgNO3 o stężeniu 0,1 mol/dm3.
B. jedną kolbę miarową o pojemności 500 cm3 mianowanego roztworu AgNO3 o stężeniu 0,05 mol/dm3.
C. jedną kolbę miarową o pojemności 1000 cm3 mianowanego roztworu AgNO3 o stężeniu 0,1 mol/dm3.
D. cztery kolby miarowe o pojemności 250 cm3 mianowanego roztworu AgNO3 o stężeniu 0,025 mol/dm3.
Odpowiedź jest poprawna, ponieważ na etykiecie odważki analitycznej znajduje się informacja o stężeniu 0,1 mol/dm³. Aby przygotować 1000 cm³ (1 dm³) roztworu AgNO₃ o takim stężeniu, potrzebujemy 0,1 mola tego związku. Mnożąc liczbę moli przez masę molową AgNO₃ (169,87 g/mol), otrzymujemy masę potrzebną do przygotowania roztworu, która wynosi 16,987 g. W praktyce, przygotowując roztwór o konkretnym stężeniu, kluczowe jest precyzyjne odmierzenie masy substancji oraz odpowiednie rozcieńczenie. Taka umiejętność jest niezbędna w laboratoriach chemicznych, gdzie dokładność odgrywa podstawową rolę w eksperymentach i analizach. Przygotowanie roztworu o właściwym stężeniu jest zgodne z zasadami dobrej praktyki laboratoryjnej (GLP), które zapewniają wiarygodność wyników badań. Dodatkowo, umiejętność przygotowywania roztworów o określonych stężeniach jest fundamentalna w chemii analitycznej, chemii organicznej oraz wielu zastosowaniach przemysłowych, w tym w farmaceutyce.

Pytanie 9

Jakie są zalecenia dotyczące postępowania z odpadowymi roztworami kwasów oraz zasad?

A. Roztwory kwasów i zasad można wylewać do kanalizacji, przepłukując silnym strumieniem wody w celu maksymalnego rozcieńczenia
B. Roztwory kwasów i zasad można umieścić bez neutralizacji w tym samym pojemniku, gdzie będą się wzajemnie neutralizowały
C. Roztwory kwasów i zasad należy mocno zagęścić i zobojętnić stężonymi roztworami NaOH oraz HCl, aby uzyskać odpady w postaci stałych soli
D. Roztwory kwasów i zasad należy rozcieńczyć, zobojętnić zgodnie z procedurą, a następnie umieścić w osobnych pojemnikach
Odpowiedź jest prawidłowa, ponieważ roztwory kwasów i zasad mogą być neutralizowane poprzez ich wzajemne mieszanie, co prowadzi do zmniejszenia ich niebezpiecznych właściwości. W praktyce, mieszając kwas z zasadą, powstaje sól i woda, co jest podstawą reakcji zobojętnienia. Ważne jest jednak, aby proces ten prowadzić ostrożnie, z uwagi na wydzielanie ciepła, które może być niebezpieczne. W przemyśle chemicznym oraz laboratoriach stosuje się standardowe procedury, które określają, jak powinno się postępować z odpadkami chemicznymi, aby zapewnić bezpieczeństwo. Istotne jest, aby nie przechowywać odpadów kwasowych i zasadowych w tym samym pojemniku bez neutralizacji, ponieważ może to prowadzić do nieprzewidywalnych reakcji chemicznych. Przykładowo, w laboratoriach często stosowane są odpowiednie pojemniki na odpady chemiczne, które są oznaczone i przystosowane do gromadzenia konkretnych typów substancji. Stosowanie się do wytycznych z zakresu ochrony środowiska oraz przepisów BHP jest kluczowe w każdym miejscu pracy zajmującym się substancjami chemicznymi.

Pytanie 10

Aby uzyskać roztwór AgNO3 (masa molowa AgNO3 to 169,8 g/mol) o stężeniu 0,1 mol/dm3, należy rozpuścić w wodzie destylowanej i dopełnić kolbę wodą destylowaną do zaznaczonej kreski.

A. odważyć 16,98 g AgNO3, przenieść do kolby miarowej o pojemności 100 cm3, rozpuścić w wodzie destylowanej i dopełnić kolbę wodą destylowaną do zaznaczonej kreski
B. odważyć 169,80 g AgNO3, przenieść do kolby miarowej o pojemności 1000 cm3, rozpuścić
C. odważyć 1,698 g AgNO3, przenieść do kolby miarowej o pojemności 1000 cm3, rozpuścić w wodzie destylowanej i dopełnić kolbę wodą destylowaną do zaznaczonej kreski
D. odważyć 1,698 g AgNO3, przenieść do kolby miarowej o pojemności 100 cm3, rozpuścić w wodzie destylowanej i dopełnić kolbę wodą destylowaną do zaznaczonej kreski
Wielu uczniów może popełniać typowe błędy przy obliczaniu masy substancji niezbędnej do przygotowania roztworu o określonym stężeniu. Niektóre odpowiedzi opierają się na błędnym założeniu co do pojemności kolby miarowej lub ilości użytej substancji. Na przykład, odważenie 16,98 g AgNO₃ jest błędne, ponieważ odpowiada to stężeniu 1 mol/dm³, a nie 0,1 mol/dm³, co skutkuje znacznym nadmiarem substancji. Podobnie, przygotowanie roztworu w kolbie o pojemności 1000 cm³ przy użyciu 1,698 g AgNO₃ również prowadzi do niepoprawnego stężenia, ponieważ stężenie byłoby znacznie niższe niż zakładane. Również odważenie 169,80 g AgNO₃ jest niewłaściwe, jako że jest to masa potrzebna do przygotowania 1 mol/dm³ w 1000 cm³, co nie odpowiada wymaganym warunkom pytania. Te błędy znajdują się w nieporozumieniach dotyczących podstawowych zasad obliczeń chemicznych, a także niewłaściwego zrozumienia, jak stężenie jest związane z objętością roztworu. Ważne jest, aby przy wykonywaniu takich obliczeń zwracać uwagę na jednostki oraz upewnić się, że wszystkie dane są prawidłowo zinterpretowane, aby uniknąć błędów, które mogą prowadzić do niepoprawnych wyników eksperymentalnych.

Pytanie 11

Rozpuszczalniki organiczne powinny być składowane

A. w drewnianych szafkach
B. w metalowych szafach
C. w przestrzeni ogólnodostępnej
D. w miejscu o dużym nasłonecznieniu
Jak się okazuje, trzymanie rozpuszczalników organicznych w metalowych szafach to naprawdę ważna sprawa. Dzięki temu możemy zminimalizować ryzyko pożaru i wybuchu. Metal jest znacznie bardziej odporny na chemikalia niż drewno, co jest istotne, bo dzięki temu ogień się nie rozprzestrzeni. Wiele szaf ma też specjalne systemy wentylacyjne oraz uszczelnienia, co pomaga ograniczać niebezpieczne opary. Takie szafy są również klasyfikowane według norm NFPA, co daje pewność, że są bezpieczniejsze. No i warto pamiętać, żeby przy przechowywaniu rozpuszczalników zwracać uwagę na ich oznakowanie oraz lokalne przepisy BHP, bo to wszystko ma ogromne znaczenie. Przechowywanie ich w dobrze oznakowanych pojemnikach w wyznaczonej strefie to dobry pomysł, bo zmniejsza ryzyko wycieku czy przypadkowego kontaktu z innymi substancjami.

Pytanie 12

Jakie zestawienie sprzętu laboratoryjnego wykorzystuje się do filtracji osadów?

A. Zlewka, lejek, statyw, bagietka
B. Zlewka, lejek, waga, bagietka
C. Zlewka, lejek, trójnóg, tygiel
D. Zlewka, waga, tryskawka, bagietka
Wybór zestawu sprzętu laboratoryjnego do sączenia osadów jest kluczowy dla efektywności procesu filtracji. W przypadku poprawnej odpowiedzi, czyli zestawu składającego się ze zlewki, lejka, statywu i bagietki, każdy z tych elementów odgrywa istotną rolę. Zlewka służy do przechowywania cieczy, która ma być filtrowana, natomiast lejek ułatwia skierowanie tej cieczy do naczynia filtracyjnego, co zwiększa wydajność procesu. Statyw zapewnia stabilność i bezpieczeństwo podczas pracy z lejkiem, co jest niezwykle ważne, aby uniknąć rozlania cieczy. Bagietka natomiast umożliwia precyzyjne dozowanie cieczy, co jest istotne w przypadku pracy z substancjami chemicznymi. Przykładem zastosowania tego zestawu może być filtracja roztworów w chemii analitycznej, gdzie osady muszą być oddzielone od cieczy w celu dalszej analizy. W kontekście standardów laboratoryjnych, korzystanie z tego zestawu jest zgodne z dobrymi praktykami, które podkreślają znaczenie precyzyjnych i bezpiecznych metod pracy.

Pytanie 13

Aby oczyścić zwęglone osady w probówce, należy zastosować

A. słaby kwas
B. rozpuszczalnik organiczny
C. mieszaninę chromową
D. słabą zasadę
Rozpuszczalniki organiczne, takie jak etanol czy aceton, są często stosowane do rozpuszczania substancji organicznych, jednak ich skuteczność w usuwaniu zwęglonych osadów jest ograniczona. Zwęglone resztki to w dużej mierze węgiel, który nie reaguje z większością związków organicznych, co czyni je trudnymi do usunięcia za pomocą takich rozpuszczalników. Użycie słabego kwasu, jak kwas octowy, może również okazać się niewystarczające, ponieważ nie posiada on wystarczającej siły do utlenienia zwęglonych osadów, które są bardziej odporne na działanie słabych kwasów. Słabe zasady, takie jak wodorotlenek sodu, mogą pomóc w usuwaniu niektórych zanieczyszczeń, ale podobnie jak kwasy, ich działanie na zwęglone osady jest ograniczone. W praktyce laboratoryjnej, stosowanie tych substancji może prowadzić do mylnych wniosków o ich skuteczności, co może skutkować nieodpowiednim przygotowaniem sprzętu lub próbek do dalszych analiz. Dlatego ważne jest, aby korzystać z odpowiednich, sprawdzonych metod oczyszczania, takich jak stosowanie mieszaniny chromowej, która zapewnia lepsze rezultaty w usuwaniu trudnych do zlikwidowania osadów.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

Zamieszczony piktogram przedstawia substancję o klasie i kategorii zagrożenia:

Ilustracja do pytania
A. niestabilne materiały wybuchowe.
B. gazy utleniające, kategoria zagrożenia 1.
C. sprężone gazy pod ciśnieniem.
D. gazy łatwopalne, kategoria zagrożenia 1.
Poprawna odpowiedź dotycząca klasyfikacji substancji jako niestabilne materiały wybuchowe jest fundamentem wiedzy w obszarze zarządzania bezpieczeństwem chemicznym. Piktogram przedstawiony w pytaniu jest zgodny z regulacjami międzynarodowymi, szczególnie z GHS, które podkreślają znaczenie odpowiedniego oznakowania substancji chemicznych. Niestabilne materiały wybuchowe są klasyfikowane jako substancje, które mogą eksplodować w wyniku działania bodźców mechanicznych czy termicznych. Przykładami takich substancji są niektóre rodzaje dynamitu lub azotanu amonu w pewnych formach, które są wykorzystywane w przemyśle budowlanym i górniczym. Zrozumienie tej klasyfikacji jest kluczowe dla profesjonalistów zajmujących się bezpieczeństwem w laboratoriach oraz w transporcie substancji chemicznych, ponieważ niewłaściwe postrzeganie i klasyfikacja mogą prowadzić do poważnych wypadków. Przepisy dotyczące transportu i przechowywania substancji niebezpiecznych wymagają ścisłego przestrzegania norm, co podkreśla wagę edukacji w tym zakresie. Znajomość tego typu oznaczeń pozwala na właściwe podejście do magazynowania oraz obsługi substancji chemicznych, minimalizując ryzyko dla zdrowia i środowiska.

Pytanie 16

Sączków o najmniejszych średnicach, nazywanych "twardymi" i oznaczonych kolorem niebieskim, używa się do filtracji osadów?

A. grubokrystalicznych
B. drobnokrystalicznych
C. serowatych
D. galaretowatych
Sączki o mniejszych porach służą do filtrowania substancji, które mają specyficzne właściwości, dlatego odpowiedzi takie jak galaretowate, serowate czy grubokrystaliczne są niepoprawne. Galaretowate osady charakteryzują się wysoką zawartością wody oraz żelatyny i są zazwyczaj trudniejsze do sączenia, ponieważ ich struktura jest bardziej miękka i elastyczna, co sprawia, że filtracja może prowadzić do zatykania porów sączków. Ponadto, serowate osady mają tendencję do tworzenia większych cząstek, co może skutkować ich zatrzymywaniem w większych porach, a niekoniecznie w tych najmniejszych. Grubokrystaliczne osady to kolejne zjawisko, które nie znajduje zastosowania w kontekście małych porów, ponieważ ich wielkość znacznie przekracza zdolności filtracyjne twardych sączków. Wybór odpowiedniego sączka jest kluczowy w procesach filtracji, a błędne założenia dotyczące rodzaju osadów mogą prowadzić do nieefektywnego oczyszczania oraz zanieczyszczenia końcowego produktu. Dlatego ważne jest, aby dobrze zrozumieć właściwości filtrów i osadów, aby uniknąć typowych błędów w doborze materiałów filtracyjnych.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Wskaź sprzęt konieczny do przeprowadzenia miareczkowania?

A. Pipeta, kolba stożkowa, lejek, statyw
B. Biureta, kolba stożkowa, lejek do biurety, statyw
C. Biureta, kolba stożkowa, kolba miarowa, statyw
D. Biureta, kolba miarowa, lejek do biurety, statyw
Wybrana odpowiedź jest poprawna, ponieważ miareczkowanie to technika analityczna, która wymaga precyzyjnego pomiaru objętości roztworu reagentu. Biureta jest kluczowym narzędziem, które pozwala na dokładne dozowanie cieczy, co jest niezbędne do uzyskania precyzyjnych wyników. Kolba stożkowa, w której zazwyczaj odbywa się miareczkowanie, umożliwia łatwe mieszanie roztworów oraz ich obserwację. Lejek do biurety jest istotny, ponieważ umożliwia bezpieczne i precyzyjne napełnianie biurety bez ryzyka rozlania reagentu. Statyw natomiast stabilizuje biuretę, co jest ważne dla bezpieczeństwa i dokładności pomiarów. W praktyce, aby miareczkowanie było skuteczne, należy stosować również odpowiednie techniki pipetowania i mieszania, aby zapewnić jednolite stężenie roztworu oraz uzyskać wiarygodne wyniki analizy. Te komponenty są zgodne z dobrymi praktykami laboratoryjnymi, które podkreślają znaczenie precyzji i poprawności technik analitycznych.

Pytanie 19

Aby oddzielić połączenia szlifów, należy w miejscu ich styku wprowadzić

A. glicerynę
B. wodorotlenek sodu
C. wodorotlenek potasu
D. kwas fluorowodorowy
Gliceryna jest substancją, która doskonale sprawdza się w procesie rozdzielania zapieczonych połączeń szlifów. Jej zastosowanie wynika z właściwości chemicznych, które pozwalają na skuteczne działanie w trudnych warunkach. Gliceryna jest środkiem niejonowym, co oznacza, że nie wywołuje reakcji z materiałami, z którymi współdziała. W praktyce, podczas zastosowania gliceryny na strefie połączenia szlifów, zwiększa się elastyczność otaczających materiałów, co ułatwia ich oddzielenie bez ryzyka uszkodzenia. Gliceryna ma również właściwości nawilżające, co dodatkowo sprzyja procesowi rozdzielania, zapewniając lepszą penetrację w obszary o dużym skurczeniu. W branżach zajmujących się szlifowaniem i obróbką materiałów, takich jak przemysł motoryzacyjny czy lotniczy, stosowanie gliceryny jako środka pomocniczego w rozdzielaniu połączeń jest zgodne z najlepszymi praktykami, co potwierdzają liczne standardy jakości. Dodatkowo, gliceryna jest substancją nietoksyczną, co czyni ją bezpiecznym wyborem w porównaniu do innych chemikaliów.

Pytanie 20

Ile węglanu sodu trzeba odmierzyć, aby uzyskać 200 cm3 roztworu o stężeniu 8% (m/v)?

A. 9,6 g
B. 1,6 g
C. 16,0 g
D. 8,0 g
Aby obliczyć masę węglanu sodu (Na2CO3) potrzebną do przygotowania 200 cm³ roztworu o stężeniu 8% (m/v), możemy zastosować podstawowe wzory chemiczne. Stężenie masowe (m/v) odnosi się do masy substancji rozpuszczonej w jednostce objętości roztworu. W przypadku 8% roztworu oznacza to, że w 100 cm³ roztworu znajduje się 8 g węglanu sodu. Dla 200 cm³ roztworu odpowiednia masa wynosi zatem 8 g x 2 = 16 g. W kontekście praktycznym, przygotowanie roztworów o określonym stężeniu jest kluczowe w laboratoriach chemicznych oraz w przemyśle, gdzie precyzyjne pomiary są wymagane dla zapewnienia jakości produktów. Na przykład, w analizach chemicznych czy syntezach, właściwe przygotowanie roztworów z odpowiednimi stężeniami ma zasadnicze znaczenie dla uzyskania powtarzalnych i dokładnych wyników. Zgodnie z dobrymi praktykami laboratoryjnymi, zawsze należy stosować odpowiednie metody ważeń oraz kalibracji sprzętu, aby zapewnić dokładność i wiarygodność uzyskanych wyników.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Jaką metodę wykorzystuje się w laboratorium do rozdzielenia osadu AgCl od cieczy macierzystej w probówkach?

A. wirówkę.
B. komplet sit.
C. wytrząsarkę.
D. krystalizator.
Wybór metody oddzielania osadu od cieczy macierzystej ma kluczowe znaczenie dla efektywności analizy. Zastosowanie zestawu sit do separacji nie jest odpowiednie w przypadku osadów takich jak AgCl. Sita stosowane są w procesach mechanicznych oddzielania cząstek o różnej wielkości, jednak w przypadku drobnoziarnistych osadów wirówka jest znacznie bardziej wydajna, ponieważ siła odśrodkowa potrafi skutecznie przemieścić drobiny do dłuższej probówki, podczas gdy sita mogą nie poradzić sobie z tak małymi cząstkami. Również wytrząsarka, która służy do mieszania i homogenizacji próbek, nie ma zastosowania w procesie oddzielania osadu, gdyż jej działanie nie generuje siły odśrodkowej potrzebnej do separacji. Wykorzystanie krystalizatora do oddzielania osadów również jest nieodpowiednie, ponieważ urządzenie to służy do otrzymywania czystych kryształów substancji poprzez odparowanie rozpuszczalnika, a nie do separacji osadów z cieczy. Wybór niewłaściwej metody segregacji może prowadzić do nieprecyzyjnych wyników analiz chemicznych, co jest całkowicie niezgodne z najlepszymi praktykami laboratorialnymi, które kładą nacisk na precyzyjność i rzetelność wyników.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Błąd związany z odczytem poziomu cieczy w kolbie miarowej, spowodowany niewłaściwą pozycją oka w stosunku do skali, nazywany jest błędem

A. losowym
B. paralaksy
C. instrumentalnym
D. dokładności
Wybierając coś innego niż 'paralaksy', można się pomylić w rozumieniu, jak działają błędy w pomiarach. Błąd przypadkowy to te różnice, które mogą się zdarzać przez różne czynniki, jak temperatura czy drgania, a nie przez to, jak patrzymy na płyn. Błąd precyzji z kolei to raczej te stałe ograniczenia związane z narzędziami, które wcale nie dotyczą paralaksy. Wreszcie, błąd instrumentalny zdarza się przez złe kalibracje sprzętu, co też nie ma nic wspólnego z tym zjawiskiem. Ważne, żeby zrozumieć te wszystkie pojęcia, bo mają inne znaczenie w pomiarach. Traktowanie ich jako jedno może wprowadzić w błąd, a to z kolei skutkuje nieprawidłowymi wynikami. Dlatego tak ważne jest, by wiedzieć, skąd bierze się błąd, bo to klucz do dobrego pomiaru. Odpowiednie techniki i znajomość różnych błędów pomagają uzyskać lepsze i dokładniejsze wyniki w laboratoriach.

Pytanie 25

Na etykietach substancji chemicznych można znaleźć oznaczenia literowe R i S (zgodnie z regulacjami CLP: H i P), które wskazują

A. na ryzyko wystąpienia zagrożeń i zasady postępowania z nimi
B. na obecność zanieczyszczeń oraz metody ich usuwania
C. na pojemność oraz skład opakowania
D. na ilość domieszek w składzie oraz datę przydatności
Odpowiedzi, które sugerują, że oznaczenia R i S dotyczą zanieczyszczeń, pojemności opakowania lub ilości domieszek, nie uwzględniają kluczowego celu tych symboli, którym jest informowanie o zagrożeniach związanych z danymi substancjami chemicznymi oraz metodach postępowania w przypadku ich użycia. Oznaczenia te są częścią systemu klasyfikacji i oznakowania substancji chemicznych, którego celem jest zapewnienie bezpieczeństwa zarówno dla użytkowników substancji, jak i dla środowiska. Oznaczenia dotyczące zanieczyszczeń, takie jak poziomy czystości czy procesy ich usuwania, są całkowicie inną kwestią, która nie znajduje związku z systemem R i S. Z kolei informacje o pojemności i składzie opakowania mają znaczenie jedynie w kontekście transportu i przechowywania substancji, ale nie odnoszą się do ryzyka, które te substancje mogą stwarzać. Oznaczenia R i S dostarczają informacji o tym, jakie są potencjalne skutki zdrowotne i ekologiczne związane z substancją oraz jakie działania można podjąć w przypadku awarii czy kontaktu z substancją. Ignorowanie tych istotnych informacji może prowadzić do niebezpiecznych sytuacji w laboratoriach oraz podczas prac przemysłowych. Przykłady błędnych założeń mogą obejmować myślenie, że wystarczająca jest jedynie analiza składu chemicznego substancji, bez uwzględnienia ryzyk, co może prowadzić do tragicznych skutków. Dlatego tak ważne jest, aby osoby pracujące z substancjami chemicznymi były odpowiednio przeszkolone i znały obowiązujące przepisy oraz oznaczenia, co przekłada się na bezpieczeństwo w miejscu pracy.

Pytanie 26

W parownicy porcelanowej, w której znajduje się 2,5 g naftalenu, umieść krążek bibuły z niewielkimi otworami oraz odwrócony lejek szklany. Zatyczkę lejka zrób z korka z waty. Parownicę umieść w płaszczu grzejnym. Po delikatnym ogrzaniu parownicy, pary substancji przechodzą przez otwory w bibule i kondensują na wewnętrznych ściankach lejka... Powyższy opis dotyczy metody oczyszczania naftalenu przez

A. sublimację
B. ługowanie
C. resublimację
D. krystalizację
Zrozumienie różnicy pomiędzy procesami sublimacji, krystalizacji, ługowania i resublimacji jest kluczowe dla prawidłowej interpretacji opisanego zadania. Krystalizacja polega na przejściu substancji z roztworu do postaci stałej w wyniku obniżenia temperatury lub odparowania rozpuszczalnika. W przypadku naftalenu, metoda ta nie jest adekwatna, gdyż zachodziłoby to przez zamianę cieczy w kryształy, czego nie obserwujemy w opisanym procesie. Ługowanie natomiast odnosi się do rozpuszczania substancji w roztworze, najczęściej w kontekście usuwania zanieczyszczeń z ciał stałych, co także nie jest przyczyną oczyszczania naftalenu w tej procedurze. Resublimacja, choć może wydawać się związana z tym procesem, oznacza powtórne skraplanie gazu w ciele stałym, co również nie ma miejsca w tym kontekście. Typowym błędem jest mylenie procesów fizycznych, co prowadzi do nieprawidłowych wniosków. Zrozumienie mechanizmu każdego z tych procesów oraz ich zastosowań przyczyni się do efektywniejszego stosowania metod oczyszczania w praktyce laboratoryjnej.

Pytanie 27

Korzystając z danych w tabeli wskaż, ile cm3 36% roztworu HCl należy użyć, aby przygotować 250 cm3 0,1-molowego roztworu tego kwasu.

% wagowy
[%]
d420
[g/cm3]
m HCl
w 100 cm3
[g/100cm3]
CM HCl
[mol/dm3]
301,149234,489,46
321,159337,1010,17
341,169139,7510,90
361,178942,4411,64

A. 2,50 cm3
B. 2,52 cm3
C. 2,13 cm3
D. 2,15 cm3
Aby przygotować 250 cm³ 0,1-molowego roztworu HCl z 36% roztworu, użycie 2,15 cm³ tego roztworu jest poprawne. Obliczenia opierają się na zasadzie rozcieńczenia, która jest kluczowym pojęciem w chemii. Przygotowując roztwory, istotne jest, aby znać stężenie molowe roztworu wyjściowego oraz objętość roztworu, który chcemy uzyskać. W tym przypadku, 36% roztwór HCl ma stężenie molowe wynoszące około 10 mol/dm³. Aby obliczyć, ile tego roztworu potrzeba, stosujemy równanie rozcieńczenia: C1 * V1 = C2 * V2, gdzie C1 to stężenie roztworu wyjściowego, V1 to objętość roztworu wyjściowego, C2 to stężenie roztworu docelowego, a V2 to objętość roztworu docelowego. Po podstawieniu wartości i przekształceniu równania otrzymujemy, że V1 wynosi 2,15 cm³. Praktyczne zastosowanie tej wiedzy jest niezwykle istotne w laboratoriach chemicznych, gdzie precyzyjne przygotowanie roztworów jest kluczowe dla uzyskania powtarzalnych i wiarygodnych wyników eksperymentalnych. Dobrą praktyką jest również zawsze zwracać uwagę na jednostki oraz dokładność pomiaru, co jest fundamentalne w chemii analitycznej.

Pytanie 28

Różnica pomiędzy średnim wynikiem pomiaru a wartością rzeczywistą stanowi błąd

A. względny
B. przypadkowy
C. systematyczny
D. bezwzględny
W kontekście pomiarów różnice pomiędzy średnimi wynikami a wartościami rzeczywistymi mogą być opisywane różnymi terminami, jednak użycie pojęcia błędu względnego, systematycznego czy przypadkowego może prowadzić do nieporozumień. Błąd względny to stosunek błędu bezwzględnego do wartości rzeczywistej, co oznacza, że opisuje on błąd w kontekście wielkości zmierzonej. Na przykład, jeśli błąd bezwzględny wynosi 0,5 cm, a wartość rzeczywista to 10 cm, błąd względny wyniósłby 5%. Warto jednak zauważyć, że błąd względny nie informuje nas o rzeczywistej wielkości błędu, a jedynie o jego proporcji do wartości rzeczywistej. Błąd systematyczny odnosi się do błędów, które są stałe lub powtarzalne w danym pomiarze, na przykład spowodowane nieprawidłową kalibracją przyrządów. Takie błędy mogą być trudne do wykrycia, ponieważ wpływają na wszystkie pomiary w podobny sposób, co może prowadzić do błędnych wniosków dotyczących analizowanych danych. Wreszcie, błąd przypadkowy odnosi się do losowych fluktuacji, które mogą wystąpić podczas pomiarów, a ich przyczyny mogą być trudne do zidentyfikowania. Te błędy są niemal nieuniknione w każdym pomiarze, ale nie powinny być mylone z błędami bezwzględnymi, które są ważnym wskaźnikiem dokładności pomiaru. Właściwe zrozumienie tych terminów i ich różnic jest kluczowe dla właściwej analizy wyników oraz podejmowania decyzji opartych na pomiarach.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Z uwagi na bezpieczeństwo pracy, ciecze żrące powinny być podgrzewane w łaźniach

A. wodnych
B. piaskowych
C. olejowych
D. powietrznych
Ogrzewanie cieczy żrących na łaźniach piaskowych to dobra opcja, bo piasek świetnie izoluje i rozprowadza ciepło. Dzięki temu mamy stabilne warunki, co jest bardzo ważne, zwłaszcza przy substancjach, które mogą się 'dziwnie' zachowywać, gdy temperatura szybko się zmienia. W praktyce użycie łaźni piaskowych zmniejsza ryzyko przegrzewania, co jest super istotne, bo może prowadzić do różnych nieprzyjemnych sytuacji, jak dekompozycja czy toksyczne opary. Piasek nie tylko grzeje, ale i chroni operatora. W laboratoriach chemicznych oraz w różnych branżach, gdzie obsługuje się cieczy żrące, przestrzeganie zasad BHP i stosowanie odpowiednich metod ogrzewania jest kluczowe, aby zapewnić bezpieczne warunki pracy i ochronić zdrowie. To są sprawy, które powinny być zawsze na pierwszym miejscu, a dokumenty branżowe mocno to podkreślają.

Pytanie 31

W celu przeprowadzenia opisanego doświadczenia, należy przygotować:

Opis procesu wydzielenia kwasu acetylosalicylowego z tabletek
Pięć rozgniecionych tabletek aspiryny (polopiryny) umieszcza się w kolbie stożkowej o pojemności 100 ml, dodaje 10 ml etanolu i ogrzewa na łaźni wodnej, aż do momentu rozpadnięcia się tabletek. W roztworze znajduje się kwas acetylosalicylowy, natomiast masa tabletkowa pozostaje w osadzie. Osad ten odsącza się na ogrzanym lejku szklanym zaopatrzonym w sączek karbowany. Do odebiornego przesączu dodaje się 20-30 ml zimnej wody destylowanej. Dodatek wody powoduje wypadanie osadu aspiryny z roztworu (zmniejsza się rozpuszczalność aspiryny w roztworze wodno-alkoholowym). Wydzielone kryształy odsączyć na lejku sitowym i suszyć na powietrzu.

A. etopirynę, stężony kwas siarkowy, etanol, kolbę ssawkową lejek sitowy, pompkę wodną, eksykator, cylinder miarowy, moździerz.
B. polopirynę, metanol, kolbę stożkową 100 ml, łaźnię wodną, bagietkę, lejek szklany, termometr.
C. aspirynę etanol, kolbę stożkową 250 ml, łaźnię wodną, lejek metalowy do sączenia na gorąco, bagietkę, pompkę wodą, cylinder miarowy.
D. aspirynę, moździerz, etanol, kolbę stożkową 100 ml, łaźnię wodną, lejek szklany, kolbę ssawkową, lejek sitowy, sączek karbowany.
Odpowiedź jest poprawna, ponieważ opisany proces eksperymentalny rzeczywiście wymaga użycia aspiryny, która jest substancją czyną w tym doświadczeniu. Kluczowym krokiem jest rozcieranie aspiryny w moździerzu, co pozwala na zwiększenie powierzchni kontaktu substancji z rozpuszczalnikiem, jakim jest etanol. Użycie kolby stożkowej o pojemności 100 ml jest zgodne z zasadami laboratoryjnymi, które zalecają stosowanie odpowiednich naczyń do reakcji chemicznych, aby zapewnić dokładność pomiarów. Ogrzewanie roztworu w łaźni wodnej to standardowa procedura, która pozwala na kontrolowanie temperatury, co jest niezbędne dla prawidłowego rozpuszczenia aspiryny. W procesie filtracji, obecność lejka szklanego, kolby ssawkowej, lejka sitowego oraz sączka karbowanego umożliwia skuteczne oddzielenie kryształów aspiryny od roztworu oraz ich osuszenie. Takie podejście jest zgodne z dobrymi praktykami laboratoryjnymi, które kładą nacisk na precyzję i efektywność w przeprowadzaniu doświadczeń chemicznych.

Pytanie 32

Określ, jakie informacje powinny być zarejestrowane w ewidencji wydania substancji niebezpiecznych, stosowanych w badaniach laboratoryjnych?

A. Liczba przeprowadzonych prób z użyciem tej substancji, data wydania
B. Data ważności, forma substancji
C. Metoda wydania, imię i nazwisko osoby wydającej
D. Ilości wydane, stan magazynowy, imię i nazwisko osoby, której przekazano substancję
Zawarte w niepoprawnych odpowiedziach koncepcje nie spełniają wymogów dotyczących ewidencji rozchodu substancji niebezpiecznych. Termin przydatności i konsystencja substancji, mimo że są ważnymi informacjami dla użytkowników, nie dotyczą bezpośrednio ewidencji rozchodu. Oceniając substancje chemiczne, istotne jest, aby znać ich stan i właściwości, ale dokumentacja rozchodu skupia się na zapisie ich użycia i dostępności. Sposób wydawania oraz nazwisko osoby wydającej, choć mogą być istotnymi elementami, nie dostarczają wystarczających informacji o stanie zapasów ani o ilości substancji wydanej, co jest kluczowe dla zachowania bezpieczeństwa i zarządzania ryzykiem. Z kolei ilość prowadzonych prób przy użyciu danej substancji oraz termin wydania, to dane, które bardziej pasują do dokumentacji działań laboratoryjnych, a nie do ewidencji rozchodu. Tego typu myślenie może prowadzić do nieefektywnego zarządzania substancjami chemicznymi i ewentualnych naruszeń przepisów dotyczących bezpieczeństwa w laboratoriach, co jest krytyczne zarówno w kontekście ochrony zdrowia pracowników, jak i ochrony środowiska. Ewidencja powinna być zgodna z wytycznymi regulacyjnymi, a prawidłowe podejście do dokumentacji jest kluczowe dla każdej instytucji zajmującej się pracą z substancjami niebezpiecznymi.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

W którym wierszu tabeli podano ilości substancji i wody, potrzebne do sporządzenia 350 g roztworu o stężeniu 7%?

Masa substancjiMasa wody
A.24,5 g350 g
B.24,5 g325,5 g
C.7 g343 g
D.7 g350 g

A. D.
B. B.
C. C.
D. A.
Odpowiedź B jest poprawna, ponieważ została obliczona zgodnie z zasadami dotyczących stężenia roztworów. Stężenie 7% oznacza, że w 100 g roztworu znajduje się 7 g substancji rozpuszczonej. W przypadku 350 g roztworu, masa substancji wynosi 7% z 350 g, co daje 24.5 g. Różnica między masą całkowitą roztworu a masą substancji, czyli 350 g - 24.5 g, daje 325.5 g wody. Takie obliczenia są zgodne z fundamentalnymi zasadami chemii i są powszechnie stosowane w laboratoriach chemicznych, farmaceutycznych i różnych dziedzinach przemysłu, gdzie precyzyjne przygotowanie roztworów jest kluczowe. Zrozumienie obliczeń stężenia roztworów pozwala na dokładne przygotowania roztworów o określonych właściwościach, co jest istotne w procesach analitycznych oraz produkcyjnych.

Pytanie 38

Substancje pomocnicze wykorzystywane do realizacji podstawowych analiz jakościowych i ilościowych, które nie wymagają wysokiej czystości, są oznaczane na opakowaniach symbolem

A. cz.
B. cz.d.a.
C. techn.
D. cz.ch.
Odpowiedzi "cz.ch.", "techn." oraz "cz.d.a." są błędne w kontekście pytania, ponieważ każda z tych terminologii odnosi się do innych klas substancji. Termin "cz.ch." odnosi się do substancji czystych chemicznie, które muszą spełniać wysokie standardy czystości i są używane w bardziej wymagających analizach, gdzie nawet najmniejsze zanieczyszczenia mogą wpływać na wyniki. W kontekście analiz jakościowych i ilościowych, wybór substancji czystych chemicznie w sytuacjach, gdy nie jest to wymagane, nie tylko zwiększa koszty, ale również komplikuje procedury laboratoryjne. Z kolei "techn." odnosi się do substancji technicznych, które mogą być używane w procesach przemysłowych, ale ich standardy czystości również mogą nie być odpowiednie dla analiz laboratoryjnych. Używanie takich substancji w analizach może prowadzić do zafałszowań wyników, co jest absolutnie niedopuszczalne w kontekście rzetelnych badań. Termin "cz.d.a." odnosi się do czystości dla analizy, co również oznacza wyższe wymagania dotyczące czystości, a więc nie pasuje do koncepcji substancji pomocniczych, które nie muszą spełniać tych standardów. Typowe błędy myślowe prowadzące do takich niepoprawnych wniosków to niepełne zrozumienie różnic w wymaganiach czystości oraz niewłaściwe przypisywanie terminów do kontekstu ich zastosowania w analizach chemicznych.

Pytanie 39

Do metalowego sprzętu laboratoryjnego używanego w praktykach analitycznych zalicza się

A. eksykator
B. zlewka
C. statyw
D. bagietka
Statyw jest kluczowym elementem wyposażenia w laboratoriach analitycznych, używanym do stabilnego podtrzymywania różnych narzędzi i urządzeń, takich jak probówki czy kolby. Jego głównym celem jest zapewnienie bezpieczeństwa i precyzji podczas przeprowadzania doświadczeń, co jest niezbędne w pracy laboratoryjnej. Użycie statywu minimalizuje ryzyko przypadkowego przewrócenia się substancji chemicznych, co może prowadzić do niebezpiecznych sytuacji. Dobre praktyki laboranckie wskazują, że stabilne mocowanie sprzętu zwiększa dokładność pomiarów i powtarzalność wyników. Ponadto, statyw może być wykorzystywany w połączeniu z innymi narzędziami, takimi jak palniki Bunsena, co pozwala na przeprowadzanie bardziej złożonych eksperymentów. Warto również zauważyć, że w zależności od zastosowania, statywy mogą mieć różne konstrukcje i materiały, co wpływa na ich funkcjonalność i odporność na działanie substancji chemicznych.

Pytanie 40

Którego związku chemicznego, z uwagi na jego silne właściwości higroskopijne, nie powinno się używać w analizie miareczkowej jako substancji podstawowej?

A. Na2C2O4
B. NaOH
C. Na2CO3
D. Na2B4O7·10H2O
Wybierając jedną z pozostałych odpowiedzi, można mylić się co do właściwości poszczególnych reagentów i ich zastosowania w analizie miareczkowej. Na2CO3, czyli węglan sodu, jest często stosowany w titracji węglanową, a jego właściwości stałe i niskie właściwości higroskopijne sprawiają, że jest to odpowiedni wybór. Użycie Na2CO3 w analizach, które wymagają miareczkowania z użyciem kwasów, jest zgodne z praktykami laboratoryjnymi, które zapewniają wiarygodność wyników. W przypadku Na2B4O7·10H2O, znanego również jako boraks, substancja ta również ma zastosowanie w analizach chemicznych, ale jej użycie ogranicza się do innych typów reakcji chemicznych, co czyni ją mniej odpowiednią w kontekście miareczkowania. Na2C2O4, czyli szczawian sodu, jest również używany w niektórych reakcjach miareczkowych, jednak jego zastosowanie wymaga precyzyjnego przygotowania roztworu oraz uwzględnienia jego własności chemicznych. Kluczowym błędem myślowym jest przyjęcie, że każdy z wymienionych reagentów ma takie same właściwości w kontekście higroskopijności, co jest nieprawidłowe. Każdy z wymienionych reagentów ma swoje specyficzne zastosowania i właściwości, które powinny być brane pod uwagę przy projektowaniu eksperymentów analitycznych. Analiza miareczkowa wymaga precyzyjnego doboru odczynników, a ich właściwości higroskopijne są kluczowym czynnikiem wpływającym na wyniki końcowe. Używanie niewłaściwego reagentu z uwagi na jego higroskopijność może prowadzić do poważnych błędów w pomiarach i interpretacji wyników.