Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik technologii chemicznej
  • Kwalifikacja: CHM.02 - Eksploatacja maszyn i urządzeń przemysłu chemicznego
  • Data rozpoczęcia: 8 maja 2025 09:15
  • Data zakończenia: 8 maja 2025 09:40

Egzamin zdany!

Wynik: 25/40 punktów (62,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jaki jest podstawowy cel stosowania inhibitorów korozji w przemysłowych instalacjach chemicznych?

A. Zmniejszenie ciśnienia roboczego
B. Ochrona urządzeń przed uszkodzeniami chemicznymi
C. Zwiększenie przewodności cieczy
D. Zwiększenie lepkości cieczy
Inhibitory korozji są kluczowymi substancjami chemicznymi stosowanymi w przemyśle chemicznym, ponieważ ich podstawowym zadaniem jest ochrona urządzeń przed uszkodzeniami chemicznymi. Korozja to proces, który prowadzi do degradacji materiałów, zwłaszcza metali, w wyniku reakcji chemicznych z otaczającym środowiskiem. W instalacjach przemysłowych, gdzie często występują agresywne chemikalia i wysokie temperatury, ryzyko korozji jest szczególnie wysokie. Inhibitory korozji działają na różne sposoby: mogą tworzyć ochronną warstwę na powierzchni metalu, zmieniać środowisko reakcyjne, aby było mniej agresywne lub wpływać na kinetykę reakcji korozji. Dzięki temu zmniejsza się tempo degradacji materiałów, co przedłuża żywotność urządzeń i zmniejsza koszty związane z przestojami i wymianą uszkodzonych części. W praktyce stosowanie inhibitorów korozji jest standardem w wielu gałęziach przemysłu, takich jak przemysł naftowy, gazowy, chemiczny i energetyczny. Przykładem może być dodawanie inhibitorów do wody chłodzącej w systemach kotłowych, aby zapobiec korozji rur i wymienników ciepła. Takie działania są zgodne z najlepszymi praktykami inżynieryjnymi i normami branżowymi, które kładą nacisk na minimalizowanie ryzyka korozji dla zapewnienia bezpieczeństwa i efektywności procesów przemysłowych.

Pytanie 2

W trakcie produkcji nawozów wieloskładnikowych, pyły oddzielane w urządzeniach odpylających oraz produkty, które nie spełniają standardów jakościowych, zgodnie z zasadą maksymalnego wykorzystania surowców, powinny być

A. przechowywane na składowiskach odpadów niebezpiecznych
B. w całości zwrócone do procesu
C. umieszczone na poletkach osadowych
D. zneutralizowane mlekiem wapiennym
Odpowiedź, która wskazuje na konieczność zwrócenia pyłów oraz produktów niespełniających norm jakościowych z powrotem do procesu produkcji nawozów wieloskładnikowych, jest zgodna z zasadą najlepszej praktyki w zarządzaniu surowcami. W branży nawozowej, zrównoważone wykorzystanie surowców i minimalizacja odpadów są kluczowe. Zwracanie surowców do procesu produkcyjnego nie tylko zwiększa efektywność wykorzystania materiałów, ale również zmniejsza negatywny wpływ na środowisko. Przykładem może być sytuacja, w której niezadowalające jakościowo odpady są poddawane dalszym procesom przetwarzania, takim jak regeneracja czy ponowne wykorzystanie składników aktywnych. Wdrożenie takich praktyk jest zgodne z normami ISO 14001, które promują systemy zarządzania środowiskowego. Działania te są również często wspierane przez regulacje prawne, które nakładają obowiązek ograniczania odpadów i promują recykling. Stosując te zasady, przedsiębiorstwa nie tylko dbają o zrównoważony rozwój, ale także mogą zmniejszyć koszty produkcji przez redukcję zakupu nowych surowców.

Pytanie 3

Zidentyfikuj, jakie ryzyko niosą za sobą wycieki z pomp w systemie oczyszczania metanolu?

A. Tylko zagrożenie pożarowe
B. Tylko zagrożenie toksyczne
C. Zagrożenie wybuchem
D. Zagrożenie toksyczne i pożarowe
Wycieki z pomp w instalacji oczyszczania metanolu stanowią poważne zagrożenie zarówno toksyczne, jak i pożarowe. Metanol jest substancją łatwopalną i toksyczną, co oznacza, że jego uwolnienie do środowiska może prowadzić do niebezpiecznych sytuacji. Zagrożenie toksyczne wynika z możliwości wdychania par metanolu, co ma negatywny wpływ na zdrowie ludzi, a także z możliwości kontaktu ze skórą. Przykładowo, w przypadku awarii pompy, uwolniony metanol może zanieczyścić powietrze w miejscu pracy, co może prowadzić do zatrucia pracowników. W aspekcie pożarowym, metanol ma niską temperaturę zapłonu, co czyni go podatnym na zapłon w obecności źródeł ciepła. W przypadku wycieku, opary metanolu mogą tworzyć mieszanki wybuchowe z powietrzem. Przykłady dobrych praktyk w branży obejmują regularne serwisowanie pomp, stosowanie odpowiednich materiałów uszczelniających, a także wprowadzenie systemów detekcji wycieków oraz szkoleń dla pracowników. Zgodnie z normami OSHA i NFPA, instalacje muszą być projektowane z uwzględnieniem takich zagrożeń, aby minimalizować ryzyko incydentów.

Pytanie 4

Jaki parametr technologiczny powinien być utrzymywany na stałym poziomie w absorberze amoniaku w systemie stosowanym do wytwarzania sody metodą Solvaya?

A. Stężenie NaHCO3 w solance
B. Stężenie NH4CO3 w solance
C. Stężenie NH3 w solance
D. Stężenie CO2 w solance
Stężenie NH3 w solance jest naprawdę ważne w produkcji sody metodą Solvaya. To amoniak ma kluczową rolę, bo reaguje z CO2 i solą, żeby powstał wodorowęglan sodu (NaHCO3). Jak chcemy, żeby wszystko działało optymalnie, musimy trzymać stężenie NH3 na stałym poziomie. Jak jest za mało amoniaku, to produkcja NaHCO3 nie będzie wystarczająca. Z drugiej strony, jak amoniaku będzie za dużo, mogą się pojawić niepożądane reakcje. W branży przypominają nam, żeby kontrolować te parametry, według norm ISO 9001, co wpływa na jakość produktów i ma na celu minimalizację wpływu na środowisko. Dlatego regularne sprawdzanie stężenia NH3 i dostosowywanie go, to dobra praktyka w przemyśle chemicznym.

Pytanie 5

W jaki sposób powinna być zapakowana soda kaustyczna w postaci stałej?

Rodzaj opakowaniaWybrane niezbędne informacje na etykiecie
A.Worek polietylenowyNazwa substancji, dane dostawcy, piktogramy określające rodzaj zagrożenia
B.Worek polietylenowyIlość substancji w opakowaniu, data produkcji, nazwisko technologa i telefon alarmowy
C.Wielowarstwowy worek papierowyIdentyfikator produktu, ilość substancji w opakowaniu, hasła ostrzegawcze
D.Wielowarstwowy worek papierowyNazwa substancji, numer partii, data produkcji, piktogramy określające rodzaj zagrożenia

A. C.
B. B.
C. D.
D. A.
Soda kaustyczna, znana również jako wodorotlenek sodu, jest substancją o silnych właściwościach żrących, dlatego jej pakowanie wymaga szczególnej ostrożności. Odpowiedź A jest prawidłowa, ponieważ opakowanie w worek polietylenowy spełnia kluczowe wymagania bezpieczeństwa. Woreczki te są odporne na działanie chemikaliów i zapewniają szczelność, co jest niezbędne do ochrony przed wyciekiem substancji. Zgodnie z wytycznymi UN (Zgoda Narodów) dotyczącymi transportu materiałów niebezpiecznych, opakowania powinny być wykonane z materiałów odpornych na korozję i zapewniać bezpieczeństwo w przypadku uszkodzenia. Dodatkowo, zgodność z regulacjami CLP (Rozporządzenie w sprawie klasyfikacji, oznakowania i pakowania substancji i mieszanin) przy oznakowywaniu opakowań jest bardzo ważna. Wszelkie etykiety powinny zawierać informacje o zagrożeniach, a także instrukcje dotyczące bezpiecznego użytkowania. Takie podejście nie tylko chroni zdrowie ludzi, ale również środowisko, minimalizując ryzyko przypadkowych uwolnień substancji.

Pytanie 6

Jakie jest zamierzenie procesu mielenia fosforytu w przygotowaniu surowca stałego do produkcji superfosfatu?

A. uproszczenia transportu fosforytu przenośnikami do komory wytwórczej
B. uprzedzenia załadunku fosforytu do komory wytwórczej
C. zwiększenia powierzchni styku surowca z kwasem siarkowym
D. uzyskania superfosfatu w formie pyłowej
Odpowiedź wskazująca na zwiększenie powierzchni kontaktu surowca z kwasem siarkowym jest prawidłowa, ponieważ proces mielenia fosforytu ma kluczowe znaczenie w produkcji superfosfatu. Zmielenie surowca prowadzi do znacznego powiększenia jego powierzchni, co z kolei umożliwia bardziej efektywną reakcję chemiczną z kwasem siarkowym. W praktyce, im większa powierzchnia cząstek, tym intensywniejsza reakcja, co przekłada się na wyższą wydajność procesu produkcji nawozów. Ostatecznie, zwiększona powierzchnia kontaktu minimalizuje czas reakcji oraz zwiększa stopień przekształcenia fosforytu w superfosfat. Dobre praktyki w branży nawozowej wskazują, że efektywność procesu produkcji nawozów fosforowych, takich jak superfosfat, jest ściśle związana z wielkością cząstek surowca, co potwierdzają wyniki badań eksperymentalnych. Właściwe przygotowanie surowca jest więc niezbędne dla spełnienia norm jakościowych i uzyskania produktu o wysokiej rozpuszczalności, co jest istotne z punktu widzenia upraw rolnych i zastosowania nawozów w praktyce.

Pytanie 7

W jakim przypadku operator młyna kulowego, w którym surowiec fosforytowy jest przygotowywany do produkcji superfosfatu, powinien uznać, że proces zakończył się?

A. Po upływie 5 godzin eksploatacji młyna kulowego
B. W sytuacji, gdy temperatura mielonego surowca spadnie do 10°C
C. Kiedy 90% mielonego materiału osiągnie wymagane rozdrobnienie
D. Po wzroście temperatury mielonego surowca do 50°C
Odpowiedź, że proces mielenia kończymy, gdy 90% materiału jest odpowiednio rozdrobnione, jest całkiem trafna. To podejście jest zgodne z tym, co zazwyczaj stosuje się w branży przetwórstwa surowców mineralnych. Warto pamiętać, że skuteczna produkcja superfosfatu z fosforytu wymaga odpowiedniej frakcji cząstek, co ma duży wpływ na dalsze procesy, na przykład reakcję z kwasem siarkowym. W praktyce, normy mówią, że celem mielenia jest osiągnięcie właściwej granulacji, co znacznie poprawia potem wydajność w trakcie chemicznych procesów. Zastosowanie tego kryterium pozwala na lepsze zarządzanie czasem pracy młyna i oszczędzanie energii oraz pieniędzy. Warto też wspomnieć, że używanie systemów do monitorowania rozdrobnienia w trakcie mielenia zwiększa dokładność i pozwala na wcześniejsze zakończenie tego procesu. To zdecydowanie wpływa na efektywność całego zakładu.

Pytanie 8

Jakie ciśnienie gazu występuje na wylocie wypełnionej kolumny absorpcyjnej, jeśli do absorbera dostarczany jest surowy gaz ziemny (zawierający składniki, które mają być absorbowane — CO2 i H2S) oraz ciekły absorbent?

A. Ciśnienie gazu jest mniejsze niż na wlocie. Temperatura gazu w trakcie procesu maleje
B. Ciśnienie gazu jest niższe niż na wlocie. Wypełnienie kolumny oraz usuwanie składników gazu powodują obniżenie ciśnienia gazu
C. Ciśnienie gazu jest wyższe niż na wlocie. Temperatura gazu w trakcie procesu rośnie
D. Ciśnienie gazu pozostaje na tym samym poziomie. Wypełnienie kolumny powoduje obniżenie ciśnienia gazu, jednak opary absorbentu sprawiają, że ciśnienie nie zmienia się
Cóż, muszę przyznać, że w twojej odpowiedzi pojawiły się pewne nieporozumienia. Twierdzenie, że ciśnienie gazu się nie zmienia, niestety trochę wprowadza w błąd. Kiedy gaz przechodzi przez kolumnę absorpcyjną, naprawdę ma miejsce spadek ciśnienia. To jest kluczowe w procesie dyfuzji i wymiany masy. Kiedy mówisz, że ciśnienie gazu jest wyższe niż na wlocie, to zaprzeczasz podstawowym zasadom fizyki gazów – trzeba pamiętać, że podczas absorpcji i separacji ciśnienie zazwyczaj maleje. W praktyce inżynieryjnej, zwłaszcza przy projektowaniu instalacji chemicznych, inżynierowie muszą patrzeć na opory płynów i ich wpływ na ciśnienie. Zrozumienie tych procesów jest kluczowe, żeby wszystko działało sprawnie i spełniało wymogi dotyczące efektywności.

Pytanie 9

Jakie są zasady bieżącej kontroli pracy płaszczowo-rurowego wymiennika ciepła?

A. Na regulacji ilości par odprowadzanych do skraplacza
B. Na regulacji temperatury czynnika grzewczego/chłodzącego
C. Na weryfikacji szczelności połączeń rur w dnie sitowym
D. Na analizowaniu twardości wody w wymienniku
Bieżąca kontrola pracy płaszczowo-rurowego wymiennika ciepła polega głównie na regulacji temperatury czynnika grzewczego lub chłodzącego, co jest kluczowe dla efektywności wymiany ciepła. Utrzymanie właściwej temperatury czynnika pozwala na zoptymalizowanie transferu ciepła pomiędzy obiegiem a wymiennikiem, co przekłada się na oszczędności energetyczne oraz minimalizację zużycia mediów. Dobrą praktyką jest monitorowanie parametrów operacyjnych, takich jak temperatura i ciśnienie, co pozwala na szybką reakcję w przypadku jakichkolwiek odchyleń od norm. Przykładem zastosowania tej wiedzy może być przemysł chemiczny, w którym stała kontrola temperatury czynnika chłodzącego jest krytyczna dla stabilności procesu produkcyjnego. Warto również wspomnieć, że zgodnie z normą ASME, regularne przeglądy i kalibracje czujników temperatury są niezbędne dla zapewnienia bezpiecznego i efektywnego działania wymienników ciepła. Takie podejście przyczynia się do dłuższej żywotności urządzeń oraz zwiększenia efektywności energetycznej instalacji.

Pytanie 10

Gdzie należy rejestrować wyniki analiz poszczególnych partii surowców dostarczanych do przerobu w zakładzie chemicznym?

A. W dzienniku uwzględniającym przychód i rozchód
B. W notesie analityka wykonującego oznaczenia
C. W dokumentacji głównego energetyka
D. W dokumentacji głównego technologa zakładu
Odmienne podejścia do dokumentowania wyników analiz surowców, takie jak rejestrowanie ich w dokumentacji głównego technologa, notesie analityka lub dokumentacji głównego energetyka, mogą prowadzić do istotnych problemów w zarządzaniu jakością i efektywnością produkcji. Przede wszystkim, dokumentacja głównego technologa skupia się na aspektach technologicznych i procesowych, a nie na szczegółowym monitorowaniu surowców, co ogranicza możliwość szybkiego dostępu do krytycznych danych w przypadku potrzeb analitycznych. Z kolei notes analityka, mimo że może zawierać wyniki analiz, jest dokumentem osobistym i nieformalnym, co czyni go niewłaściwym źródłem do uzyskiwania ogólnych informacji o partiach surowców. W końcu, dokumentacja głównego energetyka dotyczy zużycia energii i nie ma związku z analizami surowców, co może prowadzić do dezinformacji i chaosu w danych. Wszystkie te podejścia mogą skutkować trudnościami w śledzeniu jakości surowców oraz w odpowiednim reagowaniu na potencjalne problemy, co jest niezgodne z najlepszymi praktykami w branży chemicznej. Właściwe zarządzanie dokumentacją powinno koncentrować się na systematycznym i przejrzystym rejestrowaniu wyników analiz w centralnym dzienniku, co sprzyja efektywności operacyjnej oraz zgodności z przepisami i standardami jakości.

Pytanie 11

Który z poniższych materiałów jest najczęściej używany do produkcji zbiorników na kwas siarkowy?

A. Stal nierdzewna
B. Miedź
C. Aluminium
D. Mosiądz
Stal nierdzewna jest najczęściej używanym materiałem do produkcji zbiorników na kwas siarkowy z wielu powodów. Przede wszystkim, stal nierdzewna jest wysoko odporna na korozję, co jest kluczowe w przypadku kontaktu z agresywnym kwasem siarkowym. Dzięki obecności chromu w składzie, stal nierdzewna tworzy pasywną warstwę na powierzchni, która chroni przed dalszym utlenianiem. To sprawia, że jest to materiał nie tylko trwały, ale również ekonomicznie opłacalny w dłuższym okresie użytkowania, mimo że początkowy koszt może być wyższy. W przemyśle chemicznym stosuje się różne gatunki stali nierdzewnej, takie jak 316L, które zapewniają dodatkową odporność na działanie kwasów. Stal nierdzewna jest również odporna na wahania temperatury, co jest istotne w procesach, gdzie kwas siarkowy może być podgrzewany lub chłodzony. Warto również wspomnieć, że stal nierdzewna jest materiałem o wysokiej wytrzymałości mechanicznej, co pozwala na budowanie zbiorników o dużych rozmiarach, które są bezpieczne i spełniają wszystkie normy bezpieczeństwa. Dzięki tym właściwościom stal nierdzewna jest preferowanym wyborem w produkcji zbiorników przemysłowych na substancje żrące.

Pytanie 12

Wsad do pieca szklarskiego składa się z CaCO3, Na2CO3 i piasku kwarcowego zmieszanych w proporcjach zapewniających stosunek wagowy tlenków CaO : Na2O : SiO2 = 15 : 15 : 70. Ile SiO2 należy odważyć, jeżeli w mieszaninie znajdzie się 53,6 kg CaCO3?

MCaO = 56 g / mol
MCaCO3 = 100 g / mol

A. 53,6 kg
B. 250 kg
C. 51,3 kg
D. 140 kg
Wybór niewłaściwej odpowiedzi może wynikać z nieporozumień dotyczących podstawowych zasad chemii i obliczeń ilościowych. Na przykład, jeśli ktoś wskazałby 53,6 kg, może to sugerować, że myli przeliczenia mas molowych z masą surowca. Należy zauważyć, że masa CaCO3 nie jest bezpośrednio równoważna masie SiO2. W rzeczywistości, obliczając masę tlenków, ważne jest, aby zastosować poprawne proporcje wagowe. W przypadku błędnych odpowiedzi, takich jak 51,3 kg lub 250 kg, mogą występować problemy z interpretacją stosunków tlenków. Odpowiedź 51,3 kg może wynikać z nieprawidłowego przeliczenia na masę SiO2, z kolei 250 kg wskazuje na znaczące nadmiarowe obliczenia, które nie są zgodne z przedstawionymi proporcjami. W praktyce, aby uniknąć takich błędów, kluczowe jest dobrze zrozumiane, jak masy molowe substancji wpływają na wynik końcowy, oraz umiejętność przeliczeń w kontekście proporcji wagowych. W przemyśle wszelkie nieścisłości mogą prowadzić do nieprawidłowości w produkcie końcowym, dlatego istotne jest stosowanie ścisłych norm i procedur, które zapewniają zgodność z wymaganiami jakościowymi i technologicznymi. Analizując problem, warto także uwzględnić, że związki chemiczne i ich właściwości muszą być zawsze brane pod uwagę przy opracowywaniu receptur materiałów.

Pytanie 13

Dlaczego ważne jest regularne sprawdzanie uszczelek w reaktorach chemicznych?

A. Aby poprawić wydajność termiczną reaktora.
B. Aby zapobiec wyciekom i utracie ciśnienia.
C. Aby zmniejszyć hałas podczas pracy reaktora.
D. Aby zwiększyć objętość reakcji.
Regularne sprawdzanie uszczelek w reaktorach chemicznych jest kluczowe dla zapewnienia ich prawidłowego funkcjonowania oraz bezpieczeństwa procesu technologicznego. Uszczelki pełnią rolę bariery, która zapobiega wyciekom substancji chemicznych oraz utracie ciśnienia, co jest niezbędne do utrzymania stabilności procesów chemicznych. W przypadku uszkodzenia uszczelek może dojść do nieszczelności, które prowadzą nie tylko do strat surowców, ale także stwarzają ryzyko wybuchu lub pożaru. W reaktorach chemicznych utrzymanie odpowiedniego ciśnienia jest kluczowe dla przebiegu reakcji, ponieważ wpływa na równowagę chemiczną i szybkość reakcji. Dodatkowo nieszczelności mogą prowadzić do kontaminacji środowiska oraz stanowić zagrożenie dla zdrowia pracowników. Dlatego też branża chemiczna przywiązuje dużą wagę do regularnych inspekcji i konserwacji uszczelek, co jest zgodne z dobrymi praktykami inżynierskimi i normami bezpieczeństwa, takimi jak normy ISO dotyczące zarządzania bezpieczeństwem procesów technologicznych.

Pytanie 14

Jakiego typu zawór powinno się zastosować, aby natychmiastowo zatrzymać przepływ cieczy?

A. Redukcyjnego
B. Grzybkowego
C. Membranowego
D. Zwrotnego
Wybór niewłaściwego zaworu w sytuacji nagłego przerwania przepływu cieczy może prowadzić do poważnych konsekwencji. Zawór redukcyjny, mimo że jest istotnym elementem w systemach hydraulicznych, ma na celu jedynie kontrolę ciśnienia w instalacji, a nie natychmiastowe zatrzymanie przepływu. Jego działanie opiera się na utrzymaniu stałego ciśnienia w systemie, co jest przydatne w wielu zastosowaniach, ale nie w sytuacjach awaryjnych, gdzie błyskawiczne odcięcie przepływu jest kluczowe. Zawór zwrotny również nie nadaje się do tego celu, ponieważ jego główną funkcją jest zapobieganie cofaniu się cieczy, a nie zatrzymanie jej przepływu. Zawory membranowe, z kolei, są stosowane w aplikacjach wymagających precyzyjnego sterowania przepływem, ale ich konstrukcja nie jest przystosowana do nagłego zamknięcia przepływu. W sytuacjach awaryjnych, takie jak wycieki czy wzrost ciśnienia, ich działanie może być niewystarczające. Kluczowym błędem myślowym jest skupienie się na funkcji kontrolnej zamiast na natychmiastowym działaniu w sytuacjach kryzysowych. W kontekście systemów inżynieryjnych, zrozumienie specyficznych ról poszczególnych typów zaworów jest niezbędne do zapewnienia bezpieczeństwa i efektywności operacyjnej, a także do spełnienia norm branżowych.

Pytanie 15

W trakcie funkcjonowania mieszalnika bębnowego występują nadmierne drgania oraz hałas. Jakie kroki powinna podjąć obsługa, aby zapewnić właściwe działanie maszyny?

A. Schłodzić rolki napędzające wodą
B. Zatrzymać mieszalnik i wymienić silnik
C. Obniżyć prędkość obrotową oraz obciążenie mieszalnika
D. Zatrzymać mieszalnik i wymienić rolki napędzające
Odpowiedzi sugerujące zatrzymanie mieszalnika i wymianę silnika, ochłodzenie rolek napędzających wodą lub zmniejszenie prędkości obrotowej są w rzeczywistości błędne, ponieważ nie adresują bezpośredniej przyczyny drgań i hałasu. Wymiana silnika jako odpowiedź jest szczególnie nieadekwatna, gdyż silnik mógłby działać prawidłowo mimo problemów z rolkami. Wymiana napędu jest skomplikowanym, czasochłonnym procesem, który powinien być stosowany tylko w sytuacjach, gdy silnik rzeczywiście uległ awarii. Ochładzanie rolek za pomocą wody to podejście nieefektywne i potencjalnie niebezpieczne, ponieważ woda może prowadzić do korozji lub uszkodzenia elementów elektrycznych. Zmniejszenie prędkości obrotowej i obciążenia mieszalnika może jedynie chwilowo złagodzić objawy, ale nie rozwiązuje problemu, który tkwi w samych rolkach. Ignorowanie zasadności i specyfiki diagnozowania usterek prowadzi do poważnych konsekwencji, takich jak dalsze uszkodzenia mechaniczne czy nawet wypadki związane z niewłaściwym działaniem urządzenia. Dlatego kluczowe jest zrozumienie, że każda nieprawidłowość w działaniu maszyny wymaga odpowiedniej analizy i precyzyjnego podejścia do ustalania przyczyn.

Pytanie 16

Jak zgodnie z technologią powinno się dozować mieszaninę nitrującą podczas przeprowadzania procesu nitrowania?

A. Uruchomić mieszadło przed rozpoczęciem procesu, dozować mieszaninę równomiernie, nieustannie intensywnie mieszając zawartość nitratora
B. Dodać mieszaninę nitrującą do reaktora wypełnionego nitrowanym surowcem, a następnie włączyć mieszadło i dokładnie wymieszać zawartość nitratora
C. Dozować mieszaninę powoli i równomiernie, nie używać mieszadła mechanicznego, mieszać zawartość reaktora przy pomocy bełkotki i pary wodnej
D. Dozować mieszaninę powoli i równomiernie, wciąż systematycznie podgrzewając reaktor i cyklicznie włączając mieszadło
Odpowiedź jest poprawna, ponieważ zgodnie z zasadami technologicznymi, kluczowym aspektem procesu nitrowania jest zapewnienie równomiernego dozowania mieszaniny nitrującej. Włączenie mieszadła przed rozpoczęciem procesu oraz ciągłe intensywne mieszanie w trakcie dozowania ma na celu zapewnienie odpowiedniej homogeniczności reakcji chemicznej, co jest niezbędne, aby uzyskać stabilne i przewidywalne wyniki. Równomierne dozowanie pozwala na uniknięcie lokalnych zjawisk przegrzewania, które mogą prowadzić do niekontrolowanych reakcji egzotermicznych, a nawet eksplozji. Przykładowo, w przemyśle farmaceutycznym i chemicznym, odpowiednie mieszanie reagentów jest kluczowe dla uzyskania wysokiej jakości produktów. Standardy takie jak ISO 9001 podkreślają znaczenie kontroli procesów, co obejmuje także dobór odpowiednich parametrów mieszania. W praktyce, dobrym przykładem są systemy automatycznego dozowania, które monitorują i regulują szybkość dozowania oraz intensywność mieszania, co zwiększa bezpieczeństwo i efektywność procesu nitrowania.

Pytanie 17

Ile dm3 wody o gęstości 1 g/cm3 powinno być odmierzone, by przygotować 1000 kg roztworu chlorku sodu o stężeniu 25% masowych?

A. 975 dm3
B. 25 dm3
C. 250 dm3
D. 750 dm3
Wybór niepoprawnej odpowiedzi może wynikać z nieprawidłowego rozumienia koncepcji stężenia masowego oraz z błędnej interpretacji przeliczeń jednostkowych. Na przykład, odpowiedzi sugerujące 25 dm³ lub 250 dm³ mogą sugerować błędne założenie, że masa chlorku sodu w stosunku do objętości wody jest znacznie wyższa, niż jest w rzeczywistości. Odpowiedzi te mogą także wynikać z nieuwagi przy obliczeniach lub mylenia różnych jednostek miary – należy pamiętać, że 1 dm³ wody waży 1 kg, co jest kluczowe dla poprawnych wyliczeń. Ponadto, brak zrozumienia roli stężenia w roztworach mógłby prowadzić do kalkulacji, które nie uwzględniają właściwego podziału masy substancji rozpuszczonej i rozpuszczalnika. Istotne jest również, aby przy takich obliczeniach zawsze dążyć do jednoznacznych danych wyjściowych i stosować się do standardów laboratoryjnych, które często wymagają precyzyjnego pomiaru masy i objętości wszystkich składników. Ostatecznie, umiejętność poprawnego przeliczania jednostek i zrozumienie zasad stężenia są kluczowe w praktycznych zastosowaniach chemii, zarówno w laboratoriach, jak i w przemyśle.

Pytanie 18

Węgiel rozdrobniony i zmieszany w odpowiednich ilościach, pochodzący z określonych gatunków, przeznaczony na wsad do pieców koksowniczych powinien być poddany analizie

A. na zawartość popiołu
B. na zawartość siarki
C. organoleptycznej
D. sitowej
Analiza zawartości popiołu, choć istotna, nie dostarcza informacji o rozkładzie ziarnowym węgla, co jest kluczowe dla procesu koksowania. Zawartość popiołu odnosi się do nieorganicznych składników węgla i nie jest bezpośrednio związana z jego frakcjonowaniem. W kontekście koksownictwa, zbyt wysoka zawartość popiołu może negatywnie wpływać na jakość koksu, ale nie zastępuje potrzeby analizy ziarnowości. Organoleptyczna ocena węgla, czyli ocena jego właściwości za pomocą zmysłów, również nie jest wystarczająca dla dokładnej analizy jakości wsadu. Choć może dostarczać pewnych wskazówek co do jakości surowca, brakuje jej precyzji i obiektywności, które są niezbędne w procesach przemysłowych. Analiza siarki jest istotna z punktu widzenia ochrony środowiska i efektywności energetycznej, jednak nie wpływa na frakcjonowanie węgla. Mylne podejście do analizy wymaga od specjalistów zrozumienia, że każda z tych metod ma swoje miejsce, lecz sama nie w pełni odpowiada na pytanie o jakość wsadu przeznaczonego do koksowania. Kluczowe jest, aby rozumieć, że proces koksowania jest skomplikowanym zjawiskiem, które wymaga szczegółowej analizy różnych właściwości surowca.

Pytanie 19

Dane techniczne krystalizatora stosowanego w procesie krystalizacji laktozy zamieszczono w tabeli:
Jaką objętość produktu (m3) wykorzystano do napełnienia trzech krystalizatorów przy założeniu, że każdy został napełniony maksymalnie, czyli w 3/4 objętości zbiornika?

Pojemność8 m³
Temperatura na dopływie~42°C
Temperatura na odpływie~14°C
Zapotrzebowanie wody lodowej8 m³/h
Temperatura wody lodowej2°C

A. 18 m3
B. 6 m3
C. 12 m3
D. 8 m3
Odpowiedź 18 m³ jest prawidłowa, ponieważ aby obliczyć łączną objętość produktu wykorzystanego do napełnienia trzech krystalizatorów, musimy najpierw ustalić pojemność jednego krystalizatora. Pojemność każdego krystalizatora wynosi 8 m³, jednak w procesie napełniania, wykorzystano tylko 3/4 tej objętości. Zatem obliczamy: 8 m³ * 3/4 = 6 m³. W każdym z trzech krystalizatorów znajduje się zatem 6 m³ produktu. Następnie, aby uzyskać łączną objętość, mnożymy objętość jednego krystalizatora przez liczbę krystalizatorów: 6 m³ * 3 = 18 m³. Ta metoda obliczeń jest zgodna z podstawowymi zasadami inżynierii procesowej, gdzie dokładne obliczenia objętości są kluczowe dla efektywności procesu krystalizacji. Pomocne może być również zrozumienie, jak takie obliczenia wpływają na optymalizację kosztów produkcji, co jest istotnym aspektem w branży spożywczej.

Pytanie 20

Osoba obsługująca nastawny termometr kontaktowy powinna między innymi

A. ustawić maksymalną dozwoloną temperaturę na górnej podzielni, a minimalną na dolnej
B. ustawić minimalną temperaturę na dolnej podzielni
C. ustawić oczekiwaną temperaturę na górnej podzielni
D. ustawić maksymalną dozwoloną temperaturę na dolnej podzielni, a minimalną na górnej
Ustawienie maksymalnej dopuszczalnej temperatury na dolnej podzielni, minimalnej na górnej, czy ustawienie minimalnej temperatury na dolnej podzielni, są błędnymi koncepcjami, które wynikają z niepełnego lub nieprawidłowego zrozumienia funkcji termometrów kontaktowych. Dolna i górna podzielnia służą do określenia zakresu operacyjnego, w którym dany proces powinien się odbywać, a ich niewłaściwe ustawienie prowadzi do nieadekwatnej kontroli temperatury. Ustawienie maksymalnej temperatury na dolnej podzielni może wprowadzać w błąd, ponieważ operatorzy mogą sądzić, że temperatura nie powinna przekraczać wartości granicznej, co skutkuje utratą precyzyjnej kontroli nad procesem. Z kolei minimalna temperatura na górnej podzielni nie daje informacji na temat określonego poziomu, który należy osiągnąć, co może prowadzić do nieefektywności i potencjalnych błędów operacyjnych. Ważne jest, aby mieć na uwadze, że termometry kontaktowe są zaprojektowane do monitorowania temperatury, a ich skuteczność opiera się na precyzyjnym ustawieniu parametrów, zgodnie z dobrymi praktykami inżynieryjnymi, które przewidują jasno określone granice operacyjne dla danego procesu. Niewłaściwe podejście do tego zagadnienia może prowadzić do poważnych konsekwencji, w tym uszkodzenia sprzętu czy naruszenia norm bezpieczeństwa.

Pytanie 21

Gdy pompa odśrodkowa w instalacji chemicznej przestaje działać, co jest najczęstszą przyczyną?

A. Utrata smarowania
B. Niewystarczające napięcie zasilania
C. Przegrzanie silnika
D. Zatkanie wirnika
Przegrzanie silnika choć jest poważnym problemem, zazwyczaj nie jest najczęstszą przyczyną nagłego zatrzymania pompy w instalacjach chemicznych. Może być efektem zatkania wirnika, które zwiększa obciążenie, ale samo w sobie nie jest tak powszechne. W wielu przypadkach instalacje są wyposażone w systemy ochrony przed przegrzaniem, które automatycznie zatrzymują urządzenie, zanim dojdzie do uszkodzenia. Utrata smarowania to kolejna potencjalna przyczyna problemów, jednak w przypadku pomp odśrodkowych nie jest to najczęstszy problem. Smarowanie jest bardziej krytyczne dla łożysk i przekładni, a nie dla samej pompy, choć oczywiście jego brak może prowadzić do szybszego zużycia elementów mechanicznych. To bardziej odnosi się do urządzeń z bardziej skomplikowanymi mechanizmami przenoszenia napędu. Niewystarczające napięcie zasilania może również prowadzić do problemów z działaniem pompy, ale zazwyczaj skutkuje to nieefektywną pracą lub nawet nieuruchomieniem się urządzenia, a nie jego nagłym zatrzymaniem. Zasilanie i jego stabilność są kluczowe, ale bardziej jako element proaktywny w zarządzaniu instalacją. Każda z tych odpowiedzi odzwierciedla potencjalne problemy, jednak w typowych sytuacjach zatkanie wirnika jest bardziej powszechnym zjawiskiem, wymagającym regularnej inspekcji i czyszczenia, co jest powszechną praktyką w branży.

Pytanie 22

W tabeli przedstawiono dane techniczne anemometru wiatraczkowego, który można zastosować do pomiaru

Testo 417 – anemometr wiatraczkowy ze zintegrowaną sondą przepływu (średnica 100 mm) z pomiarem temperatury, wraz z baterią i protokołem kalibracyjnym
Sondy NTC
Zakres pomiarowy0 ... +50 °C
Dokładność±0,5 °C
Rozdzielczość0,1 °C
Sondy wiatraczkowe
Zakres pomiarowy+0,3 ... +20 m/s
Dokładność±(0,1 m/s +1,5% wartości pomiaru)
Rozdzielczość0,01 m/s

A. prędkości przepływu powietrza o temperaturze 35 °C.
B. prędkości przepływu powietrza o temperaturze 55 °C.
C. temperatury powietrza, które przepływa w rurociągu z prędkością 0,25 m/s.
D. temperatury powietrza, które przepływa w rurociągu z prędkością 25 m/s.
Anemometr wiatraczkowy zintegrowany z sondą temperatury NTC to urządzenie, które jest niezwykle przydatne w pomiarach związanych z aerodynamiką oraz klimatyzacją. Odpowiedź dotycząca prędkości przepływu powietrza o temperaturze 35 °C jest poprawna, ponieważ zarówno prędkość, jak i temperatura mieszczą się w zakresach pomiarowych anemometru. Anemometry tego typu wykorzystywane są w badaniach dotyczących wentylacji, monitorowania jakości powietrza oraz w zastosowaniach przemysłowych, gdzie dokładność pomiaru jest kluczowa. Przykładowo, w systemach HVAC (ogrzewanie, wentylacja i klimatyzacja) pomiar prędkości powietrza oraz jego temperatury pozwala na optymalizację procesów oraz zapewnienie komfortu użytkowników. Standardy branżowe, takie jak ASHRAE, zalecają stosowanie anemometrów do monitorowania wydajności systemów wentylacyjnych, co jest niezbędne dla efektywności energetycznej budynków. Zrozumienie, jak działa anemometr i jakie parametry może mierzyć, jest podstawą do właściwego użytkowania tych narzędzi w praktyce.

Pytanie 23

Jakie dodatki stosowane w stalach podnoszą ich odporność na działanie pary wodnej, roztworów soli oraz węglowodorów?

A. Fosfor, krzem, nikiel
B. Nikiel, glin, miedź
C. Mangan, miedź, arsen
D. Chrom, molibden, tytan
Chrom, molibden i tytan to dodatki, które znacząco zwiększają odporność stali na działanie pary wodnej, roztworów soli oraz węglowodorów. Chrom, jako kluczowy składnik stali nierdzewnej, działa poprzez tworzenie cienkowarstwowej powłoki pasywnej, która chroni stal przed korozją. W połączeniu z molibdenem, jego właściwości antykorozyjne są znacznie wzmacniane, ponieważ molibden poprawia stabilność struktury w wysokich temperaturach i zwiększa odporność na pitting, czyli miejscową korozję. Tytan z kolei zwiększa wytrzymałość mechaniczna stali oraz jej odporność na działanie wysokich temperatur. W praktyce, stali z tymi dodatkami używa się w przemyśle chemicznym, na przykład w produkcji zbiorników i rur, które są narażone na działanie agresywnych mediów. Zastosowanie stali nierdzewnej w środowiskach o wysokiej wilgotności, jak np. przemysł spożywczy, potwierdza korzyści płynące z używania chromu, molibdenu i tytanu, co wpisuje się w normy jakościowe, takie jak ISO 9327, które regulują produkcję materiałów odpornych na korozję.

Pytanie 24

Który z wymienionych metali charakteryzuje się wysoką temperaturą topnienia oraz dużą odpornością na korozję?

A. Wolfram
B. Aluminium
C. Cuprum
D. Magnez
Wolfram jest metalem trudnotopliwym, którego temperatura topnienia wynosi 3422°C, co czyni go jednym z najbardziej odpornych na wysoką temperaturę materiałów. Jego wyjątkowe właściwości mechaniczne, w połączeniu z odpornością na działanie większości środowisk korozyjnych, sprawiają, że jest szeroko stosowany w różnych dziedzinach przemysłu. Przykłady zastosowania wolframu obejmują produkcję elementów w lampach wyładowczych, narzędzi skrawających oraz elektrody stosowane w spawaniu. W przemyśle lotniczym i kosmicznym wolfram jest wykorzystywany w komponentach silników, które muszą wytrzymać ekstremalne warunki temperaturowe. Dodatkowo, ze względu na swoją gęstość i wysoką odporność na promieniowanie, jest także wykorzystywany w osłonach ochronnych. Zgodnie z normami ISO oraz innymi standardami branżowymi, wolfram jest często preferowany w aplikacjach wymagających niezawodności i długotrwałej wydajności.

Pytanie 25

Stężony kwas azotowy(V) nie powinien być przechowywany

A. w szklanych pojemnikach
B. w silosach betonowych
C. w zbiornikach aluminiowych
D. w zbiornikach stalowych
Magazynowanie stężonego kwasu azotowego(V) w cysternach aluminiowych jest niewłaściwe, ponieważ aluminium, jako materiał, nie jest wystarczająco odporne na działanie silnych kwasów. Kwas azotowy ma zdolność do korodowania aluminium, co może prowadzić do niebezpiecznych wycieków oraz zanieczyszczenia substancji. W przypadku butelek szklanych, chociaż szkło jest odporne na wiele substancji chemicznych, może być zbyt kruche i podatne na uszkodzenia mechaniczne, co stwarza ryzyko rozbicia i poważnych obrażeń w przypadku przechowywania dużych ilości kwasu. Cysterny stalowe, mimo że są bardziej trwałe, mogą nie być odpowiednio dostosowane do przechowywania tak agresywnego środka chemicznego, chyba że są wykonane z odpowiednich stopów stali odpornych na korozję, co jest rzadkością. Silosy betonowe, z drugiej strony, są projektowane z myślą o przechowywaniu substancji chemicznych, co czyni je najlepszym wyborem. Typowym błędem jest zatem mylenie nieodpowiednich materiałów z ich właściwościami, co prowadzi do niewłaściwych decyzji w zakresie magazynowania niebezpiecznych substancji. Prawidłowe podejście do magazynowania wymaga zrozumienia zarówno chemicznych, jak i mechanicznych właściwości materiałów używanych w budowie zbiorników oraz silosów.

Pytanie 26

Aby uzyskać roztwór kwasu siarkowego, trzeba rozcieńczyć wodą kwas o stężeniu 98%. Jaką ilość wody trzeba przygotować, by uzyskać 980 kg 65% roztworu kwasu siarkowego?

A. 650 kg
B. 637 kg
C. 330 kg
D. 980 kg
Wybór błędnych odpowiedzi często wynika z niepełnego zrozumienia proporcji oraz zastosowania zasad obliczeń dotyczących stężenia roztworów. Odpowiedzi sugerujące 980 kg lub 650 kg są rażąco przeszacowane, ponieważ nie uwzględniają, że cała ta masa obejmowałaby zarówno kwas, jak i wodę, co jest nieprawidłowe w kontekście obliczeń. Z kolei odpowiedź na poziomie 637 kg również nie uwzględnia faktu, że jest to tylko masa czystego kwasu, a nie całkowita masa roztworu. Typowym błędem jest mylenie masy roztworu z masą jego składników, co prowadzi do poważnych nieścisłości. W rzeczywistości, aby uzyskać wymagane stężenie, kluczowe jest zrozumienie, że masa roztworu to suma masy kwasu oraz masy wody, a nie tylko masy czystego kwasu. Każde z tych błędnych podejść ignoruje fundamentalne zasady dotyczące rozcieńczania roztworów i obliczeń chemicznych, co jest niezbędne w pracy chemika. Nieprawidłowe odpowiedzi mogą prowadzić do niebezpiecznych sytuacji, szczególnie w kontekście pracy z substancjami silnie żrącymi, jak kwas siarkowy. Dlatego niezwykle ważne jest, aby każdy chemik miał solidne podstawy w obliczeniach i umiał zastosować je w praktyce, aby uniknąć poważnych błędów.

Pytanie 27

Jakie zbiorniki powinny być użyte do przechowywania cieczy łatwopalnych oraz wybuchowych?

A. Kriogeniczne
B. Podziemne
C. Naziemne
D. Membranowe
Zastosowanie zbiorników kriogenicznych do magazynowania cieczy łatwopalnych i wybuchowych jest niewłaściwe, ponieważ są one przeznaczone do przechowywania substancji w ekstremalnie niskich temperaturach, takich jak ciekły azot czy tlen. Te zbiorniki nie są projektowane z myślą o cieczy łatwopalnych, co powoduje potencjalne ryzyko w przypadku niewłaściwego użycia. Zbiorniki naziemne również nie są odpowiednie do tego celu, gdyż ich lokalizacja na powierzchni naraża je na ryzyko zewnętrznych uszkodzeń, co może prowadzić do wycieków i pożarów. Zbiorniki membranowe, chociaż mogą być stosowane do magazynowania różnych substancji, nie są zalecane dla cieczy łatwopalnych ze względu na ich elastyczność i potencjalne problemy z integralnością w warunkach wysokiego ciśnienia. Typowe błędy myślowe, które prowadzą do takich wniosków, to brak zrozumienia specyfikacji zbiorników oraz ich zastosowań. Właściwe dobieranie zbiorników do charakterystyki przechowywanych substancji jest kluczowe dla zapewnienia bezpieczeństwa, dlatego warto zapoznać się z odpowiednimi standardami i regulacjami, które precyzują wymagania dotyczące przechowywania niebezpiecznych materiałów.

Pytanie 28

Podczas przeprowadzania destylacji prostej mieszaniny alkoholu etylowego z wodą, termometr pokazuje 87,8 °C. Jaką wartość pomiaru należy wpisać do karty monitorowania procesu, jeśli temperatura ma być przedstawiona w Kelwinach?

A. 361,0 K
B. 350,8 K
C. 185,4 K
D. 260,8 K
Temperatura 87,8 °C to w sumie 361,0 K, co dostajemy przez dodanie 273,15 do temperatury w stopniach Celsjusza. Wzór do przeliczenia wygląda tak: K = °C + 273,15. Czyli w naszym przypadku: 87,8 + 273,15 to właśnie 361,0 K. W naukach przyrodniczych ta wartość w Kelwinach jest mega ważna, bo to skala bezwzględna, a przez to unikamy niejasności w pomiarach. Korzystanie z Kelvina w termodynamice i fizyce to standard, więc bez tego ciężko o rzetelne badania, na przykład podczas destylacji. Fajnym przykładem jest ocenianie efektywności różnych procesów chemicznych, gdzie dokładne pomiary temperatur mają kluczowe znaczenie, jak na przykład przy syntezach chemicznych czy monitorowaniu reakcji eksotermicznych. Przestrzeganie zasad, jeśli chodzi o pomiar i konwersję jednostek, pomaga w uzyskiwaniu wiarygodnych wyników, które można potem porównywać.

Pytanie 29

Jaką obróbkę powinien przejść gaz syntezowy przed wprowadzeniem go do reaktora, aby ochronić katalizator, który w procesie syntezy amoniaku jest narażony na toksyczne działanie związków siarki, arsenu i fosforu?

A. Oczyszczeniu
B. Oziębieniu
C. Osuszeniu
D. Utlenieniu
Odpowiedź "Oczyszczeniu" jest prawidłowa, ponieważ proces syntezy amoniaku wykorzystuje katalizatory, które są wrażliwe na zanieczyszczenia chemiczne. Związki siarki, arsenu i fosforu mogą znacznie obniżyć aktywność katalizatora, dlatego kluczowe jest, aby gaz syntezowy był odpowiednio oczyszczony przed jego wprowadzeniem do reaktora. Oczyszczanie gazu może obejmować różne techniki, takie jak adsorpcja na węglu aktywnym lub zastosowanie filtrów, które usuwają toksyczne zanieczyszczenia. Stosowanie takich metod jest zgodne z dobrymi praktykami w przemyśle chemicznym, które nakładają obowiązek minimalizowania wpływu zanieczyszczeń na procesy katalityczne. W praktyce, wynikiem skutecznego oczyszczania jest zwiększona efektywność reakcji, co przekłada się na lepszą wydajność produkcji amoniaku oraz dłuższą żywotność katalizatora, co jest korzystne zarówno ekonomicznie, jak i ekologicznie.

Pytanie 30

Jakie kroki należy podjąć, aby przygotować 250 cm3 pięciowodnego roztworu soli CuSO4 (Msol = 250 g/mol) o stężeniu 0,2 mol/dm3?

A. Odważyć 12,5 g soli, przenieść ilościowo do kolby miarowej o pojemności 500 cm3, uzupełnić wodą do kreski
B. Odważyć 50 g soli, przenieść ilościowo do kolby miarowej o pojemności 500 cm3, uzupełnić wodą do kreski
C. Odważyć 12,5 g soli, przenieść ilościowo do kolby miarowej o pojemności 250 cm3, uzupełnić wodą do kreski
D. Odważyć 8 g soli, przenieść ilościowo do kolby miarowej o pojemności 250 dm3, uzupełnić wodą do kreski
W celu przygotowania 250 cm³ roztworu 5-wodnej soli CuSO₄ o stężeniu 0,2 mol/dm³, najpierw musimy obliczyć wymaganą ilość soli. Stężenie molowe (C) oblicza się ze wzoru C = n/V, gdzie n to liczba moli, a V to objętość roztworu w dm³. Dla 250 cm³ (czyli 0,25 dm³) i stężenia 0,2 mol/dm³, liczba moli soli wynosi: n = C * V = 0,2 mol/dm³ * 0,25 dm³ = 0,05 mol. Molarność soli CuSO₄ wynosi 250 g/mol, więc masa soli to: m = n * M = 0,05 mol * 250 g/mol = 12,5 g. Przenosząc tę masę soli do kolby miarowej o pojemności 250 cm³ i uzupełniając wodą do kreski, zapewniamy, że roztwór ma dokładnie wymagane stężenie, co jest kluczowe w praktykach laboratoryjnych. Takie postępowanie jest zgodne z dobrymi praktykami chemicznymi, gdzie precyzyjne pomiary i standardowe procedury przygotowywania roztworów są niezbędne dla uzyskania wiarygodnych wyników.

Pytanie 31

Zgazowanie węgla metodą Lurgi przebiega w temperaturze bliskiej 1000°C i pod ciśnieniem 2÷3 MPa.
Wybierz odpowiedni przyrząd do kontroli ciśnienia tego procesu.

PrzyrządRodzaj przyrząduZakres pomiarowy [MPa]Zakres temperatury pracy [°C]
A.Manometr sprężynowy – rurka Bourdona miedziana6,0 ÷ 8,0do 110
B.Manometr sprężynowy – rurka Bourdona stalowa6,0 ÷ 8,0do 700
C.Manometr przeponowy – przepona stalowa2,0 ÷ 5,0do 1000
D.Manometr przeponowy – przepona gumowa0,005 ÷ 0,008do 300

A. C.
B. B.
C. A.
D. D.
Zgadza się, odpowiedź C jest prawidłowa. Zgazowanie węgla metodą Lurgi, które zachodzi w wysokotemperaturowych i ciśnieniowych warunkach, wymaga zastosowania odpowiednich narzędzi do monitorowania parametrów procesu. Manometr przepłonowy z przepłoną stalową charakteryzuje się zakresem pomiarowym 2,0÷5,0 MPa oraz możliwością pracy w temperaturach do 1000°C, co czyni go idealnym do zastosowania w tym procesie. W przemyśle gazowym i petrochemicznym ważne jest, aby zastosowane urządzenia pomiarowe były zgodne z wymogami procesów technologicznych, co zapewnia bezpieczeństwo i efektywność. Użycie manometrów nieodpowiednich do warunków pracy może prowadzić do nieprawidłowych odczytów, co w konsekwencji może zagrażać bezpieczeństwu operacyjnemu. W praktyce, monitorowanie ciśnienia za pomocą odpowiednich manometrów jest kluczowe dla zapewnienia optymalnych warunków procesowych, co pozwala na osiągnięcie maksymalnej wydajności zgazowania węgla.

Pytanie 32

Przyczyną otrzymywania zbyt wilgotnego osadu w efekcie filtracji zawiesiny z zastosowaniem filtra talerzowego może być

Filtr talerzowy stanowi tarczę o podwójnym dnie, z których dno górne jest perforowane i pokryte tkaniną filtracyjną. Przestrzeń między nimi podłączona jest na trójdrożne segmenty połączone z głowicą umieszczoną na pionowym pustym wale. Głowica podłączona jest do próżni i sprężonego powietrza. Zawiesina jest podawana na powierzchnię segmentów połączonych z próżnią i podczas obrotu talerza podlega filtracji. Filtrat po przejściu przez tkaninę odpływa do źródła próżni, natomiast osad pozostaje na tkaninie i po myciu oraz spulchnieniu strumieniem sprężonego powietrza jest usuwany z tkaniny skrobakiem.

A. zbyt niskie podciśnienie podczas prowadzenia procesu filtracji.
B. zbyt niskie ciśnienie sprężonego powietrza podczas zbierania osadu.
C. zbyt duża częstość obrotów talerza.
D. uszkodzona przegroda filtracyjna.
Uszkodzona przegroda filtracyjna, zbyt duża częstość obrotów talerza oraz zbyt niskie ciśnienie sprężonego powietrza to czynniki, które mogą być mylnie postrzegane jako przyczyny problemów z wilgotnością osadu, jednak w rzeczywistości ich wpływ na proces filtracji jest inny. Uszkodzona przegroda filtracyjna może prowadzić do nieefektywnego oddzielania cząstek stałych od cieczy, jednakże sama w sobie nie jest bezpośrednią przyczyną wilgotności osadu, ponieważ nawet w przypadku jej uszkodzenia, odpowiednie podciśnienie mogłoby pozwolić na efektywną filtrację. Z kolei zbyt duża częstość obrotów talerza, która powoduje szybsze przemieszczanie się osadu, może prowadzić do rozproszenia cząstek, jednak nie ma bezpośredniego związku z wilgotnością osadu – w rzeczywistości, to podciśnienie odgrywa kluczową rolę w procesie. Niskie ciśnienie sprężonego powietrza podczas zbierania osadu również może wpływać na transport osadu, ale nie jest to główny czynnik decydujący o jego wilgotności. Te nieporozumienia często wynikają z braku zrozumienia zasad działania filtrów talerzowych i roli, jaką podciśnienie odgrywa w całym procesie filtracji. W praktyce, kluczowym elementem optymalizacji filtracji jest zapewnienie odpowiedniego podciśnienia, a wszelkie inne czynniki powinny być postrzegane jako wspomagające proces, a nie podstawowe jego determinanty.

Pytanie 33

Aby przeprowadzić częściową deflegmację oparów wydobywających się z kolumny rektyfikacyjnej, konieczne jest zastosowanie

A. kolumny z wypełnieniem stałym
B. wymiennika płaszczowo-rurowego
C. kolumny z wypełnieniem ruchomym
D. wymiennika bezprzeponowego wodnego
Wymiennik płaszczowo-rurowy jest kluczowym urządzeniem stosowanym w procesach przemysłowych, w tym w częściowej deflegmacji oparów z kolumn rektyfikacyjnych. Jego konstrukcja, polegająca na umieszczeniu rur w płaszczu, pozwala na efektywne wymienianie ciepła pomiędzy dwoma płynami, co jest niezbędne w celu kondensacji par i odzysku cennych składników. Praktycznym przykładem zastosowania wymienników płaszczowo-rurowych jest ich wykorzystanie w przemyśle petrochemicznym, gdzie są stosowane do chłodzenia par w procesach destylacji. Dzięki ich wysokiej efektywności cieplnej i kompaktowej budowie, są one często preferowane w porównaniu do innych typów wymienników ciepła. Ponadto, zgodnie z normami ASME oraz dobrymi praktykami inżynieryjnymi, wymienniki te są projektowane z myślą o minimalizacji strat cieplnych, co czyni je idealnym rozwiązaniem do efektywnej deflegmacji oparów. Zrozumienie zasad działania i zastosowania wymienników płaszczowo-rurowych jest istotne dla inżynierów procesowych, aby skutecznie optymalizować procesy produkcji i zwiększać ich rentowność.

Pytanie 34

Pierwszym krokiem w procesie konserwacji maszyn oraz urządzeń jest

A. ochrona przed korozją
B. wyczyszczenie maszyny oraz jej części składowych
C. montaż komponentów i ich regulacja
D. odnowienie elementów składowych
Odpowiedź 'oczyszczenie maszyny i jej części składowych' jest kluczowym pierwszym etapem procesu konserwacji, ponieważ skuteczne usunięcie zanieczyszczeń, takich jak kurz, oleje czy resztki smarów, jest niezbędne do prawidłowego działania maszyn. Oczyszczanie nie tylko poprawia estetykę urządzeń, ale przede wszystkim wpływa na ich trwałość oraz wydajność. Zanieczyszczenia mogą prowadzić do przyspieszonego zużycia części, a w skrajnych przypadkach do awarii. Przykładem zastosowania może być regularne czyszczenie filtrów powietrza w silnikach, które zapewnia właściwą cyrkulację powietrza i chroni silnik przed uszkodzeniem. Standardy takie jak ISO 9001 podkreślają znaczenie utrzymania czystości na stanowiskach pracy jako elementu efektywnej konserwacji, co jest zgodne z najlepszymi praktykami w branży. Oczyszczanie jest też wstępnym krokiem do dalszych działań konserwacyjnych, takich jak smarowanie czy wymiana uszkodzonych komponentów, co czyni je niezbędnym w codziennej eksploatacji maszyn.

Pytanie 35

Manometr zamontowany na reaktorze do polimeryzacji etylenu pokazuje ciśnienie 3,0 atm. Jakie ciśnienie byłoby odczytywane przez manometr w MPa?

A. Mniej więcej 0,3 MPa
B. Mniej więcej 30 MPa
C. Mniej więcej 3 MPa
D. Mniej więcej 0,03 MPa
Błędne odpowiedzi, takie jak 'około 3 MPa', 'około 0,03 MPa' oraz 'około 30 MPa', wynikają z błędnego zrozumienia konwersji między jednostkami ciśnienia. Warto pamiętać, że podczas przeliczania jednostek, kluczowe jest zrozumienie, jaka wartość odpowiada danej jednostce. Na przykład, konwersja 3,0 atm na MPa wymaga zastosowania faktora przeliczeniowego 0,101325 MPa dla każdej atmosfery. Osoby wybierające 3 MPa mogą myśleć, że przeliczenie polega na prostym multiplikowaniu wartości atmosferycznych, co jest błędnym podejściem. Odpowiedź 'około 0,03 MPa' wskazuje na dramatyczne zaniżenie wyniku, co może wynikać z błędnych przekonań dotyczących proporcji między jednostkami ciśnienia. Z kolei odpowiedź 'około 30 MPa' sugeruje mylne założenie, że wartości atmosferyczne są znacznie wyższe, co może prowadzić do niepoprawnych obliczeń w praktycznych zastosowaniach inżynieryjnych. W każdej branży, w której ciśnienie ma kluczowe znaczenie, jak w przemyśle chemicznym, odczyty ciśnienia muszą być dokładne, aby uniknąć awarii sprzętu i zapewnić bezpieczeństwo operacji. Dlatego tak istotne jest zrozumienie metodyki przeliczania jednostek oraz ich zastosowanie w praktyce.

Pytanie 36

Pobieranie próbek gazu najpierw do aspiratora lub pipety gazowej, skąd następnie pozyskuje się gaz do analizy, stanowi metodę

A. ciągłą
B. pośrednią
C. wyrywkową
D. bezpośrednią
Odpowiedź 'pośrednia' jest poprawna, ponieważ pobieranie próbek gazu najpierw do aspiratora lub pipety gazowej, a następnie do analizy, jest procesem, który nie pozwala na bezpośredni pomiar parametrów gazu w miejscu jego występowania. Metoda pośrednia polega na tym, że próbka jest transportowana z miejsca pomiaru do urządzenia analitycznego, co jest zgodne z praktykami stosowanymi w laboratoriach analitycznych. Przykładem zastosowania tej metody może być pobieranie próbek gazów atmosferycznych do analizy ich składu chemicznego czy stężenia zanieczyszczeń. Standardy takie jak ISO 17025 podkreślają znaczenie odpowiedniego pobierania próbek, aby uzyskać wiarygodne wyniki analizy. Dlatego też w laboratoriach stosuje się różne techniki, aby zapewnić, że próbki są reprezentatywne dla całego źródła, a ich analiza dostarcza użytecznych informacji o badanym medium. Wykorzystanie aspiratorów czy pipet gazowych jest również zgodne z dobrymi praktykami, które pomagają zminimalizować straty oraz kontaminację próbek, co jest kluczowe dla zachowania integralności analizy.

Pytanie 37

Które urządzenie jest używane do precyzyjnego pomiaru przepływu cieczy?

A. Ciśnieniomierz
B. Manometr
C. Termometr rtęciowy
D. Przepływomierz masowy
Przepływomierz masowy jest urządzeniem, które umożliwia precyzyjny pomiar przepływu cieczy, co jest kluczowe w wielu procesach przemysłowych, zwłaszcza w przemyśle chemicznym. Działa na zasadzie pomiaru masy cieczy przepływającej przez rurę w jednostce czasu. Dzięki temu można uzyskać bardzo dokładne dane dotyczące ilości przetwarzanej cieczy. Takie urządzenia są niezbędne w przemyśle, gdzie dokładność jest kluczowa, np. przy dozowaniu składników chemicznych. Przepływomierze masowe są szeroko stosowane w aplikacjach, gdzie konieczne jest zapewnienie stabilności procesu oraz spełnienie surowych wymogów dotyczących jakości produktu końcowego. Nowoczesne przepływomierze masowe mogą być wyposażone w dodatkowe funkcje, takie jak pomiar temperatury czy gęstości, co dodatkowo zwiększa ich użyteczność i precyzję. W praktyce, znajdziemy je w systemach kontroli procesów, gdzie kluczowe jest zachowanie odpowiednich proporcji składników chemicznych, co wpływa na efektywność i bezpieczeństwo produkcji. Dlatego przepływomierze masowe są standardem w przemyśle chemicznym, gdzie kontrola przepływu jest jednym z fundamentów zarządzania procesem.

Pytanie 38

Podczas kalibracji przepływomierza rotacyjnego w instalacji chemicznej, należy

A. Zmniejszyć temperaturę cieczy
B. Odłączyć wszystkie zawory
C. Zwiększyć ciśnienie w instalacji
D. Ustawić przepływ referencyjny i skorygować wskazania miernika
Kalibracja przepływomierza rotacyjnego jest kluczowa dla dokładnego pomiaru przepływu cieczy w instalacji chemicznej. Poprawna odpowiedź wskazuje na potrzebę ustawienia przepływu referencyjnego i korektę wskazań miernika. Zastosowanie przepływu referencyjnego pozwala na porównanie rzeczywistych wyników z wartościami wzorcowymi, co umożliwia precyzyjne dostrojenie urządzenia. W praktyce często używa się płynu kalibracyjnego o znanych właściwościach, co jest zgodne z dobrymi praktykami branżowymi. Tego typu kalibracja nie tylko zwiększa dokładność, ale także poprawia bezpieczeństwo i efektywność procesu produkcyjnego, co jest niezwykle istotne w przemyśle chemicznym. Kalibracja zgodna z normami ISO również zapewnia zgodność z międzynarodowymi standardami jakości, co może być kluczowe dla firm działających na rynkach globalnych. Z mojego doświadczenia, regularne kalibracje znacznie zmniejszają ryzyko awarii i zapewniają długotrwałe, stabilne działanie urządzeń.

Pytanie 39

Proces produkcji kwasu octowego odbywa się zgodnie z reakcją przedstawioną równaniem CH3OH + CO kat. ⇌ CH3COOH.
Ile ton tlenku węgla(II) należy użyć, aby otrzymać 300 ton kwasu octowego, jeżeli proces przebiega z wydajnością 80%?

MCO = 28 g / mol
MCH3COOH = 60 g / mol

A. 140t
B. 112t
C. 280t
D. 175t
Poprawna odpowiedź to 175 ton tlenku węgla(II), co można obliczyć na podstawie wydajności procesu oraz ilości kwasu octowego, który chcemy uzyskać. Teoretyczna ilość CO potrzebna do produkcji 300 ton kwasu octowego wynosi 140 ton, ponieważ stosunek molowy metanolu do tlenku węgla(II) w tej reakcji jest równy 1:1. Jednakże, w praktyce wydajność procesu wynosi 80%, co oznacza, że tylko 80% teoretycznie dostępnych reagentów przekształca się w produkt. Aby uwzględnić tę wydajność, należy obliczyć, ile tlenku węgla(II) jest potrzebne, dzieląc teoretyczną ilość przez 0.8. Taki sposób obliczeń jest zgodny z metodologią stosowaną w przemyśle chemicznym, gdzie zawsze bierze się pod uwagę wydajność procesu. Dobrą praktyką w tego typu obliczeniach jest również monitorowanie i optymalizacja procesów, aby zminimalizować straty reagentów, co wpływa na efektywność ekonomiczną produkcji. Taka analiza ma zastosowanie nie tylko w produkcji kwasu octowego, ale w wielu innych procesach chemicznych, gdzie kontrola wydajności jest kluczowa.

Pytanie 40

Zastosowanie transportera pneumatycznego do przewozu zbrylonego, wilgotnego materiału ziarnistego może wywołać

A. kruszenie brył materiału
B. podwyższenie ciśnienia w przewodzie ssącym
C. obniżenie ciśnienia ssania
D. zator w przewodzie oraz awarię ssawy
Zgadza się, wilgotny materiał ziarnisty w transporcie pneumatycznym może sprawić różne kłopoty, ale niektóre rzeczy, które podałeś, są nie do końca trafne. Kiedy materiał się zatyka, zazwyczaj nie ma mowy o wzroście ciśnienia, bo to spadnie. Ograniczenie przepływu powietrza zwykle prowadzi do tego, że ciśnienie leci w dół, a nie w górę. Co do ciśnienia ssania, to też nie jest tak, że sama blokada spowoduje jego spadek. Właśnie wtedy ssawa może się przegrzać i uszkodzić. Zresztą, rozbijanie brył to nie jest zadanie transportera pneumatycznego, ale raczej efekt złej konstrukcji systemu lub braku odpowiednich urządzeń do pomocy. Pamiętaj, że kluczową sprawą w zaprojektowaniu systemu transportu pneumatycznego jest dobre oddzielenie materiału od źródła powietrza oraz kontrolowanie wilgotności przed transportem, co pozwala uniknąć zatorów.