Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 15 maja 2025 12:30
  • Data zakończenia: 15 maja 2025 12:50

Egzamin zdany!

Wynik: 31/40 punktów (77,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Który z poniższych sposobów ochrony przed porażeniem elektrycznym jest weryfikowany przez pomiar rezystancji pętli zwarcia w instalacji elektrycznej?

A. Umieszczenie części dostępnych poza zasięgiem ręki
B. Separacja elektryczna
C. Samoczynne wyłączanie zasilania
D. Uziemienie ochronne
Samoczynne wyłączanie zasilania jest jednym z kluczowych środków ochrony przeciwporażeniowej, który polega na szybkim odłączeniu zasilania w przypadku wykrycia zwarcia lub innego niebezpiecznego stanu w instalacji elektrycznej. Aby ocenić skuteczność tego systemu, przeprowadza się pomiar rezystancji pętli zwarcia, który pozwala określić, czy prąd zwarciowy jest wystarczająco niski, aby automatyczne wyłączniki mogły zareagować. Standardy, takie jak IEC 60364, określają wymagania dotyczące pomiarów rezystancji pętli, co jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. Praktycznie, jeśli rezystancja pętli zwarcia jest zbyt wysoka, może to oznaczać, że samoczynne wyłączanie zasilania nie zadziała prawidłowo, co może prowadzić do niebezpiecznych sytuacji. Dlatego regularne testowanie i konserwacja instalacji elektrycznych są niezbędne, aby zapewnić ich bezpieczeństwo i sprawność. Warto również zauważyć, że w przypadku braku odpowiednich przeciwwskazań, instalacje elektryczne powinny być projektowane tak, aby ułatwiały pomiar rezystancji pętli, co jest zgodne z najlepszymi praktykami inżynieryjnymi.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Które z poniższych parametrów technicznych odnoszą się do przekaźnika bistabilnego?

A. Liczba biegunów, rodzaj charakterystyki, prąd znamionowy, szerokość w modułach
B. Napięcie zasilania, prąd obciążenia, wartość prądu impulsu sterującego, opóźnienie zadziałania, sygnalizacja załączenia
C. Napięcie znamionowe, znamionowy prąd różnicowy zadziałania, prąd znamionowy ciągły, obciążalność zwarciowa, częstotliwość znamionowa, liczba biegunów
D. Typ modułu, zakres zliczania, rodzaj wyjścia, parametry wyjścia, napięcie zasilania, tryby pracy licznika
Analizując podane odpowiedzi, można zauważyć, że wiele z nich odnosi się do parametrów technicznych innych typów urządzeń, co prowadzi do zamieszania. Na przykład, odpowiedź dotycząca typów modułów, zakresu zliczania czy rodzajów wyjścia jest bardziej związana z licznikami elektronicznymi niż przekaźnikami bistabilnymi. Liczniki mają swoje unikalne funkcje, takie jak zliczanie impulsów, co nie ma zastosowania w kontekście przekaźnika bistabilnego. Wiele osób może mylić te dwa urządzenia, myśląc, że mają one podobne zastosowania, co jest błędne. Kolejny przykład to podanie parametrów takich jak prąd znamionowy czy liczba biegunów, które są bardziej związane z przekaźnikami jedno- lub wielobiegunowymi, a nie z bistabilnymi. Niezrozumienie różnicy między tymi typami przekaźników może prowadzić do błędnych decyzji przy doborze komponentów w projektach automatyzacji. Ponadto, niektóre odpowiedzi zawierają specyfikacje dotyczące obciążalności zwarciowej oraz częstotliwości znamionowej, co jest charakterystyczne dla urządzeń zabezpieczających, takich jak wyłączniki różnicowoprądowe. W kontekście przekaźników bistabilnych, te informacje są zbędne, ponieważ ich działanie opiera się na mechanizmie zatrzymaniu stanu, a nie na regularnym przełączaniu. Zrozumienie tych różnic jest kluczowe dla skutecznego projektowania systemów automatyki i unikania kosztownych błędów w doborze komponentów.

Pytanie 5

W instrukcji technicznej dotyczącej instalacji elektrycznej przewód uziemiający jest oznaczony symbolem literowym

A. FPE
B. TE
C. E
D. CC
Odpowiedź CC jest prawidłowa, ponieważ w dokumentacji technicznej instalacji elektrycznych przewód wyrównawczy rzeczywiście oznaczany jest symbolem literowym CC, co pochodzi od angielskiego terminu "Combined Conductor". Przewód wyrównawczy ma na celu zapewnienie ochrony przed porażeniem prądem elektrycznym poprzez wyrównanie potencjałów elektrycznych w instalacji. W praktyce oznacza to, że w przypadku wystąpienia uszkodzenia, prąd może być odprowadzany do ziemi, co minimalizuje ryzyko porażenia użytkowników sprzętu. Przewody te są szczególnie istotne w instalacjach przemysłowych oraz w obiektach użyteczności publicznej, gdzie istnieje duże ryzyko kontaktu z wodą lub innymi czynnikami mogącymi prowadzić do porażenia. Zgodnie z normami IEC 60364, każdy system elektryczny powinien być odpowiednio zabezpieczony, a przewody wyrównawcze odgrywają kluczową rolę w tych zabezpieczeniach, na przykład poprzez zastosowanie w instalacjach zasilających, gdzie wymagane jest zachowanie wysokiego poziomu bezpieczeństwa.

Pytanie 6

Jakie działania należy podjąć po odłączeniu zasilania, aby zgodnie z PN-HD 60364-6:2008 Instalacje elektryczne niskiego napięcia, przeprowadzić pomiar rezystancji izolacji kabli?

A. Zasilić badaną instalację napięciem stałym oraz zapewnić skuteczną ochronę przed możliwością przypadkowego, ponownego załączenia napięcia zasilającego
B. Odłączyć odbiorniki, zewrzeć łączniki oraz zapewnić skuteczną ochronę przed dotykiem bezpośrednim
C. Wyłączyć odbiorniki oraz zapewnić skuteczną ochronę przed możliwością przypadkowego, ponownego załączenia napięcia zasilającego
D. Rozłączyć oprawy oświetleniowe, zewrzeć łączniki oświetlenia oraz zapewnić skuteczną ochronę przed możliwością przypadkowego, ponownego załączenia napięcia zasilającego
Poprawna odpowiedź to odłączenie odbiorników oraz zapewnienie skutecznej ochrony przed możliwością przypadkowego, ponownego załączenia napięcia zasilającego. Zgodnie z PN-HD 60364-6:2008, przed przystąpieniem do pomiaru rezystancji izolacji, należy bezwzględnie odłączyć wszelkie odbiorniki elektryczne od instalacji. Takie działanie ma na celu uniknięcie ryzyka porażenia prądem oraz uszkodzenia urządzeń podczas pomiaru. Kluczowym aspektem jest także zapewnienie skutecznej ochrony, co często realizuje się poprzez zastosowanie odpowiednich zabezpieczeń mechanicznych lub elektronicznych, które blokują możliwość przypadkowego włączenia zasilania. Przykładem może być użycie blokady na rozdzielnicy. W praktyce, pomiar rezystancji izolacji wykonuje się najczęściej przy użyciu megomierza, który generuje wysokie napięcie, co może być niebezpieczne dla osób i sprzętu, jeśli nie zostaną podjęte odpowiednie środki ochrony. Prawidłowe przygotowanie do pomiaru jest kluczowe, aby zapewnić bezpieczeństwo oraz dokładność wyników. Dobrą praktyką jest także dokumentacja stanu wyłączenia oraz przeprowadzonych działań, co jest przydatne w kontekście inspekcji i audytów.

Pytanie 7

Wkładka topikowa przedstawiona na ilustracji przeznaczona jest do zabezpieczenia chronionego przewodu przed skutkami

Ilustracja do pytania
A. zwarć i przeciążeń w obwodach prądu stałego i przemiennego.
B. wyłącznie zwarć w obwodach prądu stałego i przemiennego.
C. wyłącznie zwarć jedynie w obwodach prądu przemiennego.
D. zwarć i przeciążeń jedynie w obwodach prądu przemiennego.
Wybór odpowiedzi dotyczący wyłącznie obwodów prądu przemiennego lub zbyt wąskie definiowanie zakresu zabezpieczenia wskazuje na niepełne zrozumienie funkcji wkładek topikowych. Obwody prądu stałego i przemiennego różnią się pod względem zachowania prądu i napięcia, co wpływa na sposób, w jaki zabezpieczenia, takie jak wkładki topikowe, funkcjonują. Odpowiedzi sugerujące, że wkładki te chronią jedynie przed zwarciami lub tylko w obwodach prądu przemiennego, pomijają kluczowy aspekt ich zastosowania. W praktyce, wkładki topikowe są nie tylko stosowane w obwodach prądu przemiennego, ale także w prądzie stałym, co jest szczególnie istotne w kontekście nowoczesnych systemów energetycznych i odnawialnych źródeł energii, które wykorzystują obwody stałoprądowe. Zastosowanie wkładek w obu typach obwodów jest zgodne z międzynarodowymi standardami ochrony, takimi jak IEC 60269, które kładą nacisk na wszechstronność tych zabezpieczeń. Niewłaściwe pojmowanie funkcji wkładek topikowych prowadzi do błędnych wniosków i może skutkować brakiem odpowiedniej ochrony w instalacjach elektrycznych, co w ekstremalnych przypadkach może prowadzić do poważnych awarii czy zagrożeń bezpieczeństwa.

Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Jakie rodzaje żył znajdują się w kablu oznaczonym symbolem SMYp?

A. Sektorowe
B. Jednodrutowe
C. Płaskie
D. Wielodrutowe
Odpowiedź "Wielodrutowe" to strzał w dziesiątkę! Przewód SMYp ma właśnie taką konstrukcję, z wielu cienkich drutów, co daje mu dużą elastyczność. Dzięki temu świetnie sprawdza się tam, gdzie trzeba coś szybko zamontować lub gdzie przewody muszą się wyginać. Często używa się go w instalacjach audio czy wideo, a także w systemach automatyki. W praktyce nadaje się do domów i przemysłowych zastosowań, bo jest i trwały, i giętki. Zgodność z normami IEC i EN oznacza, że można na nich polegać, a ich żywotność w różnych warunkach eksploatacyjnych jest naprawdę dobra. Także dobrze, że to wiesz!

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Jakie jest wymagane napięcie testowe przy pomiarze rezystancji izolacji obwodów w instalacjach elektrycznych 230/400 V?

A. 1000 V
B. 500V
C. 750V
D. 250V
Wymagane napięcie probiercze przy badaniu rezystancji izolacji obwodów w instalacjach elektrycznych 230/400 V wynosi 500 V. Taki poziom napięcia jest zgodny z normami określonymi w dokumentach takich jak PN-EN 61557-2, które regulują przeprowadzanie badań izolacji. Stosowanie napięcia 500 V jest efektywne w testowaniu izolacji, gdyż pozwala na uzyskanie rzetelnych wyników, przy jednoczesnym minimalizowaniu ryzyka uszkodzenia izolacji. Praktyczne zastosowanie tego napięcia jest szczególnie widoczne w instalacjach o napięciu roboczym 230/400 V, gdzie niskie napięcie mogłoby nie ujawnić potencjalnych problemów, a zbyt wysokie mogłoby prowadzić do uszkodzeń lub fałszywych odczytów. Regularne testy rezystancji izolacji przy użyciu odpowiednich napięć są kluczowe dla zapewnienia bezpieczeństwa i niezawodności instalacji elektrycznych, co wynika z praktyk branżowych oraz przepisów BHP.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

W jakim z podanych typów źródeł światła wykorzystuje się zapłonnik?

A. Świetlówka tradycyjna
B. Lampa sodowa
C. Żarówka halogenowa
D. Lampa rtęciowa
Wybór lampy sodowej, rtęciowej czy żarówki halogenowej jako źródła światła, w którym stosuje się zapłonnik, jest nieprawidłowy z powodu różnic w technologii i zasadzie działania tych lamp. Lampy sodowe wykorzystują zjawisko emisji światła poprzez naładowany gaz sodowy, jednak nie potrzebują zapłonnika, gdyż zamiast tego działają na zasadzie bezpośredniego przepływu prądu. Ponadto, lampy rtęciowe również nie wymagają zapłonnika w tradycyjnym sensie, ponieważ ich uruchomienie odbywa się poprzez elektryczne rozładowanie w gazie rtęciowym, co jest realizowane przez układ zapłonowy zintegrowany z balastem. Żarówki halogenowe, z kolei, są konstrukcją opartą na technologii żarowej, w której nie stosuje się zapłonników; zamiast tego, działają na zasadzie podgrzewania włókna wolframowego do wysokiej temperatury, co generuje światło. Zrozumienie różnic między tymi technologiami jest kluczowe, ponieważ prowadzi do lepszego doboru źródeł światła w zależności od zastosowania. Ignorowanie tych różnic może skutkować nieefektywnym działaniem systemów oświetleniowych i wyższymi kosztami eksploatacyjnymi. W praktyce, kluczowe jest stosowanie odpowiednich rozwiązań technologicznych w zależności od potrzeb i charakterystyki danego środowiska oświetleniowego.

Pytanie 15

Który z podanych wyłączników różnicowoprądowych powinien być zastosowany jako ochrona przed porażeniem, przeciążeniem oraz zwarciem w obwodzie gniazd wtykowych instalacji jednofazowej 230 V/50 Hz?

A. P 304 25-30-AC
B. P 312 B-16-30-AC
C. P 344 C-16-30-AC
D. P 302 25-30-AC
Wiec, ten wyłącznik różnicowoprądowy P 312 B-16-30-AC to naprawdę dobry wybór do gniazd wtykowych w jednofazowej instalacji 230 V/50 Hz. Łączy w sobie wszystkie potrzebne funkcje, które dbają o nasze bezpieczeństwo. W skrócie: chroni nas przed porażeniem prądem, bo wyłapuje różnicę prądów między fazą a neutralnym, co pozwala szybko zauważyć, jeśli coś z izolacją jest nie tak. Jest też super, bo chroni przed przeciążeniem i zwarciem, a to zwiększa bezpieczeństwo całej instalacji. I co ważne, spełnia normy IEC 61008 i PN-EN 60947-2, więc można być spokojnym o jego jakość. Przykładowo, idealnie nadaje się do domków jednorodzinnych, gdzie gniazdka zasilają różne sprzęty. Wybór odpowiedniego wyłącznika różnicowoprądowego to kluczowa sprawa, żeby utrzymać mienie i użytkowników w bezpieczeństwie.

Pytanie 16

Który z poniższych przewodów powinien być użyty do zasilania ruchomego odbiornika w II klasie ochronności z sieci jednofazowej?

A. H03VVH2-F 2×0,75
B. H05VV-U 2×1,5
C. H03VV-F 3×0,75
D. H05VV-K 3×1,5
Wybór przewodów H03VV-F 3×0,75, H05VV-K 3×1,5 oraz H05VV-U 2×1,5 do zasilenia ruchomego odbiornika wykonane w II klasie ochronności nie jest odpowiedni z kilku powodów. Przewód H03VV-F, chociaż elastyczny, jest przewodem o trzech żyłach, co sugeruje możliwość uziemienia, co nie jest zgodne z zasadami dotyczącymi urządzeń w II klasie ochronności. II klasa nie wymaga dodatkowej żyły uziemiającej, a zatem użycie przewodu z uziemieniem może prowadzić do niepotrzebnych komplikacji w instalacji elektrycznej. Przewód H05VV-K, pomimo że oferuje dobry poziom elastyczności, ma również dodatkową żyłę, co jest zbędne dla urządzeń tej klasy ochronności. Zastosowanie przewodów z uziemieniem w przypadkach, gdzie nie jest to wymagane, może prowadzić do nieprawidłowego podłączenia oraz zwiększać ryzyko uszkodzenia sprzętu. Natomiast H05VV-U, będący przewodem sztywnym, nie jest zalecany do aplikacji ruchomych, ponieważ jego konstrukcja ogranicza elastyczność, co jest kluczowe w przypadku sprzętu, który może być często przestawiany. Wybór niewłaściwego przewodu do zasilania ruchomych odbiorników może skutkować nieefektywną pracą urządzenia, a w najgorszym przypadku stwarzać zagrożenie dla użytkownika oraz dla samego sprzętu, gdyż niektóre przewody mogą nie wytrzymać obciążeń mechanicznych czy niekorzystnych warunków środowiskowych.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Który z wymienionych czynników nie wpływa na dopuszczalne obciążenie długotrwałe przewodów stosowanych w instalacji elektrycznej?

A. Rodzaj materiału izolacyjnego
B. Długość zamontowanych przewodów
C. Przekrój poprzeczny przewodów
D. Metoda ułożenia przewodów
Długość ułożonych przewodów nie ma bezpośredniego wpływu na dopuszczalną obciążalność długotrwałą przewodów w instalacji elektrycznej. Dopuszczalna obciążalność jest przede wszystkim związana z innymi parametrami, takimi jak przekrój poprzeczny żył, rodzaj materiału izolacji oraz sposób ułożenia przewodów. Długość przewodów może wpływać na spadek napięcia w instalacji, ale nie zmienia zasadniczo obciążalności przewodów pod względem ich zdolności do przewodzenia prądu. W praktyce oznacza to, że przy zachowaniu odpowiednich standardów, takich jak normy PN-IEC 60364, można stosować dłuższe odcinki przewodów, o ile są one odpowiednio dobrane pod względem innych parametrów. Przykładowo, przy projektowaniu obwodów elektrycznych w budynkach mieszkalnych, istotniejsze jest zapewnienie odpowiedniego przekroju żył oraz zastosowanie właściwych materiałów izolacyjnych, aby zapewnić bezpieczeństwo i wydajność instalacji.

Pytanie 19

Jaki jest najmniejszy błąd pomiaru natężenia prądu wynoszącego 30 mA, gdy używamy cyfrowego miliamperomierza z wyświetlaczem do 2 miejsc po przecinku oraz miernika o określonej dokładności?

A. ±2,0% + 2 cyfry
B. ±2,5% + 1 cyfra
C. ±1,0% + 4 cyfry
D. ±1,5% + 3 cyfry
Odpowiedź ±1,0% + 4 cyfry jest prawidłowa, ponieważ oferuje najwyższą precyzję pomiaru wśród dostępnych opcji. Przy natężeniu prądu wynoszącym 30 mA błąd pomiaru obliczamy na podstawie wzoru: błąd = (wartość pomiaru × procent dokładności) + liczba cyfr. Dla podanej odpowiedzi, maksymalny błąd wynosi: 30 mA × 1,0% + 4 cyfry, co daje 0,3 mA + 0,04 mA, czyli 0,34 mA. Taki poziom dokładności jest szczególnie istotny w zastosowaniach, gdzie precyzyjne pomiary są kluczowe, np. w laboratoriach badawczych, w elektronice czy przy kalibracji urządzeń. Wybór miernika z lepszą dokładnością pozwala także na uniknięcie błędów w dalszych obliczeniach oraz wpływa na wiarygodność wyników. Stąd, zgodnie z dobrymi praktykami w inżynierii, zawsze warto wybierać urządzenia o jak najwyższej dokładności, aby zapewnić rzetelność pomiarów i ich zgodność z obowiązującymi normami.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Jakie z wymienionych usterek w obwodzie odbiorczym instalacji elektrycznej powinno spowodować automatyczne odcięcie napięcia przez wyłącznik różnicowoprądowy?

A. Przeciążenie obwodu
B. Zwarcie międzyfazowe
C. Skok napięcia
D. Upływ prądu
Odpowiedź 'Upływ prądu' jest na pewno trafna, bo wyłącznik różnicowoprądowy, czyli RCD, działa dokładnie tak, jak powinien. On potrafi sprawdzać różnice w prądzie, który wpływa i wypływa z obwodu. Powiedzmy, że jak jest jakiś problem z izolacją, to prąd może wyciekać do ziemi. To właśnie wtedy RCD to zauważa i natychmiast odłącza zasilanie, co naprawdę zmniejsza ryzyko porażenia prądem albo pożaru. RCD często spotykamy w łazienkach, gdzie wilgoć sprawia, że ryzyko kontaktu z prądem jest większe. Warto też wiedzieć, że normy, takie jak PN-EN 61008, precyzują, jakie są wymagania dotyczące tych wyłączników i gdzie można je stosować, co podkreśla ich istotność dla bezpieczeństwa elektrycznego. Używanie RCD w instalacjach jest zgodne z dobrymi praktykami i przepisami budowlanymi, więc to naprawdę ważny temat.

Pytanie 23

W instalacji zasilanej napięciem 400/230 V obwód chroniony jest przez wyłącznik nadprądowy typu S-303 CLS6-C10/3. Jaką maksymalną moc można zastosować dla klimatyzatora trójfazowego w tej instalacji?

A. 5,9 kW
B. 9,6 kW
C. 6,9 kW
D. 3,9 kW
Wybór błędnych odpowiedzi może wynikać z niepełnego zrozumienia zasad dotyczących obliczania mocy w układach trójfazowych oraz niewłaściwego zastosowania wzorów. Wiele osób może błędnie obliczać moc, stosując tylko wartości napięcia jednofazowego lub nie uwzględniając współczynnika √3, który jest kluczowy w obliczeniach dla układów trójfazowych. Przykładowo, odpowiedzi 5,9 kW i 3,9 kW mogą pochodzić z pomyłek związanych z przyjęciem zbyt niskiego prądu lub napięcia. W obwodach trójfazowych moc jest zawsze większa niż w jednofazowych przy tych samych parametrach prądu. Ponadto, niektóre odpowiedzi mogą wynikać z nieprawidłowego zrozumienia charakterystyki wyłączników nadprądowych, które są zaprojektowane tak, aby chronić obwody przed przeciążeniem, a ich dobór powinien być uzależniony od planowanego obciążenia. W praktyce, dla instalacji klimatyzacyjnych, stosowanie wyłączników o odpowiednich parametrach staje się kluczowe, aby zapewnić nie tylko sprawność układu, ale także jego bezpieczeństwo. Błędne podejście do wyliczeń może prowadzić do katastrofalnych skutków, w tym do pożaru instalacji lub uszkodzenia urządzeń.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

Aby zweryfikować ciągłość przewodów w kablu YDY 4x2,5 mm2, jaki sprzęt należy zastosować?

A. wskaźnika kolejności faz
B. omomierza
C. mostka LC
D. miernika izolacji
Użycie omomierza do sprawdzenia ciągłości żył w przewodzie YDY 4x2,5 mm2 jest właściwym wyborem, ponieważ omomierz jest urządzeniem pomiarowym, które pozwala na dokładne zmierzenie oporu elektrycznego. W przypadku sprawdzania ciągłości żył, omomierz umożliwia wykrycie ewentualnych przerw w obwodzie, co jest kluczowe dla zapewnienia bezpieczeństwa instalacji elektrycznej. Przykładowo, podczas montażu instalacji elektrycznych w budynkach, konieczne jest potwierdzenie, że wszystkie przewody są prawidłowo podłączone i nie wykazują zbyt wysokiego oporu, co mogłoby wskazywać na problemy z połączeniami lub uszkodzenia. Zgodnie z normą PN-EN 60364, sprawdzenie ciągłości przewodów ochronnych jest obowiązkowe przed oddaniem instalacji do użytku. Dobre praktyki zalecają wykonywanie pomiarów w warunkach, gdy przewody są odłączone od źródła zasilania, co zwiększa bezpieczeństwo oraz dokładność pomiarów. Omomierz jest więc narzędziem nie tylko funkcjonalnym, ale i niezbędnym w codziennej pracy elektryka.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

W jaki sposób powinna odbywać się wymiana nożowych wkładek topikowych w bezpiecznikach przemysłowych?

A. Uchwytem izolacyjnym bez obciążenia
B. Przy użyciu kombinerek, pod napięciem
C. Uchwytem izolacyjnym pod obciążeniem
D. Za pomocą kombinerek w braku napięcia
Wymiana nożowych wkładek topikowych bezpieczników przemysłowych powinna być przeprowadzana w sposób bezpieczny, najlepiej przy użyciu uchwytu izolacyjnego i tylko wtedy, gdy nie ma obciążenia na obwodzie. Taki sposób działania minimalizuje ryzyko porażenia prądem oraz uszkodzenia sprzętu. Uchwyt izolacyjny, wykonany z materiałów odpornych na działanie wysokich napięć, zapewnia, że osoba dokonująca wymiany nie ma kontaktu z przewodami pod napięciem. Przykładem zastosowania tej metody są procedury serwisowe w zakładach przemysłowych, gdzie kluczowe jest przestrzeganie zasad BHP oraz normy IEC 60947-3 dotyczącej bezpieczników. Dodatkowo, przed przystąpieniem do wymiany, ważne jest upewnienie się, że wyłączono zasilanie, co można zweryfikować przy pomocy wskaźników napięcia, a także zastosowanie blokad, aby zapobiec przypadkowemu włączeniu obwodu. Przestrzeganie tych zasad nie tylko chroni technika, ale również zapewnia, że prace serwisowe są wykonane w sposób efektywny i zgodny z normami branżowymi.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

W elektrycznych instalacjach w mieszkaniach oraz budynkach użyteczności publicznej prace konserwacyjne nie obejmują

A. montażu nowych punktów świetlnych
B. czyszczenia lamp oświetleniowych
C. wymiany gniazd zasilających
D. czyszczenia urządzeń w rozdzielniach
Fajnie, że zauważyłeś, że montaż nowych wypustów oświetleniowych to nie konserwacja. Konserwacja polega głównie na utrzymaniu istniejących systemów w dobrym stanie, jak czyszczenie lamp czy wymiana starych gniazdek. Nowe wypusty wymagają więcej planowania i czasem też papierkowej roboty, żeby wszystko było zgodne z przepisami. W praktyce chodzi o to, żeby przedłużać żywotność tego, co już mamy, natomiast nowe instalacje to zupełnie inna bajka, która wiąże się z projektowaniem i dodatkowymi formalnościami.

Pytanie 30

W jaki sposób można zweryfikować funkcjonowanie wyłącznika różnicowoprądowego?

A. Zmieniając ustawienie dźwigni "ON-OFF"
B. Tworząc zwarcie w obwodzie zabezpieczonym
C. Naciskając przycisk "TEST"
D. Sprawdzając napięcie oraz prąd wyłącznika
Wyłącznik różnicowoprądowy (RCD) jest kluczowym elementem systemów zabezpieczeń elektrycznych, który chroni przed porażeniem prądem elektrycznym oraz pożarami spowodowanymi prądami upływowymi. Aby sprawdzić jego działanie, należy wcisnąć przycisk 'TEST', co symuluje warunki, w których RCD powinien zareagować na różnicę między prądem wpływającym a wypływającym. Działanie tego przycisku uruchamia mechanizm w RCD, który odłącza zasilanie, jeżeli wykryje jakiekolwiek nieprawidłowości. Zgodnie z normą PN-EN 61008-1, regularne testowanie RCD jest zalecane, co najmniej raz na miesiąc, aby zapewnić ich prawidłowe funkcjonowanie. Przykładem zastosowania takiego testowania może być mieszkanie, w którym w przypadku uszkodzenia izolacji w przewodzie, RCD powinien wyłączyć obwód, zanim doprowadzi to do porażenia prądem. Regularne testowanie RCD, poprzez naciśnięcie przycisku 'TEST', upewnia użytkowników, że ich systemy zabezpieczeń są w pełni sprawne i gotowe do ochrony przed zagrożeniami.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Korzystając z zamieszczonego fragmentu instrukcji obsługi multimetru, wyznacz względny błąd pomiaru napięcia, jeżeli woltomierz wskazał 120 V.

Instrukcja obsługi multimetru (fragment)

Uchyb pomiaru:

0,1% w.m. ±0,05% w.z. (podzakresy 100 mV, 1 V)

0,2% w.m. ±0,05% w.z. (podzakresy 10 V, 100 V, 1000 V)

gdzie w.m. oznacza wartość zmierzoną, a w.z. wartość zakresu.

A. 0,07%
B. 0,62%
C. 6,10%
D. 0,74%
Względny błąd pomiaru napięcia wynosi 0,62%, co oznacza, że pomiar wykonany za pomocą woltomierza jest dokładny w granicach tego błędu. W celu obliczenia względnego błędu, należy dodać błąd stały urządzenia do błędu procentowego, a następnie podzielić tę sumę przez wartość zmierzoną (w tym przypadku 120 V). Takie podejście jest zgodne z profesjonalnymi standardami pomiarowymi, które wskazują, jak prawidłowo oceniać błędy pomiarowe. W praktyce, stosując woltomierz, bardzo ważne jest, aby zrozumieć i obliczyć te błędy, aby zapewnić dokładność i wiarygodność pomiarów. Na przykład, w zastosowaniach inżynieryjnych, gdzie precyzyjne parametry elektryczne są krytyczne, skuteczne zarządzanie błędami pomiarowymi pozwala na optymalizację procesów produkcyjnych, a także na zapewnienie bezpieczeństwa. W związku z tym, umiejętność obliczania względnych błędów pomiarowych jest kluczowa dla każdego specjalisty w dziedzinie elektrotechniki.

Pytanie 34

W zakres inspekcji instalacji elektrycznej nie wchodzi

A. weryfikacja poprawności oznaczeń przewodów neutralnych oraz ochronnych
B. pomiar rezystancji uziemienia
C. ocena dostępu do urządzeń, co umożliwia ich wygodną obsługę oraz eksploatację
D. sprawdzenie oznaczeń obwodów i urządzeń zabezpieczających
Pomiar rezystancji uziemienia to kluczowy element zapewnienia bezpieczeństwa i prawidłowego funkcjonowania instalacji elektrycznych. Uziemienie ma na celu odprowadzenie nadmiaru prądu do ziemi, co chroni przed porażeniem elektrycznym i uszkodzeniem urządzeń. Przykładowo, w instalacjach przemysłowych, gdzie stosowane są maszyny o wysokich mocach, pomiar rezystancji uziemienia jest niezbędny do zapewnienia, że układ uziemiający jest skuteczny. Zgodnie z normą PN-EN 61557-4, rezystancja uziemienia powinna być mniejsza niż 10 Ω, co zapewnia odpowiednią ochronę przed skutkami udarów elektrycznych. Regularne pomiary rezystancji uziemienia pozwalają na wczesne wykrywanie problemów, takich jak korozja elementów uziemiających, co może prowadzić do ich degradacji. W praktyce, takie pomiary powinny być przeprowadzane co najmniej raz w roku lub częściej w przypadku instalacji narażonych na zmienne warunki atmosferyczne. Właściwe utrzymanie systemu uziemiającego jest nie tylko wymogiem prawnym, ale także kluczowym elementem ochrony osób i mienia.

Pytanie 35

Jaka maksymalna wartość może mieć impedancja pętli zwarcia w trójfazowym systemie elektrycznym o napięciu nominalnym 230/400 V, aby ochrona przeciwporażeniowa przy awarii izolacji była skuteczna, wiedząc, że odpowiednie szybkie wyłączenie tego obwodu ma zapewnić instalacyjny wyłącznik nadprądowy B20?

A. 6,6 Ω
B. 3,8 Ω
C. 4,0 Ω
D. 2,3 Ω
Wartość 2,3 Ω jest prawidłowa dla impedancji pętli zwarcia w trójfazowym obwodzie elektrycznym o napięciu 230/400 V, ponieważ gwarantuje wystarczająco niską impedancję, aby wyłącznik nadprądowy B20 mógł zadziałać w przypadku uszkodzenia izolacji. Zgodnie z zasadami ochrony przeciwporażeniowej, aby zapewnić skuteczną reakcję wyłącznika, impedancja pętli zwarcia powinna być niższa niż wartość krytyczna, ustalona na podstawie prądu zwarciowego, który jest niezbędny do wyzwolenia wyłącznika. W przypadku B20, przy nominalnym prądzie 20 A, minimalny prąd zwarciowy powinien wynosić co najmniej 100 A, co odpowiada maksymalnej impedancji 2,3 Ω. W praktyce oznacza to, że w przypadku wystąpienia zwarcia, wyłącznik zareaguje w odpowiednim czasie, minimalizując ryzyko porażenia prądem. Zgodnie z normą PN-IEC 60364-4-41, dobór odpowiedniej impedancji pętli zwarcia jest kluczowym elementem w projektowaniu instalacji elektrycznych.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

Którego z narzędzi należy użyć do wkręcenia przedstawionego elementu w nagwintowany otwór?

Ilustracja do pytania
A. Klucza ampulowego.
B. Wkrętaka typu torks.
C. Klucza nasadowego.
D. Wkrętaka krzyżowego.
Klucz ampulowy, znany także jako klucz imbusowy, jest narzędziem przeznaczonym do pracy z śrubami i wkrętami, które mają łeb sześciokątny wewnętrzny. W przypadku opisanej sytuacji, użycie klucza ampulowego jest kluczowe, ponieważ idealnie pasuje do profilu łba śruby, co zapewnia skuteczne i bezpieczne wkręcanie lub wykręcanie. Tego typu klucze są szeroko stosowane w różnych dziedzinach, takich jak mechanika, elektronika czy budownictwo, co czyni je niezastąpionym narzędziem w zestawie każdego profesjonalisty. W praktyce, klucz ampulowy pozwala na uzyskanie dużego momentu obrotowego przy niewielkim wysiłku, co jest szczególnie ważne przy pracy z metalowymi elementami, które mogą być narażone na korozję lub inne uszkodzenia. Dodatkowo, klucze te są dostępne w różnych rozmiarach, co umożliwia ich dopasowanie do różnych śrub, zgodnie z normami ISO i DIN. Użycie odpowiedniego narzędzia z pewnością przyczyni się do wydajności pracy oraz do ograniczenia ryzyka uszkodzeń elementów montażowych.

Pytanie 40

Przeglądy instalacji elektrycznej w budynkach mieszkalnych powinny być przeprowadzane nie rzadziej niż co

A. 5 lat
B. 10 lat
C. 2 lata
D. 1 rok
Przeglądy instalacji elektrycznej co 2 lata, 1 rok czy 10 lat mogą być mylące, ponieważ każdy z tych okresów nie uwzględnia rzeczywistych wymagań dotyczących bezpieczeństwa i stanu technicznego instalacji. Przegląd co 2 lata może wydawać się rozsądny w kontekście częstotliwości, jednak nie odpowiada on rzeczywistym potrzebom użytkowników, ponieważ pomija dłuższe, udokumentowane okresy, w których instalacja może funkcjonować prawidłowo bez poważnych usterek. Z kolei roczny przegląd wydaje się być nadmiernie rygorystyczny i nieekonomiczny, co może prowadzić do zbędnych kosztów. Przegląd co 10 lat z kolei może stwarzać złudne poczucie bezpieczeństwa, ponieważ przez tak długi okres mogą wystąpić zmiany w warunkach użytkowania, które mogą wpłynąć na stan instalacji, takie jak zużycie materiałów czy zmiany norm prawnych. Dlatego kluczowe jest, aby stosować się do ustalonej przez normy praktyki pięcioletniej, co jest uzasadnione zarówno technicznie, jak i prawnymi wymaganiami. Niedostateczna częstotliwość przeglądów może prowadzić do poważnych konsekwencji, takich jak awarie, które niosą za sobą nie tylko ryzyko dla zdrowia i życia, ale również mogą skutkować wysokimi kosztami naprawy i odszkodowań.