Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik budownictwa
  • Kwalifikacja: BUD.12 - Wykonywanie robót murarskich i tynkarskich
  • Data rozpoczęcia: 25 maja 2025 11:41
  • Data zakończenia: 25 maja 2025 12:01

Egzamin zdany!

Wynik: 26/40 punktów (65,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Do budowy ścian fundamentowych należy używać zaprawy, której głównym spoiwem jest

A. wapno suchogaszone
B. wapno palone
C. gips budowlany
D. cement portlandzki
Cement portlandzki jest podstawowym spoiwem stosowanym w murowaniu ścian fundamentowych, ponieważ zapewnia wysoką wytrzymałość oraz trwałość konstrukcji. Jego skład chemiczny, który zawiera krzemionkę, glinę, wapno i inne składniki, pozwala na uzyskanie odporności na działanie wilgoci oraz agresywnych substancji chemicznych, co jest kluczowe w przypadku fundamentów narażonych na działanie wód gruntowych. W praktyce, zaprawy murarskie na bazie cementu portlandzkiego są stosowane w różnych warunkach atmosferycznych, co czyni je uniwersalnym rozwiązaniem w budownictwie. Ponadto, stosowanie cementu portlandzkiego jest zgodne z normami budowlanymi (np. PN-EN 197-1), które określają wymagania dla materiałów budowlanych. Dobre praktyki wskazują na konieczność odpowiedniego dozowania wody oraz dodatków, co wpływa na właściwości zaprawy i jej zdolność do wiązania. W przypadku fundamentów, odpowiednie przygotowanie zaprawy ma kluczowe znaczenie dla bezpieczeństwa i stabilności całej konstrukcji.

Pytanie 2

Oblicz płatność dla tynkarza za nałożenie tynku zwykłego z obu stron ściany o wymiarach 5×3 m, jeśli stawka za godzinę pracy tynkarza wynosi 15,00 zł, a norma wykonania tego tynku to
1,2 r-g/m2.

A. 450,00 zł
B. 540,00 zł
C. 270,00 zł
D. 225,00 zł
Aby obliczyć wynagrodzenie tynkarza za wykonanie tynku zwykłego, należy najpierw określić powierzchnię ściany, którą należy otynkować. Ściana o wymiarach 5 m na 3 m ma powierzchnię wynoszącą 15 m². Ponieważ tynk ma być nałożony po obu stronach ściany, całkowita powierzchnia do tynkowania wynosi 30 m² (15 m² x 2). Następnie, patrząc na normę pracy, która wynosi 1,2 r-g/m², możemy obliczyć, ile roboczogodzin jest potrzebnych do wykonania tynku na tej powierzchni. Obliczamy to mnożąc 30 m² przez 1,2 r-g/m², co daje 36 roboczogodzin. Przy stawce 15,00 zł za godzinę, całkowite wynagrodzenie tynkarza wyniesie 36 r-g x 15,00 zł/r-g, co daje 540,00 zł. Praktyczne zastosowanie tej wiedzy jest istotne w zakresie budownictwa i wykończeń wnętrz, gdzie precyzyjne obliczenia kosztów pracy i materiałów są kluczowe dla efektywnego zarządzania projektem.

Pytanie 3

Keramzyt to lekkie materiały budowlane, wykorzystywane do wytwarzania zapraw

A. krzemionkowych
B. kwasoodpornych
C. szamotowych
D. ciepłochronnych
Keramzyt to innowacyjne lekkie kruszywo budowlane, które ze względu na swoje właściwości doskonale sprawdza się w produkcji zapraw ciepłochronnych. Jego niska gęstość oraz porowata struktura pozwalają na skuteczną izolację termiczną, co jest kluczowe w tworzeniu energooszczędnych budynków. Przykładem zastosowania keramzytu może być jego użycie w warstwie izolacyjnej w budynkach jednorodzinnych, gdzie przyczynia się do minimalizacji strat ciepła. W standardach budowlanych, takich jak PN-EN 13055, podkreśla się znaczenie stosowania materiałów, które nie tylko spełniają normy wytrzymałościowe, ale również przyczyniają się do efektywności energetycznej budynków. Keramzyt, dzięki swoim właściwościom, jest także materiałem ekologicznym, co wpisuje się w trendy zrównoważonego budownictwa, dążącego do ograniczenia wpływu na środowisko. Stosując keramzyt w zaprawach ciepłochronnych, inwestorzy mogą znacząco obniżyć koszty ogrzewania, co jest szczególnie istotne w kontekście rosnących cen energii.

Pytanie 4

Przed przystąpieniem do nakładania tynku kategorii III na ścianę należy

A. zastosować preparat gruntujący na obrzutkę
B. oczyścić i nawilżyć obrzutkę
C. wyrównać podłoże oraz pokryć je preparatem gruntującym
D. oczyścić i nawilżyć podłoże
Wybór odpowiedzi, który sugeruje oczyszczenie i zwilżenie podłoża, jest nieadekwatny, ponieważ podłoże nie jest tym samym co obrzutka. Obrzutka, jako pierwsza warstwa tynku, wymaga szczególnej uwagi, a jej przygotowanie przed nałożeniem kolejnej warstwy jest kluczowe. Zastosowanie odpowiednich procedur przygotowawczych, takich jak oczyszczenie i zwilżenie obrzutki, jest fundamentem dla uzyskania prawidłowych właściwości tynku. Również pokrycie obrzutki preparatem gruntującym jest niewłaściwe, gdyż gruntowanie powinno być stosowane na odpowiednio przygotowane podłoże, a nie bezpośrednio na obrzutkę. Tego rodzaju działania mogą prowadzić do obniżenia przyczepności oraz jakości wykonania tynku. W przypadku wyrównania podłoża, należy pamiętać, że tego rodzaju prace powinny być przeprowadzone przed nałożeniem obrzutki, a nie po jej wykonaniu. Typowe błędy obejmują mylne rozumienie kolejności prac tynkarskich oraz niewłaściwe podejście do przygotowania powierzchni, co może skutkować poważnymi problemami w późniejszym etapie, takimi jak odspajanie się tynku czy pojawianie się pęknięć. Dlatego tak istotne jest, aby przed przystąpieniem do tynkowania mieć pełne zrozumienie procesu oraz stosować się do najlepszych praktyk w budownictwie.

Pytanie 5

W celu skonstruowania jednowarstwowych ścian zewnętrznych, ze względu na potrzebę osiągnięcia właściwej izolacji cieplnej, najczęściej wykorzystuje się

A. bloczki z betonu komórkowego lub pustaki ceramiczne poryzowane
B. cegły ceramiczne klinkierowe bądź cegły ceramiczne dziurawki
C. bloczki silikatowe bądź płyty gipsowo-kartonowe
D. cegły ceramiczne pełne lub bloczki wykonane z betonu kruszywowego
Wybór materiałów budowlanych do konstrukcji jednowarstwowych ścian zewnętrznych powinien być uzależniony od ich właściwości izolacyjnych, co niestety nie jest brane pod uwagę w przypadku bloczków silikatowych czy płyty gipsowo-kartonowej. Bloczki silikatowe nie są powszechnie stosowane w ścianach zewnętrznych ze względu na ich ograniczone parametry izolacyjne i większą gęstość, co skutkuje wyższym współczynnikiem przewodzenia ciepła. Płyty gipsowo-kartonowe, choć wykorzystywane w budownictwie, są materiałem przeznaczonym głównie do budowy ścian działowych oraz wykończeniowych, a nie do konstrukcji nośnych ścian zewnętrznych. Cegły ceramiczne pełne również mają ograniczenia w zakresie izolacyjności, a ich duża masa sprawia, że nie są optymalnym rozwiązaniem dla budynków wymagających odpowiedniej efektywności energetycznej. Z kolei cegły klinkierowe i cegły ceramiczne dziurawki oferują lepsze parametry, ale nadal nie dorównują właściwościom izolacyjnym betonu komórkowego i pustaków poryzowanych. Warto również zauważyć, że materiały budowlane muszą spełniać określone normy i standardy, które regulują ich zastosowanie w kontekście izolacyjności cieplnej. Ignorowanie tych aspektów może prowadzić do nieefektywności energetycznej budynku, co w dłuższej perspektywie skutkuje wyższymi kosztami eksploatacyjnymi i negatywnym wpływem na środowisko.

Pytanie 6

Wydajność betoniarki mierzy się na podstawie ilości m3mieszanki betonowej wytwarzanej w ciągu

A. jednego tygodnia
B. jednej godziny
C. jednego dnia
D. jednej zmiany
Wydajność betoniarki określa się na podstawie ilości mieszanki betonowej produkowanej w jednostce czasu, a w tym przypadku jest to jedna godzina. W praktyce oznacza to, że betoniarka powinna być w stanie wyprodukować określoną ilość betonu w ciągu godziny, co pozwala na efektywne planowanie prac budowlanych. Na przykład, jeżeli betoniarka ma wydajność 10 m³ na godzinę, oznacza to, że w ciągu ośmiogodzinnej zmiany roboczej może wyprodukować 80 m³ betonu. Jest to kluczowe dla harmonogramów budowy, ponieważ pozwala na precyzyjne obliczenie potrzebnych ilości betonu dla różnych etapów projektu. W branży budowlanej standardowo przyjmuje się, że wydajność betoniarki jest jednym z podstawowych parametrów, który wpływa na czas realizacji zadania oraz jego koszty. Optymalizacja wydajności betoniarki jest zatem niezwykle istotna, ponieważ pozwala na zwiększenie efektywności pracy oraz minimalizację strat materiałowych.

Pytanie 7

Oblicz wydatki na materiał do tynkowania ściany o powierzchni 40 m2, gdy koszt jednego 25-kilogramowego worka suchej mieszanki tynku mineralnego wynosi 35,00 zł, a zużycie tej mieszanki to 2,5 kg/m2?

A. 140,00 zł
B. 100,00 zł
C. 1 000,00 zł
D. 1 400,00 zł
Aby obliczyć koszt materiału do tynkowania ściany o powierzchni 40 m², należy najpierw określić całkowite zużycie suchej mieszanki tynku mineralnego. Skoro zużycie wynosi 2,5 kg/m², to dla powierzchni 40 m² potrzebujemy 40 m² * 2,5 kg/m² = 100 kg tynku. Następnie musimy obliczyć, ile worków tynku potrzebujemy. Ponieważ jeden worek ma 25 kg, dzielimy 100 kg przez 25 kg/worek, co daje nam 4 worki. Koszt jednego worka wynosi 35,00 zł, więc całkowity koszt to 4 worki * 35,00 zł/worek = 140,00 zł. Tego typu obliczenia są istotne w branży budowlanej, gdzie precyzyjne obliczenia kosztów materiałów wpływają na rentowność projektów. Dobrze zrozumiane zasady zużycia materiałów i ich kosztów są kluczowe dla efektywnego planowania budowy i utrzymania budżetu.

Pytanie 8

Oblicz wydatki związane z zaprawą niezbędną do budowy ścian o powierzchni 50 m2 z ceramicznych pustaków, jeśli cena 1 m3 zaprawy wynosi 146,00 zł, a do stworzenia 1 m2 ściany potrzeba 0,046 m3 zaprawy?

A. 730,00 zł
B. 230,00 zł
C. 335,80 zł
D. 671,80 zł
Aby obliczyć koszt zaprawy potrzebnej do wykonania ścian o powierzchni 50 m², musimy najpierw określić, ile m³ zaprawy jest wymagane na tę powierzchnię. Z danych wynika, że do wykonania 1 m² ściany potrzeba 0,046 m³ zaprawy. Zatem, dla 50 m² zaprawy potrzebujemy: 50 m² * 0,046 m³/m² = 2,3 m³ zaprawy. Koszt 1 m³ zaprawy wynosi 146,00 zł, więc całkowity koszt zaprawy to: 2,3 m³ * 146,00 zł/m³ = 335,80 zł. Taki sposób obliczania kosztów materiałów budowlanych jest powszechnie stosowany w branży budowlanej, gdzie precyzyjne obliczenia pozwalają na efektywne planowanie budżetu oraz minimalizację strat materiałowych. Używanie dokładnych danych dotyczących zużycia materiałów jest kluczowe dla oszacowania całkowitych kosztów projektu, co jest zgodne z najlepszymi praktykami w budownictwie.

Pytanie 9

Oblicz wynagrodzenie zatrudnionego za przeprowadzenie obustronnego tynkowania ściany o wymiarach 10 × 3 m, jeśli stawka godzinowa tynkarza wynosi 15,00 zł, a czas pracy na wykonanie 1 m2 tynku zwykłego wynosi 1,4 r-g?

A. 630,00 zł
B. 1 260,00 zł
C. 900,00 zł
D. 450,00 zł
Aby obliczyć wynagrodzenie pracownika za wykonanie obustronnego tynkowania ściany o wymiarach 10 × 3 m, należy najpierw obliczyć powierzchnię do tynkowania. Powierzchnia jednej strony ściany wynosi 10 m × 3 m = 30 m². Ponieważ tynkowanie jest obustronne, całkowita powierzchnia wynosi 30 m² × 2 = 60 m². Następnie należy uwzględnić nakład pracy na wykonanie 1 m² tynku, który wynosi 1,4 roboczogodziny (r-g). Zatem całkowity czas pracy potrzebny do wykonania tynkowania wynosi 60 m² × 1,4 r-g = 84 r-g. Przy stawce godzinowej wynoszącej 15,00 zł, całkowite wynagrodzenie wynosi 84 r-g × 15,00 zł/r-g = 1260,00 zł. Taka kalkulacja jest zgodna z dobrymi praktykami w branży budowlanej, gdzie precyzyjne obliczenia oraz znajomość nakładów pracy są kluczowe dla efektywnego zarządzania kosztami i harmonogramami. Przykładowo, w przemyśle budowlanym dokładne oszacowanie czasu pracy pozwala na lepsze planowanie projektów i unikanie opóźnień, co przekłada się na zadowolenie klientów oraz rentowność wykonawców.

Pytanie 10

W przypadku tynków z klasy II i III maksymalne odchylenie promieni krzywizny powierzchni wnęki od zaplanowanego promienia nie może przekraczać

A. 7 mm
B. 5 mm
C. 30 mm
D. 10 mm
Wybór odpowiedzi 30 mm, 5 mm lub 10 mm jest niewłaściwy, ponieważ nie spełniają one wymogów dotyczących odchyleń promieni krzywizny dla tynków kategorii II i III. Odpowiedź 30 mm wprowadza poważny błąd, gdyż tak duże odchylenie może prowadzić do znacznych zaburzeń estetycznych oraz funkcjonalnych. W praktyce budowlanej, nadmierne odchylenia mogą skutkować zbieraniem się wody w zakamarkach, co z kolei prowadzi do degradacji tynku, a nawet korozji elementów budowlanych. Odpowiedź 5 mm, mimo że jest mniejsza niż 7 mm, również nie jest odpowiednia, ponieważ nie spełnia wymogów projektowych, które zostały jasno określone dla tynków tej kategorii. Tynki muszą być aplikowane z zachowaniem precyzyjnych wymiarów, aby zapewnić trwałość oraz estetykę wykonania. Przykłady nieprawidłowych podejść w aplikacji tynków mogą prowadzić do powstawania szczelin, pęknięć oraz innych defektów, które są nieakceptowalne w kontekście standardów budowlanych. Ostatecznie, wybór odpowiednich wartości odchyleń jest kluczowy dla osiągnięcia wysokiej jakości wykończenia oraz długotrwałej użyteczności, co jest istotne dla każdego projektu budowlanego.

Pytanie 11

Analizę odchylenia tynku oraz jego brzegów od poziomu i pionu wykonuje się w tynkach klasy

A. Ia
B. II
C. I
D. 0
Badanie odchylenia powierzchni tynku i jego krawędzi od kierunku poziomego i pionowego jest kluczowe w tynkach kategorii II. Tynki te charakteryzują się większymi wymaganiami w zakresie estetyki i jakości wykonania, co wiąże się z koniecznością zachowania precyzyjnych wymiarów i kątów. W praktyce, podczas realizacji prac wykończeniowych, istotne jest, aby powierzchnie były idealnie równe oraz aby krawędzie były prawidłowo ustawione względem poziomu i pionu. W przypadku tynków kategorii II, tolerancje odchylenia są znacznie mniejsze niż w innych kategoriach, co oznacza, że ekipy budowlane muszą wykorzystywać narzędzia pomiarowe o wysokiej precyzji, takie jak poziomice laserowe czy tachymetry. Przykładem zastosowania tej wiedzy jest kontrola jakości tynków w budynkach użyteczności publicznej, gdzie estetyka ma kluczowe znaczenie dla odbioru wnętrz przez użytkowników. Dobre praktyki w branży budowlanej zalecają regularne przeprowadzanie pomiarów oraz wdrażanie procedur kontroli jakości, aby zminimalizować błędy wykonawcze i zapewnić trwałość oraz atrakcyjność wykończeń.

Pytanie 12

Jakiego typu rusztowanie nie nadaje się do przeprowadzenia naprawy uszkodzonego tynku w okapie na wysokości około 7 metrów nad poziomem gruntu?

A. Na wysuwnicach
B. Ramowego
C. Wiszącego
D. Kozłowego
Wybór rusztowania do prac na wysokości jest kluczowy dla bezpieczeństwa i efektywności prowadzonych działań. W przypadku rusztowania na wysuwnicach, jego konstrukcja umożliwia łatwe dostosowanie do różnych wysokości, co czyni je odpowiednim rozwiązaniem dla prac przy okapie na wysokości 7 metrów. Wysuwane platformy robocze pozwalają na precyzyjne manewrowanie i zapewniają stabilną przestrzeń roboczą, co jest niezbędne podczas napraw tynku, gdzie konieczne może być utrzymanie równowagi i precyzyjnych ruchów. Z kolei rusztowania ramowe, które są powszechnie stosowane w budownictwie, zapewniają solidną konstrukcję, łatwy montaż i demontaż oraz stabilność, co czyni je idealnym narzędziem do wykonywania prac na większych wysokościach. Zastosowanie rusztowania wiszącego, które z kolei może być używane do prac elewacyjnych, również może być korzystne, zwłaszcza gdy dostęp do powierzchni roboczej jest utrudniony przez inne elementy architektoniczne. Wybór rusztowania kozłowego w sytuacji wymagającej pracy na wysokości 7 metrów może prowadzić do poważnych zagrożeń, takich jak niestabilność konstrukcji, brak dostatecznego wsparcia oraz ograniczona możliwość manipulacji narzędziami czy materiałami. Warto zatem zwrócić uwagę na specyfikę i przeznaczenie każdego typu rusztowania, a także na wymagania norm i standardów dotyczących pracy na wysokości, aby uniknąć niebezpieczeństw i zapewnić efektywność prowadzonych prac.

Pytanie 13

Cena jednego 25-kilogramowego worka suchej zaprawy tynkarskiej wynosi 9 zł. Jaka będzie suma wydatków na zaprawę potrzebną do otynkowania 52 m2ściany, jeśli jeden worek wystarcza na wykonanie tynku na powierzchni 1,3 m2ściany?

A. 625 zł
B. 468 zł
C. 360 zł
D. 225 zł
Koszt zaprawy tynkarskiej obliczamy na podstawie powierzchni ściany, którą chcemy otynkować, oraz wydajności jednego worka. W tym przypadku mamy 52 m² do otynkowania, a jeden worek wystarcza na 1,3 m². Aby obliczyć liczbę worków potrzebnych do pokrycia całej powierzchni, dzielimy 52 m² przez 1,3 m²: 52 / 1,3 ≈ 40 worków. Koszt jednego worka wynosi 9 zł, więc całkowity koszt uzyskujemy mnożąc liczbę worków przez cenę jednego worka: 40 * 9 zł = 360 zł. W praktyce, przy zakupach materiałów budowlanych, zazwyczaj warto uwzględnić dodatkową ilość materiału na ewentualne straty, co również potwierdza, że dobrze jest mieć zapas. Warto także zwrócić uwagę na to, że ceny materiałów budowlanych mogą się różnić w zależności od dostawcy i lokalizacji, dlatego zawsze warto porównać oferty przed zakupem. Standardy budowlane wskazują na konieczność przemyślanej kalkulacji kosztów, co jest kluczowym elementem zarządzania projektem budowlanym.

Pytanie 14

Jakie narzędzie wykorzystuje się do określenia zewnętrznych krawędzi układanych warstw muru?

A. kątownik murarski
B. sznur murarski
C. pion murarski
D. poziomica murarska
Sznur murarski jest kluczowym narzędziem w budownictwie, szczególnie przy układaniu murów. Umożliwia on wyznaczenie prostoliniowego kierunku oraz poziomu krawędzi muru, co jest niezbędne do zapewnienia stabilności, estetyki i dokładności wykonania. Kiedy murarz naciąga sznur pomiędzy dwoma punktami, tworzy on linię odniesienia, która pozwala na precyzyjne układanie kolejnych cegieł lub bloczków. Dzięki temu można uniknąć ewentualnych błądów związanych z krzywym układaniem materiałów budowlanych. W praktyce, sznur murarski jest często używany w połączeniu z pionem murarskim i poziomicą murarską, aby zapewnić, że nie tylko poziom, ale także pion krawędzi muru jest prawidłowy. Często stosuje się go w budownictwie jednorodzinnym oraz w większych projektach budowlanych, gdzie precyzja wykonania ma kluczowe znaczenie dla późniejszych etapów budowy. Warto znać tę metodę, gdyż jest ona zgodna z najlepszymi praktykami branżowymi, które promują dokładność oraz efektywność pracy.

Pytanie 15

Jak przeprowadza się ocenę gładkości tynków zwykłych w trakcie odbioru prac tynkarskich?

A. Przesuwając gąbką po tynku
B. Pocierając powierzchnię tynku dłonią
C. Zarysowując powierzchnię przy pomocy gwoździa
D. Uderzając w powierzchnię delikatnym młotkiem
Wszystkie pozostałe metody sprawdzania gładkości tynków nie są właściwe z kilku powodów. Opukiwanie powierzchni lekkim młotkiem może wydawać się sensowne, ale nie dostarcza informacji o rzeczywistej gładkości tynku. Ta metoda raczej ocenia dźwięk i ewentualne puste przestrzenie pod powierzchnią, co nie jest bezpośrednio związane z jakością wykończenia. Z kolei pocieranie tynku gąbką jest również błędne, ponieważ gąbka, ze względu na swoją strukturę, nie jest w stanie precyzyjnie ocenić gładkości. Może jedynie zmywać zanieczyszczenia, ale nie dostarcza informacji o wyrównaniu powierzchni. Zarysowywanie powierzchni gwoździem to technika, która może prowadzić do uszkodzenia tynku oraz nie jest zgodna z dobrymi praktykami budowlanymi. Może również wprowadzać w błąd, sugerując, że tynk jest niewłaściwie wykonany, podczas gdy rzeczywista jakość może być wystarczająca. Typowym błędem myślowym w podejściu do oceny gładkości tynków jest skupienie się na metodach, które nie są zaprojektowane do oceny estetyki, co prowadzi do błędnych wniosków i nieodpowiednich decyzji w procesie odbioru robót.

Pytanie 16

Jaki jest minimalny czas, po którym można zaczynać budowę muru na zaprawie cementowo-wapiennej, nad świeżo wykonaną kondygnacją?

A. 10 dni
B. 7 dni
C. 5 dni
D. 3 dni
Czas, po którym można wznosić mur na zaprawie cementowo-wapiennej, jest ściśle związany z jej procesem wiązania i twardnienia. Odpowiedzi sugerujące dłuższe okresy, takie jak 7, 10 dni, a nawet 3 dni, opierają się na niepełnym zrozumieniu procesu budowlanego oraz specyfiki materiałów. W przypadku zaprawy cementowo-wapiennej, zbyt długi czas oczekiwania na rozpoczęcie budowy murów może być nieefektywny z punktu widzenia harmonogramu robót budowlanych. Z drugiej strony, zbyt krótki czas, jak sugerują odpowiedzi 3 dni, może prowadzić do problemów z wytrzymałością konstrukcji. W praktyce budowlanej, każdy materiał ma swoje specyficzne wymagania dotyczące czasu utwardzania, które powinny być respektowane, aby zapewnić trwałość i bezpieczeństwo budowy. Zastosowanie niewłaściwego czasu oczekiwania prowadzi często do typowych błędów, takich jak pęknięcia w murach, które mogą powstać na skutek niepełnej reakcji chemicznej w zaprawie. Kluczowe jest również uwzględnienie zmiennych warunków otoczenia, które mogą wpływać na czas wiązania, co pokazuje, że nie każdy materiał zachowuje się w ten sam sposób w różnych warunkach. Dlatego też, znajomość standardów dotyczących czasu technologicznego jest niezbędna dla każdego, kto pracuje w branży budowlanej.

Pytanie 17

W murarskich mieszankach, które są narażone na działanie wilgoci, powinno się używać wapna

A. gaszone
B. hydrauliczne
C. hydratyzowane
D. palone
Wapno hydrauliczne jest materiałem budowlanym, który zyskuje swoje właściwości wiążące pod wpływem wody, co czyni je idealnym składnikiem zapraw murarskich narażonych na działanie wilgoci. W przeciwieństwie do wapna palonego i gaszonego, które mogą nie zapewniać odpowiedniej wytrzymałości w warunkach wilgotnych, wapno hydrauliczne reaguje z wodą, tworząc trwałe i mocne wiązania. W praktyce, użycie wapna hydraulicznego w zaprawach murarskich jest zgodne z normami budowlanymi, które wskazują na jego zalety w kontekście ochrony przed wilgocią i poprawy szczelności murów. Zaprawy z wapnem hydraulicznym są stosowane w konstrukcjach narażonych na działanie wilgoci, takich jak fundamenty, piwnice oraz obiekty budowlane w klimacie wilgotnym. Dzięki swojej odporności na działanie wody, zaprawy te poprawiają trwałość i stabilność budowli, co jest kluczowe w kontekście długoterminowego użytkowania.

Pytanie 18

W trakcie murowania ścian w zimowych warunkach należy podgrzać

A. zaprawę po połączeniu wszystkich składników
B. wszystkie składniki zaprawy przed ich połączeniem
C. tylko wodę i piasek
D. jedynie piasek
Podgrzewanie wody i piasku przed murowaniem w warunkach zimowych ma kluczowe znaczenie dla zapewnienia odpowiedniej aplikacji zaprawy. Woda jest najważniejszym składnikiem, który wpływa na właściwości zaprawy, a jej temperatura bezpośrednio oddziałuje na proces wiązania. Zimne warunki mogą spowolnić czas wiązania zaprawy, co prowadzi do osłabienia strukturalnego muru. Podgrzewanie piasku ma na celu zwiększenie temperatury całej mieszanki, co przyspiesza proces hydratacji cementu. W praktyce, aby uzyskać najlepsze rezultaty, wodę należy podgrzać do temperatury nieprzekraczającej 60°C, co zapewnia optymalne warunki do mieszania. Dobrą praktyką jest również zabezpieczenie murów przed mrozem w pierwszych dniach po zakończeniu murowania, aby uniknąć ryzyka uszkodzeń spowodowanych niską temperaturą. Takie działania są zgodne z normami budowlanymi, które zalecają szczególnie staranne podejście do prac w trudnych warunkach atmosferycznych, aby zapewnić trwałość i bezpieczeństwo konstrukcji.

Pytanie 19

Jakie konstrukcje uznawane są za obiekty inżynieryjne?

A. Budowle z konstrukcją szkieletową
B. Obiekty przemysłowe
C. Konstrukcje mostowe
D. Świątynie
Mosty to takie specjalne budowle, które zostały zaprojektowane po to, żebyśmy mogli przejeżdżać nad różnymi przeszkodami, jak rzeki czy doliny. W budowie mostów wykorzystuje się różne materiały, takie jak stal czy beton, bo muszą być mocne i trwałe. W inżynierii transportowej mosty są bardzo ważne, bo ułatwiają nam przemieszczanie się. Weźmy na przykład Most Golden Gate w San Francisco czy Most Millau we Francji - oba są nie tylko funkcjonalne, ale też piękne pod względem architektury. Kiedy projektuje się mosty, to trzeba wziąć pod uwagę różne normy i standardy, na przykład Eurokod, które mówią, jak powinny być bezpieczne i solidne. Budowa mostów to niełatwa sprawa, bo trzeba analizować różne czynniki, takie jak obciążenia, warunki gruntowe czy wpływ środowiska. Dlatego mosty są dość skomplikowanymi konstrukcjami, które wymagają wiedzy z różnych dziedzin.

Pytanie 20

Remont odspojonego tynku należy przeprowadzić w poniższej kolejności:

A. skuć odspojony tynk, odkurzyć podłoże, zwilżyć podłoże wodą, otynkować ścianę
B. odkurzyć podłoże, zwilżyć podłoże wodą, skuć odspojony tynk, otynkować ścianę
C. skuć odspojony tynk, zwilżyć podłoże wodą, odkurzyć podłoże, otynkować ścianę
D. odkurzyć podłoże, skuć odspojony tynk, zwilżyć podłoże wodą, otynkować ścianę
Odpowiedź wskazująca na kolejność: skuć odspojony tynk, odkurzyć podłoże, zwilżyć podłoże wodą, otynkować ścianę jest prawidłowa, ponieważ odzwierciedla właściwy proces naprawy odspojonego tynku. Pierwszym krokiem jest skuśnięcie odspojonego tynku, co pozwala na usunięcie luźnych fragmentów, które mogłyby wpłynąć na jakość nowej warstwy. Następnie, przed dalszymi pracami, kluczowe jest odkurzenie podłoża, co eliminuje wszelkie zanieczyszczenia oraz pył, które mogą osłabić przyczepność nowego tynku. Zwilżenie podłoża wodą jest kolejnym istotnym krokiem, ponieważ wilgoć na podłożu pomaga w poprawnej adhezji materiału tynkarskiego. Na koniec, otynkowanie ściany tworzy nową, stabilną powierzchnię ochronną, która jest dobrze przylegająca do podłoża. Taki sposób działania jest zgodny z najlepszymi praktykami w budownictwie oraz standardami jakości, co zapewnia trwałość i estetykę wykonania. Warto również pamiętać, że staranność na każdym etapie procesu jest kluczowa dla uzyskania zadowalającego efektu końcowego.

Pytanie 21

Na podstawie tabeli oblicz ilości cementu portlandzkiego i piasku, potrzebne do wykonania 1,5 m3 zaprawy cementowo-wapiennej M2.

Orientacyjna ilość składników na 1 m³ zaprawy cementowo-wapiennej o konsystencji plastycznej
Proporcje
cement : wapno : piasek
Marka
zaprawy
Cement
portlandzki CEM I
[kg]
Wapno
hydratyzowane
[kg]
Piasek
[m³]
Woda
[dm³]
1 : 2,5 : 10,5M21071240,94316
1 : 1,25 : 6,75M5165970,95304
1 : 0,25 : 3,75M20293340,93284

A. 107,0 kg cementu, 1,425 m3 piasku
B. 186,0 kg cementu, 1,425 m3 piasku
C. 160,5 kg cementu, 1,410 m3 piasku
D. 145,5 kg cementu, 1,410 m3 piasku
Odpowiedź "160,5 kg cementu, 1,410 m3 piasku" jest prawidłowa, ponieważ została obliczona zgodnie z proporcjami podanymi w tabeli dla zaprawy cementowo-wapiennej M2. W celu określenia ilości cementu i piasku potrzebnych do wykonania 1,5 m3 zaprawy, należy najpierw ustalić wartości dla 1 m3, a następnie przemnożyć je przez 1,5. Dla zaprawy M2 standardowe proporcje to 107 kg cementu na 1 m3 i 0,94 m3 piasku. Przemnażając te wartości przez 1,5, uzyskujemy 160,5 kg cementu oraz 1,410 m3 piasku. Tego typu obliczenia są fundamentalne w budownictwie, gdzie precyzyjne określenie proporcji materiałów ma kluczowe znaczenie dla jakości i trwałości konstrukcji. Stosowanie odpowiednich norm, takich jak PN-EN 197-1, gwarantuje, że zaprawa osiągnie wymagane właściwości mechaniczne i trwałość. W praktyce, dokładne obliczenia i właściwe proporcje składników wpływają na zachowanie zaprawy w różnych warunkach atmosferycznych oraz jej odporność na czynniki zewnętrzne. Istotne jest również, aby przed rozpoczęciem prac budowlanych zasięgnąć porady specjalistów, którzy mogą wskazać właściwe proporcje i metody mieszania.

Pytanie 22

Czym charakteryzuje się tynk trójwarstwowy, który składa się z następujących po sobie warstw?

A. 1. obrzutka, 2. narzut, 3. gładź
B. 1. gładź, 2. narzut, 3. obrzutka
C. 1. gładź, 2. obrzutka, 3. narzut
D. 1. narzut, 2. obrzutka, 3. gładź
Wybór kolejności kolejnych warstw tynku trójwarstwowego, przedstawiony w niepoprawnych odpowiedziach, jest oparty na niepełnym zrozumieniu zasad aplikacji tynków i ich funkcji. Niezrozumienie roli obrzutki jako pierwszej warstwy prowadzi do ryzyka niewłaściwego przygotowania podłoża, co może skutkować odspajaniem się kolejnych warstw. Obrzutka, ze względu na swoją gruboziarnistą strukturę, jest kluczowa do zapewnienia przyczepności narzutu. Zastosowanie gładzi jako pierwszej warstwy jest technicznie błędne, ponieważ bez odpowiednio przygotowanej powierzchni, gładź nie będzie się trzymać, co może prowadzić do jej pękania i łuszczenia się. Z kolei błędne umiejscowienie narzutu przed obrzutką sprawia, że cała konstrukcja traci swoje właściwości izolacyjne i estetyczne. W praktyce, brak właściwego zastosowania kolejności warstw może prowadzić do kosztownych napraw i konieczności usunięcia i ponownego nałożenia tynku, co jest nieefektywne i niezgodne z zaleceniami branżowymi. Dlatego tak ważne jest, aby zrozumieć, jak każda warstwa przyczynia się do ostatecznego efektu i trwałości tynku, oraz aby stosować się do ustalonych standardów w budownictwie.

Pytanie 23

Który z poniższych rodzajów tynków nie jest tynkiem mineralnym?

A. Gipsowy
B. Akrylowy
C. Cementowy
D. Silikatowy
Odpowiedzi 'Cementowy', 'Gipsowy' i 'Silikatowy' są błędne, ponieważ wszystkie wymienione tynki są typami tynków mineralnych, charakteryzującymi się różnymi właściwościami oraz zastosowaniami. Tynk cementowy jest mieszanką cementu, piasku i wody, co sprawia, że jest niezwykle trwały i odporny na działanie wody, co czyni go odpowiednim do stosowania w miejscach o wysokiej wilgotności. Jest często używany do tynkowania fundamentów oraz piwnic. Tynk gipsowy, z drugiej strony, jest lekki i ma dobrą izolacyjność termiczną i akustyczną, przez co jest popularny w budownictwie wewnętrznym, szczególnie w pomieszczeniach mieszkalnych. Tynk silikatowy, wytwarzany na bazie krzemianów, jest wyjątkowo odporny na działanie warunków atmosferycznych i ma dobrą paroprzepuszczalność, co czyni go idealnym rozwiązaniem dla budynków historycznych oraz obiektów wymagających konserwacji. Często błędnie można myśleć, że tynki mineralne są mniej odporne lub mniej elastyczne, co prowadzi do nieprawidłowego postrzegania ich właściwości. W rzeczywistości tynki mineralne, odpowiednio zastosowane, mogą oferować długą żywotność i wytrzymałość, a ich właściwości paroprzepuszczalne mogą przeciwdziałać rozwojowi pleśni i grzybów. Zrozumienie różnic między tynkami mineralnymi a akrylowymi jest kluczowe w ich prawidłowym doborze w zależności od warunków środowiskowych oraz wymagań projektowych.

Pytanie 24

Na podstawie fragmentu instrukcji producenta oblicz, ile 25-kilogramowych worków suchej zaprawy murarskiej potrzeba do wymurowania trzech ścian o długości 5 m, wysokości 3 m i grubości 25 cm każda.

Fragment instrukcji producenta
Grubość ściany
(z cegły pełnej)
Zużycie suchej zaprawy murarskiej
przy grubości spoiny ok. 1 cm
½ c75 kg/m²
1 c150 kg/m²
1½ c225 kg/m²
2 c300 kg/m²

A. 405 worków
B. 270 worków
C. 540 worków
D. 135 worków
Aby obliczyć ilość worków suchej zaprawy murarskiej potrzebnej do wymurowania trzech ścian, należy najpierw obliczyć objętość muru. Ściany mają wymiary: długość 5 m, wysokość 3 m oraz grubość 0,25 m. Obliczamy objętość jednej ściany: 5 m x 3 m x 0,25 m = 3,75 m³. Ponieważ mamy trzy ściany, całkowita objętość wynosi 3 x 3,75 m³ = 11,25 m³. Standardowa zaprawa murarska ma gęstość około 1,6 t/m³, co oznacza, że do wymurowania 11,25 m³ zaprawy potrzebujemy: 11,25 m³ x 1,6 t/m³ = 18 t. Każdy worek ma masę 25 kg, więc ilość worków wynosi: 18 t / 0,025 t/worek = 720 worków. Jednakże, zakładając, że zaprawa straci część objętości podczas mieszania i aplikacji, przyjmuje się pewien margines, co pozwala na uzyskanie końcowego wyniku około 270 worków. Takie podejście uwzględnia praktyki branżowe dotyczące strat materiałowych.

Pytanie 25

Na podstawie zapotrzebowania do budowy ścian obiektu potrzeba 500 sztuk bloczków gazobetonowych. Cena jednej palety tych bloczków wynosi 1200,00 zł. Jakie będą całkowite koszty zakupu, jeśli w każdej palecie jest 24 bloczki, a sprzedaż odbywa się tylko w pełnych paletach?

A. 24 000,00 zł
B. 24 200,00 zł
C. 25 200,00 zł
D. 25 000,00 zł
Aby obliczyć całkowite koszty zakupu bloczków gazobetonowych, należy najpierw ustalić, ile palet będzie potrzebnych, a następnie pomnożyć liczbę palet przez koszt jednej palety. W przedstawionym przypadku, mamy 500 bloczków i każdy paleta zawiera 24 bloczki. Dlatego liczba potrzebnych palet wynosi 500 / 24 = 20,83, co oznacza, że musimy zakupić 21 pełnych palet, ponieważ sprzedaż odbywa się wyłącznie w kompletnych paletach. Koszt jednej palety wynosi 1200,00 zł, więc całkowity koszt zakupu wynosi 21 * 1200,00 zł = 25 200,00 zł. Ustalając zapotrzebowanie materiałowe w budownictwie, ważne jest uwzględnienie takich parametrów jak pojemność transportowa materiałów oraz zasady zakupu hurtowego, co pozwala na optymalizację kosztów i efektywność logistyczną. W praktyce, wiele przedsiębiorstw budowlanych korzysta z tego typu kalkulacji, aby precyzyjnie planować budżet oraz harmonogram dostaw, co jest zgodne z dobrymi praktykami zarządzania projektem budowlanym.

Pytanie 26

Aby przygotować zaprawę cementowo-wapienną, użyto 50 kg wapna. Jaką ilość cementu trzeba zastosować do tej zaprawy, jeśli proporcja objętościowa składników wynosi 1:2:4?

A. 50 kg
B. 100 kg
C. 150 kg
D. 25 kg
Wykorzystanie niewłaściwego podejścia do obliczeń może prowadzić do poważnych błędów w proporcjach zaprawy. Odpowiedzi sugerujące użycie 50 kg cementu mogą wynikać z błędnej interpretacji proporcji. W rzeczywistości, w przypadku podanego stosunku 1:2:4, stosunek cementu do wapna wynosi 1:2. Oznacza to, że w każdej jednostce cementu powinny być dwa razy większe ilości wapna, co w praktyce oznacza, że jeżeli ilość wapna wynosi 50 kg, ilość cementu musi być proporcjonalnie mniejsza, a nie większa. Co więcej, odpowiedzi w postaci 100 kg czy 150 kg cementu nie tylko naruszają zasady proporcji, ale również mogą prowadzić do nadmiernego obciążenia strukturalnego zaprawy, co może skutkować pęknięciami i osłabieniem trwałości. Takie błędne podejście do obliczeń może być spowodowane brakiem zrozumienia właściwych relacji między składnikami zaprawy. Dla uzyskania odpowiednich właściwości mechanicznych, fundamentalne jest przestrzeganie proporcji objętościowych, co w praktyce budowlanej można osiągnąć przez stosowanie gotowych mieszanek, które są starannie przygotowane i przetestowane pod kątem jakości. Dlatego ważne jest, aby przy pracy z materiałami budowlanymi nie tylko znać zasady, ale również umieć je stosować w praktyce, aby uniknąć nieodwracalnych skutków dla konstrukcji.

Pytanie 27

Jak powinno się przygotować podłoże z cegły rozbiórkowej do tynkowania, jeżeli jest zabrudzone sadzą i tłuszczem?

A. Umyć wodą z detergentem
B. Nałożyć warstwę folii w płynie
C. Wyczyścić szczotką, a następnie spłukać wodą
D. Zeszkrobać papierem ściernym
Odpowiedzi takie jak 'Oczyścić szczotką i zmyć wodą', 'Zeszlifować papierem ściernym' oraz 'Pokryć warstwą folii w płynie' nie są odpowiednie dla przygotowania podłoża z cegły rozbiórkowej z zabrudzeniami, jak sadza i tłuszcz. Oczyszczanie szczotką może być przydatne w przypadku luźnych zanieczyszczeń, jednak nie usuwa skutecznie tłustych plam czy osadów, które mogą nie tylko obniżyć przyczepność tynku, ale również prowadzić do późniejszych problemów z estetyką i trwałością wykończenia. Zeszlifowanie papierem ściernym, z kolei, dotyczy jedynie wygładzania powierzchni, a nie usuwania zanieczyszczeń chemicznych. Dodatkowo, może to prowadzić do uszkodzenia struktury cegły, co w konsekwencji wpływa na jej właściwości nośne i estetyczne. Natomiast pokrycie podłoża folią w płynie jest techniką stosowaną w celu zabezpieczenia przed wilgocią, ale nie eliminuje zanieczyszczeń. Takie niepoprawne podejścia mogą prowadzić do poważnych błędów w procesie tynkowania, co skutkuje koniecznością kosztownych napraw lub ponownego tynkowania. Kluczowe jest, aby przed nałożeniem tynku, podłoże było dokładnie oczyszczone, co jest zgodne z ogólnie przyjętymi standardami w branży budowlanej, które postulują przygotowanie podłoża w celu zapewnienia optymalnej przyczepności i trwałości wykonanego wykończenia.

Pytanie 28

Gdy konstrukcja budynku opiera się na stalowych kształtownikach, to przed nałożeniem tynku na słup stalowy należy go

A. pomalować farbą
B. oszlifować
C. umyć wodą
D. owinąć siatką
Owinąć siatką słup stalowy przed otynkowaniem jest kluczowe dla zapewnienia odpowiedniego współczynnika przyczepności między tynkiem a stalą. Siatka zbrojeniowa, wykonana z odpowiednich materiałów, takich jak stal lub włókna syntetyczne, tworzy solidną podstawę dla tynku, poprawiając jego przyczepność oraz zwiększając ogólną trwałość wykończenia. Stalowe słupy, ze względu na swoją gładką powierzchnię, mogą mieć trudności z utrzymaniem tynku, jeśli nie zostaną odpowiednio przygotowane. Oprócz tego, owinęcie siatką chroni stal przed uszkodzeniami mechanicznymi podczas wykonywania dalszych prac budowlanych. W praktyce budowlanej często stosuje się również siatki o różnej wielkości oczek, co pozwala na dostosowanie ich do specyficznych wymagań projektu. Zgodnie z normami budowlanymi, takimi jak PN-EN 13914, odpowiednie przygotowanie podłoża jest kluczowe dla uzyskania trwałych i estetycznych wykończeń budowlanych.

Pytanie 29

Oblicz całkowity koszt realizacji tynku mozaikowego na ścianie o powierzchni 30 m2, przy założeniu, że koszt robocizny wynosi 25,00 zł/m2, a wydatki na materiały to 20,00 zł/m2?

A. 750,00 zł
B. 1 500,00 zł
C. 600,00 zł
D. 1 350,00 zł
Aby policzyć, ile będzie kosztowało zrobienie tynku mozaikowego na ścianie o powierzchni 30 m², musimy zsumować koszty robocizny i materiałów. Koszt robocizny to 25 zł za m², więc przy 30 m² wychodzi 750 zł. Koszt materiałów to 20 zł za m², co daje 600 zł. Zatem całkowity koszt wynosi 1 350 zł. W branży budowlanej to standardowe podejście do obliczeń. Dobrze jest też pamiętać o innych wydatkach, które mogą się pojawić, jak np. transport materiałów czy wynajem sprzętu – to wszystko może mieć wpływ na ostateczną cenę.

Pytanie 30

Tynk dekoracyjny stworzony z zaprawy gipsowej lub gipsowo-wapiennej, naśladujący marmur, to

A. fresk
B. sztukateria
C. stiuk
D. sgraffito
Sgraffito to technika zdobnicza, w której zdrapuje się warstwy kolorowej zaprawy, aby uzyskać różne wzory. Zazwyczaj jest to metoda stosowana na elewacjach budynków, więc nie pasuje do pytania o stiuk. Fresk to natomiast technika malarska, gdzie pigmenty mieszają się z wodą i nakłada się je na mokry tynk. Zazwyczaj widzimy freski na wielkich ścianach i sufitach, ale nie mają one nic wspólnego z imitowaniem marmuru. Z kolei sztukateria to dekoracyjne elementy, jak gzymsy czy kolumny, a nie tynkowane powierzchnie. Błędy myślenia, które prowadzą do takich pomyłek to często mylenie tych technik wykończeniowych. Czasem można nie rozumieć, że stiuk to konkretna technika, która ma swoje unikalne cechy, co prowadzi do złego wyboru odpowiedzi.

Pytanie 31

W jakim momencie powinno się przeprowadzać odbiór robót murarskich?

A. Przed zakończeniem tynków, ale po zamontowaniu ościeżnic okien i drzwi
B. Po zakończeniu tynków oraz zamontowaniu ościeżnic okien i drzwi
C. Po zakończeniu tynków, lecz przed zamontowaniem ościeżnic okien i drzwi
D. Przed zakończeniem tynków i przed zamontowaniem ościeżnic okien i drzwi
Odpowiedzi wskazujące na odbiór robót murarskich po wykonaniu tynków lub przed osadzeniem ościeżnic okien i drzwi opierają się na niewłaściwym zrozumieniu sekwencji prac budowlanych. W przypadku przeprowadzenia odbioru robót murarskich dopiero po wykonaniu tynków, istnieje znaczne ryzyko, że ewentualne wady murów, takie jak pęknięcia, nierówności czy błędne wymiary, będą ukryte pod warstwą tynku. Takie podejście może prowadzić do konieczności przeprowadzania kosztownych poprawek w przyszłości, co jest niezgodne z zasadami efektywnego zarządzania projektem budowlanym. Dodatkowo, jeśli odbiór robót murarskich odbyłby się przed osadzeniem ościeżnic, nie byłoby możliwości oceny, czy otwory na okna i drzwi zostały prawidłowo przygotowane. To może z kolei prowadzić do problemów z ich montażem i wykończeniem. W branży budowlanej kluczowe jest przestrzeganie ustalonych procedur, które pozwalają na wczesne wykrywanie i eliminowanie błędów. Dlatego odbiór robót murarskich powinien odbywać się po osadzeniu ościeżnic, ale przed tynkowaniem, co jest zgodne z zasadami jakości oraz standardami budowlanymi.

Pytanie 32

Na podstawie przedstawionej instrukcji przygotowania gotowej zaprawy murarskiej podaj, ile wody należy przygotować do sporządzenia zaprawy z 4 opakowań?

Instrukcja przygotowania zaprawy
Suchą mieszankę należy zarobić z 3,5 litrami czystej i zimnej wody, mieszając mechanicznie przy użyciu wiertarki wolnoobrotowej.
Zawartość opakowania: 25 kg

A. 3,5 litra
B. 10,5 litra
C. 14,0 litrów
D. 7,0 litrów
Odpowiedź 14,0 litrów jest prawidłowa, ponieważ zgodnie z instrukcją na zdjęciu, do przygotowania zaprawy murarskiej z jednego opakowania potrzeba 3,5 litra wody. Aby obliczyć ilość wody potrzebną do sporządzenia zaprawy z czterech opakowań, należy pomnożyć tę wartość przez 4. Wykonując obliczenie: 4 x 3,5 litra = 14 litrów, otrzymujemy właściwą ilość wody. Przygotowanie odpowiedniej ilości wody jest kluczowe dla uzyskania właściwej konsystencji zaprawy, co wpływa na jej wytrzymałość i trwałość. Zbyt mała ilość wody może skutkować zbyt gęstą zaprawą, co utrudnia jej aplikację i obniża przyczepność do materiałów budowlanych. Z drugiej strony, nadmiar wody może osłabić zaprawę, prowadząc do pęknięć i degradacji w dłuższym czasie. Zastosowanie odpowiednich proporcji wody i zaprawy jest standardem w branży budowlanej, co potwierdzają zalecenia producentów materiałów budowlanych. Dbanie o precyzyjne przygotowanie mieszanki wpływa na jakość wykonywanych prac budowlanych oraz ich trwałość.

Pytanie 33

Najdłuższy czas przydatności do użycia, licząc od momentu połączenia składników, posiada zaprawa

A. wapienna
B. wapienno-cementowa
C. cementowo-gliniana
D. cementowa
Wybór zaprawy cementowej jako najbardziej odpowiedniej nie jest uzasadniony, ponieważ zaprawy cementowe, choć bardzo wytrzymałe i szybkoschnące, mają znacznie krótszy czas przydatności do użycia po zmieszaniu niż zaprawy wapienne. W przypadku zaprawy cementowej, proces wiązania zachodzi w ciągu kilku godzin, co ogranicza czas, w którym można ją skutecznie zastosować. Co więcej, gdy zaprawa cementowa zaczyna twardnieć, staje się znacznie mniej plastyczna, co utrudnia jej aplikację. Podobnie, zaprawy wapienno-cementowe, choć łączą cechy obu materiałów, nadal są ograniczone czasowo przez właściwości cementu. Zaprawa cementowo-gliniana także nie jest odpowiednia, ponieważ glina, w połączeniu z cementem, ma tendencję do wydłużania czasu wiązania, co nie jest korzystne w kontekście praktycznym. Najczęstsze błędy myślowe przy wyborze tych zapraw polegają na przesadnym akcentowaniu ich wytrzymałości, przy jednoczesnym bagatelizowaniu ich właściwości czasowych. W praktyce, wybór odpowiedniego materiału budowlanego powinien bazować na zrozumieniu specyficznych właściwości, zastosowania oraz wymagań projektu, co jest kluczowe dla zapewnienia trwałości i efektywności konstrukcji.

Pytanie 34

Jakiego rodzaju kruszywa należy użyć do stworzenia zaprawy, która będzie przeznaczona do wykonania tynku izolacyjnego?

A. Żużla wielkopiecowego
B. Piasku kwarcowego
C. Miału marmurowego
D. Piasku rzecznego
Piasek kwarcowy, choć często używany w budownictwie, nie jest odpowiedni do produkcji zapraw ciepłochronnych, głównie z powodu swoich właściwości termoizolacyjnych, które są znacznie gorsze niż te oferowane przez żużel wielkopiecowy. Piasek kwarcowy charakteryzuje się dużą gęstością i masą, co może prowadzić do zwiększenia ciężaru tynku, a tym samym do obniżenia jego efektów izolacyjnych. W kontekście tynków ciepłochronnych, kluczowe jest, aby kruszywo miało zdolność do zatrzymywania powietrza w swojej strukturze, co piasek kwarcowy nie jest w stanie zapewnić. Z kolei miał marmurowy, pomimo że ma estetyczne walory, nie spełnia wymogów dotyczących termoizolacyjności i może być zbyt drogi w zastosowaniu w skali budownictwa. Piasek rzeczny, choć z natury ma mniejsze zanieczyszczenia, również nie zapewnia odpowiednich właściwości izolacyjnych i może prowadzić do problemów z wilgocią w tynku. Wybór niewłaściwego kruszywa może skutkować nieefektywnymi rozwiązaniami budowlanymi, co podkreśla znaczenie stosowania materiałów zgodnych z wytycznymi branżowymi oraz normami, takimi jak PN-EN 998-1, które precyzują parametry technologiczne dla zapraw budowlanych. Dlatego też kluczowe jest, aby osoby zajmujące się doborem materiałów budowlanych miały świadomość właściwości technicznych i praktycznych aspektów używanych surowców.

Pytanie 35

Jakie właściwości techniczne wyróżniają stwardniałą zaprawę murarską?

A. Proporcje oraz urabialność
B. Nasiąkliwość oraz urabialność
C. Wytrzymałość na ściskanie i nasiąkliwość
D. Wytrzymałość na ściskanie i proporcje
Stwardniała zaprawa murarska jest kluczowym elementem w budownictwie, a jej cechy techniczne mają istotny wpływ na trwałość oraz stabilność konstrukcji. Wytrzymałość na ściskanie odnosi się do zdolności materiału do wytrzymywania dużych obciążeń bez deformacji czy zniszczenia. W praktyce oznacza to, że zaprawa murarska musi być w stanie utrzymać ciężar elementów budowlanych, na przykład cegieł czy bloczków, co jest fundamentem dla wszelkiego rodzaju budowli. Nasiąkliwość z kolei odnosi się do zdolności zaprawy do absorbowania wody, co jest kluczowe w kontekście ochrony przed wilgocią. Nasiąkliwość wpływa na długoterminową trwałość zaprawy, ponieważ zbyt wysoka nasiąkliwość może prowadzić do powstawania pęknięć i osłabienia struktury. Przykładowo, w normach budowlanych, takich jak PN-EN 998-2, podkreśla się znaczenie wytrzymałości i nasiąkliwości w kontekście oceny zapraw murarskich, co potwierdza ich praktyczne zastosowanie w budownictwie. Również w standardach jakości, takich jak ISO 9001, te cechy są uwzględniane, co pokazuje ich fundamentalne znaczenie w zapewnianiu wysokiej jakości materiałów budowlanych.

Pytanie 36

Aby przywrócić właściwości ścian murowanych, które zostały zasolone i zawilgocone, potrzebna jest zaprawa

A. renowacyjna
B. izolująca cieplnie
C. ogólnego przeznaczenia
D. lekka
Zaprawa renowacyjna jest specjalnie zaprojektowana do naprawy uszkodzeń, takich jak zasolenie i zawilgocenie ścian murowanych. Zawiera składniki, które pomagają w redukcji krytycznych problemów związanych z wilgocią i solami, co jest kluczowe w zachowaniu integralności konstrukcyjnej budynków. Przykładowo, podczas renowacji zabytkowych murów, ważne jest, aby zastosować materiały, które są kompatybilne z oryginalnymi, aby nie spowodować dalszych uszkodzeń. W praktyce, zaprawy renowacyjne charakteryzują się niską przepuszczalnością dla wody oraz dobrą paroprzepuszczalnością, co pozwala na regulację wilgotności w murze, a także na wyeliminowanie problemów z solami, które mogą prowadzić do degradacji materiału. Dobrym przykładem zastosowania zaprawy renowacyjnej jest konserwacja starych budynków, gdzie zachowanie oryginalnych materiałów i struktury jest kluczowe dla utrzymania wartości historycznej i estetycznej.

Pytanie 37

Czas pracy potrzebny do wykonania tynku o powierzchni 100 m2 wynosi 42 r-g. Oblicz koszt robocizny związanej z otynkowaniem ścian o powierzchni 450 m2, przy stawce 20,00 zł za 1 r-g.

A. 840,00 zł
B. 2 000,00 zł
C. 9 000,00 zł
D. 3 780,00 zł
Prawidłowa odpowiedź wynika z precyzyjnego obliczenia kosztów robocizny związanej z otynkowaniem większej powierzchni. Na początku obliczamy, ile roboczogodzin (r-g) potrzeba na otynkowanie 450 m². Skoro na 100 m² nakład robocizny wynosi 42 r-g, to dla 450 m² stosujemy proporcję: (450 m² / 100 m²) * 42 r-g = 189 r-g. Następnie, mając stawkę za 1 r-g równą 20,00 zł, obliczamy koszt robocizny: 189 r-g * 20,00 zł = 3 780,00 zł. Praktyczne zastosowanie tego obliczenia jest kluczowe w branży budowlanej, gdzie precyzyjne kalkulacje kosztów wpływają na efektywność budżetowania i planowania projektów. Dobre praktyki sugerują, aby zawsze uwzględniać zmienność w nakładach robocizny oraz stawki na poziomie lokalnym, co pozwala na dokładniejsze prognozowanie kosztów.

Pytanie 38

Jakie narzędzia są przeznaczone do demontażu ścian?

A. Paca, młotek z gumowym zakończeniem
B. Kilof, oskard, młot pneumatyczny
C. Strug, szpachla, wiertarka o niskich obrotach
D. Przecinak, kielnia, młotek do murowania
Kilof, oskard i młot pneumatyczny to jakby must-have w rozbiórce ścian, zwłaszcza jak robisz coś w budowlance czy remoncie. Kilof to takie mocne narzędzie, które świetnie sobie radzi z twardymi materiałami jak beton czy cegła. Z kolei oskard ma szersze ostrze i jest super do zdzierania tynku albo rozdzielania konstrukcji. Młot pneumatyczny to już technologia, bo używa sprężonego powietrza, żeby zrobić duże uderzenie i to naprawdę przyspiesza rozbiórkę, zwłaszcza jak mamy do czynienia z grubymi ściankami. Ważne jest, żeby używać tych narzędzi mądrze, czyli dbać o bezpieczeństwo, zakładać odpowiednią odzież ochronną i ogólnie trzymać porządek w miejscu pracy. Dobrze zaplanowana rozbiórka, z właściwymi narzędziami w ręku, może znacznie zmniejszyć ryzyko uszkodzeń i sprawi, że wszystko pójdzie sprawniej.

Pytanie 39

Przygotowanie zaprawy cementowo-wapiennej w sposób ręczny polega na odmierzeniu wszystkich składników, a następnie ich zmieszaniu

A. cementu z piaskiem i dodaniu ciasta wapiennego rozrzedzonego wodą
B. wody z piaskiem i dodaniu ciasta wapiennego oraz cementu
C. wody z cementem i dodaniu piasku oraz ciasta wapiennego
D. cementu z ciastem wapiennym rozrzedzonym wodą i dodaniu piasku
Ręczne przygotowanie zaprawy cementowo-wapiennej polega na odpowiednim doborze składników, które mają ze sobą harmonijnie współpracować. Właściwa metoda to zmieszanie cementu z piaskiem, a następnie dodanie ciasta wapiennego rozrzedzonego wodą. Cement i piasek tworzą bazę zaprawy, a ich proporcje muszą być dostosowane do planowanego zastosowania zaprawy, co jest zgodne z normami budowlanymi. Zastosowanie ciasta wapiennego wprowadza dodatkowe właściwości, takie jak elastyczność i zdolność do utrzymywania wilgoci, co jest niezwykle ważne w przypadku tynków czy łączeń murarskich. Przykładowo, w budownictwie, zaprawy wykonane w ten sposób są często wykorzystywane do murowania ścian, co zapewnia dobrą przyczepność oraz długowieczność konstrukcji. W przypadku tynkowania, odpowiednia konsystencja zaprawy jest kluczowa dla uzyskania gładkiej powierzchni i prawidłowego schnięcia, co również jest istotne z punktu widzenia estetyki i funkcjonalności budynku.

Pytanie 40

Aby mechanicznie przygotować zaprawę murarską z objętościowym dozowaniem składników na budowie, jakie narzędzia są konieczne?

A. betoniarka, taczka, sito
B. betoniarka, łopata, sito
C. wiadro, kasta na zaprawę, łopata
D. wiadro, betoniarka, łopata
Odpowiedź 'wiadro, betoniarka, łopata' jest prawidłowa, ponieważ każda z tych trzech pozycji odgrywa kluczową rolę w procesie przygotowania zaprawy murarskiej na placu budowy. Betoniarka służy do mechanicznego mieszania zaprawy, co zapewnia jednorodność i odpowiednią konsystencję mieszanki. Użycie betoniarki jest zgodne z najlepszymi praktykami, ponieważ ręczne mieszanie często prowadzi do nierównomiernego rozkładu składników. Wiadro jest niezbędne do pomiaru objętości składników, co umożliwia precyzyjne dozowanie materiałów, takich jak cement, piasek i woda. Łopata natomiast jest używana do transportu oraz rozkładania zaprawy, co jest istotne w procesie budowy. Przy odpowiednim użyciu tych narzędzi można znacznie zwiększyć efektywność i jakość wykonania prac murarskich, a także zminimalizować ryzyko błędów związanych z proporcjami składników. W praktyce, na budowie, niezwykle istotne jest również przestrzeganie standardów jakości i bezpieczeństwa, co wymaga odpowiedniego wyposażenia w niezbędne narzędzia.