Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 14 maja 2025 06:22
  • Data zakończenia: 14 maja 2025 06:25

Egzamin niezdany

Wynik: 10/40 punktów (25,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Jakie urządzenie umożliwia pomiar temperatury łopat sprężarki o ruchu obrotowym?

A. manometru
B. tensometru
C. termistora
D. pirometru
Wybór tensometru do pomiaru temperatury wirujących łopat sprężarki przepływowej jest nieadekwatny, ponieważ tensometry służą do pomiaru deformacji materiałów, a nie temperatury. Ich działanie opiera się na pomiarze zmiany oporu elektrycznego w wyniku odkształcenia, co jest zupełnie inną kategorią pomiarów. Z kolei termistory, mimo że są czujnikami temperatury, działają na zasadzie zmiany oporu elektrycznego w odpowiedzi na zmiany temperatury, co może być stosunkowo powolne w kontekście dynamicznych warunków panujących w obrębie wirujących części sprężarki. Systemy kontroli w przemyśle często wymagają szybkich i dokładnych pomiarów, a termistory mogą nie zaspokajać tych potrzeb z uwagi na swoją konstrukcję i czas reakcji. Manometry, natomiast, służą do pomiaru ciśnienia gazów lub cieczy, co jest zupełnie innym parametrem niż temperatura. Pomiar ciśnienia nie ma bezpośredniego związku z temperaturą wirujących łopat, co czyni tę odpowiedź nieodpowiednią. Użycie niewłaściwych urządzeń pomiarowych prowadzi do błędnych wniosków i potencjalnych awarii, co podkreśla znaczenie wyboru odpowiednich narzędzi pomiarowych w kontekście specyficznych zastosowań inżynieryjnych. W praktyce inżynieryjnej istotne jest, aby wybierać urządzenia, które odpowiadają wymaganiom procesów, a zrozumienie różnic między różnymi typami czujników jest kluczowe dla zapewnienia efektywności operacyjnej i bezpieczeństwa systemów.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Element oznaczony symbolem BC 107 to tranzystor?

A. krzemowy w.cz.
B. germanowy mocy
C. krzemowy m.cz.
D. germanowy impulsowy
Odpowiedzi takie jak 'germanowy impulsowy', 'krzemowy w.cz.' oraz 'germanowy mocy' są błędne, ponieważ mylą podstawowe właściwości tranzystora BC 107 oraz jego zastosowanie. Tranzystory germanowe, używane w przeszłości, mają swoje ograniczenia, takie jak wyższy poziom szumów i mniejsze napięcie przebicia w porównaniu do tranzystorów krzemowych. Germanowe tranzystory impulsowe były popularne w układach o wysokiej częstotliwości, ale nie są odpowiednie do niskonapięciowych aplikacji. Tranzystory krzemowe w.cz. są przeznaczone do pracy w obwodach wysokoczęstotliwościowych i mają inne parametry niż te, które charakteryzują BC 107. Natomiast germanowe tranzystory mocy, choć mogą obsługiwać wyższe prądy, również nie pasują do charakterystyki BC 107. Typowe błędy myślowe to pomylenie właściwości materiałów półprzewodnikowych oraz niewłaściwe przypisanie zastosowań do tranzystorów. Użytkownicy powinni być świadomi, że wybór tranzystora powinien być oparty na specyfikacji technicznej oraz parametrach aplikacji, a nie na ogólnych założeniach dotyczących materiałów półprzewodnikowych.

Pytanie 10

Urządzenie, którego dane techniczne przedstawiono w tabeli,

Ciecz roboczaOlej mineralny
WydajnośćDm3/min47 przy n=1450 min-1, p=1 MPa
Ciśnienie na wlocieMPa-0,02 (podciśnienie) do 0,5 (nadciśnienie)
Ciśnienie na wylocieMPamax. 10
Ciśnienie przeciekówMPamax. 0,2
Moment obrotowyNmmax. 235
Prędkość obrotowaobr/min1 000 do 1 800
Optymalna temperatura pracyK313÷338
Filtracjaμm16

A. wytwarza strumień oleju w układach i urządzeniach hydraulicznych.
B. steruje kierunkiem przepływu oleju.
C. utrzymuje stałe ciśnienie niezależnie od kierunku przepływu oleju.
D. otwiera i zamyka przepływ oleju.
Wybór nieprawidłowej odpowiedzi może wynikać z nieporozumienia dotyczącego funkcji urządzeń hydraulicznych. Na przykład, odpowiedzi sugerujące, że urządzenie steruje kierunkiem przepływu oleju, otwiera i zamyka przepływ, lub utrzymuje stałe ciśnienie, dotyczą innych typów urządzeń, takich jak zawory. Zawory kierunkowe są używane do zmiany kierunku przepływu medium, a zawory ciśnieniowe regulują ciśnienie w systemie, ale nie są w stanie generować strumienia oleju. Typowy błąd w myśleniu polega na myleniu funkcji pompy z funkcją zaworów, co jest powszechnym problemem wśród osób uczących się hydrauliki. Kluczowe jest zrozumienie, że pompy służą do przemieszczania oleju, a nie jego regulacji. Aby poprawnie rozwiązywać takie zadania, warto zwrócić uwagę na parametry techniczne podawane w opisach urządzeń oraz na ich zastosowanie w praktyce. Znajomość typów urządzeń oraz ich specyficznych ról w układzie hydraulicznym jest fundamentalna dla zrozumienia i efektywnego wykorzystania technologii hydraulicznej.

Pytanie 11

W pomiarze deformacji konstrukcji nośnych najczęściej wykorzystuje się czujniki, które działają na zasadzie

A. zmiany pojemności elektrycznej
B. efektu piezoelektrycznego
C. zmiany rezystancji
D. zmiany indukcyjności własnej
W przypadku pomiarów odkształceń, metody oparte na zmianie indukcyjności własnej, pojemności elektrycznej oraz efekcie piezoelektrycznym nie są tak powszechnie stosowane jak tensometry. Zmiana indukcyjności własnej może być wykorzystywana w niektórych aplikacjach, jednak nie jest ona standardowym rozwiązaniem w kontekście monitorowania odkształceń konstrukcji nośnych. Wzory analityczne związane z tą metodą często wymagają skomplikowanych obliczeń oraz precyzyjnego dostrojenia, co czyni je mniej praktycznymi w realnych zastosowaniach budowlanych. Zmiana pojemności elektrycznej może być używana w czujnikach pojemnościowych, jednak ich zastosowanie w kontekście monitorowania odkształceń wymaganych w inżynierii budowlanej nie jest tak efektywne. Efekt piezoelektryczny, zaś, mimo że ma swoje miejsce w technologii czujników, głównie w aplikacjach takich jak detekcja drgań, nie jest typowym sposobem na pomiar odkształceń konstrukcyjnych. Te metody mogą prowadzić do błędów pomiarowych, zwłaszcza w dynamicznych warunkach pracy konstrukcji, gdzie tensometry zapewniają znacznie większą dokładność i niezawodność. Zastosowanie bardziej skomplikowanych technologii powinno być zarezerwowane dla specyficznych przypadków, gdzie prostsze metody, takie jak zmiana rezystancji, nie mogą być zastosowane.

Pytanie 12

Jakie narzędzie należy zastosować do pomiaru luzów pomiędzy powierzchniami elementów konstrukcyjnych?

A. mikrometr
B. szczelinomierz
C. liniał
D. suwmiarka
Szczelinomierz to narzędzie pomiarowe, które jest szczególnie zaprojektowane do określania luzów i szczelin pomiędzy elementami konstrukcyjnymi. Jego konstrukcja umożliwia precyzyjne pomiary w trudnych warunkach pracy, gdzie inne narzędzia, takie jak suwmiarka czy mikrometr, mogą nie dostarczyć wystarczającej dokładności. Szczelinomierze są często stosowane w różnych branżach, w tym w mechanice precyzyjnej, motoryzacji i inżynierii lotniczej, gdzie kontrola luzów pomiędzy ruchomymi elementami jest kluczowa dla zapewnienia prawidłowego funkcjonowania maszyn. Na przykład, w silnikach spalinowych precyzyjne pomiary luzów między zaworami a gniazdami zaworowymi są niezbędne do zapewnienia optymalnej wydajności silnika oraz minimalizacji zużycia. W standardach branżowych, takich jak ISO, podkreśla się znaczenie stosowania odpowiednich narzędzi do pomiarów luzów, co czyni szczelinomierz najlepszym wyborem w tego typu aplikacjach.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

Jaki zawór powinien być użyty, aby umożliwić przepływ czynnika wyłącznie w jednym kierunku?

A. Dławiący
B. Regulacyjny
C. Zwrotny
D. Rozdzielający
Wybór niewłaściwego zaworu w systemie hydraulicznym lub pneumatycznym może prowadzić do poważnych problemów operacyjnych. Zawór rozdzielający ma na celu kierowanie przepływu czynnika do różnych sekcji systemu, ale nie ma właściwości zabezpieczających przed cofaniem się medium. Jego główną rolą jest zatem dystrybucja, a nie kontrola kierunku przepływu, co czyni go nieodpowiednim do zastosowań wymagających zapobiegania cofaniu. Zawór regulacyjny, z drugiej strony, jest zaprojektowany do kontrolowania ciśnienia lub przepływu, ale nie zapewnia jednoznacznej blokady cofaniu się medium. Tego rodzaju zawory są stosowane w aplikacjach, gdzie istotne jest dostosowanie parametrów pracy, a nie ochrona przed odwrotnym przepływem. Zawór dławiący również nie spełnia wymagań dotyczących kierunku przepływu; jego funkcją jest ograniczanie przepływu, co może prowadzić do niekontrolowanych warunków w układzie. Użycie niewłaściwego zaworu, takiego jak rozdzielający, regulacyjny czy dławiący, może prowadzić do uszkodzenia systemu, awarii sprzętu lub nawet zagrożeń dla bezpieczeństwa. W związku z tym, przy projektowaniu systemów hydraulicznych czy pneumatycznych, kluczowe jest dobieranie odpowiednich zaworów zgodnie z ich funkcjami i zastosowaniami w oparciu o normy branżowe i najlepsze praktyki.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Jakiego koloru powinna być izolacja przewodu neutralnego w instalacji elektrycznej typu TN–S?

A. Brązowym
B. Czarnym
C. Żółtym
D. Niebieskim
W przypadku wyboru czarnego, brązowego lub żółtego koloru dla przewodu neutralnego, należy zwrócić uwagę na to, że każdy z tych kolorów jest zarezerwowany dla innych funkcji w instalacji elektrycznej. Kolor czarny jest zazwyczaj stosowany dla przewodów fazowych, a jego użycie w roli przewodu neutralnego mogłoby prowadzić do mylenia z przewodem fazowym, co stanowi poważne zagrożenie bezpieczeństwa. Z kolei brązowy, podobnie jak czarny, również identyfikuje przewody fazowe. Przewód brązowy w połączeniu z czarnym mógłby wprowadzać w błąd podczas wykonywania prac serwisowych, co zwiększa ryzyko błędów i potencjalnych wypadków. Zastosowanie koloru żółtego, który w połączeniu z zielonym jest przeznaczony dla przewodu ochronnego, również jest nieprawidłowe, ponieważ mogłoby prowadzić do niejednoznaczności w identyfikacji ochrony przeciwporażeniowej. Właściwe oznaczenie przewodów jest kluczowe dla zapewnienia bezpieczeństwa użytkowników oraz zgodności z obowiązującymi normami. W związku z tym, nieprzestrzeganie tych zasad prowadzi do niebezpiecznych sytuacji, które mogą skutkować poważnymi konsekwencjami zdrowotnymi oraz materialnymi.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Po wyczyszczeniu filtra używanego do wstępnego oczyszczania powietrza, kondensat należy

A. przefiltrować przy użyciu węgla aktywnego
B. osuszyć z nadmiaru wody
C. oczyścić z resztek oleju
D. odprowadzić bezpośrednio do ścieków
Odpowiedzi sugerujące odprowadzenie kondensatu bezpośrednio do kanalizacji, osuszenie z wody lub przefiltrowanie za pomocą węgla aktywnego są niewłaściwe z kilku powodów. Przede wszystkim, bezpośrednie wprowadzenie kondensatu do kanalizacji jest ryzykowne, ponieważ może on zawierać substancje ropopochodne, które są zabronione w wielu systemach kanalizacyjnych. Takie działania mogą prowadzić do zanieczyszczenia wód gruntowych i naruszenia przepisów dotyczących ochrony środowiska. Osuszanie kondensatu z wody nie ma sensu, ponieważ najważniejszym problemem są zanieczyszczenia olejowe, a nie stała obecność wody. Węgiel aktywny jest skuteczny w usuwaniu niektórych zanieczyszczeń chemicznych, jednak nie jest optymalnym rozwiązaniem w przypadku kondensatu, który zawiera cząstki olejowe. Proces filtracji węgla aktywnego wymaga odpowiedniej konfiguracji i często jest kosztowny w zastosowaniu. Typowe błędy myślowe, prowadzące do takich niepoprawnych wniosków, polegają na nieuwzględnieniu specyfiki zanieczyszczeń oraz nieznajomości regulacji prawnych związanych z gospodarowaniem odpadami. Właściwe podejście do zarządzania kondensatami wymaga dokładnej analizy składników zanieczyszczenia oraz zastosowania odpowiednich technologii oczyszczania zgodnych z normami branżowymi.

Pytanie 25

Wzmacniacz charakteryzuje się pasmem przepustowym wynoszącym w = 12 750 Hz oraz częstotliwością górną fg= 13 500 Hz. Jaką minimalną wartość częstotliwości fd w zakresie przenoszenia sygnałów należy osiągnąć, aby były one wzmacniane?

A. Od 6 750 Hz
B. Od 6 375 Hz
C. Od 350 Hz
D. Od 750 Hz
Wybór wartości z zakresu 6 375 Hz, 6 750 Hz lub 350 Hz jako minimalnej częstotliwości dolnej może wynikać z nieporozumienia dotyczącego definicji szerokości pasma przepustowego oraz sposobu obliczania częstotliwości dolnej. Często w praktyce błędnie przyjmuje się, że częstotliwość dolna jest obliczana na podstawie jedynie jednostkowych wartości, co może prowadzić do rozbieżności w wynikach. Szerokość pasma dla wzmacniacza określa, jakie pasmo częstotliwości sygnałów będzie wzmacniane i jest obliczana jako różnica między częstotliwością górną a dolną. W tym przypadku, mając szerokość pasma 12 750 Hz i częstotliwość górną 13 500 Hz, poprawne obliczenie częstotliwości dolnej prowadzi do 750 Hz. Wybór wyższych wartości, jak 6 375 Hz czy 6 750 Hz, ignoruje fakt, że wzmacniacz nie będzie aktywowany w tym zakresie, co prowadzi do pominięcia istotnych sygnałów. Natomiast wybór 350 Hz także jest błędny, ponieważ nie uwzględnia, że częstotliwość dolna jest zawsze wyższa niż zero w kontekście wzmacniaczy, które operują na rzeczywistych sygnałach. Takie błędne podejście często prowadzi do nieprawidłowego doboru sprzętu audio lub telekomunikacyjnego, co w rezultacie może obniżyć jakość sygnału i wydajność systemu. Zrozumienie tych koncepcji jest kluczowe dla skutecznego projektowania systemów elektronicznych oraz ich odpowiednich zastosowań w praktyce.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

W instalacjach niskonapięciowych (systemach TN) jako elementy zabezpieczające mogą być wykorzystywane

A. izolatory długiej osi
B. wyłączniki różnicowoprądowe
C. dławiki blokujące
D. wyłączniki montażowe
Wybór innych urządzeń ochronnych, takich jak wyłączniki natynkowe, dławiki zaporowe czy izolatory długopniowe, nie jest odpowiedni w kontekście ochrony przed porażeniem prądem w układach niskiego napięcia. Wyłączniki natynkowe to elementy, które głównie służą do włączania i wyłączania obwodów, ale nie oferują ochrony przed upływem prądu, co czyni je nieodpowiednimi do ochrony ludzi. Dławiki zaporowe z kolei są stosowane w celu ograniczania zakłóceń elektromagnetycznych, a ich funkcja nie ma nic wspólnego z bezpieczeństwem użytkowników w przypadku awarii instalacji elektrycznej. Izolatory długopniowe są istotnymi elementami w systemach przesyłowych, jednak ich rola polega na zapewnieniu izolacji elektrycznej w sieciach wysokiego napięcia, a nie na ochronie przed prądem różnicowym w instalacjach niskonapięciowych. W praktyce, wybór niewłaściwych urządzeń ochronnych może prowadzić do poważnych zagrożeń dla zdrowia i życia użytkowników. Zastosowanie wyłączników różnicowoprądowych jest kluczowe dla zapewnienia bezpieczeństwa, a ignorowanie tej zasady może skutkować nie tylko zagrożeniem dla osób korzystających z energii elektrycznej, ale również naruszeniem obowiązujących norm i przepisów. Właściwe podejście do ochrony przed porażeniem prądem w instalacjach elektrycznych powinno opierać się na znajomości zasad działania i zastosowań odpowiednich urządzeń ochronnych, zgodnych z aktualnymi standardami branżowymi.

Pytanie 29

Po programowym aktywowaniu czterech wyjść tranzystorowych w sterowniku PLC, które sterują cewkami elektrozaworów, stwierdzono, że nie wszystkie działają poprawnie. Pomiar napięcia UBE (między bazą a emiterem) tranzystorów na poszczególnych wyjściach wykazał następujące wartości: UBE1 = 1 V, UBE2 = 3 V, UBE3 = 0,7 V, UBE4 = 5 V. Wyniki pomiarów sugerują uszkodzenie

A. wyłącznie tranzystora na wyjściu 3
B. wyłącznie tranzystora na wyjściu 4
C. tranzystorów na wyjściach 1 i 3
D. tranzystorów na wyjściach 2 i 4
Zauważyłeś, że odpowiedź wskazuje na problemy z tranzystorami na wyjściach 2 i 4, co jest całkiem słuszne. Jak spojrzysz na pomiary napięcia UBE, to na wyjściu 4 wynosi ono 5 V. To oznacza, że tranzystor działa na pełnych obrotach, a dla typowych tranzystorów krzemowych powinno być w okolicach 0,7 V. Z kolei, na wyjściu 2 mamy 3 V, co jest zbyt dużo – to znaczy, że coś tu nie gra i tranzystor nie pracuje tak, jak powinien. Jak się takie rzeczy zdarzają, to mogą być problemy z działaniem podłączonych cewków, a to może być kłopotliwe. W przypadku sterowników PLC wszystko musi działać jak w zegarku, żeby system był ok. W sytuacjach awaryjnych, lepiej też regularnie robić testy i konserwację, by wyłapać takie usterki na czas. No i nie zaszkodzi znać standardy, jak IEC 61131, bo mogą pomóc unikać tego typu problemów w przyszłości.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

Jaką rolę odgrywają zawory przelewowe w systemach hydraulicznych?

A. Redukują nagłe skoki ciśnienia
B. Ograniczają ciśnienie do ustalonego poziomu
C. Utrzymują ustalony poziom ciśnienia
D. Zapewniają ustawiony, stały spadek ciśnienia
Wybór odpowiedzi, która wskazuje na inne funkcje zaworów przelewowych, może prowadzić do nieporozumień w zakresie ich rzeczywistego zastosowania. Zmniejszanie gwałtownych impulsów ciśnienia nie jest zasadniczą funkcją zaworów przelewowych. Takie zadania często są realizowane przez inne elementy układu, takie jak tłumiki czy akumulatory hydrauliczne, które są zaprojektowane do absorpcji szczytowych wartości ciśnienia. Utrzymywanie zadanego, stałego spadku ciśnienia jest również nieprawidłowym podejściem, ponieważ zawory przelewowe nie są przeznaczone do regulowania różnicy ciśnień, lecz do ochrony przed nadmiernym wzrostem ciśnienia. Innym błędnym przekonaniem jest to, że zawory przelewowe po prostu ograniczają ciśnienie do określonego poziomu; w rzeczywistości ich działanie jest bardziej złożone i polega na zapewnieniu stabilności ciśnienia w układzie poprzez odprowadzanie nadmiaru płynu. Mylne interpretacje dotyczące funkcji zaworów przelewowych mogą skutkować nieprawidłowym doborem komponentów w systemach hydraulicznych, co w konsekwencji prowadzi do awarii i zwiększonych kosztów eksploatacyjnych. Dlatego kluczowe jest zrozumienie ich rzeczywistej roli w utrzymywaniu stabilności ciśnienia, co jest niezbędne dla prawidłowego funkcjonowania całego układu hydraulicznego.

Pytanie 32

Za pomocą multimetru cyfrowego zmierzono spadek napięcia na podwójnym złączu półprzewodnikowym Si. Odczyt multimetru wynosi około

A. 0,3 V
B. 0,6 V
C. 1,4 V
D. 0 V
W przypadku pomiaru spadku napięcia na podwójnym złączu półprzewodnikowym wykonanym z krzemu, wartość około 1,4 V jest typowa dla złącza p-n w stanie przewodzenia. Złącze to zachowuje się jak dioda, która wymaga określonego spadku napięcia, aby rozpocząć przewodzenie prądu. Dla diod krzemowych, wartość ta jest zazwyczaj w przedziale od 0,6 V do 0,7 V dla pierwszego złącza, a dla drugiego złącza, zwłaszcza w przypadku podwójnego złącza, wartość ta podwaja się, co daje około 1,4 V. To zjawisko jest wykorzystywane w praktycznych zastosowaniach elektroniki, takich jak prostowniki i układy regulacji napięcia. Przy pomiarze multimetrem cyfrowym ważne jest, aby upewnić się, że miernik jest ustawiony na odpowiedni zakres pomiarowy, co pozwoli na dokładne odczyty. W przypadku pomiarów diodowych, zaleca się również zwrócenie uwagi na polaryzację diody, aby uniknąć błędnych wyników. Przykładowo, w zastosowaniach takich jak zasilacze impulsowe, umiejętność prawidłowego pomiaru spadku napięcia na połączeniach półprzewodnikowych jest kluczowym elementem diagnostyki i naprawy.

Pytanie 33

Której z podanych metod nie wykorzystuje się do trwałego łączenia elementów wykonanych z plastiku?

A. Zaginania
B. Klejenia
C. Spawania
D. Zgrzewania
Zaginanie to proces, który polega na deformacji materiału pod wpływem siły mechanicznej, co prowadzi do zmiany jego kształtu. W przypadku tworzyw sztucznych, zaginanie nie jest techniką umożliwiającą trwałe połączenie elementów, ponieważ nie łączy dwóch odrębnych części w jeden element. Zamiast tego, zginanie zmienia kształt jednego elementu, co może być użyteczne w projektowaniu, ale nie umożliwia wykonania trwałego połączenia. Techniki, które rzeczywiście służą do trwałego łączenia, to spawanie, klejenie i zgrzewanie. Spawanie wykorzystuje wysoką temperaturę do stopienia materiałów, co pozwala na ich złączenie, natomiast klejenie polega na zastosowaniu odpowiednich substancji, które wiążą ze sobą różne elementy. Zgrzewanie, podobnie jak spawanie, wykorzystuje ciepło do fuzji materiałów. Przykładem aplikacji zaginania mogą być procesy formowania elementów do zastosowań estetycznych lub funkcjonalnych w przemyśle, gdzie zmiana kształtu jest istotna, ale nie prowadzi do trwałego połączenia z innym elementem.

Pytanie 34

Jakiego rodzaju środek ochrony indywidualnej powinien w szczególności wykorzystać pracownik podczas wymiany tranzystora CMOS?

A. Buty z izolującą podeszwą
B. Ochronne okulary
C. Fartuch ochronny z bawełny
D. Opaskę uziemiającą
Wybór bawełnianego fartucha ochronnego, okularów ochronnych lub butów z izolowaną podeszwą do pracy przy wymianie tranzystora CMOS jest niewłaściwy, gdyż te elementy ochrony nie są wystarczające, aby zminimalizować ryzyko związane z uszkodzeniem komponentów przez ładunki elektrostatyczne. Fartuch ochronny, mimo że może chronić przed zanieczyszczeniami, nie zapewnia ochrony przed ESD. Użycie okularów ochronnych jest również nieadekwatne, ponieważ ich główną funkcją jest ochrona oczu przed zanieczyszczeniami mechanicznymi czy chemicznymi, ale nie ma zastosowania w kontekście ochrony przed uszkodzeniami wywołanymi przez elektrostatykę. Co więcej, buty z izolowaną podeszwą mogą prowadzić do zwiększenia ryzyka gromadzenia się ładunków elektrostatycznych, co jest sprzeczne z zasadami ochrony ESD. Często pracownicy nie doceniają znaczenia uziemienia, uważając, że inne formy ochrony są wystarczające, co jest klasycznym błędem myślowym. W przypadku pracy z wrażliwymi komponentami, jak tranzystory CMOS, najważniejsze jest minimalizowanie ryzyka ESD, a do tego niezbędne jest stosowanie opasek uziemiających, które zapewniają bezpieczne odprowadzenie ładunków do ziemi. Bez odpowiedniej ochrony ESD, nawet niewielkie ładunki mogą spowodować nieodwracalne uszkodzenia komponentów, co prowadzi do zwiększonych kosztów napraw oraz strat w produkcji.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

W trakcie pracy z urządzeniem hydraulicznym pracownik poślizgnął się na plamie oleju i doznał zwichnięcia kostki. Jakie czynności należy podjąć, aby udzielić pierwszej pomocy poszkodowanemu?

A. Nastawić staw i zabandażować kostkę
B. Zabandażować kostkę i przewieźć pacjenta do lekarza
C. Przyłożyć zimny okład na zwichnięty staw i unieruchomić go
D. Podać leki przeciwbólowe
Jak masz zwichnięty staw, to schłodzenie go zimnym okładem i unieruchomienie to naprawdę istotne kroki. Zimny okład zmniejsza obrzęk i ból, co jest zgodne z zasadami pierwszej pomocy, które mówią, że lód trzeba stosować w ciągu pierwszych 48 godzin po kontuzji. Zimno powoduje, że naczynia krwionośne się kurczą, przez co przepływ krwi do uszkodzonego miejsca jest mniejszy, a to znaczy, że obrzęk się nie powiększa. Unieruchomienie stawu to też ważna sprawa, bo pomaga zapobiec dalszym uszkodzeniom i stabilizuje kontuzjowany obszar, co zmniejsza ból. W praktyce powinieneś użyć elastycznego bandaża, żeby dobrze zabezpieczyć kostkę, bo to standard w takich sytuacjach. Nie zapomnij też monitorować stanu poszkodowanego i jeśli coś jest nie tak, to skontaktować się z lekarzem. Dobra pierwsza pomoc opiera się na wytycznych organizacji zajmujących się zdrowiem, więc możesz zwiększyć szansę na szybki powrót do zdrowia.

Pytanie 37

Jakie czynności nie są wykonywane w trakcie dopasowywania komponentów podczas montażu systemów mechatronicznych?

A. Spawanie
B. Rozwiercanie
C. Docieranie
D. Skrobanie
Ważne jest, aby zrozumieć, że procesy takie jak skrobanie, rozwiercanie i docieranie są istotnymi operacjami w zakresie dopasowywania elementów w montażu urządzeń mechatronicznych. Skrobanie jest techniką, która polega na ręcznym lub mechanicznym usuwaniu materiału z powierzchni elementów w celu uzyskania precyzyjnego dopasowania. Często stosowane jest w przypadku, gdy tolerancje montażowe są krytyczne, a standardowe procesy obróbcze nie zapewniają wymaganej dokładności. Rozwiercanie z kolei polega na powiększaniu średnicy otworów, co również umożliwia lepsze dopasowanie elementów, zwłaszcza w przypadku osadzania tulei czy łożysk. Docieranie to proces, który ma na celu wygładzenie powierzchni i osiągnięcie wysokiej precyzji wymiarowej, co jest szczególnie istotne w kontekście współpracy ruchomych elementów w maszynach. Nieprawidłowe zrozumienie tych procesów może prowadzić do błędnych wniosków. Na przykład, można błędnie założyć, że spawanie, jako proces łączenia, także wpływa na dopasowanie, jednak w rzeczywistości jest to operacja, która skutkuje zmianą stanu materiałów i ich lokalizacją, co może wprowadzać błędy w precyzyjnym montażu. Wiedza o tym, jakie operacje są wykorzystywane do dopasowywania w mechatronice, jest kluczowa dla projektowania niezawodnych i funkcjonalnych systemów.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.