Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik pojazdów samochodowych
  • Kwalifikacja: MOT.05 - Obsługa, diagnozowanie oraz naprawa pojazdów samochodowych
  • Data rozpoczęcia: 25 kwietnia 2025 12:55
  • Data zakończenia: 25 kwietnia 2025 13:25

Egzamin zdany!

Wynik: 33/40 punktów (82,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Z analizy danych ze skanera układu OBD wynika, że wystąpił błąd o kodzie P0301 - Wypadanie zapłonów w cylindrze nr 1. Możliwą przyczyną tego błędu może być uszkodzenie

A. pompy paliwowej
B. sondy lambda
C. przewodu zapłonowego
D. katalizatora ceramicznego
Uszkodzenie przewodu zapłonowego jest jedną z najczęstszych przyczyn wypadania zapłonów w silnikach spalinowych, co potwierdza wystąpienie błędu o kodzie P0301, który wskazuje na problemy z cylindrem nr 1. Przewód zapłonowy przekazuje sygnał elektryczny z cewki zapłonowej do świecy zapłonowej, a jego uszkodzenie może prowadzić do przerw w obwodzie elektrycznym. W praktyce, jeśli przewód jest zużyty, pęknięty lub ma luźne połączenia, może to powodować brak odpowiedniego ciśnienia elektrycznego, co skutkuje niewłaściwym zapłonem mieszanki paliwowo-powietrznej. Dbanie o stan przewodów zapłonowych jest kluczowe dla prawidłowego funkcjonowania silnika oraz osiągów pojazdu. W przypadku stwierdzenia wypadania zapłonów, zaleca się nie tylko wymianę uszkodzonych przewodów, ale również sprawdzenie stanu świec zapłonowych oraz cewki zapłonowej, aby uniknąć podobnych problemów w przyszłości, co jest zgodne z dobrymi praktykami w diagnostyce i utrzymaniu pojazdów.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Jaką jednostkę stosuje się do określenia momentu obrotowego silnika?

A. Nm
B. kW
C. KM
D. N
Moment obrotowy silnika, określany w niutonometrach (Nm), jest kluczowym parametrem, który wskazuje na zdolność silnika do wykonywania pracy obrotowej. W praktyce, moment obrotowy jest istotny w zastosowaniach takich jak napęd pojazdów, gdzie większy moment obrotowy pozwala na lepsze przyspieszenie i osiąganie wyższych prędkości w niższych zakresach obrotów silnika. Na przykład, silniki diesla zazwyczaj charakteryzują się wyższym momentem obrotowym w porównaniu do silników benzynowych, co czyni je bardziej efektywnymi w cięższych pojazdach transportowych. W branży motoryzacyjnej i inżynieryjnej, moment obrotowy jest również kluczowym wskaźnikiem dla systemów napędowych, gdyż pozwala na optymalizację konstrukcji przekładni. Standardy ISO oraz SAE dostarczają wytycznych dotyczących pomiarów i interpretacji momentu obrotowego, co jest niezbędne dla zapewnienia spójności i jakości w produkcji oraz testach silników.

Pytanie 5

W alternatorze, który generuje prąd przemienny do zasilania elektryki w samochodzie, zastosowane jest zjawisko indukcji

A. elektromagnetycznej
B. elektrycznej
C. elektrostatycznej
D. wzajemnej
Alternator w samochodzie generuje prąd przemienny dzięki zjawisku indukcji elektromagnetycznej. Zjawisko to polega na wytwarzaniu siły elektromotorycznej w przewodniku, gdy znajduje się on w zmiennym polu magnetycznym. W alternatorze wirnik (rotor) obraca się w polu magnetycznym stworzonym przez stałe magnesy lub elektromagnesy, co powoduje zmianę strumienia magnetycznego, co z kolei indukuje prąd przemienny w stojanie. Prąd ten jest następnie prostowany przez prostownik, aby zasilić systemy elektryczne pojazdu. Praktycznym zastosowaniem tej technologii jest dostarczanie energii do akumulatora oraz różnych komponentów elektrycznych, takich jak oświetlenie, systemy audio czy jednostki sterujące. Właściwe projektowanie alternatorów zgodnie z normami SAE (Society of Automotive Engineers) oraz IEC (International Electrotechnical Commission) zapewnia ich wydajność oraz trwałość, co jest kluczowe dla niezawodności pojazdów. W związku z tym zrozumienie zasady działania indukcji elektromagnetycznej jest niezbędne dla specjalistów w dziedzinie inżynierii elektrycznej i motoryzacyjnej.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Aby zmierzyć zużycie gładzi cylindrowej w silniku spalinowym, powinno się zastosować

A. mikroskop warsztatowy
B. średnicówkę czujnikową
C. szczelinomierz
D. suwmiarkę
Średnicówka czujnikowa jest narzędziem pomiarowym, które zapewnia wysoką precyzję w pomiarach średnicy otworów oraz gładzi cylindrowej w silnikach spalinowych. Jest to kluczowe, gdyż precyzyjne określenie wymiarów gładzi cylindrowej ma bezpośredni wpływ na efektywność silnika oraz jego żywotność. Gładź cylindrowa musi być idealnie gładka i o odpowiednich wymiarach, aby zapewnić prawidłową współpracę z tłokiem oraz optymalne smarowanie. Użycie średnicówki czujnikowej pozwala na dokładne pomiary, które są istotne w kontekście diagnostyki oraz remontów silników. W praktyce, przy pomocy tego narzędzia można z łatwością określić, czy gładź cylindrowa wymaga regeneracji, czy też można pozostawić ją w jej obecnym stanie. Standardy branżowe, takie jak ISO 9001, podkreślają znaczenie precyzyjnych pomiarów w procesach produkcyjnych i serwisowych, a średnicówki czujnikowe są doskonałym przykładem narzędzi, które spełniają te wymagania.

Pytanie 9

Do metod ilościowych stosowanych przy weryfikacji elementów samochodowych należy metoda

A. penetrująca
B. ultradźwiękowa
C. objętościowa
D. magnetyczna
Wybór metod ultradźwiękowych, magnetycznych i penetrujących w kontekście weryfikacji części samochodowych to nie jest najlepszy pomysł. Te metody są raczej nieniszczące - na przykład, ultradźwięki świetnie wykrywają wewnętrzne defekty materiałów, ale nie nadają się do pomiarów ilościowych, co czyni je dość mało trafnymi w tym pytaniu. Z kolei metoda magnetyczna, która służy do identyfikacji pęknięć w materiałach ferromagnetycznych, też nie jest metodą ilościową, bo przede wszystkim ocenia jakość struktury materiału. Metoda penetrująca, jak sama nazwa wskazuje, polega na oglądaniu powierzchni materiału pod kątem wad, ale znowu - nie dostarcza nam konkretnej ilości, co jest istotne tutaj. Takie pomyłki wynikają z braku zrozumienia, jakie mają zastosowanie poszczególne metody badawcze. Wiedza na temat różnicy pomiędzy metodami nieniszczącymi a ilościowymi jest kluczowa, żeby poprawnie przeprowadzać weryfikację i utrzymywać wysokie standardy jakości w produkcji.

Pytanie 10

Wałek napędowy oraz koło talerzowe stanowią element mechanizmu w pojeździe

A. napędu wycieraczek
B. przekładni głównej
C. przekładni kierowniczej
D. napędu układu rozrządu
Wałek atakujący i koło talerzowe to naprawdę kluczowe części w przekładni głównej Twojego pojazdu. To one odpowiadają za to, że moc z silnika może dotrzeć do kół, co w efekcie sprawia, że auto w ogóle może jechać. Wałek atakujący, czyli wałek wejściowy, jest bezpośrednio podpięty do silnika i przekazuje tę żądaną energię do całej przekładni. A koło talerzowe w połączeniu z zębatką zmienia kierunek obrotów i przekształca je w ruch, który napędza koła. Fajnie jest zrozumieć, jak te elementy działają, bo to pomoże w diagnostyce i serwisowaniu układów napędowych w pojazdach. Jak coś w tej przekładni nie działa jak trzeba, to mogą być poważne problemy, dlatego warto regularnie kontrolować, a niekiedy wymieniać płyny, żeby wszystko śmigało jak w zegarku, zgodnie z tym, co piszą producenci i branżowe standardy.

Pytanie 11

Refraktometr jest wykorzystywany do oceny możliwości dalszej eksploatacji

A. łożysk tocznych
B. płynu hamulcowego
C. klocków hamulcowych
D. oleju silnikowego
Refraktometr jest kluczowym narzędziem w ocenie jakości płynów eksploatacyjnych, zwłaszcza płynów hamulcowych. Jego główną funkcją jest pomiar współczynnika załamania światła, co umożliwia określenie stanu chemicznego i fizycznego badanego płynu. W przypadku płynów hamulcowych, ich właściwości są krytyczne dla bezpieczeństwa pojazdów. W miarę starzenia się płynu, jego właściwości mogą ulec zmianie, co prowadzi do obniżenia efektywności hamowania. Wartości te można porównywać z danymi od producentów, co pozwala na zaplanowanie wymiany płynu w odpowiednim czasie. Przykładem zastosowania refraktometru jest pomiar, który powinien być przeprowadzany regularnie, szczególnie w pojazdach użytkowanych w trudnych warunkach. Standardy branżowe, takie jak DOT 3, DOT 4 i DOT 5.1, określają wymagania dotyczące właściwości płynów hamulcowych, a refraktometr dostarcza praktycznych informacji pomocnych w ich monitorowaniu.

Pytanie 12

Aby uzupełnić czynnik chłodniczy w nowoczesnej klimatyzacji samochodowej, należy użyć czynnika o symbolu

A. R-134a
B. R-1234yf
C. R-22
D. R-12
Używanie czynników chłodniczych R-22, R-134a i R-12 w nowoczesnych systemach klimatyzacji jest nieodpowiednie i sprzeczne z aktualnymi normami ekologicznymi oraz wymaganiami technicznymi. R-22, znany jako freon, jest czynnikiem, który ze względu na swój wpływ na warstwę ozonową został wycofany z użytku w większości krajów w ramach protokołu montrealskiego. Czynnik R-134a, choć był powszechnie stosowany w przeszłości, ma znaczny potencjał cieplarniany, co powoduje, że nowe przepisy zmuszają producentów do przechodzenia na bardziej ekologiczne alternatywy, takie jak R-1234yf. R-12, również freon, był szeroko stosowany w klimatyzacji, jednak jego produkcja została zakończona przez wprowadzenie regulacji dotyczących substancji zubożających warstwę ozonową. Błędne przekonanie o możliwości stosowania tych starych czynników w nowych systemach może prowadzić do poważnych konsekwencji, takich jak utrata gwarancji, nieefektywność działania klimatyzacji oraz potencjalnie szkodliwe skutki dla środowiska. Dlatego kluczowe jest, aby technicy i użytkownicy samochodów byli świadomi aktualnych wymogów i norm, aby unikać stosowania przestarzałych i szkodliwych substancji.

Pytanie 13

Jaki łączny koszt będzie naprawy głowicy silnika, jeśli wymienione zostały 2 zawory dolotowe w cenie 27 zł za sztukę oraz 2 zawory wylotowe po 25 zł za sztukę? Czas dostarczenia jednego zaworu wynosi 20 minut, a stawka za roboczogodzinę to 90 zł?

A. 224 zł
B. 154 zł
C. 204 zł
D. 124 zł
Aby obliczyć całkowity koszt naprawy głowicy silnika, musimy uwzględnić zarówno koszty części zamiennych, jak i czas pracy mechanika. W tej sytuacji wymieniono 2 zawory dolotowe w cenie 27 zł za sztukę oraz 2 zawory wylotowe po 25 zł za sztukę. Obliczamy koszty części: (2 x 27 zł) + (2 x 25 zł) = 54 zł + 50 zł = 104 zł. Następnie obliczamy czas potrzebny na dostarczenie zaworów. Każdy zawór wymaga 20 minut, więc dla 4 zaworów potrzebujemy 80 minut. Przeliczając to na godziny, otrzymujemy 1,33 godziny (80 minut / 60 minut). Koszt robocizny wynosi 90 zł za godzinę, więc całkowity koszt robocizny to 90 zł x 1,33 godziny = 119,7 zł. Łącząc te wartości, otrzymujemy 104 zł + 119,7 zł = 223,7 zł, co zaokrągla się do 224 zł. Zastosowanie tego typu obliczeń jest istotne w branży motoryzacyjnej, aby właściwie wyceniać usługi oraz planować budżet na ewentualne naprawy.

Pytanie 14

Który z komponentów należy do hydraulicznego systemu hamulcowego?

A. Pompa hamulcowa
B. Zbiornik powietrza
C. Kable hamulcowe
D. Zawór sterujący
Pompa hamulcowa jest kluczowym elementem hydraulicznego układu hamulcowego, ponieważ odpowiada za generowanie ciśnienia w układzie. Kiedy kierowca wciśnie pedał hamulca, pompa hamulcowa przetłacza płyn hamulcowy do cylindra hamulcowego, co z kolei powoduje, że klocki hamulcowe są dociskane do tarczy hamulcowej. Ten proces jest niezbędny do skutecznego spowolnienia lub zatrzymania pojazdu. W nowoczesnych samochodach stosuje się pompy hamulcowe o różnej budowie, w tym pompy z jednostkami ABS, które zapobiegają blokowaniu kół podczas hamowania. Przykładem zastosowania może być układ hamulcowy w samochodach osobowych, gdzie pompy hamulcowe są projektowane zgodnie z wytycznymi zawartymi w normach ISO oraz SAE, co gwarantuje ich niezawodność i efektywność. Dobrą praktyką jest regularne sprawdzanie stanu pompy hamulcowej oraz pozostałych komponentów układu w celu zapewnienia pełnej sprawności i bezpieczeństwa pojazdu.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

Zanim silnik zostanie usunięty z pojazdu, co należy najpierw wykonać?

A. odłączyć klemę akumulatora
B. spuścić olej z silnika
C. odkręcić skrzynię biegów
D. odłączyć przewody elektryczne
Odłączenie klemy akumulatora przed wymontowaniem silnika jest kluczowym krokiem w procesie demontażu, ponieważ zapewnia bezpieczeństwo zarówno dla osoby pracującej przy pojeździe, jak i dla samego pojazdu. Praca z układem elektrycznym pojazdu, w tym z silnikiem, bez odłączenia źródła zasilania może prowadzić do zwarć, uszkodzeń komponentów elektronicznych oraz niebezpiecznych sytuacji, jak porażenie prądem. Dobry praktyka inżynieryjna nakazuje, aby przed rozpoczęciem jakichkolwiek prac serwisowych związanych z silnikiem najpierw odłączyć klemę ujemną akumulatora, a następnie klemę dodatnią, co zapewnia nie tylko bezpieczeństwo, ale również możliwość wykonania prac w sposób uporządkowany. Dodatkowo, takie postępowanie minimalizuje ryzyko przypadkowego uruchomienia silnika, co może być niebezpieczne podczas prac naprawczych. W praktyce, profesjonaliści stosują ten krok jako standard, aby wyeliminować ryzyko związane z operacjami elektrycznymi oraz zapewnić bezpieczeństwo w warsztacie.

Pytanie 20

W trakcie spawania gazowego niemożliwe jest

A. nasączenie olejem lub innym tłuszczem zaworów butli
B. korzystanie z skórzanych rękawic ochronnych
C. aplikowanie defektoskopu
D. zbyt duże przewietrzanie warsztatu / hali
Smarowanie olejem lub innym tłuszczem zaworów butli podczas spawania gazowego jest niedopuszczalne, ponieważ może prowadzić do poważnych zagrożeń związanych z bezpieczeństwem. Tłuszcze mogą ułatwić zapłon oraz prowadzić do eksplozji, szczególnie w obecności gazów palnych. W praktyce, podczas obsługi butli gazowych, kluczowe jest przestrzeganie zasad bezpieczeństwa, które obejmują m.in. unikanie substancji łatwopalnych w pobliżu źródeł ognia. Zgodnie z dokumentami i normami branżowymi, takimi jak PN-EN ISO 3834, w procesach spawania należy stosować się do rygorystycznych norm bezpieczeństwa, aby minimalizować ryzyko pożaru i eksplozji. Dlatego ważne jest używanie odpowiednich technik konserwacyjnych, które nie wprowadzą dodatkowych zagrożeń. Na przykład, w przypadku potrzeby smarowania, zaleca się stosowanie środków przystosowanych do użycia w warunkach spawania, które nie są łatwopalne.

Pytanie 21

Potrzeba regularnej wymiany płynu hamulcowego wynika głównie

A. z zapowietrzenia układu hamulcowego
B. ze zmiany składu chemicznego płynu
C. z zanieczyszczenia płynu cząstkami i osadami
D. ze zwiększenia zawartości wody w płynie
Zwiększenie zawartości wody w płynie hamulcowym jest kluczowym powodem, dla którego konieczna jest jego okresowa wymiana. Płyn hamulcowy, szczególnie ten na bazie glikolu, ma zdolność absorpcji wilgoci z otoczenia. W miarę upływu czasu, woda, która dostaje się do układu, obniża temperaturę wrzenia płynu. To zjawisko może prowadzić do wystąpienia zjawiska 'wodnego wrzenia', co jest niebezpieczne, ponieważ podczas hamowania płyn może osiągnąć temperaturę wrzenia, co skutkuje utratą ciśnienia w układzie hamulcowym, a tym samym zmniejszeniem skuteczności hamowania. W praktyce, normy bezpieczeństwa, takie jak te określone przez DOT (Department of Transportation), zalecają sprawdzanie zawartości wody w płynie hamulcowym co dwa lata lub po przejechaniu określonego przebiegu. Regularna wymiana płynu hamulcowego pomaga utrzymać optymalną wydajność hamulców i zapewnia bezpieczeństwo na drodze. Dbanie o układ hamulcowy jest zatem fundamentalnym aspektem utrzymania pojazdu, który wpływa na bezpieczeństwo kierowcy oraz pasażerów.

Pytanie 22

W silniku spalinowym z tłokiem luz zaworowy jest

A. niedopuszczalny, ponieważ powoduje wzrost ilości świeżego ładunku w cylindrze
B. konieczny aby zapobiec kolizji zaworu z denkiem tłoka
C. konieczny w celu zrekompensowania rozszerzalności temperaturowej części układu rozrządu
D. zbędny, ponieważ prowadzi jedynie do szybszego zużycia elementów układu rozrządu
Luz zaworowy, chociaż niektórzy mogą uważać go za zbędny, jest w rzeczywistości kluczowym elementem dla prawidłowego funkcjonowania tłokowego silnika spalinowego. Twierdzenie, że luz zaworowy powoduje tylko szybsze zużycie części układu rozrządu, jest niepoprawne i ignoruje fundamentalne zasady pracy silnika. W rzeczywistości, brak odpowiedniego luzu może prowadzić do znaczniejszych problemów, takich jak kolizje między zaworami a tłokami, co jest kosztowne w naprawie. Wskazanie, że luz zaworowy jest niewskazany z powodu zwiększenia ilości świeżego ładunku w cylindrze, również jest mylące. Luz zaworowy nie wpływa na ilość ładunku w cylindrze w taki sposób; jego główną rolą jest zapewnienie odpowiedniego otwarcia i zamknięcia zaworów w odpowiednich momentach cyklu pracy silnika. Przekonanie, że luz zaworowy jest zbędny, może prowadzić do katastrofalnych skutków w postaci uszkodzeń silnika, a jego prawidłowe ustawienie jest zgodne z najlepszymi praktykami serwisowymi. Ignorowanie tej zasady jest typowym błędem, który może wystąpić wśród osób nieznających tematyki, co podkreśla znaczenie odpowiedniej edukacji w zakresie mechaniki pojazdowej.

Pytanie 23

Podczas montażu wału napędowego, widełki obu przegubów krzyżakowych trzeba ustawić

A. w płaszczyznach ustawionych względem siebie o 45 stopni
B. w każdym położeniu
C. w płaszczyznach ustawionych względem siebie o 90 stopni
D. w tej samej płaszczyźnie
Ustawienie widełek przegubów krzyżakowych w dowolnym położeniu lub w płaszczyznach przesuniętych względem siebie o 90 lub 45 stopni prowadzi do poważnych problemów z funkcjonowaniem wału napędowego. Gdy widełki są ustawione w różnych płaszczyznach, moment obrotowy nie jest przenoszony równomiernie, co wprowadza wibracje i zwiększa obciążenia na elementy układu. Takie ustawienie powoduje, że jeden z przegubów będzie pracował w sposób nieoptymalny, co może prowadzić do jego szybszego zużycia. Często spotykaną pomyłką jest przekonanie, że niewielkie przesunięcia nie mają wpływu na działanie, jednak zjawisko to jest opisane w teorii dynamicznej, gdzie nawet małe zmiany mogą prowadzić do istotnych skutków. Użytkownicy mogą również sądzić, że przechylanie przegubów w różne strony zwiększy elastyczność układu, co jest mylne, ponieważ zamiast tego wprowadza dodatkowe obciążenia i pogarsza kąt pracy przegubów. W praktyce przemysłowej, nieprzestrzeganie zasad montażu zgodnych z normami, takimi jak SAE J751, może prowadzić do nieefektywności operacyjnej i zwiększonych kosztów serwisowania. Aby uniknąć tych problemów, ważne jest, aby przed montażem przegubów dokładnie zaplanować ich ustawienie w jednej płaszczyźnie, co zapewni optymalną wydajność i długotrwałą niezawodność wału napędowego.

Pytanie 24

Jakie narzędzie należy zastosować do pomiaru średnicy czopów wału korbowego?

A. przymiaru kreskowego
B. śruby mikrometrycznej
C. suwmiarki o dokładności 0,1 mm
D. czujnika zegarowego
Śruba mikrometryczna jest narzędziem pomiarowym o wysokiej precyzji, które pozwala na dokładne mierzenie średnicy czopów wału korbowego z dokładnością do 0,01 mm. Dzięki swojej konstrukcji, umożliwia ona stopniowe przesuwanie się wzdłuż osi, co pozwala na uzyskanie dokładnych i powtarzalnych wyników pomiarowych. W kontekście precyzyjnych pomiarów w inżynierii mechanicznej, stosowanie śrub mikrometrycznych jest standardową praktyką, zwłaszcza przy pomiarach elementów krytycznych, takich jak czopy wału korbowego, gdzie tolerancje wymiarowe są bardzo istotne. Na przykład, przy produkcji silników, niedokładność w wymiarach czopów może prowadzić do niewłaściwego dopasowania elementów, co w konsekwencji może wpłynąć na wydajność silnika oraz jego trwałość. W związku z tym, śruba mikrometryczna jest nie tylko narzędziem, ale także kluczowym elementem zapewniającym jakość i niezawodność w procesie produkcyjnym.

Pytanie 25

W trakcie inspekcji głowicy silnika zauważono jej deformację, która polegała na zniekształceniu powierzchni styku z kadłubem. Odzyskanie właściwego kształtu głowicy jest możliwe poprzez przeprowadzenie obróbki

A. plastycznej w temperaturze pokojowej
B. plastycznej w wysokiej temperaturze
C. mechanicznej w wysokiej temperaturze
D. mechanicznej w temperaturze pokojowej
Tak, odpowiedź dotycząca mechanicznej obróbki na zimno jest jak najbardziej trafna, jeśli mówimy o przywracaniu kształtu głowicy silnika. Obróbka na zimno to taki sposób, gdzie używamy narzędzi w normalnej temperaturze, więc struktura metalu praktycznie nie cierpi. Gdy głowica silnika jest zdeformowana, to naprawdę ważne jest, żeby w trakcie tego procesu nie zmieniać jej mikrostruktury, bo mogłoby to wpłynąć na jej wytrzymałość i szczelność. Frezowanie, toczenie czy szlifowanie to takie klasyczne metody obróbcze na zimno, które pozwalają na dokładne usunięcie materiału i przywrócenie właściwych wymiarów. W praktyce często korzysta się z szlifowania, bo to daje super jakość powierzchni i świetne spasowanie z kadłubem. Fajnie też sprawdzać wymiary i jakość po obróbce, żeby mieć pewność, że naprawiona głowica spełnia techniczne normy i wymagania producenta.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

W jakich sytuacjach stosuje się spawanie jako metodę naprawy?

A. Przy naprawie uszkodzonych gwintów w kadłubie silnika
B. W trakcie naprawy gładzi cylindra
C. Podczas eliminacji odkształceń na powierzchni uszczelniającej głowicy
D. Przy usuwaniu pęknięć w bloku silnika
Usuwanie odkształceń powierzchni uszczelniającej głowicy, naprawa gładzi cylindrowych oraz usuwanie uszkodzonych otworów gwintowanych w kadłubie silnika są operacjami, które nie wymagają spawania jako głównej metody naprawczej. Usuwanie odkształceń w powierzchni uszczelniającej głowicy silnika zazwyczaj polega na szlifowaniu lub frezowaniu tej powierzchni, aby zapewnić szczelność po regeneracji. Metody te są bardziej odpowiednie, gdyż wymagają precyzyjnego dostosowania geometrii, co jest kluczowe dla prawidłowego uszczelnienia. Naprawa gładzi cylindrowych może obejmować honowanie lub wzmocnienie powierzchni cylindra, co również nie wiąże się ze spawaniem, a raczej z użyciem narzędzi skrawających. Z kolei usuwanie uszkodzonych otworów gwintowanych w kadłubie silnika jest zazwyczaj realizowane poprzez wtapianie wkładek gwintowych, co jest metodą mechaniczną, a nie spawalniczą. Kluczowym błędem w rozumowaniu jest założenie, że każda naprawa metalowych komponentów silnika może być wykonana za pomocą spawania, podczas gdy różne uszkodzenia wymagają odmiennego podejścia w zależności od rodzaju materiału, lokalizacji defektu oraz wymagań technologicznych. W praktyce należy zatem zwracać szczególną uwagę na dobór odpowiedniej metody naprawy, co jest zgodne z zasadami inżynierii materiałowej i mechaniki.

Pytanie 28

W silnikach chłodzonych wykorzystuje się cylindry użebrowane oraz głowice

A. olejem
B. powietrzem
C. cieczą
D. płynem hamulcowym
Użebrowane cylindry i głowice w silnikach chłodzonych powietrzem są naprawdę sprytnie zaprojektowane. Dzięki temu skutecznie odprowadzają ciepło, które powstaje podczas pracy silnika. W tych silnikach powietrze działa jak główny środek chłodzący, czyli ciepło przedostaje się przez metalowe ścianki do strumienia powietrza. Użebrowanie świetnie zwiększa powierzchnię wymiany ciepła, co jest mega ważne, zwłaszcza w trudnych warunkach, na przykład w silnikach lotniczych czy wyścigowych. Jeśli silnik nie ma odpowiedniego chłodzenia, to szybko może się przegrzać i to już prowadzi do różnych usterek. W motocyklach często wykorzystuje się te rozwiązania, bo pozwalają na redukcję masy i uproszczenie budowy. Z moich doświadczeń, normy takie jak SAE J1349 są ważne, bo określają, co jest potrzebne w systemach chłodzenia, a to jest kluczowe w inżynierii silników.

Pytanie 29

Kiedy prędkość obrotowa silnika wzrasta w wyniku nagłego wciśnięcia pedału gazu, prędkość samochodu rośnie w sposób nieproporcjonalny. Taki symptom w pojeździe z mechaniczną skrzynią biegów może sugerować uszkodzenie

A. sprzęgła
B. mechanizmu różnicowego
C. przekładni głównej
D. skrzyni biegów
Odpowiedź dotycząca uszkodzenia sprzęgła jest prawidłowa, ponieważ w przypadku gwałtownego naciśnięcia pedału gazu, jeśli sprzęgło nie działa prawidłowo, nie jest w stanie przekazać mocy z silnika na skrzynię biegów. Sprzęgło ma kluczowe zadanie w synchronizacji obrotów silnika z obrotami kół, co umożliwia płynne przyspieszanie pojazdu. Gdy sprzęgło jest uszkodzone, może dochodzić do poślizgu, co oznacza, że silnik zwiększa obroty, ale nie przekłada się to na proporcjonalny wzrost prędkości pojazdu. Przykładem może być sytuacja, gdy kierowca czuje, że silnik „kręci się” na wysokich obrotach, ale samochód nie przyspiesza w oczekiwany sposób. W takich przypadkach zaleca się natychmiastowe zbadanie stanu sprzęgła, aby uniknąć dalszych uszkodzeń. W praktyce, dobrym standardem jest regularne kontrolowanie stanu elementów układu napędowego, co może zapobiec poważnym awariom i kosztownym naprawom.

Pytanie 30

Po wymianie końcówek drążka kierowniczego należy koniecznie zweryfikować oraz w razie potrzeby przeprowadzić regulację

A. wyważenia kół
B. ustawienia świateł
C. zbieżności kół przednich
D. zbieżności kół tylnych
Po wymianie końcówek drążka kierowniczego kluczowe jest sprawdzenie i regulacja zbieżności kół przednich, ponieważ niewłaściwa zbieżność może prowadzić do nierównomiernego zużycia opon, pogorszenia stabilności pojazdu oraz negatywnego wpływu na jego właściwości jezdne. Zbieżność odnosi się do ustawienia kół w stosunku do siebie oraz do linii środkowej pojazdu. Utrzymanie prawidłowej zbieżności jest niezbędne, aby zapewnić optymalne prowadzenie i komfort jazdy. Przykładowo, jeśli kółka są zbieżne zbyt mocno do wewnątrz lub na zewnątrz, może to prowadzić do trudności w manewrowaniu oraz zwiększonego oporu toczenia. W praktyce, po wymianie końcówek drążka, mechanicy często korzystają z profesjonalnych urządzeń do pomiaru zbieżności, aby precyzyjnie ustawić kąty pracy kół. Zgodnie z zaleceniami branżowymi, regulację zbieżności powinno się przeprowadzać co najmniej raz w roku lub po każdej większej interwencji w układ kierowniczy, aby zapewnić długoterminowe bezpieczeństwo i efektywność pojazdu.

Pytanie 31

Aby uzupełnić poziom płynu w systemie hamulcowym, należy zastosować płyn oznaczony symbolem

A. DOT
B. 30W10
C. 40W10
D. ŁT4
Prawidłowa odpowiedź to DOT, co odnosi się do standardu klasyfikacji płynów hamulcowych. Płyny te są klasyfikowane na podstawie temperatury wrzenia oraz właściwości chemicznych. DOT (Department of Transportation) to oznaczenie stosowane w Stanach Zjednoczonych, które wskazuje, że dany płyn spełnia wymagania określone w normach dotyczących wydajności i bezpieczeństwa. Płyny hamulcowe oznaczone jako DOT są dostępne w różnych klasach, takich jak DOT 3, DOT 4 i DOT 5.1, które różnią się między sobą temperaturą wrzenia oraz odpornością na wilgoć. W praktyce, używanie odpowiedniego płynu hamulcowego jest kluczowe dla zapewnienia optymalnej wydajności układu hamulcowego, a także bezpieczeństwa pojazdu. Na przykład, podczas wymiany płynu hamulcowego w samochodzie, zaleca się stosowanie płynu zgodnego z odpornością materiałów uszczelniających w układzie. Przykładowo, wiele nowoczesnych systemów hamulcowych, zwłaszcza w pojazdach sportowych, wymaga płynów klasy DOT 4 lub DOT 5.1 ze względu na ich wyższą temperaturę wrzenia.

Pytanie 32

Urządzenie służące do analizy silnika, przy użyciu metody określania ciśnienia sprężania, funkcjonuje na podstawie zmiany odczytów w zależności od wartości

A. kąta wyprzedzenia zapłonu
B. kąta zwarcia styków przerywacza
C. ciśnienia w cylindrze
D. podciśnienia w cylindrze
Odpowiedź wskazująca na ciśnienie w cylindrze jako kluczowy parametr diagnostyczny jest prawidłowa, ponieważ diagnostyka silnika opiera się na pomiarze ciśnienia sprężania jako jednego z najważniejszych wskaźników stanu silnika. Wartości te pozwalają na ocenę kondycji uszczelnień, pierścieni tłokowych oraz ogólnej sprawności cylindrów. W praktyce, mierniki ciśnienia sprężania są wykorzystywane podczas rutynowych przeglądów i diagnostyki silników spalinowych, co jest zgodne z zaleceniami producentów. Na przykład, jeśli ciśnienie w cylindrze jest niższe niż wartości nominalne, może to sugerować problemy z uszczelnieniami zaworów lub uszkodzeniem pierścieni tłokowych. W standardach branżowych takich jak ISO 9001 oraz w praktykach takie jak analiza trendów ciśnienia sprężania, technicy mogą oceniać nie tylko bieżący stan silnika, ale także przewidywać przyszłe awarie. Właściwe zrozumienie pomiaru ciśnienia sprężania jest istotne dla zachowania efektywności i wydajności silnika, co przekłada się na ekonomię paliwową oraz redukcję emisji spalin.

Pytanie 33

Jaką funkcję pełni turbosprężarka w silniku spalinowym?

A. Zwiększa ilość powietrza dostarczanego do cylindrów
B. Zmniejsza emisję spalin
C. Reguluje temperaturę pracy silnika
D. Poprawia działanie układu wydechowego
Turbosprężarka to jedno z tych urządzeń, które w znaczący sposób wpływa na wydajność silnika spalinowego. Jej podstawową funkcją jest zwiększenie ilości powietrza dostarczanego do cylindrów. Dzięki temu możliwe jest spalanie większej ilości paliwa, co prowadzi do zwiększenia mocy silnika. Turbosprężarka działa na zasadzie wykorzystania energii spalin, które napędzają wirnik połączony z kompresorem. Kompresor ten zasysa powietrze z otoczenia i wtłacza je pod większym ciśnieniem do kolektora ssącego. W praktyce oznacza to, że silnik może generować większą moc bez zwiększania swojej pojemności. Zastosowanie turbosprężarki jest standardem w nowoczesnych pojazdach, ponieważ pozwala na poprawienie wskaźników mocy i momentu obrotowego przy jednoczesnym utrzymaniu względnie niskiej masy jednostki napędowej. Warto zaznaczyć, że turbosprężarki są szeroko stosowane w motoryzacji, a ich poprawne funkcjonowanie jest kluczowe dla osiągów pojazdu. Jest to również przykład zastosowania energii spalin do poprawy efektywności, co jest zgodne z trendami ekologicznymi.

Pytanie 34

Rezystancję oblicza się jako

A. iloraz napięcia do natężenia prądu elektrycznego
B. iloczyn napięcia oraz natężenia prądu elektrycznego
C. sumę natężenia oraz napięcia prądu elektrycznego
D. różnicę natężenia oraz napięcia prądu elektrycznego
Rezystancja, jako wielkość elektryczna, jest ściśle związana z zachowaniem się prądu w obwodach. Nieprawidłowe odpowiedzi w pytaniu opierają się na błędnych założeniach dotyczących podstawowych zasad obwodów elektrycznych. Na przykład, twierdzenie, że rezystancja jest iloczynem napięcia i natężenia prądu, jest fundamentalnie błędne. Taki związek sugeruje, że im większe napięcie i natężenie, tym większa rezystancja, co stoi w sprzeczności z rzeczywistymi obserwacjami. Rezystancja jest z definicji miarą oporu, jaki dany materiał stawia przepływającemu przez niego prądowi, a nie wartością wynikającą z mnożenia dwóch innych wielkości. Podobnie, inne odpowiedzi, które sugerują, że rezystancja to różnica lub suma napięcia i natężenia, także są niepoprawne. Prawo Ohma jednoznacznie określa, że to właśnie iloraz napięcia do natężenia jest właściwą definicją rezystancji. Często błędy te wynikają z niepełnego zrozumienia jednostek miary oraz relacji między nimi. Zrozumienie tych podstawowych pojęć jest kluczowe dla dalszego rozwoju w dziedzinie elektroniki i elektrotechniki, ponieważ wpływa na sposób analizy obwodów oraz projektowania systemów elektrycznych. Wiedza na temat rezystancji jest nie tylko teoretyczna, ale ma praktyczne zastosowanie w budowie i diagnostyce urządzeń elektrycznych, co czyni ją podstawą dla każdego inżyniera w tej dziedzinie.

Pytanie 35

Na podstawie informacji zawartych w tabeli określ koszt brutto wymiany ogumienia letniego na zimowewykonywane przez jednego pracownika. Stawka VAT wynosi 23%.

Lp.nazwa części/usługicena netto
1opona zimowa 1 szt.250,00 zł
2wymiana opony z wyważeniem 1 szt.25,00 zł
3wyważenie koła 1szt10,00 zł

A. 1 353,00 zł
B. 1 140,00 zł
C. 1 100,00 zł
D. 1 420,20 zł
Wybór jednej z niepoprawnych odpowiedzi może wynikać z nieprawidłowego zrozumienia kroków wymaganych do obliczenia kosztu wymiany ogumienia. Często popełnianym błędem jest pominięcie prawidłowego zsumowania wszystkich związanych z tym kosztów. Na przykład, niektórzy mogą skoncentrować się jedynie na kosztach zakupu opon zimowych, ignorując konieczność dodania kosztów robocizny oraz wyważenia kół. Koszt wymiany opony z wyważeniem powinien być wzięty pod uwagę jako istotny element całkowitego kosztu. Kolejnym częstym błędem jest niewłaściwe obliczenie stawki VAT. Użytkownicy mogą próbować dodać VAT do każdego elementu osobno, co prowadzi do zawyżania końcowego kosztu. Taki sposób myślenia jest niezgodny z zasadami rachunkowości, które nakładają obowiązek naliczania VAT jedynie na łączny koszt netto, a nie na poszczególne elementy. Ponadto, brak zrozumienia mechanizmu działania kosztów netto i brutto może prowadzić do nieprawidłowego oszacowania kosztów usług, co jest kluczowe dla konkurencyjności warsztatów samochodowych. W praktyce, znajomość szczegółowych zasad obliczania kosztów jest kluczowa dla efektywnego zarządzania finansami oraz planowania usług w branży motoryzacyjnej.

Pytanie 36

Który z warsztatowych instrumentów pomiarowych nie jest wyposażony w tradycyjną skalę do odczytu zmierzonego wymiaru?

A. Szczelinomierz
B. Suwmiarka
C. Kątomierz
D. Mikrometr
Szczelinomierz jest przyrządem pomiarowym, który nie posiada tradycyjnej podziałki służącej do odczytu mierzonego wymiaru. Jego konstrukcja opiera się na zestawie metalowych lub plastikowych blaszek o różnych grubościach. Użytkownik wybiera odpowiednią blachę, aby zmierzyć szczelinę, taką jak przestrzeń między częściami mechanizmu, co czyni go niezwykle pomocnym w diagnostyce i regulacji w przemyśle, na przykład w motoryzacji. Szczelinomierz jest kluczowym narzędziem w precyzyjnych pomiarach, umożliwiającym określenie tolerancji w montażu części, co jest zgodne z normami ISO 2768, które dotyczą tolerancji wymiarowych i geometrycznych. W praktyce, dzięki jego zastosowaniu, inżynierowie mogą zapewnić, że elementy mechaniczne będą działać poprawnie w zadanym zakresie tolerancji, co bezpośrednio wpływa na wydajność i niezawodność maszyn.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Jakie narzędzie wykorzystuje się do weryfikacji współosiowości czopów wałka rozrządu?

A. suwmiarki z wyświetlaczem elektronicznym
B. sprawdzianu tłokowego
C. liniału sinusoidalnego
D. czujnika zegarowego z podstawą
Czujnik zegarowy z podstawką jest narzędziem pomiarowym, które doskonale sprawdza się w ocenie współosiowości czopów wałka rozrządu. Jego zasada działania opiera się na pomiarze niewielkich odchyleń, co pozwala na dokładne stwierdzenie, czy czopy są osadzone prawidłowo w stosunku do osi obrotu. Użycie czujnika zegarowego umożliwia nie tylko wykrycie błędów w osadzeniu, ale również umożliwia ich precyzyjne korygowanie. Na przykład w silnikach spalinowych, gdzie precyzyjne ustawienie wałka rozrządu jest kluczowe dla prawidłowego działania silnika, czujnik zegarowy pozwala na identyfikację ewentualnych nieprawidłowości, co jest zgodne z najlepszymi praktykami w zakresie montażu i kontroli jakości. Dodatkowo, czujnik zegarowy jest często stosowany do sprawdzania innych elementów mechanicznych, co czyni go narzędziem uniwersalnym w warsztatach samochodowych i przemysłowych, gdzie precyzja ma kluczowe znaczenie.

Pytanie 39

Z układu wydechowego samochodu wydobywa się znaczna ilość białego dymu. Możliwą przyczyną tego zjawiska może być

A. uszkodzenie uszczelki głowicy silnika
B. zbyt duża ilość paliwa wtryskiwanego.
C. nieprawidłowe ustawienie zapłonu.
D. zablokowany filtr powietrza.
Uszkodzenie uszczelki głowicy silnika jest jedną z najczęstszych przyczyn wydobywania się białego dymu z układu wydechowego. Tego rodzaju dym zazwyczaj jest wynikiem przedostawania się płynu chłodniczego do cylindrów silnika. W sytuacji, gdy uszczelka głowicy ulega uszkodzeniu, ciśnienie w silniku może wpływać na to, że płyn chłodniczy, który powinien krążyć tylko w obiegu chłodzenia, dostaje się do komory spalania. W efekcie przy mieszaniu się z paliwem i powietrzem, tworzy białą parę, która jest wydobywana przez układ wydechowy. W praktyce, diagnozując problem, warto również sprawdzić poziom płynu chłodniczego oraz obserwować, czy nie ma śladów oleju w chłodnicy. Utrzymanie uszczelki w dobrym stanie jest kluczowe dla właściwego funkcjonowania silnika oraz uniknięcia kosztownych napraw. Standardy branżowe zalecają regularne inspekcje oraz wymianę uszczelek podczas większych przeglądów technicznych, aby zapobiec problemom z silnikiem.

Pytanie 40

Gdy samochód wjeżdża na wzniesienie, obroty silnika rosną, podczas gdy prędkość liniowa pojazdu spada, co może być tego przyczyną?

A. niesprawne sprzęgło
B. za mała moc silnika
C. nieodpowiedni dobór przełożenia
D. uszkodzony mechanizm różnicowy
Niesprawne sprzęgło może być bezpośrednią przyczyną wzrostu prędkości obrotowej silnika przy jednoczesnym spadku prędkości liniowej samochodu. Kiedy sprzęgło nie działa prawidłowo, może dochodzić do poślizgu, co oznacza, że silnik osiąga wyższe obroty, ale nie przekłada się to na efektywną moc przekazywaną na koła. W praktyce, kierowca może zauważyć, że silnik 'wkręca się' na wysokie obroty, ale samochód nie przyspiesza adekwatnie do tych obrotów. To zjawisko jest szczególnie zauważalne podczas podjazdów pod wzniesienia, gdzie wymagane jest zwiększenie momentu obrotowego. Dobrą praktyką jest regularne sprawdzanie stanu sprzęgła i jego komponentów, w tym tarcz i docisku, aby zapewnić ich właściwe funkcjonowanie. W przypadku wystąpienia poślizgu sprzęgła, zaleca się szybkie zdiagnozowanie problemu, aby uniknąć dalszych uszkodzeń układu napędowego oraz straty efektywności pojazdu. Właściwe utrzymanie sprzęgła jest kluczowe dla zapewnienia optymalnych osiągów i bezpieczeństwa jazdy.