Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 22 maja 2025 20:11
  • Data zakończenia: 22 maja 2025 20:23

Egzamin niezdany

Wynik: 17/40 punktów (42,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Aby uzyskać wodorotlenek wapnia, odważono 30 g węglanu wapnia, który następnie wyprażono. Powstały tlenek wapnia dodano do 100 cm3 wody, a otrzymany osad wysuszono i zważono, uzyskując 18,5 g wodorotlenku wapnia. Jaką wydajność miała ta reakcja?

Ca – 40 g/mol; O – 16 g/mol; C – 12 g/mol; H – 1 g/mol

A. 75%
B. 80%
C. 83%
D. 93%
Wydajność reakcji to kluczowy parametr, który często mylony jest z innymi pojęciami, takimi jak sprawność czy konwersja. Wybór błędnych odpowiedzi może wynikać z niezrozumienia właściwego sposobu obliczania wydajności, co prowadzi do chaosu w analizie wyników reakcji chemicznych. Na przykład, wiele osób może pomylić teoretyczną masę produktu z masą rzeczywiście uzyskaną. Obliczając wydajność, istotne jest posługiwanie się poprawnymi jednostkami i jednostkowym podejściem do obliczeń. Do obliczenia wydajności należy wyjść od teorii reakcji, w której określamy możliwą masę produktu, a następnie porównujemy ją z masą rzeczywistą. Może się zdarzyć, że wyliczenia prowadzą do wartości 75%, 80% czy nawet 93%, co jest wynikiem pomyłek w obliczeniach lub niewłaściwego rozumienia masy molowej użytych reagentów. Istotnym błędem jest również pominięcie wpływu czynników zewnętrznych, takich jak temperatura czy ciśnienie, które mogą wpływać na wydajność reakcji. W praktyce, dokładność w obliczeniach oraz znajomość teorii reakcji chemicznych są kluczowe dla osiągnięcia jak najwyższej wydajności procesów chemicznych, co jest szczególnie ważne w przemyśle oraz laboratoriach badawczych.

Pytanie 2

Którego z poniższych naczyń laboratoryjnych nie powinno się używać do podgrzania 100 cm3wody?

A. Kolby miarowej o pojemności 100 cm3
B. Kolby stożkowej o pojemności 200 cm3
C. Zlewki o pojemności 150 cm3
D. Zlewki o pojemności 200 cm3
Kolby miarowe, ze względu na swoją konstrukcję i przeznaczenie, nie są odpowiednie do stosowania jako naczynia do ogrzewania cieczy, w tym przypadku 100 cm³ wody. Ich główną funkcją jest dokładne mierzenie objętości cieczy, a nie ich podgrzewanie. Kolby miarowe wykonane są z cienkiego szkła, co sprawia, że są bardziej wrażliwe na zmiany temperatury i mogą łatwo pęknąć pod wpływem ciepła. W praktyce laboratoryjnej, do ogrzewania cieczy zaleca się używanie naczyń takich jak zlewki czy kolby stożkowe, które są zaprojektowane do wytrzymywania wysokich temperatur. Na przykład, zlewki wykonane z borokrzemowego szkła, które charakteryzuje się wysoką odpornością na temperaturę, są powszechnie stosowane do takich zadań. Dobre praktyki laboratoryjne nakazują wybieranie naczyń dostosowanych do specyficznych zastosowań, aby zapewnić bezpieczeństwo i efektywność pracy.

Pytanie 3

Użycie płuczek jest konieczne w trakcie procesu

A. krystalizacji
B. flotacji
C. destylacji
D. oczyszczania gazów
Płuczkami, czyli urządzeniami stosowanymi do oczyszczania gazów, posługujemy się w celu usunięcia zanieczyszczeń oraz toksycznych substancji z gazów odpadowych. W procesie tym gaz przepływa przez ciecz, najczęściej wodę lub roztwory chemiczne, które absorbują zanieczyszczenia. Przykładem zastosowania płuczek jest przemysł chemiczny, gdzie gazy powstałe w wyniku reakcji chemicznych często zawierają szkodliwe dla środowiska substancje. Płuczki są zgodne z normami ochrony środowiska, takimi jak dyrektywy unijne dotyczące emisji gazów do atmosfery. Dzięki zastosowaniu nowoczesnych technologii płuczek, można osiągnąć wysoką efektywność oczyszczania, co przyczynia się do zmniejszenia emisji zanieczyszczeń i ochrony zdrowia publicznego. W praktyce płuczkami można również oczyszczać gazy przemysłowe, co jest kluczowe w kontekście zrównoważonego rozwoju i odpowiedzialności ekologicznej przedsiębiorstw.

Pytanie 4

Proces oddzielania składników jednorodnej mieszaniny, polegający na eliminacji jednego lub większej ilości składników z roztworu lub substancji stałej przy użyciu odpowiednio wybranego rozpuszczalnika, to

A. adsorpcja
B. rektyfikacja
C. destylacja
D. ekstrakcja
Rektyfikacja, adsorpcja i destylacja to różne procesy, które chociaż są używane do rozdzielania składników, to jednak nie nadają się do tego, co opisano w pytaniu o ekstrakcję. Rektyfikacja to technika, gdzie wielokrotnie skrapla się i odparowuje ciecz, co sprawdza się zazwyczaj przy separacji składników o podobnych temperaturach wrzenia. Jest to popularne w przemyśle petrochemicznym i przy produkcji alkoholi, ale nie chodzi tu o to, żeby selektywnie usuwać składniki z roztworu przez rozpuszczalnik. Adsorpcja z kolei, to proces, gdzie cząsteczki substancji przywierają do powierzchni ciała stałego i stosuje się go w filtracji oraz oczyszczaniu gazów, ale to jednak różni się od ekstrakcji, bo nie polega na rozpuszczaniu składników. Natomiast destylacja separuje składniki cieczy na podstawie różnic w temperaturach wrzenia, co znów mija się z pytaniem o rozpuszczalnik do usuwania składników. Te pojęcia często się mylą, bo wszystkie odnoszą się do procesów separacyjnych, ale ich działanie i zastosowanie są zupełnie różne. Kluczowy błąd to zakładanie, że wszystkie metody separacji są zamienne, co sprawia, że mogą wystąpić nieporozumienia w laboratoriach czy przemyśle.

Pytanie 5

Butle gazowe (czasy butli) napełnione wodorem są oznaczone kolorem

A. żółtym
B. niebieskim
C. jasnozielonym
D. czerwonym
Zrozumienie systemu oznaczania butli gazowych jest kluczowe dla bezpieczeństwa pracy z substancjami chemicznymi. Kolorystyka oznaczeń butli gazowych jest ściśle określona przez normy. Odpowiedzi sugerujące żółty, jasnozielony lub niebieski kolor są błędne, ponieważ nie odzwierciedlają one aktualnych praktyk w branży. Żółty kolor często kojarzony jest z gazami toksycznymi, a jasnozielony z gazami szlachetnymi, natomiast niebieski stosuje się zazwyczaj do azotu lub innych gazów obojętnych. Wybierając niepoprawne kolory, można narazić się na poważne konsekwencje, takie jak błędna identyfikacja gazu, co prowadzi do niebezpiecznych sytuacji. W przemyśle, gdzie obsługiwane są różne rodzaje gazów, znajomość i przestrzeganie norm dotyczących oznaczania butli gazowych jest niezbędne. Typowe błędy myślowe prowadzące do takich wniosków to ignorowanie standardów branżowych oraz brak świadomości na temat zagrożeń związanych z niewłaściwym oznaczeniem gazów. Warto pamiętać, że bezpieczeństwo w pracy z niebezpiecznymi substancjami chemicznymi opiera się na dokładnym przestrzeganiu procedur oraz systemów oznaczania, co bezpośrednio wpływa na zdrowie i życie pracowników oraz osób postronnych.

Pytanie 6

Po przeprowadzeniu krystalizacji z 120 g kwasu szczawiowego uzyskano 105 g produktu o wysokiej czystości. Jaki był poziom zanieczyszczeń w kwasie szczawiowym?

A. 15%
B. 12,5%
C. 20%
D. 87,5%
Aby zrozumieć, dlaczego pozostałe odpowiedzi są błędne, należy przyjrzeć się podstawowym zasadom obliczeń związanych z zawartością zanieczyszczeń. Odpowiedzi takie jak 20%, 15% i 87,5% opierają się na nieprawidłowych wyliczeniach lub błędnych założeniach. Przykładowo, jeśli ktoś wyliczałby 20%, mógłby mylnie pomyśleć, że zanieczyszczenia stanowią znacznie większy udział masy początkowej. Może to wynikać z pomyłki w obliczeniach lub braku zrozumienia, że zanieczyszczenia są obliczane na podstawie masy uzyskanego czystego produktu, a nie samej masy początkowej. Odpowiedź 15% również jest wynikiem nieprawidłowego obliczenia. Osoba udzielająca takiej odpowiedzi mogła pomylić się, przyjmując, że zanieczyszczenia to po prostu 15 g z 120 g, co nie uwzględnia odpowiedniego podziału przez masę początkową i pomnożenia przez 100%. Z kolei odpowiedź 87,5% jest szczególnie myląca, ponieważ sugeruje, że niemal cała masa kwasu szczawiowego była zanieczyszczona, co jest niezgodne z danymi przedstawionymi w pytaniu. Takie podejście może prowadzić do dramatycznych nieporozumień w analizie danych chemicznych i w przemyśle, gdzie dokładność pomiarów jest kluczowa. Dlatego ważne jest, aby stosować jednoznaczne metody obliczeń oraz zrozumieć, jakie wartości są istotne w kontekście danej analizy chemicznej.

Pytanie 7

Próbkę laboratoryjną dzieli się na dwie części, ponieważ

A. analizę produktu zawsze realizuje się dwiema różnymi metodami
B. przeprowadza się dwie analizy badanego produktu i przyjmuje wartość średnią z wyników
C. jedna część jest przeznaczona do potencjalnego przeprowadzenia analizy rozjemczej
D. jedna część jest skierowana do dostawcy, a druga do odbiorcy produktu
Podział średniej próbki na dwie części to coś, na co trzeba zwrócić uwagę w analizie laboratoryjnej. Odpowiedzi, które mówią, że jedna próbka idzie dla dostawcy, a druga dla odbiorcy, mogą wprowadzać w błąd, bo nie bierze się pod uwagę celu analizy rozjemczej, która jest do rozstrzygania sporów. Dwie różne metody analizy mogą być fajne, ale to nie tłumaczy podziału próbki. Taki sposób robienia rzeczy może zamieszać i prowadzić do kiepskich wniosków o wynikach. Co więcej, robienie dwóch analiz i branie z tego średniej to nie jest standard w takich sprawach jak jakość, bo nie wyklucza błędów systematycznych. Trzeba też pamiętać, że analiza rozjemcza to nie to samo co kontrola jakości; jedno ma na celu rozwiązywanie sporów, a drugie to rutynowe sprawdzanie produkcji. Dobrze jest zrozumieć znaczenie właściwego podejścia do podziału próbki, bo to kluczowe dla obiektywności i przejrzystości w analizach.

Pytanie 8

Rozpuszczalniki organiczne powinny być składowane

A. w drewnianych szafkach
B. w metalowych szafach
C. w przestrzeni ogólnodostępnej
D. w miejscu o dużym nasłonecznieniu
Trzymanie rozpuszczalników w drewnianych szafach to nie jest dobry pomysł, bo drewno łatwo się pali i może to doprowadzić do pożaru. Jak coś się wyleje, drewno wchłonie to chemiczne gówno i potem będzie dużo trudniej to ogarnąć. Szafy drewniane nie mają też takich właściwości ochronnych, które są potrzebne w chemii. Na dodatek, miejsce nasłonecznione to też nie jest najlepszy wybór, bo słońce może podnieść temperaturę chemikaliów, co może wywołać niekontrolowane reakcje i ryzyko wybuchu. Przechowywanie w ogólnodostępnym miejscu to też totalna bzdura, bo może to przyciągnąć nieuprawnione osoby i narazić je na niebezpieczeństwo. Lepiej trzymać się standardów jak OSHA, które mówią, że trzeba stosować odpowiednie materiały i lokalizacje, żeby ograniczyć ryzyko związane z tymi substancjami.

Pytanie 9

Jakie urządzenie wykorzystuje się do określania lepkości płynów?

A. areometr
B. kolorymetr
C. piknometr
D. wiskozymetr
Areometr to urządzenie do pomiaru gęstości cieczy, a nie lepkości. Gęstość jest ważna, ale nie mówi nam, jak ciecz się zachowuje przy ruchu czy deformacji. Piknometr też mierzy gęstość, wykorzystując objętość znanej masy cieczy. Oba te narzędzia są przydatne, ale do lepkości się nie nadają. A kolorymetr, to w ogóle coś innego – mierzy kolor cieczy, co może być ważne w badaniach jakości, ale z lepkością nie ma nic wspólnego. Często można się pomylić, myląc te narzędzia. Tak więc, jak ktoś zajmuje się pomiarami fizycznymi, to ważne, żeby wiedział, jakie urządzenie do czego służy. Jak chcemy sprawdzić właściwości cieczy, musimy dobrać odpowiednie narzędzie, żeby wszystko było zgodne z dobrymi praktykami i standardami branżowymi.

Pytanie 10

Intensywna reakcja z FeCl3 jest wykorzystywana do identyfikacji

A. amin
B. aldehydów
C. alkenów
D. fenoli
Barwna reakcja z chlorkiem żelaza(III) jest dobrze znanym testem stosowanym do wykrywania fenoli, które wykazują zdolność do tworzenia kompleksów z tym związkiem. Fenole posiadają grupę hydroksylową (-OH) połączoną z pierścieniem aromatycznym, co umożliwia im reagowanie z chlorkiem żelaza(III), prowadząc do powstania charakterystycznego zabarwienia, zazwyczaj fioletowego lub purpurowego. Przykładem zastosowania tej reakcji w laboratoriach chemicznych jest analiza składu substancji organicznych, gdzie obecność fenoli może wskazywać na zanieczyszczenia lub naturalne składniki aktywne. Test ten jest często wykorzystywany w przemyśle kosmetycznym oraz farmaceutycznym, gdzie fenole mogą pełnić rolę konserwantów lub substancji czynnych. Zastosowanie tej metody jest zgodne z normami laboratoryjnymi, które zalecają stosowanie reakcji z chlorkiem żelaza(III) jako jednego z podstawowych sposobów na identyfikację związków fenolowych, co jest uznawane za dobrą praktykę w chemii analitycznej.

Pytanie 11

Aby przygotować mianowany roztwór KMnO4, należy odważyć wysuszone Na2C2O4 o masie zbliżonej do 250 mg, z dokładnością wynoszącą 1 mg. Jaką masę powinna mieć prawidłowo przygotowana odważka?

A. 0,251 g
B. 0,215 g
C. 2,510 g
D. 0,025 g
Jak widzę, zrobiłeś błąd przy odważaniu Na2C2O4. Jeśli twoja odpowiedź znacznie odbiega od 0,251 g, to znaczy, że coś poszło nie tak. Na przykład, jeśli wskazałeś 2,510 g, to jest to zła odpowiedź, bo to prawie 10 razy więcej niż potrzeba. To może wynikać z nieprawidłowego przeliczenia jednostek lub nieznajomości masy molowej. Odpowiedzi takie jak 0,215 g czy 0,025 g również są za małe, co sugeruje, że nie wiesz, że potrzebujesz masy w okolicach 250 mg. Pamiętaj, ważenie reagentów w laboratorium jest super ważne, żeby wyniki były dokładne. Właściwe użycie wagi analitycznej i znajomość procedur ważenia to podstawa. Jak nie znasz jednostek i nie umiesz ich przeliczać, możesz popełnić poważne błędy. To bardzo istotne, żeby zrozumieć te zasady, bo błędy pomiarowe mogą zaważyć na całym eksperymencie.

Pytanie 12

Niemetal o kolorze fioletowoczarnym, który łatwo przechodzi w stan gazowy, to

A. jod
B. chlor
C. fosfor
D. brom
Chlor, brom i fosfor to inne pierwiastki chemiczne, które mogą budzić wątpliwości w kontekście tego pytania, jednak żaden z nich nie spełnia wszystkich kryteriów opisanych w pytaniu. Chlor jest gazem, który w standardowych warunkach ma zielono-żółtą barwę i jest stosunkowo reaktywny, ale nie ulega sublimacji w sposób typowy dla jodu. Brom, choć w postaci ciekłej w temperaturze pokojowej ma ciemnoczerwono-brązową barwę, również nie jest fioletowoczarnego koloru i nie sublimuje w takich ilościach jak jod. Z kolei fosfor występuje w różnych formach alotropowych, ale najbardziej znany jest biały i czerwony fosfor, które nie mają fioletowoczarnej barwy. Fosfor jest również bardziej stały w temperaturach pokojowych w porównaniu do jodu, co czyni go nieodpowiednim kandydatem. Typowym błędem przy wyborze odpowiedzi jest skupienie się na ogólnych właściwościach chemicznych tych pierwiastków, nie zwracając uwagi na specyfikę opisaną w pytaniu. W kontekście sublimacji i barwy, jod jest jednoznacznie zdefiniowany i nie ma sobie równych w tej grupie pierwiastków, co czyni go odpowiedzią właściwą. Zrozumienie tych różnic pozwala lepiej orientować się w chemii i właściwościach pierwiastków, co jest kluczowe zarówno w naukach ścisłych, jak i w zastosowaniach praktycznych.

Pytanie 13

Wskaż prawidłowo dobrany sposób kalibracji i zastosowanie szkła miarowego.

Nazwa naczyniaSposób kalibracjiZastosowanie
A.kolba miarowaExdo sporządzania roztworów mianowanych o określonej objętości
B.cylinder miarowyExdo sporządzania roztworów mianowanych o określonej objętości
C.pipeta MohraExdo odmierzania określonej objętości cieczy
D.biuretaIndo odmierzania określonej objętości cieczy

A. C.
B. B.
C. A.
D. D.
Pipeta Mohra jest narzędziem o wysokiej precyzji, które zostało zaprojektowane do kalibracji metodą Ex, co oznacza, że objętość cieczy odczytywana jest na zewnętrznej krawędzi menisku. To podejście jest kluczowe w laboratoriach chemicznych oraz biologicznych, gdzie precyzyjne pomiary objętości cieczy mają kluczowe znaczenie dla uzyskania wiarygodnych wyników badań. Pipety Mohra są szczególnie przydatne w reakcjach wymagających dokładności, takich jak przygotowywanie roztworów o znanej stężeniu lub w syntezach chemicznych. Standardy branżowe, takie jak ISO 8655, podkreślają znaczenie używania kalibracji zewnętrznej w pomiarach cieczy, aby zapewnić spójność i dokładność danych. Używając pipety Mohra, użytkownik powinien zwrócić uwagę na technikę odczytu, aby uniknąć błędów wynikających z parowania lub menisku, co może prowadzić do nieprecyzyjnych wyników. Dlatego odpowiedź C, wskazująca na prawidłowe zastosowanie pipety Mohra, jest zgodna z najlepszymi praktykami laboratoryjnymi.

Pytanie 14

Dekantacja to metoda

A. oddzielania cieczy od osadu, która polega na zlaniu cieczy znad osadu
B. oddzielania cieczy od osadu, która polega na odparowaniu cieczy
C. opadania cząstek ciała stałego w wyniku działania siły ciężkości, które są rozproszone w cieczy
D. oddzielania cieczy lub gazu od cząstek ciała stałego, które są w nich zawieszone, polegająca na przepuszczeniu zawiesiny przez przegrodę filtracyjną
Dekantacja to taki sposób oddzielania cieczy od osadu, polegający na tym, że wlewasz ciecz znad osadu do innego naczynia. Jest super popularna w laboratoriach chemicznych i w różnych branżach, szczególnie przy oczyszczaniu i separacji. Głównym celem tego procesu jest zdobycie czystej cieczy i pozbycie się osadu, który ląduje na dnie. Przykłady? No to na przykład wino – dekantuje się je, żeby oddzielić osad, który powstaje przy fermentacji. W laboratoriach też często używają dekantacji, żeby pozbyć się osadu po reakcjach chemicznych. To prosta i skuteczna metoda, co czyni ją jedną z podstawowych technik w chemii. Ważne jest, żeby robić to ostrożnie, żeby nie zmieszać cieczy z osadem. Dobrze jest też używać odpowiednich naczyń, które pomogą ci w precyzyjnym zlaniu cieczy.

Pytanie 15

Na podstawie danych w tabeli wskaż, którego środka suszącego można użyć do osuszenia związku o wzorze (CH3)2CO

Środek suszącyStosowany do suszeniaNie nadaje się do suszenia
NaEter, węglowodory, aminy trzeciorzędoweChlorowcopochodne węglowodorów
CaCl₂Węglowodory, aceton, eter, gazy obojętneAlkohole, amoniak, aminy
Żel krzemionkowyW eksykatorzeHF
H₂SO₄Gazy obojętne i kwasoweZwiązki nienasycone, alkohole, substancje zasadowe

A. żel krzemionkowy
B. Na
C. CaCl2
D. H2SO4
Wybór jednego z pozostałych środków suszących, takich jak Na, H2SO4 czy żel krzemionkowy, w kontekście osuszania acetonu jest nieodpowiedni ze względu na specyfikę ich działania. Na, będący metalem alkalicznym, jest stosowany głównie do osuszania eterów, węglowodorów i amin trzeciorzędowych, gdzie jego reakcje z wodą prowadzą do powstawania sody i innych produktów, co czyni go nieodpowiednim do osuszania ketonów. H2SO4, czyli kwas siarkowy, jest odpowiedni do osuszania gazów obojętnych i kwasowych, jednak jego silne działanie drażniące oraz ryzyko reakcji egzotermicznych sprawiają, że nie nadaje się do osuszania substancji organicznych, takich jak aceton. Z kolei żel krzemionkowy, mimo że jest skutecznym środkiem osuszającym, jest zazwyczaj stosowany w eksykatorach, a nie w bezpośrednim osuszaniu cieczy. Typowe błędy w analizie polegają na pomijaniu specyficznych właściwości chemicznych poszczególnych substancji oraz ich zastosowań w laboratoriach. Aby skutecznie osuszać substancje chemiczne, należy znać ich właściwości, a także odpowiednie metody i środki, które są dostosowane do ich specyfiki. W kontekście standardów laboratoryjnych, brak takiej wiedzy może prowadzić do błędnych wniosków oraz zanieczyszczenia próbek, co wpłynie na wyniki analiz chemicznych.

Pytanie 16

Czy odpady laboratoryjne zawierające jony metali ciężkich powinny zostać poddane obróbce przed umieszczeniem ich w odpowiednio oznaczonej pojemności?

A. rozcieńczyć wodą destylowaną
B. zneutralizować kwasem solnym lub zasadą sodową
C. przeprowadzić w trudnorozpuszczalne związki i odsączyć
D. zasypać wodorowęglanem sodu
Neutralizowanie odpadów laboratoryjnych kwasem solnym lub zasadą sodową to podejście, które może wydawać się logiczne, jednak nie jest to skuteczna metoda w przypadku odpadów zawierających metale ciężkie. Metale te, takie jak ołów, rtęć czy kadm, nie reagują w sposób, który pozwalałby na ich bezpieczne usunięcie za pomocą prostych reakcji kwas-zasada. Ponadto, takie działania mogą prowadzić do powstawania niebezpiecznych gazów, które mogą być toksyczne. Przykładowo, reakcja z kwasem solnym może uwolnić chlorowodór, co stwarza dodatkowe zagrożenie dla zdrowia. Zasypywanie odpadów wodorowęglanem sodu to kolejna niewłaściwa metoda, ponieważ nie prowadzi do skutecznego usuwania metali ciężkich, a jedynie może neutralizować pH, co nie eliminuje problemu samego zanieczyszczenia. Rozcieńczanie wodą destylowaną to kolejna strategia, która nie rozwiązuje problemu, a jedynie rozcieńcza substancje toksyczne, co może prowadzić do ich dalszego rozprzestrzeniania się w środowisku. W kontekście dobrych praktyk laboratoryjnych, istotne jest zrozumienie, że odpady powinny być najpierw klasyfikowane, a następnie poddawane odpowiednim procesom unieszkodliwiania, które zapewnią ich bezpieczne i ekologiczne usunięcie. Laboratoria muszą przestrzegać regulacji dotyczących gospodarki odpadami, takich jak ustawy o ochronie środowiska, które wymagają od nich podejmowania świadomych decyzji w sprawie zarządzania odpadami niebezpiecznymi.

Pytanie 17

Który zestaw zawiera niezbędne urządzenia laboratoryjne do przygotowania 10% (m/m) roztworu NaCl?

A. Waga laboratoryjna, zlewka, cylinder miarowy, naczynko wagowe
B. Waga laboratoryjna, kolba miarowa, naczynko wagowe, palnik
C. Waga laboratoryjna, zlewka, cylinder miarowy, palnik
D. Waga laboratoryjna, cylinder miarowy, kolba miarowa, szkiełko zegarkowe
Poprawna odpowiedź wskazuje na zestaw sprzętów laboratoryjnych, które są niezbędne do sporządzenia 10% (m/m) roztworu chlorku sodu. Waga laboratoryjna umożliwia dokładne odważenie odpowiedniej ilości chlorku sodu, co jest kluczowe dla uzyskania właściwego stężenia roztworu. Zlewka służy do mieszania składników i przygotowania roztworu, a cylinder miarowy pozwala na precyzyjne odmierzenie objętości wody. Naczynko wagowe jest używane do ważenia substancji stałych, co dodatkowo zwiększa dokładność pomiarów. Takie podejście jest zgodne z najlepszymi praktykami w laboratoriach chemicznych, gdzie precyzja i dokładność są kluczowe dla uzyskania wiarygodnych wyników. Sporządzając roztwory, należy również pamiętać o zasadach BHP, aby zapewnić bezpieczeństwo podczas pracy z substancjami chemicznymi.

Pytanie 18

Jakie pH ma roztwór buforowy otrzymany w wyniku zmieszania 0,2 M roztworu kwasu octowego i 0,2 M roztworu octanu sodu, w stosunku objętościowym 3 : 2?

Bufor octanowy według Walpole'a
0,2 M
kwas octowy [ml]
0,2 M
octan sodu [ml]
pH
7,03,04,39
6,04,04,58
5,05,04,75
4,06,04,94
3,07,05,13

A. 4,94
B. 4,58
C. 4,39
D. 5,13
Odpowiedź 4,58 jest jak najbardziej trafna! Można ją uzyskać dzięki równaniu Hendersona-Hasselbalcha, które łączy pH, pKa oraz stosunek stężeń kwasu i zasady. Kwas octowy, czyli CH₃COOH, ma pKa w okolicach 4,76. W naszym buforze mamy stosunek 3:2 dla kwasu octowego i octanu sodu, co daje nam 0,6 M kwasu i 0,4 M zasady. Podstawiając te wartości do równania, dostajemy: pH = pKa + log([A-]/[HA]) = 4,76 + log(0,4/0,6) = 4,58. Takie obliczenia są naprawdę ważne w laboratoriach chemicznych. Kontrola pH to kluczowy sprawa w wielu procesach, na przykład w biologii molekularnej czy w produkcji leków, gdzie stabilność pH ma ogromny wpływ na działanie substancji.

Pytanie 19

Odlanie cieczy z nad osadu to

A. filtracja
B. destylacja
C. dekantacja
D. sedymentacja
Dekantacja to proces polegający na oddzieleniu cieczy od osadu poprzez jej zlanie. Jest to technika powszechnie stosowana w laboratoriach chemicznych oraz w przemyśle, szczególnie w produkcji napojów, takich jak wino czy piwo. W praktyce dekantacja umożliwia uzyskanie klarownej cieczy, eliminując niepożądane cząstki stałe. W przypadku win, na przykład, dekantacja jest kluczowym etapem, który pozwala na usunięcie osadu powstałego podczas fermentacji, co poprawia jakość i smak trunku. Proces ten jest zgodny z zasadami dobrych praktyk laboracyjnych, które zalecają stosowanie efektywnych metod separacji, minimalizujących ryzyko kontaminacji. Ważnym aspektem dekantacji jest także precyzja, z jaką należy przeprowadzić ten proces, aby uniknąć zmieszania cieczy z osadem. W kontekście analizy jakości cieczy, dekantacja może być również używana w analizie chemicznej do przygotowania próbek do dalszych badań, co podkreśla jej znaczenie w szerokim zakresie zastosowań.

Pytanie 20

Wskaź zestaw reagentów oraz przyrządów wymaganych do przygotowania 0,5 dm3 roztworu HCl o stężeniu 0,2 mol/dm3?

A. Kolba pomiarowa na 500 cm3, 1 odważka analityczna HCl 0,1mol/dm3
B. Kolba pomiarowa na 1000 cm3, cylinder pomiarowy na 500 cm3, 1 naważka analityczna HCl
C. Kolba pomiarowa na 500 cm3, 2 odważki analityczne HCl 0,1 mol/dm3
D. Kolba pomiarowa na 1000 cm3, cylinder pomiarowy na 500 cm3, 4 odważki analityczne HCl 0,1 mol/dm3
Aby sporządzić 0,5 dm³ roztworu HCl o stężeniu 0,2 mol/dm³, potrzebujemy odpowiednich odczynników i sprzętu. W tym przypadku właściwym wyborem jest kolba miarowa o pojemności 500 cm³ oraz jedna odważka analityczna HCl o stężeniu 0,1 mol/dm³. Przy takich danych, można obliczyć potrzebną ilość HCl. Zastosowanie wzoru: C = n/V, gdzie C to stężenie, n to liczba moli, a V to objętość, pozwala uzyskać n = C*V = 0,2 mol/dm³ * 0,5 dm³ = 0,1 mol. Ponieważ roztwór o stężeniu 0,1 mol/dm³ ma potrzebną objętość 1 dm³, wystarczy nam 0,1 dm³ tego roztworu, co odpowiada 100 cm³. Użycie kolby miarowej o pojemności 500 cm³ zapewnia precyzyjne odmierzanie, co jest niezbędne dla uzyskania wiarygodnych wyników eksperymentalnych. Tego rodzaju procedury są zgodne z normami laboratoryjnymi, które podkreślają znaczenie dokładności w przygotowywaniu roztworów chemicznych.

Pytanie 21

Która z metod pozwala na oddzielanie składników mieszaniny na podstawie różnic w ich zachowaniu w układzie składającym się z dwóch faz, z których jedna jest fazą stacjonarną, a druga porusza się w określonym kierunku względem niej?

A. Sublimacja
B. Destylacja
C. Krystalizacja
D. Chromatografia
Chromatografia to technika analityczna, która wykorzystuje różnice w zachowaniu się poszczególnych związków chemicznych w układzie dwufazowym. W tym procesie jedna z faz, nazywana fazą stacjonarną, jest nieruchoma, podczas gdy druga faza, faza ruchoma, przemieszcza się w określonym kierunku. Działa to na zasadzie interakcji między składnikami mieszaniny a tymi fazami. Różne substancje w mieszaninie mają różne affinności do fazy stacjonarnej, co prowadzi do ich rozdzielenia. Przykładem zastosowania chromatografii jest analiza składników chemicznych w próbkach wody, gdzie różne zanieczyszczenia mogą być oddzielane i identyfikowane. Chromatografia jest szeroko stosowana w przemyśle farmaceutycznym, biotechnologii oraz w laboratoriach analitycznych do oceny czystości substancji chemicznych. Technika ta jest zgodna z międzynarodowymi standardami jakości, co czyni ją kluczowym narzędziem w badaniach i kontrolach jakości.

Pytanie 22

Pobieranie próbek wody z zbiornika wodnego, który zasila system wodociągowy, powinno odbywać się

A. w najgłębszym punkcie, z którego czerpana jest woda
B. na powierzchni wody, w centralnej części zbiornika
C. w miejscu oraz na głębokości, gdzie następuje czerpanie wody
D. na powierzchni wody, w pobliżu brzegu zbiornika
Prawidłowa odpowiedź wskazuje na konieczność pobierania próbek wody w miejscu i na głębokości, w którym następuje pobór wody. Jest to kluczowe dla zapewnienia, że próbki odzwierciedlają rzeczywiste warunki wody, jaka jest dostarczana do użytkowników. W praktyce oznacza to, że próbki należy pobierać w punktach, gdzie woda jest zasysana przez system wodociągowy, co pozwala na dokładne monitorowanie jakości wody oraz jej ewentualnych zanieczyszczeń. Zgodnie z normami i zaleceniami takich organizacji jak WHO czy EPA, próbki powinny być zbierane w sposób, który minimalizuje ryzyko zanieczyszczenia próbek. W praktyce, pobieranie próbek na głębokości w miejscu poboru wody jest niezbędne, aby uwzględnić różne warstwy wody oraz potencjalne różnice w jej jakości. Przykładem zastosowania tej wiedzy jest kontrola jakości wody pitnej, gdzie regularne badania próbek w różnych warunkach pozwalają na odpowiednie reagowanie na zmiany i zapewnienie bezpieczeństwa zdrowotnego mieszkańców.

Pytanie 23

Podczas analizowania zmienności składu wód płynących w skali rocznej, próbki wody powinny być zbierane i badane przynajmniej raz na

A. miesiąc
B. rok
C. pół roku
D. tydzień
Pobieranie próbek wody raz w roku, co pół roku lub co tydzień, nie spełnia odpowiednich wymogów w kontekście monitorowania zmienności składu wód płynących. Odpowiedź sugerująca pobieranie próbek raz w roku jest nieadekwatna, ponieważ ryzyka związane z jakością wody mogą zmieniać się w krótszym okresie, a roczne interwały są zbyt długie, by uchwycić te zmiany. Pojawiające się zjawiska, takie jak zakwit sinic czy nagłe zanieczyszczenia, mogą wystąpić i mieć poważne konsekwencje dla ekosystemu, a ich detekcja wymaga bardziej regularnego monitorowania. Podobnie, półroczne pobieranie próbek może być niewystarczające, zwłaszcza w systemach wodnych, które są silnie zróżnicowane sezonowo. Z drugiej strony, pobieranie próbek co tydzień może wydawać się rozsądne, ale może prowadzić do nieefektywnego wykorzystania zasobów, zwłaszcza w sytuacjach, gdzie zmiany w składzie wody są powolne i nie wymagają tak częstego monitorowania. Kluczowym błędem myślowym w tych odpowiedziach jest niedocenienie dynamiki zmian w środowisku wodnym oraz nieprzywiązywanie wagi do standardów, które zalecają częstsze badania, aby zapewnić rzetelną i aktualną ocenę jakości wód.

Pytanie 24

Aby zregenerować rozpuszczalnik organiczny, należy wykonać proces

A. odparowywania
B. destylacji
C. demineralizacji
D. filtrowania
Sączenie, odparowanie i demineralizacja to metody, które mają swoje zastosowania, jednak nie są odpowiednie do regeneracji rozpuszczalników organicznych. Sączenie to fizyczny proces separacji ciał stałych od cieczy, wykorzystywany głównie w filtracji, a nie w przypadku substancji rozpuszczalnych. Użycie sączenia do regeneracji rozpuszczalników byłoby nieefektywne, ponieważ nie pozwala na odzyskiwanie cieczy w formie czystej. Odparowanie, z kolei, polega na usuwaniu cieczy poprzez podgrzewanie, co może prowadzić do utraty części rozpuszczalnika i jego nieodwracalnego zniszczenia, co jest sprzeczne z ideą regeneracji. Wreszcie, demineralizacja dotyczy usuwania soli i innych minerałów z wody i nie ma zastosowania w kontekście rozpuszczalników organicznych. Często popełnianym błędem jest mylenie różnych metod separacji i regeneracji, co prowadzi do wniosków, które nie są zgodne z charakterystyką danego procesu chemicznego. Kluczowe w regeneracji rozpuszczalników organicznych jest zrozumienie, iż efektywne odzyskiwanie zależy od właściwego doboru metod, a destylacja pozostaje najskuteczniejszą z nich.

Pytanie 25

Podczas przewozu próbek wody, które mają być badane pod kątem właściwości fizykochemicznych, zaleca się, aby te próbki były

A. ogrzane do temperatury 15°C
B. ogrzane do temperatury 25°C
C. schłodzone do temperatury 2-5°C
D. schłodzone do temperatury 6-10°C
Właściwe schłodzenie próbek wody do temperatury 2-5°C podczas transportu jest kluczowe dla zachowania ich jakości i integralności chemicznej. Niska temperatura spowalnia procesy biologiczne oraz chemiczne, które mogą prowadzić do zmiany składu chemicznego próbek, co z kolei może skutkować błędnymi wynikami analizy. Przykładem jest analiza zawartości substancji odżywczych, w których degradacja może nastąpić w wyniku działania mikroorganizmów. Zgodnie z zaleceniami takich organizacji jak EPA (Environmental Protection Agency) oraz ISO (Międzynarodowa Organizacja Normalizacyjna), transport próbek wody powinien odbywać się z zastosowaniem odpowiednich środków chłodzących. Praktyczne zastosowanie tych standardów można zauważyć w laboratoriach zajmujących się monitoringiem jakości wody, gdzie stosuje się lodowe akumulatory lub specjalne torby chłodzące. Zachowanie odpowiedniej temperatury transportu jest więc nie tylko kwestią zgodności z przepisami, ale również kluczowym elementem zapewniającym rzetelność wyników badań.

Pytanie 26

Na podstawie zmierzonej temperatury topnienia można określić związek organiczny oraz ustalić jego

A. rozpuszczalność
B. palność
C. czystość
D. reaktywność
Rozpuszczalność, palność i reaktywność to cechy chemiczne, które nie są bezpośrednio związane z temperaturą topnienia. Rozpuszczalność odnosi się do zdolności substancji do tworzenia roztworu w danym rozpuszczalniku, a jej pomiar wymaga zupełnie innych metod, takich jak testy rozpuszczalności w różnych rozpuszczalnikach czy badania na podstawie równowagi fazowej. Palność to z kolei właściwość dotycząca łatwości, z jaką substancje palą się w obecności tlenu, co wymaga analizy jej właściwości fizykochemicznych, a nie temperatury topnienia. Reaktywność odnosi się do skłonności substancji do reagowania z innymi substancjami chemicznymi, co można ocenić poprzez różnorodne testy chemiczne, ale również nie jest związane z pomiarem temperatury topnienia. Często błędne myślenie pojawia się, gdy studenci mylą te pojęcia z czystością substancji. Każda z tych cech wymaga odrębnych metod analizy, a skupienie się wyłącznie na temperaturze topnienia do ich oceny prowadzi do nieprawidłowych wniosków i niewłaściwej interpretacji wyników. Dlatego ważne jest, aby zrozumieć, że temperatura topnienia jest szczególnie przydatna w określaniu czystości substancji, a nie w analizie jej rozpuszczalności, palności czy reaktywności.

Pytanie 27

Etykiety chemikaliów zawierają zwroty H, które informują o rodzaju zagrożenia. Cyfra "3" pojawiająca się po literze "H" w oznaczeniu, definiuje rodzaj zagrożenia?

A. fizyczne
B. dla środowiska
C. chemiczne
D. dla człowieka
Odpowiedź "dla człowieka" jest prawidłowa, ponieważ etykiety substancji chemicznych zawierają zwroty H (H-phrases), które odnoszą się do zagrożeń, jakie dany związek chemiczny może stanowić dla zdrowia ludzi. Na przykład, oznaczenie H3 mówi o tym, że substancja może być szkodliwa w przypadku wdychania, połknięcia lub kontaktu ze skórą. W praktyce, znajomość tych oznaczeń jest kluczowa dla pracowników w laboratorach, przemysłach chemicznych oraz w obszarach zajmujących się transportem substancji chemicznych. Dlatego w ramach BHP oraz oceny ryzyka, pracownicy powinni być odpowiednio przeszkoleni w zakresie interpretacji tych etykiet oraz stosowania odpowiednich środków ochrony osobistej. Standardy takie jak GHS (Globalnie Zharmonizowany System Klasyfikacji i Oznakowania Chemikaliów) wyznaczają wytyczne dotyczące klasyfikacji zagrożeń, co pozwala na skuteczniejsze zarządzanie bezpieczeństwem w miejscu pracy.

Pytanie 28

Jakie substancje wykorzystuje się do wykrywania obecności jonów chlorkowych w wodzie mineralnej?

A. roztwór chlorku baru
B. roztwór azotanu srebra
C. roztwór szczawianu potasu
D. uniwersalny papierek wskaźnikowy
Roztwór azotanu srebra (AgNO3) jest kluczowym odczynnikiem w analizie chemicznej do wykrywania jonów chlorkowych (Cl-) w wodzie mineralnej. Po dodaniu azotanu srebra do próby zawierającej jony chlorkowe, zachodzi reakcja, w wyniku której powstaje biały osad chlorku srebra (AgCl). Reakcja ta jest równaniem: AgNO3 + NaCl → AgCl + NaNO3. Osad chlorku srebra jest nierozpuszczalny w wodzie, co czyni tę metodę bardzo efektywną w jakościowym wykrywaniu anionów chlorkowych. Praktyczne zastosowanie tej metody można zaobserwować w laboratoriach analitycznych, gdzie monitoruje się jakość wód mineralnych, aby spełniały one normy zdrowotne. Ponadto, metoda ta jest zgodna z wytycznymi organizacji takich jak ISO, co podkreśla jej wiarygodność i powszechne uznanie w branży analitycznej.

Pytanie 29

Który z etapów przygotowania próbek do analizy opisano w ramce?

Proces polegający na usuwaniu wody z zamrożonego materiału na drodze sublimacji lodu, tzn. bezpośredniego jego przejścia w stan pary z pominięciem stanu ciekłego.

A. Utrwalanie.
B. Oznaczanie wilgoci.
C. Wstępne suszenie.
D. Liofilizację.
Liofilizacja jest procesem, który polega na sublimacji lodu z zamrożonego materiału, co oznacza, że woda przechodzi bezpośrednio w stan pary, omijając fazę ciekłą. Jest to kluczowa technika stosowana w wielu dziedzinach, w tym w biologii komórkowej, farmacji oraz produkcji żywności. Liofilizacja pozwala na zachowanie struktury oraz właściwości chemicznych materiału, co czyni ją idealnym rozwiązaniem dla preparatów, które są wrażliwe na temperaturę oraz wilgoć. Proces ten jest często stosowany do konserwacji próbek biologicznych, takich jak komórki, białka czy enzymy. Przykładowo, w przemyśle farmaceutycznym, liofilizowane leki są bardziej stabilne i mają dłuższy okres przydatności do spożycia. Dodatkowo, liofilizacja ułatwia transport i przechowywanie próbek, gdyż zmniejsza ich masę i objętość, co jest korzystne w logistyce. Zgodnie ze standardami branżowymi, dobry proces liofilizacji powinien być ściśle kontrolowany, aby zminimalizować ryzyko degradacji cennych substancji.

Pytanie 30

Ile gramów chlorku baru powinno się rozpuścić w wodzie, aby uzyskać 200 cm3 roztworu o stężeniu 10% i gęstości 1,203 g/cm3?

A. 20,00 g
B. 18,40 g
C. 26,04 g
D. 24,06 g
Przy obliczaniu masy chlorku baru do przygotowania roztworu o stężeniu 10% i objętości 200 cm3, kluczowe jest zrozumienie podstawowych zasad dotyczących stężenia, gęstości oraz masy roztworu. Jednym z typowych błędów myślowych jest pomijanie wpływu gęstości roztworu na obliczenia. Wiele osób może skupić się jedynie na stężeniu masowym i wyliczyć masę substancji, ignorując fakt, że masa roztworu, wynikająca z jego gęstości, jest większa niż masa samej substancji. Na przykład obliczenie tylko masy chlorku baru jako 20 g, bazując na prostym wzorze stężenia, prowadzi do niepoprawnych wniosków. Wspomniane podejście nie uwzględnia całkowitej masy roztworu, co jest kluczowe dla prawidłowego przygotowania roztworu. Kolejnym błędem jest zakładanie, że jeśli woda stanowi większą część roztworu, to można zignorować jej wpływ na całkowitą masę. W praktyce, aby uzyskać dokładny roztwór, należy uwzględnić zarówno masę substancji rozpuszczonej, jak i masę rozpuszczalnika. Dlatego majac na uwadze wszystkie te aspekty, prawidłowa masa chlorku baru do osiągnięcia pożądanej koncentracji w 200 cm3 roztworu o gęstości 1,203 g/cm3 wynosi 24,06 g, co jest zgodne z praktykami laboratoryjnymi, które wymagają dokładnych obliczeń i rozważenia wszystkich zmiennych w procesie przygotowywania roztworów.

Pytanie 31

W wyniku analizy sitowej próbki stałej otrzymano frakcję o średnicy ziaren 12 – 30 mm. Jaką masę powinna mieć prawidłowo pobrana próbka pierwotna?

Tabela. Wielkość próbki pierwotnej w zależności od wielkości ziarna
Średnica ziaren lub kawałków [mm]do 11 - 1011 - 50ponad 50
Pierwotna próbka (minimum) [g]10020010002500

A. 1000 g
B. 2500 g
C. 200 g
D. 100 g
Odpowiedź '1000 g' jest prawidłowa, ponieważ zgodnie z normami analizy sitowej, dla ziaren o średnicy od 11 do 50 mm minimalna masa próbki pierwotnej powinna wynosić 1000 g. W przypadku analizy sitowej, w której badana jest frakcja ziaren, odpowiednia masa próbki jest kluczowa dla uzyskania wiarygodnych wyników. Zbyt mała próbka może prowadzić do błędnych wyników, zniekształcając charakterystykę frakcji ziarna. W praktyce, przy analizach takich jak ocena uziarnienia materiałów budowlanych czy surowców mineralnych, stosowanie się do odpowiednich standardów jest istotne dla zapewnienia jakości wyników. Przykładowo, w laboratoriach stosuje się normy PN-EN ISO 17892 dla gruntów, które również wskazują na konieczność stosowania odpowiednich mas próbki w zależności od rodzaju analizowanego materiału. Dlatego, jeśli analizowana frakcja mieści się w określonym przedziale średnic ziaren, należy zawsze upewnić się, że masa próbki odpowiada wymaganiom, aby uniknąć błędów w analizie.

Pytanie 32

Analiza technicznego kwasu solnego dała następujące wyniki: 30% HCl, 0,008% H2SO4, 0,04% Fe.
Korzystając z zamieszczonej tabeli wymagań, określ gatunek kwasu, pamiętając, że decyduje o nim najgorszy wskaźnik.

Wymagania chemiczne dotyczące kwasu siarkowego
WymaganiaGatunki
IIIIIIIV
Chlorowodór, %> 33> 29> 28> 27
Kwas siarkowy(VI) w przel. na SO42-, %< 0,009< 0,5< 1,6< 1,8
Żelazo (Fe3+), %< 0,005< 0,03< 0,03< 0,05

A. II
B. IV
C. III
D. I
Wybór innego gatunku kwasu jest wynikiem nieprawidłowej analizy danych dotyczących zawartości składników. Na przykład, jeżeli ktoś wybrał gatunek III, może pomyśleć, że zawartość HCl decyduje o gatunku, co jest błędnym podejściem. Klasyfikacja kwasów nie opiera się na najwyższej zawartości HCl, ale na najgorszym wskaźniku, którym w tej sytuacji jest zawartość żelaza. Gatunek III dopuszcza znacznie niższe wartości dla żelaza, co dyskwalifikuje tę odpowiedź, ponieważ obecność 0,04% Fe3+ znacznie przekracza dopuszczalne granice tego gatunku. Ponadto, wybór gatunku II lub I również opiera się na błędnym zrozumieniu norm, które wymagają, by wszystkie wskaźniki były w granicach określonych dla danego gatunku. W praktyce, zrozumienie, że najgorszy wskaźnik definiuje gatunek, jest kluczowe dla prawidłowej klasyfikacji. Ignorowanie tego zasady prowadzi do wyborów, które mogą skutkować niewłaściwym zastosowaniem kwasów w przemyśle chemicznym, gdzie precyzyjne klasyfikacje są niezbędne do zapewnienia bezpieczeństwa i zgodności z normami. Warto podkreślić, że w przemyśle chemicznym, gdzie stosuje się różne gatunki kwasów, kluczowe jest zrozumienie zasad klasyfikacji, aby uniknąć potencjalnych ryzyk związanych z ich używaniem.

Pytanie 33

W próbkach obecne są składniki, które znacznie różnią się pod względem zawartości. Składnik, którego procentowy udział w próbce jest niższy od 0,01%, nazywamy

A. matrycą
B. domieszką
C. ultraśladem
D. śladem
Odpowiedzi takie jak 'domieszka', 'matryca' i 'ultraślad' nie oddają właściwego znaczenia terminu 'ślad'. Domieszka odnosi się do dowolnego składnika, który jest obecny w próbce, ale niekoniecznie w tak niskich stężeniach, jak te opisane w pytaniu. Z kolei matryca to termin używany do opisu podstawowej substancji, w której zawarte są inne składniki. W kontekście analitycznym matryca ma ogromne znaczenie, ponieważ jej skład i właściwości mogą wpływać na dokładność i precyzję analizy. Ultraślad to termin, który jest rzadziej używany i może sugerować jeszcze niższe stężenia niż te określone dla 'śladu', ale nie jest to standardowa definicja, co może prowadzić do nieporozumień. Typowe błędy myślowe związane z tymi odpowiedziami często wynikają z niepełnego zrozumienia terminologii chemicznej oraz kontekstu analitycznego. Kluczowe jest, aby rozróżniać te pojęcia i wiedzieć, jak wpływają one na interpretację wyników analitycznych. Niepoprawne zrozumienie tych terminów może prowadzić do poważnych błędów w ocenie jakości próbek oraz ich składników, co jest niezbędne w wielu dziedzinach, takich jak kontrola jakości, badania środowiskowe czy bezpieczeństwo żywności.

Pytanie 34

W którym z podanych równań reakcji dochodzi do zmiany stopni utlenienia atomów?

A. CaCO3 → CaO + CO2
B. NaOH + HCl → NaCl + H2O
C. BaCl2 + H2SO4 → BaSO4 + 2HCl
D. 2KClO3 → 2KCl + 3O2
Patrząc na inne reakcje, można zauważyć, że w większości z nich stopnie utlenienia pierwiastków się nie zmieniają. W reakcji BaCl2 + H2SO4 → BaSO4 + 2HCl, bary i chlor zostają na tych samych poziomach utlenienia przed i po reakcji. Bary w BaCl2 i BaSO4 trzyma stopień utlenienia +2, a chlor w HCl i BaCl2 również ma stopień utlenienia -1. Podobnie jest w reakcji CaCO3 → CaO + CO2, gdzie wapń cały czas ma +2, a węgiel oraz tlen również się nie zmieniają. Dlatego nie dochodzi tu do redukcji ani utlenienia. W reakcji NaOH + HCl → NaCl + H2O, sód, chlor i tlen też nie zmieniają swoich stopni utlenienia, tylko są na +1, -1 i -2. Te błędne wnioski mogą wynikać z braku zrozumienia, czym jest stopień utlenienia i jak działają reakcje redoks. Reakcje, które nie zmieniają stopni utlenienia, nie są procesami redoks, co jest kluczowe przy analizowaniu chemii, zwłaszcza w syntezach czy reakcjach katalitycznych.

Pytanie 35

Proces oddzielania mieszaniny niejednorodnej, który zachodzi w wyniku opadania cząstek pod działaniem grawitacji, nazywamy

A. hydratacja
B. absorpcja
C. dekantacja
D. sedymentacja
Sedymentacja to proces fizyczny, w którym cząstki stałe w zawiesinie opadają na dno pod wpływem siły grawitacji. Jest to kluczowy mechanizm w wielu dziedzinach, takich jak inżynieria środowiska, geologia czy chemia analityczna. W praktyce sedymentacja jest wykorzystywana do oczyszczania ścieków, gdzie cząstki stałe są usuwane z cieczy, co pozwala na oczyszczenie wody. Dobrą praktyką w analizach chemicznych jest zastosowanie sedymentacji w etapach przygotowania próbek, co pozwala na wyizolowanie cząstek osadowych i ich dalsze badanie. Proces ten jest również podstawą wielu technologii, takich jak separacja i recykling materiałów, gdzie skuteczne oddzielanie składników jest kluczowe dla efektywności całego procesu produkcyjnego. W kontekście norm i regulacji, aplikacje sedymentacji muszą spełniać odpowiednie standardy jakości, co gwarantuje bezpieczeństwo i efektywność działań przemysłowych.

Pytanie 36

Jakie jest stężenie roztworu NaOH, który zawiera 4 g wodorotlenku sodu w 1 dm3 (masa molowa NaOH = 40 g/mol)?

A. 0,001 mol/dm3
B. 0,01 mol/dm3
C. 0,1 mol/dm3
D. 1 mol/dm3
Wybór stężenia 0,01 mol/dm³ to efekt błędnego spojrzenia na obliczenia dotyczące ilości moli i objętości roztworu. Żeby dobrze określić stężenie, najpierw trzeba znać masę molową substancji i przeprowadzić odpowiednie obliczenia. Przy 4 g NaOH, wydaje mi się, że pomyliłeś się, myśląc, że stężenie wynosi 0,01 mol/dm³. To wynika z nieprzypadkowego dzielenia masy przez masę molową. Liczba moli to masa substancji podzielona przez jej masę molową, czyli 4 g / 40 g/mol to 0,1 mol. Jeszcze trzeba uważać z objętościami, bo jeżeli pomylisz decymetry sześcienne z mililitrami, to mogą wyjść naprawdę duże błędy. Stężenie 0,001 mol/dm³ też wskazuje na nieprawidłowe rozumienie związku między masą a objętością. Może to być przez złą konwersję jednostek albo popełnione błędy w obliczeniach, co w pracy z roztworami chemicznymi jest kluczowe. Dobrze jest przed obliczeniami upewnić się, że wszystkie jednostki są zrozumiane i poprawnie zastosowane. Dlatego w laboratoriach precyzja w obliczeniach i umiejętność dobrej interpretacji wyników to podstawa, żeby wyjść z wiarygodnymi i powtarzalnymi rezultatami.

Pytanie 37

Na podstawie danych zawartych w tabeli wskaż, które opakowania zawierają produkt zgodny ze specyfikacją.

WŁAŚCIWOŚCINORMA KLASY A
wg specyfikacji produktu
OPAKOWANIE
123
POSTAĆBezbarwna ciecz, bez zanieczyszczeń.
Dopuszcza się niebieskawе zabаrwienie
i obecność skrystalizowanego osadu
Bezbarwna ciecz
Zawartość ługu sodowego
(NaOH), min, % masy
46,046,546,848,0
Węglan sodu (Na₂CO₃),
nie więcej niż, % masy
0,40,30,30,2
Chlorek sodu (NaCl),
nie więcej niż, % masy
0,0200,0150,0140,011
Chloran sodu (NaClO₃),
nie więcej niż, % masy
0,0070,0060,0050,002
Siarczan sodu (Na₂SO₄),
nie więcej niż, % masy
0,0400,0380,0350,029
Zawartość żelaza (Fe₂O₃),
max, WT. PPM
15151510

A. Żadne.
B. Tylko 1 i 2.
C. Tylko 3.
D. Wszystkie.
Wybranie odpowiedzi mówiącej, że żadne opakowania nie są zgodne z normami, to typowy błąd. Może się to brać stąd, że nie widzisz wszystkich ważnych szczegółów w danych. Wydaje mi się, że to trochę przez brak zrozumienia specyfikacji produktu i norm dotyczących jakości opakowań. Czasem ludzie mają tendencję do uogólniania, co prowadzi do błędnych wniosków. Pamiętaj, że każde opakowanie trzeba przeanalizować dokładnie, a stwierdzenie, że nic nie spełnia norm, jest po prostu nietrafione. Gdy mówisz, że tylko niektóre są zgodne, to znaczy, że mogłeś nie uwzględnić wszystkich parametrów z specyfikacji. Każde opakowanie powinno się oceniać z osobna, a złe oceny mogą mieć poważne konsekwencje, jak wprowadzenie wadliwych produktów na rynek, co może skutkować stratami lub zepsuciem reputacji firmy. Dlatego ważne jest, by oceniający też byli dobrze poinformowani i trzymali się standardów, żeby uniknąć takich sytuacji.

Pytanie 38

Co oznacza zapis cz.d.a. na etykiecie opakowania odczynnika chemicznego?

A. zawiera maksymalnie 0,05% zanieczyszczeń
B. zawiera maksymalnie 0,1% zanieczyszczeń
C. zawiera co najmniej 0,05% zanieczyszczeń
D. zawiera co najmniej 0,1% zanieczyszczeń
Wybór odpowiedzi, że odczynnik zawiera minimum 0,05% zanieczyszczeń, jest nieprawidłowy, ponieważ nie uwzględnia istoty oznaczenia "cz.d.a.". Oznaczenie to implikuje, że substancje te są przeznaczone do zastosowań analitycznych i muszą spełniać określone normy czystości, które ograniczają zawartość zanieczyszczeń do maksymalnie 0,1%. Odpowiedź sugerująca, że odczynnik zawiera minimum 0,1% zanieczyszczeń, jest również błędna, ponieważ wprowadza w błąd co do definicji czystości. Ponadto odpowiedzi wskazujące na maksymalne zanieczyszczenie wynoszące 0,05% są niewłaściwe, ponieważ mogą prowadzić do nieporozumień w kontekście przygotowania próbek do analiz. W praktyce, odczynniki chemiczne używane w laboratoriach muszą spełniać rygorystyczne wymagania dotyczące czystości, aby zapewnić dokładność i powtarzalność wyników. Typowym błędem myślowym jest zakładanie, że niska granica zanieczyszczeń oznacza, że odczynniki muszą mieć jeszcze bardziej restrykcyjne normy, co nie jest zgodne z rzeczywistością. Właściwe zrozumienie terminologii i oznaczeń w zakresie chemii analitycznej jest kluczowe, aby uniknąć błędów w interpretacji i stosowaniu odczynników w praktyce. Z tego powodu, znajomość standardów czystości jest niezbędna dla każdego profesjonalisty pracującego w laboratorium.

Pytanie 39

Wskaż zbiór substancji, które po rozpuszczeniu w wodzie stają się elektrolitami?

A. Glukoza, kwas azotowy(V), wodorotlenek wapnia
B. Chlorek sodu, wodorotlenek sodu, kwas siarkowy(VI)
C. Cukier, sól stołowa, ocet
D. Kwas solny, gliceryna, tlenek siarki(VI)
Wybór substancji, które nie są elektrolitami, może prowadzić do licznych nieporozumień, dlatego warto zrozumieć, dlaczego odpowiedzi te są błędne. Cukier, sól kuchenna i ocet wydają się być substancjami rozpuszczalnymi w wodzie, jednak tylko sól kuchenna może być uznana za elektrolit. Cukier (sacharoza) rozpuszcza się w wodzie, tworząc roztwór, ale nie dissocjuje na jony, co oznacza, że nie przewodzi prądu elektrycznego. Takie substancje są nazywane substancjami nieelektrolitycznymi. Podobnie, gliceryna i tlenek siarki(VI) nie są elektrolitami - gliceryna jest organicznym alkoholem, który również nie dissocjuje w wodzie na jony, a tlenek siarki(VI) reaguje z wodą, tworząc kwas siarkowy, ale w swojej pierwotnej formie nie jest elektrolitem. W przypadku glukozy, jej rozpuszczenie w wodzie prowadzi do powstania roztworu, który nie wykazuje przewodnictwa elektrycznego, ponieważ glukoza również nie dissocjuje na jony. Niewłaściwe postrzeganie substancji jako elektrolitów może wynikać z błędnego rozumienia ich właściwości chemicznych oraz różnicy między substancjami, które po rozpuszczeniu w wodzie prowadzą do powstania naładowanych cząsteczek, a tymi, które tego nie robią. Kluczowe jest zrozumienie mechanizmów dysocjacji oraz właściwości chemicznych różnych substancji, aby uniknąć takich nieporozumień w chemii i pokrewnych dziedzinach.

Pytanie 40

Aby przygotować 500 cm3 roztworu KMnO4 (M = 158 g/mol) o stężeniu 0,02 mol/dm3, ile należy zważyć?

A. 15,8 g KMnO4
B. 7,95 g KMnO4
C. 3,16 g KMnO4
D. 1,58 g KMnO4
W przypadku analizy błędnych odpowiedzi warto zwrócić uwagę na kilka kluczowych aspektów dotyczących obliczeń chemicznych. Często popełnianym błędem jest mylenie jednostek objętości; na przykład, jeżeli ktoś obliczał masę KMnO4 dla 500 cm³, ale nie przeliczył tej wartości na dm³, może to prowadzić do znaczących pomyłek. Warto pamiętać, że 500 cm³ to 0,5 dm³, co jest kluczowe dla poprawności obliczeń. Dodatkowo, nieprawidłowy wybór jednostek stężenia, jak np. użycie stężenia masowego zamiast molowego, może wprowadzić w błąd. Innym typowym błędem jest pominięcie mocy molowej, co prowadzi do przeszacowania lub niedoszacowania wymaganej masy substancji. W kontekście przygotowywania roztworów, zgodność z normami oraz dobrymi praktykami laboratoryjnymi jest kluczowa. Na przykład, nieodpowiednia masa może wpłynąć na wyniki analizy, co w konsekwencji prowadzi do błędnych wniosków. Dlatego zawsze zaleca się staranność i dokładność w obliczeniach oraz stosowanie odpowiednich jednostek. To nie tylko zwiększa precyzję, ale i pozwala uniknąć kosztownych pomyłek w dalszych etapach badań chemicznych.