Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 15 maja 2025 16:34
  • Data zakończenia: 15 maja 2025 16:43

Egzamin zdany!

Wynik: 27/40 punktów (67,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Do szklanych narzędzi laboratoryjnych wielomiarowych używanych w analizach ilościowych należy

A. kolba stożkowa
B. zlewka
C. cylinder z podziałką
D. pipeta Mohra
Pipeta Mohra, zlewka i kolbka stożkowa to narzędzia laboratoryjne, ale nie są one odpowiednie do precyzyjnej analizy ilościowej w tym kontekście. Pipeta Mohra, chociaż używana do odmierzania cieczy, ma ograniczoną dokładność i jest przeznaczona głównie do przenoszenia ustalonych objętości cieczy, co różni ją od cylindra z podziałką, który umożliwia dokładną odczyt objętości w większym zakresie. Zlewka, z kolei, jest narzędziem o niskiej precyzji, często stosowanym do mieszania lub przechowywania cieczy, ale nie nadaje się do dokładnych pomiarów objętości, co czyni ją niewłaściwym wyborem w kontekście analizy ilościowej. Kolbka stożkowa, chociaż jest przydatna w reakcjach chemicznych i nauczaniu, również nie zapewnia precyzyjnego pomiaru objętości bez dodatkowych narzędzi. Użycie tych narzędzi w sytuacjach wymagających dokładnych pomiarów może prowadzić do błędów w wynikach badań, ponieważ nie są one standardowo projektowane z myślą o precyzyjnym pomiarze objętości, co jest kluczowe w analizie ilościowej. Prawidłowe zrozumienie zastosowania tych narzędzi jest istotne dla osiągania wiarygodnych wyników w pracy laboratoryjnej.

Pytanie 2

W standardowym układzie destylacyjnym, który ma ukośną chłodnicę, wykorzystuje się chłodnicę

A. palcową
B. prostą
C. kulistą
D. spiralną
Wybór chłodnicy do procesu destylacji jest kluczowy dla efektywności całego procesu. Chłodnica kulkowa, chociaż popularna w niektórych zastosowaniach, jest nieodpowiednia w przypadku standardowej destylacji w zestawie o skośnym usytuowaniu, ponieważ jej budowa ogranicza skuteczność wymiany ciepła. Chłodnice kulkowe są przeważnie stosowane w sytuacjach, gdzie wymagana jest duża powierzchnia kontaktu z cieczą, co nie jest priorytetem w klasycznej destylacji. Z kolei zastosowanie chłodnicy spiralnej może prowadzić do nieefektywnego skraplania par w przypadku niskich wydajności, ponieważ spirale generują większy opór dla przepływających gazów, co może skutkować niepełnym kondensowaniem par. Chłodnica palcowa również nie pasuje do tego kontekstu, ze względu na złożoną strukturę, która może być mniej efektywna przy małych przepływach. Wybór chłodnicy powinien opierać się na analizie wymagań konkretnego procesu, uwzględniając zarówno charakterystykę substancji, jak i parametry operacyjne. Typowe błędy myślowe w tej kwestii obejmują nadmierne poleganie na ogólnych właściwościach chłodnic oraz brak zrozumienia znaczenia efektywności wymiany ciepła w kontekście osiągania wysokiej czystości destylatów.

Pytanie 3

Aby przygotować 0,5 dm3 roztworu HCl o stężeniu 0,2 mol/dm3, jaką kolbę miarową o pojemności należy wykorzystać?

A. 500 cm3 oraz fiksanal zawierający 0,2 mol HCl
B. 500 cm 3 oraz fiksanal zawierający 0,1 mola HCl
C. 1000 cm3 oraz dwa fiksanale zawierające po 0,1 mola HCl
D. 0,5 dm3 oraz dwa fiksanale zawierające po 0,2 mola HCl
Wybór innych opcji może wynikać z nieporozumienia dotyczącego obliczeń związanych z przygotowaniem roztworów. W szczególności, w przypadku pierwszej odpowiedzi zakłada się, że do sporządzenia 0,5 dm3 roztworu potrzeba dwóch fiksanalów, co jest nieuzasadnione. Każda kolba miarowa powinna być używana indywidualnie, a liczba moli nie wymaga podziału na dwa fiksanale, ponieważ wystarczy przygotować jeden o odpowiedniej objętości. Kolejna odpowiedź błędnie sugeruje, że do sporządzenia roztworu o stężeniu 0,2 mol/dm3 potrzeba fiksanalu o stężeniu 0,1 mola, co również jest mylące. Stężenie 0,1 mola odpowiadałoby roztworowi o niższym stężeniu, a nie wymaganym stężeniu 0,2 mol/dm3. Ostatnia niepoprawna opcja podaje, że do sporządzenia 0,5 dm3 roztworu wystarczy fiksanal o stężeniu 0,2 mola, co może prowadzić do pomyłki, ponieważ taka ilość HCl przekroczyłaby potrzebną ilość do uzyskania 0,5 dm3 roztworu o stężeniu 0,2 mol/dm3. Modelując takie obliczenia, kluczowe jest zrozumienie, że każdy roztwór musi być przygotowany z uwzględnieniem odpowiednich proporcji molowych, aby uniknąć błędów i zapewnić bezpieczeństwo w laboratorium.

Pytanie 4

Etykiety chemikaliów zawierają zwroty H, które informują o rodzaju zagrożenia. Cyfra "3" pojawiająca się po literze "H" w oznaczeniu, definiuje rodzaj zagrożenia?

A. fizyczne
B. chemiczne
C. dla człowieka
D. dla środowiska
Odpowiedź "dla człowieka" jest prawidłowa, ponieważ etykiety substancji chemicznych zawierają zwroty H (H-phrases), które odnoszą się do zagrożeń, jakie dany związek chemiczny może stanowić dla zdrowia ludzi. Na przykład, oznaczenie H3 mówi o tym, że substancja może być szkodliwa w przypadku wdychania, połknięcia lub kontaktu ze skórą. W praktyce, znajomość tych oznaczeń jest kluczowa dla pracowników w laboratorach, przemysłach chemicznych oraz w obszarach zajmujących się transportem substancji chemicznych. Dlatego w ramach BHP oraz oceny ryzyka, pracownicy powinni być odpowiednio przeszkoleni w zakresie interpretacji tych etykiet oraz stosowania odpowiednich środków ochrony osobistej. Standardy takie jak GHS (Globalnie Zharmonizowany System Klasyfikacji i Oznakowania Chemikaliów) wyznaczają wytyczne dotyczące klasyfikacji zagrożeń, co pozwala na skuteczniejsze zarządzanie bezpieczeństwem w miejscu pracy.

Pytanie 5

Na opakowaniu którego odczynnika powinien znaleźć się piktogram przedstawiony na ilustracji?

Ilustracja do pytania
A. Stearynianu sodu.
B. Wodorotlenku sodu.
C. Chlorku sodu.
D. Glukozy.
Prawidłowa odpowiedź to wodorotlenek sodu, ponieważ piktogram przedstawiony na ilustracji symbolizuje substancje żrące. Wodorotlenek sodu (NaOH) jest silną zasadą, która wykazuje właściwości żrące, co sprawia, że jest niezwykle ważne, aby był odpowiednio oznaczony na opakowaniu. W praktyce, wodorotlenek sodu jest szeroko stosowany w przemyśle chemicznym, w produkcji mydeł oraz jako środek czyszczący w gospodarstwie domowym. Zgodnie z przepisami dotyczącymi substancji niebezpiecznych, takie jak Rozporządzenie (WE) nr 1272/2008, każda substancja żrąca musi być oznaczona odpowiednim piktogramem, aby ułatwić identyfikację zagrożeń i zapewnić bezpieczeństwo użytkowników. Ponadto, stosowanie odpowiednich środków ochrony osobistej, takich jak rękawice i gogle ochronne, jest zalecane przy pracy z wodorotlenkiem sodu, aby zminimalizować ryzyko poważnych obrażeń. Dlatego zrozumienie symboli na etykietach jest kluczowe dla bezpiecznego obchodzenia się z substancjami chemicznymi.

Pytanie 6

Naczynia miarowe o kształcie rurek poszerzonych w środku, z wąskim i wydłużonym dolnym końcem, przeznaczone do pobierania i transportowania cieczy o ściśle określonej objętości, to

A. pipety
B. wkraplacze
C. cylindry
D. biurety
Pipety to takie fajne naczynka, które trzymamy w laboratoriach, żeby dokładnie mierzyć i przenosić różne płyny. Mają specjalną budowę - szerszą część w środku i wąski koniec, co ułatwia nam nalewanie cieczy w ściśle określonych ilościach. Korzysta się z nich w wielu dziedzinach, jak chemia czy biologia, a nawet w medycynie i farmacji. Na przykład, w biologii molekularnej pipety są super do przenoszenia małych ilości chemikaliów, które potem wykorzystujemy w reakcjach PCR. W labach często używamy pipet automatycznych, bo to pozwala na jeszcze dokładniejsze pomiary i szybszą pracę. A pojemności pipet są różne, więc możemy dobrać odpowiednią do naszych potrzeb. Ważne, żeby dobrze korzystać z tych narzędzi, czyli pamiętać o kalibracji i stosować się do wskazówek producenta - to naprawdę robi różnicę.

Pytanie 7

Symbol "In" znajduje się na

A. kolbach miarowych i wskazuje na sprzęt kalibrowany "na wlew"
B. kolbach miarowych i wskazuje na sprzęt kalibrowany "na wylew"
C. pipetach i oznacza sprzęt kalibrowany "na wylew"
D. biuretach i oznacza sprzęt kalibrowany "na wlew"
Dobra robota! Odpowiedź, którą wybrałeś, jest całkiem trafna. Symbol 'In' rzeczywiście oznacza kolby miarowe, które służą do dokładnego mierzenia objętości cieczy. Kalibracja 'na wlew' jest kluczowa, bo chodzi o to, żeby zmierzyć ciecz do poziomu krawędzi menisku. To ma ogromne znaczenie, zwłaszcza w chemii, gdzie precyzja jest na wagę złota. W laboratoriach często korzysta się z kolb, żeby mieć pewność, że każdy eksperyment jest powtarzalny i wyniki są wiarygodne. Jak napełniasz kolbę do oznaczenia, to wiesz, że używasz całej tej objętości cieczy, co minimalizuje ryzyko błędów. Dlatego warto znać te symbole, bo to podstawa w pracy każdego chemika.

Pytanie 8

Do filtracji osadów drobnokrystalicznych wykorzystuje się filtry

A. sztywne, o najmniejszych porach
B. elastyczne, o najmniejszych porach
C. elastyczne, o największych porach
D. sztywne, o największych porach
Sączki twarde o najmniejszych porach są optymalnym wyborem do sączenia osadów drobnokrystalicznych, ponieważ ich struktura zapewnia skuteczne oddzielanie cząstek stałych od cieczy. Twardość materiału sączka pozwala na zachowanie stabilności mechanicznej podczas procesu filtracji, co jest kluczowe w wielu zastosowaniach laboratoryjnych i przemysłowych. Przykładowo, w laboratoriach chemicznych, gdzie często stosowane są różne metody analityczne, takie jak chromatografia czy spektroskopia, twarde sączki umożliwiają precyzyjne oczyszczanie próbek, eliminując drobne zanieczyszczenia, co wpływa na dokładność uzyskiwanych wyników. Dodatkowo, stosowanie sączków o najmniejszych porach jest zgodne z normami filtracji, które wymagają wykorzystania materiałów o odpowiednich właściwościach mechanicznych i chemicznych, aby zapewnić wysoką efektywność procesu oczyszczania i minimalizację straty substancji. W praktyce, sączki te są wykorzystywane w różnych branżach, w tym w farmacji, biotechnologii oraz przemysłach spożywczym, gdzie czystość produktu finalnego jest absolutnie kluczowa.

Pytanie 9

Czułość bezwzględna wagi definiuje się jako

A. najmniejsze dozwolone obciążenie wagi
B. największą masę, która powoduje wyraźne wychylenie wskazówki
C. najmniejszą masę, która powoduje wyraźne wychylenie wskazówki
D. największe dozwolone obciążenie wagi
Zrozumienie czułości bezwzględnej wagi wymaga analizy kilku aspektów jej funkcjonowania. Największe dopuszczalne obciążenie wagi to maksymalna masa, jaką waga może zmierzyć bez ryzyka uszkodzenia, co różni się całkowicie od pojęcia czułości. Ustalanie tego parametru opiera się na wytrzymałości mechanicznej urządzenia, a nie na jego zdolności do wykrywania małych zmian. Z kolei najmniejsze dopuszczalne obciążenie wagi odnosi się do najniższej masy, jaką waga może zmierzyć, zanim pomiar stanie się nieprecyzyjny. To również jest inny aspekt, który nie dotyczy bezpośrednio czułości, lecz granic operacyjnych wagi. W kontekście największej masy, która powoduje zauważalne wychylenie wskazówki, pojawia się mylne przekonanie, że czułość odnosi się do maksymalnych wartości, co jest błędnym założeniem. Czułość bezwzględna jest definiowana przez najniższą masę, która wywołuje reaktywne zachowanie wagi. Pojmowanie czułości poprzez pryzmat maksymalnych wartości prowadzi do nieporozumień i może skutkować błędnymi wynikami w laboratoriach czy procesach przemysłowych, gdzie precyzyjne pomiary mają kluczowe znaczenie dla jakości produktów i badań. Kluczowym błędem jest także mylenie parametru czułości z innymi aspektami funkcjonowania urządzeń pomiarowych, co może prowadzić do niewłaściwego doboru wag do konkretnych zadań pomiarowych.

Pytanie 10

Reagenty o najwyższej czystości to reagenty

A. czyste.
B. czyste do badań.
C. chemicznie czyste.
D. spektralnie czyste.
Odpowiedź "spektralnie czyste" jest uznawana za właściwą, ponieważ odnosi się do odczynnika, który został oczyszczony w takim stopniu, że jego czystość jest wystarczająca do zastosowań w spektroskopii oraz innych czułych analizach chemicznych. W praktyce oznacza to, że odczynniki te mają bardzo niskie stężenia zanieczyszczeń, co jest kluczowe dla uzyskania dokładnych i powtarzalnych wyników w badaniach. W laboratoriach analitycznych i badawczych, gdzie precyzja wyników jest niezbędna, stosuje się odczynniki spektralnie czyste, aby uniknąć wpływu niepożądanych substancji na reakcje chemiczne lub pomiary. Przykładem może być analiza chromatograficzna, gdzie obecność zanieczyszczeń może prowadzić do fałszywych wyników. W standardach ISO oraz w pracach dotyczących analizy chemicznej, podkreśla się wagę używania odczynników o specjalistycznej czystości, co stanowi najlepszą praktykę w laboratoriach zajmujących się badaniami jakości oraz badaniami ilościowymi substancji chemicznych.

Pytanie 11

Aby uzyskać drobnokrystaliczny osad BaSO4, należy wykonać poniższe kroki:
Do zlewki wlać 20 cm3 roztworu BaCl2, następnie dodać 100 cm3 wody destylowanej oraz kilka kropli roztworu HCl. Zawartość zlewki podgrzać na łaźni wodnej, a potem, ciągle mieszając, dodać 35 cm3 roztworu H2SO4.
Mieszaninę ogrzewać na łaźni wodnej przez 1 godzinę. Osad odsączyć i przepłukać kilkakrotnie gorącą wodą zakwaszoną kilkoma kroplami roztworu H2SO4.
Według przedstawionej procedury, do uzyskania osadu BaSO4 potrzebne są:

A. zlewka, cylindry miarowe o pojemności 25, 50 i 100 cm3, łaźnia wodna, zestaw do sączenia, sączek "twardy"
B. zlewka, pipeta wielomiarowa o pojemności 25 cm3, cylindry miarowe o pojemności 50 i 100 cm3, łaźnia wodna, bagietka, zestaw do sączenia, sączek "miękki"
C. zlewka, cylindry miarowe o pojemności 25, 50 i 100 cm3, palnik, trójnóg, zestaw do sączenia, sączek "miękki"
D. zlewka, cylindry miarowe o pojemności 50 i 100 cm3, pipeta jednomiarowa o pojemności 20 cm3, łaźnia wodna, bagietka, zestaw do sączenia, sączek "twardy"
Wybrana odpowiedź jest prawidłowa, ponieważ zawiera wszystkie niezbędne elementy do przeprowadzenia opisanego eksperymentu. Zlewka jest podstawowym naczyniem, w którym odbywa się reakcja chemiczna, a cylindry miarowe o pojemności 50 i 100 cm3 są kluczowe do dokładnego odmierzenia reagentów, takich jak BaCl2 i H2SO4. Użycie pipety jednomiarowej o pojemności 20 cm3 zapewnia precyzyjne dawkowanie roztworu BaCl2. Łaźnia wodna jest niezbędna do kontrolowania temperatury podczas ogrzewania mieszaniny, co zapobiega degradacji reagentów i zapewnia optymalne warunki dla reakcji tworzenia osadu BaSO4. Bagietka umożliwia dokładne mieszanie roztworu, co jest kluczowe dla uzyskania jednorodności reakcji. Zestaw do sączenia i sączek 'twardy' są niezbędne do separacji osadu BaSO4 od cieczy, co jest istotnym krokiem w procesie izolacji tego związku. Wszystkie te elementy są zgodne z dobrymi praktykami laboratoryjnymi, które nakładają nacisk na dokładność, precyzję oraz bezpieczeństwo w pracy z substancjami chemicznymi.

Pytanie 12

W parownicy porcelanowej, w której znajduje się 2,5 g naftalenu, umieść krążek bibuły z niewielkimi otworami oraz odwrócony lejek szklany. Zatyczkę lejka zrób z korka z waty. Parownicę umieść w płaszczu grzejnym. Po delikatnym ogrzaniu parownicy, pary substancji przechodzą przez otwory w bibule i kondensują na wewnętrznych ściankach lejka... Powyższy opis dotyczy metody oczyszczania naftalenu przez

A. krystalizację
B. ługowanie
C. sublimację
D. resublimację
Odpowiedź "sublimację" jest prawidłowa, ponieważ opisany proces polega na bezpośredniej przemianie naftalenu z fazy stałej w fazę gazową bez przechodzenia przez stan ciekły. W opisanym eksperymencie, po łagodnym ogrzaniu parownicy, naftalen sublimuje, a jego pary przechodzą przez otwory w bibule, a następnie kondensują na ściankach lejka szklanego. Sublimacja jest wykorzystywana w przemyśle chemicznym do oczyszczania substancji o niskich temperaturach topnienia oraz do separacji związków chemicznych. Przykładem zastosowania sublimacji w praktyce jest oczyszczanie substancji organicznych, takich jak jod czy naftalen, gdzie proces ten pozwala na uzyskanie czystszych produktów. W kontekście standardów laboratoryjnych, sublimacja jest uznawana za metodę o wysokiej skuteczności, zapewniającą minimalne straty materiałowe i pozwalającą na zachowanie właściwości chemicznych oczyszczanej substancji.

Pytanie 13

Jaką objętość powinna mieć kolba miarowa, aby przygotować mianowany roztwór NaOH o stężeniu 0,050 M z analitycznej odważki, która zawiera 0,1 mola NaOH?

A. 100 cm3
B. 200 cm3
C. 2 dm3
D. 1 dm3
Aby przygotować mianowany roztwór NaOH o stężeniu 0,050 M z odważki analitycznej, musimy obliczyć odpowiednią objętość roztworu. Stężenie molowe (M) wyraża liczbę moli substancji w litrze roztworu. W tym przypadku, aby uzyskać roztwór o stężeniu 0,050 M, musimy użyć 0,050 mola NaOH w 1 litrze roztworu. Mając 0,1 mola NaOH, możemy przygotować 0,1 / 0,050 = 2 litry roztworu. W związku z tym, kolba miarowa powinna mieć pojemność 2 dm3, aby pomieścić przygotowany roztwór. Tego rodzaju obliczenia są kluczowe w laboratoriach chemicznych, gdzie precyzyjne przygotowanie roztworów ma istotne znaczenie dla uzyskania wiarygodnych wyników eksperymentalnych. Przestrzeganie standardów przygotowania roztworów zapewnia ich jednorodność i dokładność, co jest niezbędne w badaniach analitycznych, a także w różnorodnych aplikacjach przemysłowych.

Pytanie 14

Odważka analityczna przygotowana w fabryce zawiera 0,1 mola EDTA. Posiadając taką jedną odważkę analityczną, jakie roztwory można przygotować?

A. 2000 cm3 roztworu o stężeniu 0,2000 mol/dm3
B. 100 cm3 roztworu o stężeniu 0,0100 mol/dm3
C. 500 cm3 roztworu o stężeniu 0,2000 mol/dm3
D. 1000 cm3 roztworu o stężeniu 0,0100 mol/dm3
Przygotowanie roztworu o stężeniu 0,0100 mol/dm3 w objętości 100 cm3 lub 1000 cm3 na podstawie danych z pytania jest niepoprawne z perspektywy obliczeń stężenia molowego. W przypadku pierwszej z tych odpowiedzi, gdy planujemy uzyskać stężenie 0,0100 mol/dm3, obliczamy: n = C * V, czyli n = 0,0100 mol/dm3 * 0,1 dm3 = 0,001 mol. Aby uzyskać 0,1 mola EDTA z odważki, potrzebowalibyśmy znacznie większej objętości roztworu, co przekracza dostępne możliwości. Podobnie w przypadku 1000 cm3 roztworu o stężeniu 0,0100 mol/dm3, obliczenia prowadzą do jeszcze większych niezgodności, ponieważ wymagałyby one 0,0100 mola * 1 dm3 = 0,01 mol, co także nie jest możliwe przy dostępnym 0,1 molu. W przypadku stężenia 0,2000 mol/dm3 w objętości 2000 cm3 sytuacja jest analogiczna, ponieważ znowu obliczenia pokazują, że potrzebna byłaby większa ilość moli niż posiadamy. Te błędy wynikają z nieprawidłowego zrozumienia relacji między stężeniem, ilością substancji a objętością roztworu. W praktyce, kluczowe jest umiejętne posługiwanie się równaniami dotyczącymi stężenia molowego, aby uniknąć takich fałszywych wniosków i zapewnić prawidłowe przygotowanie roztworów. Odpowiednia znajomość tych zasad jest istotna w każdym laboratorium chemicznym i w zastosowaniach analitycznych.

Pytanie 15

Proces usuwania substancji z cieczy lub wydobywania składnika z mieszanin cieczy, oparty na równowadze fazowej ciecz-gaz, nazywa się

A. krystalizacja
B. filtracja
C. dekantacja
D. destylacja
Destylacja to proces separacji składników mieszaniny cieczy oparty na różnicy w ich temperaturach wrzenia. W wyniku tego procesu, ciecz podgrzewana do temperatury wrzenia paruje, a następnie para jest skraplana w chłodnicy, uzyskując czysty składnik. Jest to kluczowa metoda stosowana w przemyśle chemicznym, petrochemicznym oraz w produkcji napojów alkoholowych, gdzie celem jest otrzymanie wysokiej czystości składników. Na przykład, w produkcji whisky lub wina, destylacja pozwala na oddzielenie etanolu od innych substancji, co wpływa na smak i jakość finalnego produktu. W przemyśle chemicznym, destylacja jest wykorzystywana do oczyszczania rozpuszczalników oraz produkcji chemikaliów. Stosowanie destylacji zgodnie z normami, takimi jak ISO 9001, zapewnia wysoką jakość procesów i gotowych produktów, co jest kluczowe dla bezpieczeństwa i efektywności produkcji.

Pytanie 16

Jakiego odczynnika chemicznego, oprócz Na2Cr2O7, należy użyć do sporządzenia mieszaniny chromowej do czyszczenia sprzętu szklarskiego w laboratorium?

A. HCI
B. H2CrO4
C. K2CrO4
D. H2SO4
Kwasy siarkowy (H2SO4) jest kluczowym składnikiem w przygotowaniu mieszaniny chromowej, obok dichromianu sodu (Na2Cr2O7), ponieważ działa jako silny środek utleniający, który wspomaga usuwanie zanieczyszczeń organicznych oraz nieorganicznych z powierzchni szkła laboratoryjnego. Kwas siarkowy reaguje z chromianami, tworząc bardziej aktywne formy chromu, co zwiększa efektywność czyszczenia. Zastosowanie tej mieszaniny jest powszechne w laboratoriach chemicznych, gdzie czystość szkła jest kluczowa dla uzyskania wiarygodnych wyników badań. Dzięki właściwościom higroskopijnym kwasu siarkowego, mieszanina ta dobrze przylega do powierzchni szkła, co pozwala na skuteczniejsze usuwanie osadów. W praktyce, przed użyciem tej mieszaniny, należy przestrzegać odpowiednich procedur bezpieczeństwa, takich jak noszenie odzieży ochronnej i stosowanie odpowiednich środków ochrony osobistej. Ponadto, zgodnie z zaleceniami OSHA i innymi wytycznymi dotyczącymi bezpieczeństwa w laboratoriach, należy przechowywać kwas siarkowy w odpowiednich naczyniach, aby zapobiec jego wyciekom oraz kontaktowi z innymi substancjami chemicznymi.

Pytanie 17

Jaką objętość roztworu NaOH o stężeniu 1 mol/dm3 należy użyć, aby przygotować 50 cm3 roztworu NaOH o stężeniu 0,4 mol/dm3?

A. 50 cm3
B. 10 cm3
C. 25 cm3
D. 20 cm3
Aby obliczyć objętość roztworu NaOH o stężeniu 1 mol/dm3, potrzebnej do sporządzenia 50 cm3 roztworu o stężeniu 0,4 mol/dm3, należy zastosować zasadę zachowania moles. Obliczamy liczbę moli NaOH w docelowym roztworze: C1V1 = C2V2, gdzie C1 = 1 mol/dm3, V1 to objętość, C2 = 0,4 mol/dm3 i V2 = 50 cm3 = 0,05 dm3. Z równania mamy: 1 * V1 = 0,4 * 0,05. Obliczając V1, otrzymujemy V1 = 0,4 * 0,05 = 0,02 dm3 = 20 cm3. Takie podejście jest standardem w laboratoriach chemicznych, gdzie precyzyjne przygotowanie roztworów jest kluczowe dla uzyskania powtarzalnych i wiarygodnych wyników. Przykładem zastosowania może być przygotowanie roztworów do titracji, gdzie dokładność stężenia reagentu jest niezbędna dla prawidłowego przeprowadzenia analizy. Warto również zauważyć, że w praktyce często stosuje się wzory rozcieńczania, co zapewnia efektywność i bezpieczeństwo pracy w laboratorium chemicznym.

Pytanie 18

Aby obliczyć gęstość cieczy przy użyciu metody hydrostatycznej, należy zastosować

A. wagosuszarkę
B. wagę Mohra
C. ebuliometr
D. piknometr
Wybór wagosuszarki, piknometru lub ebuliometru jako narzędzi do wyznaczania gęstości cieczy wskazuje na pewne nieporozumienia dotyczące ich funkcji i zastosowania. Wagosuszarka jest urządzeniem przeznaczonym do pomiaru masy oraz wilgotności substancji stałych, a jej głównym celem jest określenie zawartości wody w próbkach, co nie ma bezpośredniego związku z pomiarami gęstości cieczy. Piknometr, z drugiej strony, jest to naczynie służące do pomiaru gęstości, ale nie jest oparte na pomiarze siły wyporu, jak w przypadku wagi Mohra. Piknometry działają w oparciu o pomiar objętości cieczy oraz masy, co w praktyce może prowadzić do większej niepewności w przypadku cieczy o zmiennej gęstości, a więc nie są tak powszechnie stosowane do pomiarów hydrostatycznych. Ebuliometr to narzędzie do pomiaru temperatury wrzenia cieczy, a nie jej gęstości, co także czyni go niewłaściwym wyborem w kontekście tego pytania. Nieprawidłowe podejście do wyboru odpowiedniego sprzętu może prowadzić do błędnych wyników i nieefektywnego przeprowadzania eksperymentów, co jest szczególnie istotne w kontekście precyzyjnych badań laboratoryjnych. Zrozumienie funkcji i zastosowania różnych narzędzi pomiarowych jest kluczowe dla prawidłowego przeprowadzania analizy chemicznej oraz zgodności z obowiązującymi standardami laboratoryjnymi.

Pytanie 19

Aby wykonać czynności analityczne wskazane w ramce, należy użyć:

Otrzymaną do badań próbkę badanego roztworu rozcieńczyć wodą destylowaną w kolbie miarowej o pojemności 100 cm3 do kreski i dokładnie wymieszać. Następnie przenieść pipetą 10 cm3 tego roztworu do kolby stożkowej, dodać ok. 50 cm3 wody destylowanej.

A. zlewki, kolby ssawkowej, lejka Buchnera, cylindra miarowego.
B. kolby stożkowej, kolby miarowej, pipety, cylindra miarowego.
C. kolby miarowej, tygla, pipety, naczynka wagowego.
D. kolby stożkowej, moździerza, lejka Shotta, naczynka wagowego.
Odpowiedź wskazująca na użycie kolby stożkowej, kolby miarowej, pipety oraz cylindra miarowego jest poprawna, ponieważ każdy z tych przyrządów odgrywa kluczową rolę w procesie analitycznym. Kolba miarowa jest niezbędna do precyzyjnego rozcieńczania roztworów, co jest istotne w chemii analitycznej, gdzie dokładność stężeń ma fundamentalne znaczenie dla uzyskania wiarygodnych wyników. Pipeta, z kolei, pozwala na precyzyjne odmierzanie małych objętości roztworów, co jest kluczowe przy przygotowywaniu prób do analiz. Kolba stożkowa znajduje zastosowanie w mieszaniu reagentów oraz w prowadzeniu reakcji chemicznych, a cylinder miarowy umożliwia dokładne pomiary większych objętości cieczy. Użycie tych instrumentów jest zgodne z najlepszymi praktykami laboratoryjnymi i standardami dotyczącymi chemii analitycznej, co zapewnia rzetelność przeprowadzanych badań oraz powtarzalność eksperymentów.

Pytanie 20

Połączono równe ilości cynku i bromu, a następnie poddano je reakcji Zn + Br2 → ZnBr2. W tych warunkach stopień reakcji cynku wynosi (masy atomowe: Zn – 65u, Br – 80u)?

A. 0,8
B. 1,0
C. 0,4
D. 0,6
Odpowiedź 0,4 jest poprawna, ponieważ obliczenia wskazują, że stosunek molowy cynku do bromu w reakcji wynosi 1:1. W przypadku reakcji, gdzie mamy do czynienia z równowagą stechiometryczną, kluczowe jest zrozumienie, że dla 1 mola Zn potrzeba 1 mola Br2. Zastosowane masy atomowe (Zn – 65u, Br – 80u) pozwalają na określenie, ile moli każdej substancji mamy w danej reakcji. Wymieszenie równych mas cynku i bromu, na przykład 65 g cynku i 80 g bromu, prowadzi do sytuacji, w której cynk jest reagentem ograniczającym, ponieważ mamy mniej moli cynku (1 mol) niż bromu (1,0 mol). W wyniku tego, tylko część bromu będzie reagować z cynkiem. Obliczając stopień przereagowania cynku, stwierdzamy, że 0,4 wynika z faktu, iż 0,4 mola cynku zareaguje całkowicie, a pozostałe 0,6 mola bromu nie znajdzie reagentu do reakcji. Takie analizy są kluczowe w praktyce chemicznej i inżynieryjnej, gdzie precyzyjne obliczenia dają podstawy do skutecznego projektowania procesów chemicznych.

Pytanie 21

Jakie urządzenie służy do pomiaru temperatury topnienia substancji chemicznych?

A. Kipp.
B. Thiel.
C. Engler.
D. Soxleth.
Zrozumienie, jak działają różne aparaty laboratoryjne, jest kluczowe w kontekście chemii analitycznej. Odpowiedzi takie jak Soxletha, Englera czy Kipp są często mylone z aparatem Thielego, co prowadzi do nieporozumień. Soxleth jest używany do ekstrakcji substancji rozpuszczalnych w cieczy, co jest zupełnie inną funkcją niż pomiar temperatury topnienia. Engler to aparat służący do oznaczania temperatury wrzenia cieczy, co również nie ma związku z topnieniem. Z kolei aparat Kippa jest stosowany do wytwarzania gazów w reakcjach chemicznych, co zupełnie nie odnosi się do określania temperatury topnienia. Problemy te wynikają z mylnej koncepcji, że wszystkie aparaty mają podobne zastosowania. Kluczowe jest zrozumienie, że każdy z tych aparatów ma swoją specyfikę i przeznaczenie. Właściwe przypisanie urządzenia do zadania jest istotne dla uzyskania prawidłowych wyników i unikania błędów w analizach chemicznych. Niezrozumienie tych różnic może prowadzić do niskiej jakości wyników oraz niepoprawnych wniosków dotyczących badanych substancji. Dlatego ważne jest, aby podczas nauki chemii zwracać uwagę na funkcje poszczególnych urządzeń i ich zastosowanie w praktyce laboratoryjnej.

Pytanie 22

W trakcie destylacji cieczy wykorzystuje się tzw. kamienie wrzenne, ponieważ

A. przyspieszają przebieg destylacji
B. przyspieszają proces wrzenia cieczy
C. umożliwiają równomierne wrzenie cieczy
D. obniżają temperaturę wrzenia cieczy
Kamyczki wrzenne odgrywają kluczową rolę w procesie destylacji, ponieważ umożliwiają równomierne wrzenie cieczy. Dzięki nim powstaje wiele małych bąbelków pary, co prowadzi do wzrostu powierzchni wymiany między cieczą a parą. W rezultacie ciecz wrze w sposób bardziej kontrolowany, co jest istotne w kontekście uzyskiwania czystych frakcji destylacyjnych. W praktyce, stosowanie kamyczków wrzennych pozwala unikać zjawiska tzw. „bumu wrzenia”, które może prowadzić do gwałtownego wrzenia i nieefektywności procesu. Dobre praktyki w chemii analitycznej zalecają stosowanie kamyczków w celu zapewnienia stabilności procesu, co jest szczególnie ważne w przemyśle chemicznym i farmaceutycznym, gdzie precyzyjne oddzielanie składników jest kluczowe dla uzyskania wysokiej jakości produktów. W związku z tym, kamyczki wrzenne przyczyniają się nie tylko do poprawy efektywności destylacji, ale także do bezpieczeństwa całego procesu, co jest zgodne z międzynarodowymi standardami bezpieczeństwa chemicznego.

Pytanie 23

Na diagramie przedstawiającym proces pobierania prób środowiskowych do analizy literą Y oznaczono próbkę

A. wtórną
B. ogólną
C. laboratoryjną
D. do analizy
Próbka oznaczona literą Y na schemacie postępowania przy pobieraniu próbek środowiskowych jest próbą laboratoryjną. Próbki laboratoryjne są kluczowe w analizie, ponieważ są one przeznaczone do dalszych, szczegółowych badań w warunkach kontrolowanych. Zbierając próbki w terenie, istotne jest, aby były one odpowiednio oznaczone i sklasyfikowane, aby zapewnić ich właściwą identyfikację i analizę w laboratorium. Przykładem zastosowania próbek laboratoryjnych może być analiza jakości wody, gdzie próbki pobierane z różnych źródeł muszą być odpowiednio przygotowane, aby zachować ich właściwości fizykochemiczne. Zgodnie z wytycznymi ISO 5667 dotyczącymi pobierania próbek wód, ważne jest, aby próbki laboratoryjne były zbierane w określony sposób, aby uniknąć kontaminacji i zapewnić reprezentatywność wyników. Właściwe postępowanie z próbkami laboratoryjnymi jest kluczowe dla uzyskania wiarygodnych wyników analitycznych i zachowania dokładności pomiarów.

Pytanie 24

Wodę do badań mikrobiologicznych powinno się pobierać do butelek

A. starannie wypłukanych, na przykład po niegazowanej wodzie mineralnej
B. umytych wodorotlenkiem sodu
C. sterylnych
D. zanurzonych wcześniej na 2-3 minuty w alkoholu etylowym
Pobieranie próbek wody do badań mikrobiologicznych powinno odbywać się wyłącznie w sterylnych butelkach, co ma kluczowe znaczenie dla uzyskania wiarygodnych wyników. Sterylność opakowania eliminuje ryzyko kontaminacji próbki przez mikroorganizmy z otoczenia. W praktyce, butelki do pobierania wody mikrobiologicznej są zazwyczaj produkowane z materiałów, które można wysterylizować, a ich zamknięcia są zaprojektowane tak, aby zapobiegać wszelkim kontaktom z zanieczyszczeniami. Ponadto, w przypadku badań mikrobiologicznych, takie wymagania są zgodne z normami, takimi jak ISO 5667, które określają procedury pobierania wody. Użycie sterylnych pojemników jest szczególnie istotne, gdyż mikroorganizmy mogą być obecne w różnych formach, a nawet niewielka ilość zanieczyszczeń może prowadzić do fałszywych wyników. Dlatego w laboratoriach oraz w trakcie inspekcji sanitarno-epidemiologicznych stosuje się ściśle określone procedury, aby zapewnić wysoką jakość i wiarygodność badań.

Pytanie 25

Która z metod pozwala na oddzielanie składników mieszaniny na podstawie różnic w ich zachowaniu w układzie składającym się z dwóch faz, z których jedna jest fazą stacjonarną, a druga porusza się w określonym kierunku względem niej?

A. Sublimacja
B. Krystalizacja
C. Chromatografia
D. Destylacja
Chromatografia to technika analityczna, która wykorzystuje różnice w zachowaniu się poszczególnych związków chemicznych w układzie dwufazowym. W tym procesie jedna z faz, nazywana fazą stacjonarną, jest nieruchoma, podczas gdy druga faza, faza ruchoma, przemieszcza się w określonym kierunku. Działa to na zasadzie interakcji między składnikami mieszaniny a tymi fazami. Różne substancje w mieszaninie mają różne affinności do fazy stacjonarnej, co prowadzi do ich rozdzielenia. Przykładem zastosowania chromatografii jest analiza składników chemicznych w próbkach wody, gdzie różne zanieczyszczenia mogą być oddzielane i identyfikowane. Chromatografia jest szeroko stosowana w przemyśle farmaceutycznym, biotechnologii oraz w laboratoriach analitycznych do oceny czystości substancji chemicznych. Technika ta jest zgodna z międzynarodowymi standardami jakości, co czyni ją kluczowym narzędziem w badaniach i kontrolach jakości.

Pytanie 26

Odlanie cieczy z nad osadu to

A. sedymentacja
B. dekantacja
C. filtracja
D. destylacja
Dekantacja to proces polegający na oddzieleniu cieczy od osadu poprzez jej zlanie. Jest to technika powszechnie stosowana w laboratoriach chemicznych oraz w przemyśle, szczególnie w produkcji napojów, takich jak wino czy piwo. W praktyce dekantacja umożliwia uzyskanie klarownej cieczy, eliminując niepożądane cząstki stałe. W przypadku win, na przykład, dekantacja jest kluczowym etapem, który pozwala na usunięcie osadu powstałego podczas fermentacji, co poprawia jakość i smak trunku. Proces ten jest zgodny z zasadami dobrych praktyk laboracyjnych, które zalecają stosowanie efektywnych metod separacji, minimalizujących ryzyko kontaminacji. Ważnym aspektem dekantacji jest także precyzja, z jaką należy przeprowadzić ten proces, aby uniknąć zmieszania cieczy z osadem. W kontekście analizy jakości cieczy, dekantacja może być również używana w analizie chemicznej do przygotowania próbek do dalszych badań, co podkreśla jej znaczenie w szerokim zakresie zastosowań.

Pytanie 27

Czy odpady laboratoryjne zawierające jony metali ciężkich powinny zostać poddane obróbce przed umieszczeniem ich w odpowiednio oznaczonej pojemności?

A. przeprowadzić w trudnorozpuszczalne związki i odsączyć
B. zneutralizować kwasem solnym lub zasadą sodową
C. zasypać wodorowęglanem sodu
D. rozcieńczyć wodą destylowaną
Neutralizowanie odpadów laboratoryjnych kwasem solnym lub zasadą sodową to podejście, które może wydawać się logiczne, jednak nie jest to skuteczna metoda w przypadku odpadów zawierających metale ciężkie. Metale te, takie jak ołów, rtęć czy kadm, nie reagują w sposób, który pozwalałby na ich bezpieczne usunięcie za pomocą prostych reakcji kwas-zasada. Ponadto, takie działania mogą prowadzić do powstawania niebezpiecznych gazów, które mogą być toksyczne. Przykładowo, reakcja z kwasem solnym może uwolnić chlorowodór, co stwarza dodatkowe zagrożenie dla zdrowia. Zasypywanie odpadów wodorowęglanem sodu to kolejna niewłaściwa metoda, ponieważ nie prowadzi do skutecznego usuwania metali ciężkich, a jedynie może neutralizować pH, co nie eliminuje problemu samego zanieczyszczenia. Rozcieńczanie wodą destylowaną to kolejna strategia, która nie rozwiązuje problemu, a jedynie rozcieńcza substancje toksyczne, co może prowadzić do ich dalszego rozprzestrzeniania się w środowisku. W kontekście dobrych praktyk laboratoryjnych, istotne jest zrozumienie, że odpady powinny być najpierw klasyfikowane, a następnie poddawane odpowiednim procesom unieszkodliwiania, które zapewnią ich bezpieczne i ekologiczne usunięcie. Laboratoria muszą przestrzegać regulacji dotyczących gospodarki odpadami, takich jak ustawy o ochronie środowiska, które wymagają od nich podejmowania świadomych decyzji w sprawie zarządzania odpadami niebezpiecznymi.

Pytanie 28

Dokonano pomiaru pH dwóch roztworów, uzyskując wartości pH= 2 oraz pH= 5. Wskaźnij poprawnie sformułowany wniosek.

A. Stężenie jonów [H+] w roztworze o pH= 5 jest 1000 razy mniejsze niż w roztworze o pH = 2
B. Stężenie jonów [H+] w roztworze o pH= 5 jest trzykrotnie mniejsze niż w roztworze o pH = 2
C. Stężenie jonów [H+] w roztworze o pH= 5 jest większe o 3 mol/dm3 niż w roztworze o pH = 2
D. Stężenie jonów [H+] w roztworze o pH= 5 jest 1000 razy wyższe niż w roztworze o pH = 2
Niezrozumienie konsekwencji skali pH prowadzi do błędnych wniosków. W przypadku stwierdzenia, że stężenie jonów [H+] w roztworze o pH=5 jest 3 razy mniejsze niż w roztworze o pH=2, pomija się kluczowy fakt o logarytmicznej naturze skali pH. Zmiana pH o jednostkę oznacza dziesięciokrotną różnicę w stężeniu jonów, co tworzy mylne przekonanie, że różnice są liniowe. W konsekwencji, jeśli pH zmienia się z 2 na 5, stężenie [H+] nie zmniejsza się o 3, ale o 1000 razy. Twierdzenie, że stężenie w roztworze pH=5 jest 1000 razy większe niż w pH=2, także jest błędne, ponieważ ignoruje właściwości pH jako miary stężenia jonów. Odpowiedź sugerująca, że stężenie w roztworze o pH=5 jest większe o 3 mol/dm3 niż w pH=2, wskazuje na brak zrozumienia skali i jednostek. W rzeczywistości różnice te nie są mierzone w molach, ale w proporcjach logarytmicznych. Błędem jest również myślenie, że takie zmiany można analizować w sposób prosty, liniowy, co jest sprzeczne z podstawowymi zasadami chemii kwasowo-zasadowej. Aby unikać takich nieporozumień, należy stosować dokładne obliczenia oparte na logarytmach oraz zrozumienie, jak pH wpływa na różne procesy chemiczne i biologiczne.

Pytanie 29

Podczas reakcji chlorku żelaza(III) z wodorotlenkiem potasu dochodzi do wytrącenia wodorotlenku żelaza(III) w formie

A. grubokrystalicznego osadu
B. galaretowatego osadu
C. serowatego osadu
D. drobnokrystalicznego osadu
Wybór odpowiedzi dotyczący serowatego, grubokrystalicznego lub drobnokrystalicznego osadu opiera się na nieprawidłowym zrozumieniu mechanizmów wytrącania i struktury fizycznej osadów. Serowaty osad sugeruje odmienną teksturę, która jest charakterystyczna dla innych reakcji, na przykład związanych z osadzaniem koloidalnym, gdzie cząsteczki tworzą bardziej stałe, twarde struktury. Grubokrystaliczny osad natomiast wskazuje na obecność dużych, wyraźnych kryształów, co jest typowe dla reakcji krystalizacji o niskiej rozpuszczalności, a nie dla wodorotlenku żelaza(III), który ma tendencję do formowania się w postaci bardziej jednorodnej, galaretowatej. Drobnokrystaliczny osad może być mylący, ponieważ sugeruje, że produkt reakcji ma bardzo małe, jednorodne kryształy, co znów nie odnosi się do rzeczywistej natury wodorotlenku żelaza(III), który w warunkach reakcji z wodorotlenkiem potasu przyjmuje bardziej złożoną, galaretowatą formę. Takie nieporozumienia mogą wynikać z błędnego postrzegania roli pH i stężenia reagentów w procesie wytrącania, co jest kluczowe dla zrozumienia właściwości chemicznych osadów. Zachęcam do przestudiowania literatury dotyczącej chemii koordynacyjnej oraz procesów osadzania, aby lepiej zrozumieć te zjawiska.

Pytanie 30

Co oznacza zapis cz.d.a. na etykiecie opakowania odczynnika chemicznego?

A. zawiera maksymalnie 0,1% zanieczyszczeń
B. zawiera co najmniej 0,1% zanieczyszczeń
C. zawiera maksymalnie 0,05% zanieczyszczeń
D. zawiera co najmniej 0,05% zanieczyszczeń
Wybór odpowiedzi, że odczynnik zawiera minimum 0,05% zanieczyszczeń, jest nieprawidłowy, ponieważ nie uwzględnia istoty oznaczenia "cz.d.a.". Oznaczenie to implikuje, że substancje te są przeznaczone do zastosowań analitycznych i muszą spełniać określone normy czystości, które ograniczają zawartość zanieczyszczeń do maksymalnie 0,1%. Odpowiedź sugerująca, że odczynnik zawiera minimum 0,1% zanieczyszczeń, jest również błędna, ponieważ wprowadza w błąd co do definicji czystości. Ponadto odpowiedzi wskazujące na maksymalne zanieczyszczenie wynoszące 0,05% są niewłaściwe, ponieważ mogą prowadzić do nieporozumień w kontekście przygotowania próbek do analiz. W praktyce, odczynniki chemiczne używane w laboratoriach muszą spełniać rygorystyczne wymagania dotyczące czystości, aby zapewnić dokładność i powtarzalność wyników. Typowym błędem myślowym jest zakładanie, że niska granica zanieczyszczeń oznacza, że odczynniki muszą mieć jeszcze bardziej restrykcyjne normy, co nie jest zgodne z rzeczywistością. Właściwe zrozumienie terminologii i oznaczeń w zakresie chemii analitycznej jest kluczowe, aby uniknąć błędów w interpretacji i stosowaniu odczynników w praktyce. Z tego powodu, znajomość standardów czystości jest niezbędna dla każdego profesjonalisty pracującego w laboratorium.

Pytanie 31

W celu rozdrabniania niewielkich ilości bardzo twardego materiału wykorzystuje się moździerze

A. melaminowe
B. teflonowe
C. agatowe
D. ze stali molibdenowej
Odpowiedź "ze stali molibdenowej" jest poprawna, ponieważ moździerze wykonane z tego materiału charakteryzują się wyjątkową twardością i odpornością na zużycie, co czyni je idealnymi do rozdrabniania twardych substancji. Stal molibdenowa, dzięki swoim właściwościom, zapewnia doskonałą trwałość oraz stabilność mechaniczną, co jest kluczowe przy pracy z bardzo twardymi materiałami, takimi jak niektóre minerały czy substancje chemiczne. Użycie moździerzy stalowych w laboratoriach chemicznych oraz gastronomicznych jest powszechną praktyką, gdyż pozwala na uzyskanie dokładnych i jednorodnych rezultatów. Przykładem zastosowania może być rozdrabnianie przypraw, takich jak pieprz czy zioła, gdzie kluczowe jest zachowanie aromatów i właściwości smakowych. Ponadto stal molibdenowa jest mniej podatna na korozję w porównaniu do innych stali, co wydłuża żywotność narzędzia oraz zapewnia bezpieczeństwo w kontakcie z różnymi substancjami chemicznymi.

Pytanie 32

Jakie jest stężenie molowe roztworu, jeśli w 100 cm3 roztworu znajduje się 5,6 g KOH?
MK = 39 g/mol, MO = 16 g/mol, MH = 1 g/mol

A. 10 mol/dm3
B. 1 mol/dm3
C. 0,1 mol/dm3
D. 100 mol/dm3
Obliczanie stężenia molowego roztworu to kluczowa umiejętność w chemii, ale niektóre odpowiedzi mogą wynikać z typowych błędów konceptualnych. Na przykład, jeżeli ktoś wybrałby 0,1 mol/dm³, może to wynikać z niewłaściwego podzielenia liczby moli przez objętość, nie uwzględniając, że trzeba obliczać stężenie w dm³, a nie w cm³. Stężenie 10 mol/dm³ lub 100 mol/dm³ sugeruje, że wykonano obliczenia zakładając zbyt dużą ilość moli w roztworze, co wskazuje na zrozumienie pojęcia molarności, ale z błędnym przeliczeniem. Przy takich dużych stężeniach wiele substancji nie byłoby rozpuszczalnych w wodzie, co jest niezgodne z rzeczywistością dla KOH w tym przypadku. Często zdarza się, że błędy te są wynikiem nieprawidłowego przeliczenia jednostek lub nieuznawania mas molowych substancji. Aby poprawnie obliczyć stężenie molowe, zawsze należy zacząć od dokładnego przeliczenia moli oraz upewnić się, że objętość jest wyrażona w odpowiednich jednostkach, czyli dm³. Zrozumienie mocy rozpuszczalności oraz zasad mas molowych jest niezbędne, by unikać tych powszechnych pułapek w obliczeniach chemicznych.

Pytanie 33

Jakie procesy towarzyszy efekt egzotermiczny?

A. rozpuszczanie jodku potasu w wodzie
B. rozcieńczanie stężonego roztworu kwasu siarkowego(VI)
C. rozpuszczanie azotanu(V) amonu w wodzie
D. rozcieńczanie stężonego roztworu tiosiarczanu(VI) sodu
Rozcieńczanie stężonego roztworu kwasu siarkowego(VI) to całkiem ciekawy proces. Robi się to w sposób egzotermiczny, co w praktyce oznacza, że wydziela się sporo ciepła. Jak się doda kwas do wody, to następuje silna reakcja, przez co temperatura roztworu może znacząco wzrosnąć. Dlatego zawsze warto pamiętać, żeby najpierw wrzucić kwas do wody, a nie odwrotnie – to może uratować nas przed nieprzyjemnymi oparzeniami i innymi niebezpieczeństwami. No i nie zapominaj o środkach ochrony osobistej – lepiej być przezornym, niż później żałować. Ta wiedza, moim zdaniem, jest kluczowa nie tylko w laboratoriach, ale i w różnych procesach przemysłowych. Gdy nie przestrzegamy zasad bezpieczeństwa, konsekwencje mogą być naprawdę poważne. Rozumienie, jak działają reakcje egzotermiczne, jest też ważne, szczególnie jeśli chodzi o projektowanie systemów chłodzenia w przemyśle chemicznym czy farmaceutycznym, bo kontrola temperatury ma tu ogromne znaczenie dla jakości produktów.

Pytanie 34

Między wodorotlenkiem baru a chlorkiem amonu dochodzi do spontanicznej reakcji, która powoduje silne schłodzenie mieszaniny oraz wydobycie się charakterystycznego zapachu amoniaku.
Ba(OH)2(s) + 2 NH4Cl(s) → BaCl2(aq) + 2 H2O(c) + 2 NH3(g) Wskaź, które sformułowanie właściwie wyjaśnia to zjawisko.
nieodwracalnie jej równowagę.

A. Reakcja zachodzi spontanicznie mimo endotermiczności, ponieważ wydzielanie gazu przesuwa
B. Reakcja zachodzi spontanicznie, ponieważ jest egzotermiczna
C. Reakcja zachodzi spontanicznie mimo endotermiczności, ponieważ wydzielanie soli przesuwa nieodwracalnie jej równowagę
D. Reakcja zachodzi spontanicznie, ponieważ jest endotermiczna
Sformułowania, które sugerują, że reakcja jest egzotermiczna, są mylne. Ekspansja gazu, która występuje w wyniku wydzielania amoniaku, jest kluczowym czynnikiem w analizie tej reakcji. Egzotermiczność oznacza, że reakcja wydziela ciepło, co w tym przypadku nie ma miejsca. Ponadto, twierdzenie o nieodwracalności reakcji związanej z wydzieleniem soli jest również nieprecyzyjne – chociaż reakcja prowadzi do powstania soli, kluczową rolę odgrywa wydzielanie gazu, a nie samej soli. W przypadku reakcji endotermicznych, często występują mylne przekonania, że jedynie wydzielanie ciepła może być oznaką reakcji spontanicznej. W rzeczywistości, spontaniczność reakcji chemicznej można zrozumieć przez analizę zmian entropii i energii swobodnej. Kluczowym błędem jest także przypisanie roli równowagi chemicznej tylko do produktów stałych, ignorując znaczenie produktów gazowych. Warto również podkreślić, że niektóre reakcje, mimo że energetycznie niekorzystne, mogą zachodzić na skutek zwiększenia entropii, co jest szczególnie istotne w kontekście gazów. Zrozumienie tych koncepcji jest niezbędne dla analizy reakcji chemicznych w praktyce laboratoryjnej i przemysłowej.

Pytanie 35

W tabeli przestawiono dane dotyczące wybranych roztworów wodnych wodorotlenku sodu.
Oblicz masę wodorotlenku sodu, jaką należy rozpuścić w 200,0 cm3 wody, aby otrzymać roztwór o gęstości 1,0428 g/cm3.

d420 [g/cm3]masa NaOH [g/100 cm3]
1,00951,01
1,02072,04
1,04284,17
1,06486,39
1,08698,70
1,108911,09

A. 8,70 g
B. 8,34 g
C. 4,17 g
D. 4,08 g
Odpowiedź 8,34 g jest prawidłowa, ponieważ aby uzyskać roztwór o gęstości 1,0428 g/cm³ w objętości 200 cm³, musimy wziąć pod uwagę masę wodorotlenku sodu (NaOH) niezbędną do osiągnięcia takiej gęstości. Z danych w tabeli wynika, że dla 100 cm³ roztworu potrzebna jest masa NaOH, która po podwojeniu daje nam 8,34 g dla 200 cm³. To podejście jest zgodne z zasadami obliczeń chemicznych, gdzie gęstość, masa i objętość są ze sobą powiązane. W praktyce, takie obliczenia są kluczowe w laboratoriach chemicznych, gdzie precyzyjne przygotowanie roztworów ma ogromne znaczenie dla wyników eksperymentów. Zrozumienie relacji między gęstością a masą przy rozcieńczaniu lub przygotowywaniu roztworów jest istotne nie tylko w chemii, ale również w innych dziedzinach, takich jak farmacja czy biotechnologia, gdzie odpowiednie stężenie substancji czynnej jest kluczowe dla skuteczności terapii.

Pytanie 36

Jaką substancję należy koniecznie oddać do utylizacji?

A. Gliceryna
B. Chromian(VI) potasu
C. Glukoza
D. Sodu chlorek
Chromian(VI) potasu to substancja chemiczna, która jest klasyfikowana jako niebezpieczny odpad. Ze względu na swoje właściwości toksyczne oraz rakotwórcze, jego pozostałości muszą być traktowane z najwyższą ostrożnością i nie mogą być usuwane w sposób standardowy. Zgodnie z regulacjami dotyczącymi gospodarki odpadami, takie substancje powinny być przekazywane do specjalistycznych zakładów zajmujących się ich utylizacją. Przykładowo, chromiany są szeroko stosowane w przemyśle, w tym w procesach galwanicznych oraz w produkcji barwników, dlatego ważne jest, aby procesy te były zgodne z normami ochrony środowiska, takimi jak dyrektywy unijne dotyczące zarządzania odpadami niebezpiecznymi. Utylizacja chromianu VI wymaga zastosowania odpowiednich metod, takich jak stabilizacja chemiczna, aby zapobiec przedostawaniu się szkodliwych substancji do gruntu czy wód gruntowych. Właściwe postępowanie z tymi materiałami jest kluczowe dla ochrony zdrowia publicznego oraz ochrony środowiska.

Pytanie 37

Technika kwartowania (ćwiartkowania) pozwala na redukcję masy próbki ogólnej

A. stałej
B. ciekłej
C. półciekłej
D. gazowej
Metoda kwartowania, czyli ćwiartkowanie, to sposób, który wykorzystuje się w laboratoriach, żeby zmniejszyć masę próbki stałej. Dzięki temu można ją analizować, nie tracąc przy tym jej reprezentatywności. Po prostu dzielimy próbkę na cztery równe części i wybieramy dwie przeciwległe, co daje nam mniejszą próbkę do pracy. To jest ważne zwłaszcza w chemii, gdzie zachowanie proporcji składników ma duże znaczenie. Na przykład, jeśli mamy dużą próbkę gleby i chcemy ją przeanalizować, kwartowanie pozwala nam na zmniejszenie jej do rozmiaru, który jest bardziej odpowiedni do badań, np. mikrobiologicznych czy chemicznych. Dla próbek stałych, takich jak minerały czy różne odpady, kwartowanie jest standardem, bo pozwala nam na uzyskanie reprezentatywnej próbki, a jednocześnie ogranicza straty materiału. Warto też pamiętać, że normy ISO w analizie próbek podkreślają znaczenie uzyskiwania prób reprezentatywnych, co jest kluczowe w wielu badaniach w laboratoriach i przemyśle.

Pytanie 38

Próbkę wody przeznaczoną do oznaczenia zawartości metali poddaje się utrwalaniu za pomocą

Sposoby utrwalania i przechowywania próbek wody przeznaczonych do badań fizykochemicznych.
OznaczenieSposób utrwalania i przechowywania
BarwaPrzechowywać w ciemności
MętnośćPrzechowywać w ciemności
TwardośćpH = 3 z użyciem HNO₃
OWO0,7 ml HCl/30 ml próbki
ChZTpH 1-2 z użyciem H₂SO₄
FosforPrzechowywać w temperaturze 1-5°C
GlinpH 1-2 z użyciem HNO₃
ŻelazopH 1-2 z użyciem HNO₃
UtlenialnośćpH1-2 z użyciem H₂SO₄. Przechowywać w ciemności

A. kwasu fosforowego(V).
B. kwasu azotowego(V).
C. kwasu solnego.
D. kwasu siarkowego(VI).
Odpowiedź kwasu azotowego(V) jako środka utrwalającego próbki wody jest zgodna z zasadami analizy chemicznej, szczególnie w kontekście oznaczania metali, takich jak glin i żelazo. Kwas azotowy(V) (HNO3) jest powszechnie stosowany w laboratoriach ze względu na swoje silne właściwości utleniające, które pomagają w stabilizacji próbek przed dalszymi analizami. Utrwalenie próbki za pomocą kwasu azotowego zapobiega osadzaniu się metali oraz ich utlenieniu, co ma kluczowe znaczenie w uzyskaniu dokładnych i wiarygodnych wyników. Ponadto, zgodnie z zaleceniami standardów takich jak ISO 5667, odpowiednie przygotowanie próbek jest kluczowe dla zapewnienia jakości badań. Kwas azotowy pozwala na zachowanie integralności chemicznej metali w próbce, co jest niezbędne w analizach spektroskopowych, takich jak ICP-OES czy AAS. Rekomendowane praktyki laboratoryjne podkreślają również konieczność stosowania HNO3 w odpowiednich stężeniach, aby osiągnąć najlepsze wyniki analityczne.

Pytanie 39

Aby sporządzić 20 cm3 roztworu HCl (1+1), należy w pierwszej kolejności wlać do zlewki

A. 10 cm3 stężonego kwasu solnego, a potem 10 cm3 wody destylowanej
B. 10 cm3 wody destylowanej, a potem 10 cm3 stężonego kwasu solnego
C. 10 cm3 wody destylowanej, a następnie 10 cm3 rozcieńczonego kwasu solnego
D. 10 cm3 rozcieńczonego kwasu solnego, a potem 10 cm3 wody destylowanej
Odpowiedź, w której na początku dodajemy 10 cm3 wody destylowanej, a następnie 10 cm3 stężonego kwasu solnego, jest prawidłowa z kilku powodów. Po pierwsze, rozcieńczanie kwasu solnego powinno zawsze rozpocząć się od dodania wody do kwasu, a nie odwrotnie. Dodanie stężonego kwasu do wody zmniejsza ryzyko reakcji egzotermicznej, która może prowadzić do niebezpiecznego rozprysku kwasu. W praktyce, woda powinna być dodawana do kwasu w kontrolowany sposób, aby uniknąć gwałtownego wrzenia. Te zasady są zgodne z najlepszymi praktykami w laboratoriach chemicznych, które podkreślają znaczenie bezpieczeństwa podczas pracy z substancjami żrącymi. Dodatkowo, stężony kwas solny ma gęstość większą niż woda, co oznacza, że jego dodanie do wody powoduje szybkie i silne mieszanie, co ułatwia osiągnięcie pożądanej koncentracji roztworu. W kontekście praktycznym, taka procedura jest niezbędna w laboratoriach analitycznych czy edukacyjnych, gdzie przygotowywanie roztworów o określonych stężeniach jest codziennością.

Pytanie 40

Piktogram ukazujący czaszkę oraz skrzyżowane kości piszczelowe jest typowy dla substancji o działaniu

A. narkotycznym
B. toksycznym dla skóry
C. korodującym na metale
D. żrącym dla skóry
Piktogram przedstawiający czaszkę i skrzyżowane piszczele jest powszechnie stosowany do oznaczania substancji, które mają działanie toksyczne na skórę. Oznaczenie to informuje użytkowników o ryzyku, jakie niesie ze sobą kontakt danego związku chemicznego z ciałem. Substancje toksyczne mogą powodować poważne uszkodzenia, a w niektórych przypadkach nawet prowadzić do śmierci, jeśli nie zostaną odpowiednio zabezpieczone. Przykłady substancji, które mogą być oznaczone tym piktogramem, to niektóre pestycydy, rozpuszczalniki organiczne czy chemikalia wykorzystywane w laboratoriach. Zgodnie z obowiązującymi standardami, takimi jak GHS (Globalnie Zharmonizowany System Klasyfikacji i Oznakowania Chemikaliów), prawidłowe oznaczenie substancji jest kluczowym elementem zapewnienia bezpieczeństwa w miejscu pracy oraz w codziennym użytkowaniu chemikaliów. Właściwe zrozumienie i respektowanie tych oznaczeń jest niezbędne do minimalizacji ryzyka zatrucia lub poparzeń chemicznych.