Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik geodeta
  • Kwalifikacja: BUD.18 - Wykonywanie pomiarów sytuacyjnych, wysokościowych i realizacyjnych oraz opracowywanie wyników tych pomiarów
  • Data rozpoczęcia: 25 maja 2025 11:47
  • Data zakończenia: 25 maja 2025 12:08

Egzamin zdany!

Wynik: 25/40 punktów (62,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

W jakim zakresie znajduje się wartość azymutu boku AB, gdy różnice współrzędnych między punktem początkowym a końcowym boku AB wynoszą ΔXAB < 0 oraz ΔYAB < 0?

A. 200÷300g
B. 0÷100g
C. 100÷200g
D. 300÷400g
Wartość azymutu boku AB wyznacza kierunek, w którym leży ten bok w układzie współrzędnych. Różnice współrzędnych ΔXAB < 0 oraz ΔYAB < 0 oznaczają, że zarówno współrzędna X, jak i Y punktu końcowego boku AB są mniejsze niż współrzędne punktu początkowego. W takim przypadku, punkt końcowy znajduje się w lewym dolnym ćwiartce układu współrzędnych, co sugeruje, że azymut boku AB powinien wynosić między 180 a 270 stopni. Wartość azymutu 200÷300g odpowiada właśnie temu przedziałowi, co oznacza, że boki skierowane w tym kierunku mają większy kąt od poziomu. Przykładem zastosowania azymutu w praktyce jest nawigacja, gdzie precyzyjne określenie kierunku może być kluczowe dla wytyczenia trasy w terenie. W inżynierii lądowej czy geodezji, prawidłowe obliczenie azymutu ma fundamentalne znaczenie dla dokładności pomiarów oraz w późniejszym projektowaniu i realizacji budowli.

Pytanie 2

Dokumentacja dotycząca pracy geodezyjnej, którą należy wypełnić w ośrodku dokumentacji geodezyjnej i kartograficznej, powinna zawierać

A. informację o innych pracach prowadzonych w rejonie zgłaszanej pracy
B. datę zakończenia pracy
C. dane dotyczące wykonawcy
D. opis przedmiotu oraz lokalizacji i obszaru realizowanej pracy
W przypadku zgłoszenia pracy geodezyjnej, osoba wypełniająca dokumentację może mylnie sądzić, że inne elementy, takie jak termin zakończenia pracy, opis przedmiotu czy informacja o wykonawcy, są kluczowe dla ośrodka dokumentacji geodezyjnej i kartograficznej. Jednakże, w kontekście przeprowadzania takich prac, najważniejszym aspektem jest zrozumienie, jakie inne działania są prowadzone w tym samym czasie na danym obszarze. Termin zakończenia pracy, choć istotny z perspektywy zarządzania projektami, nie dostarcza istotnych informacji o wpływie na inne projekty, podczas gdy opis przedmiotu pracy może być zbyt ogólny i nie uwzględniać specyfiki lokalnych warunków. Informacja o wykonawcy również ma swoje miejsce w dokumentacji, jednakże sama w sobie nie odnosi się do kluczowych współzależności między różnymi pracami geodezyjnymi. Takie podejście do zgłoszenia może prowadzić do pomijania istotnych czynników, które mogą rzekomo kolidować z innymi projektami, co skutkuje problemami z koordynacją działań geodezyjnych. Dlatego zrozumienie znaczenia koordynacji prac w obszarze geodezyjnym oraz odpowiedniego dokumentowania tego aspektu jest kluczowym elementem skutecznego zarządzania projektami geodezyjnymi.

Pytanie 3

Jakie informacje nie są umieszczane na szkicu polowym podczas pomiaru szczegółów terenowych z zastosowaniem metody ortogonalnej?

A. Numery obiektów budowlanych
B. Wysokości punktów terenu
C. Domiary prostokątne
D. Szczegóły terenowe sytuacyjne
Poprawną odpowiedzią jest stwierdzenie, że na szkicu polowym z pomiaru szczegółów terenowych metodą ortogonalną nie zamieszcza się wysokości punktów terenu. Szkic polowy służy do przedstawienia szczegółów sytuacyjnych, takich jak numery budynków czy tereny użytkowe, które są kluczowe dla analizy zagospodarowania przestrzennego. W przypadku pomiaru ortogonalnego skupiamy się na odwzorowaniu kształtów i układów w pionie i poziomie, co ułatwia późniejsze prace geodezyjne i kartograficzne. Wysokości punktów terenu, które są istotne w kontekście modelowania terenu, są zazwyczaj rejestrowane osobno, w ramach pomiarów wysokościowych, a następnie łączone z danymi sytuacyjnymi w procesie tworzenia map. Takie podejście jest zgodne z normami geodezyjnymi, które promują precyzję i efektywność w zbieraniu danych.

Pytanie 4

Jakiego skrótu należy użyć na mapie zasadniczej w przypadku opisu drogi, która nie ma swojej nazwy?

A. ul.
B. pl.
C. al.
D. dr.
Skrót "dr." oznacza "droga" i jest prawidłowo stosowany w kontekście opisywania dróg, które nie mają przypisanej nazwy. W polskiej terminologii kartograficznej skróty stosowane na mapach zasadniczych muszą być zgodne z określonymi standardami, aby zapewnić czytelność i zrozumiałość dla użytkowników. Na przykład, w przypadku dróg o charakterze lokalnym, które nie posiadają nazwy, zastosowanie skrótu "dr." jest powszechnie akceptowane. To podejście wspiera jednolitą komunikację w dokumentacji geodezyjnej oraz w planowaniu przestrzennym. W praktyce, na mapach miejskich czy wiejskich, skrót "dr." pozwala na szybkie identyfikowanie typów dróg, co jest istotne zarówno dla mieszkańców, jak i dla służb ratunkowych czy dostawczych. Warto dodać, że stosowanie odpowiednich skrótów przyczynia się do jednoznaczności i precyzji w interpretacji danych przestrzennych, co jest kluczowe w procesach decyzyjnych.

Pytanie 5

W teodolicie, okrąg lub ring z zaznaczonym podziałem kątowym określa się jako

A. celownikiem
B. limbusem
C. spodarką
D. alidadą
Często dochodzi do mylenia pojęć związanych z teodolitami oraz ich elementami. Celownik w teodolicie to nie podziałka kątowa, lecz urządzenie optyczne, które pozwala na precyzyjne celowanie w określony punkt. W związku z tym, funkcja celownika różni się od limbusa, który, jak wcześniej wspomniano, jest odpowiedzialny za pomiar kątów. Spodarka, z kolei, to element teodolitu służący do przechylania instrumentu w płaszczyźnie poziomej, co również nie ma związku z podziałką kątową. Alida to zespół elementów umożliwiających ustawienie i stabilizację teodolitu, ale nie jest bezpośrednio związana z mierzeniem kątów. Mylenie tych terminów może prowadzić do błędów w pomiarach i interpretacji wyników, co podkreśla znaczenie dokładnego zrozumienia funkcji poszczególnych elementów teodolitu. Wiedza na temat limbusa oraz jego zastosowania jest kluczowa dla geodetów, którzy muszą być świadomi, że nie tylko sama pomiarowa technika, ale również znajomość wszystkich komponentów i ich właściwości wpływa na jakość dokonywanych pomiarów.

Pytanie 6

Kąty pionowe nachylenia (a) mogą przyjmować wartości +/- w zakresie

A. 0g-100g
B. 0g-200g
C. 0g-300g
D. 0g-400g
Zrozumienie pojęcia kąta nachylenia pionowego jest kluczowe, aby uniknąć nieporozumień w kontekście projektów inżynieryjnych. Odpowiedzi, które sugerują szerszy zakres wartości, takie jak 0°-200°, 0°-300° czy 0°-400°, wskazują na nieprawidłowe podejście do problematyki określania kątów. Kąt nachylenia nie może przekraczać 100°, ponieważ w praktyce każdy kąt powyżej 90° wskazuje na odwrócenie orientacji obiektu, co w przypadku budowli staje się niemożliwe. Przykładowo, kąt 180° oznacza pełne obrócenie obiektu, a wartości powyżej tego są także bez sensu, ponieważ w kontekście rzeczywistych aplikacji inżynieryjnych nie można stosować takich kątów. Wiele osób może mylnie przyjąć, że większe wartości kątów są możliwe, biorąc pod uwagę różne zastosowania lub teoretyczne modele, jednakże praktyczne zastosowanie w inżynierii ogranicza kąt nachylenia do 100°. Należy również pamiętać, że w geodezji i budownictwie bezpieczeństwo oraz stabilność konstrukcji są kluczowe, a zastosowanie nieodpowiednich kątów może prowadzić do niebezpieczeństwa i awarii budynków. Dlatego warto zrozumieć, jakie są zasady i normy w tej dziedzinie, aby podejmować prawidłowe decyzje projektowe.

Pytanie 7

Południkiem osiowym w odwzorowaniu Gaussa-Krügera dla układu współrzędnych PL-2000 jest południk

A. 22°
B. 19°
C. 20°
D. 21°
Odpowiedź 21° jest poprawna, ponieważ w układzie współrzędnych PL-2000 południkiem osiowym odwzorowania Gaussa-Krügera dla strefy, w której mieści się Polska, jest właśnie południk 21°. Układ PL-2000 jest oparty na odwzorowaniu Gaussa-Krügera, które jest używane do precyzyjnego odwzorowywania powierzchni ziemi na płaszczyznach. Południki osiowe są kluczowe, ponieważ definiują strefy odwzorowań, co jest istotne w kontekście dokładności geodezyjnej oraz kartograficznej. Użycie południka 21° pozwala na minimalizację zniekształceń w obszarze, co jest przydatne w praktyce, na przykład w geodezji czy podczas tworzenia map topograficznych. Dobór odpowiednich południków jest zgodny z normami, takimi jak PN-EN ISO 19111, które określają zasady klasyfikacji i odwzorowań strefowych. Wiedza na temat południków osiowych jest kluczowa dla profesjonalistów zajmujących się kartografią i geodezją, ponieważ wpływa na jakość i dokładność realizowanych projektów.

Pytanie 8

Czym jest metoda wcięcia kątowego w geodezji?

A. Metodą określania pozycji punktu poprzez pomiary kątów z dwóch znanych punktów.
B. Metodą określania nachylenia terenu, co odbywa się najczęściej przy użyciu niwelatora.
C. Metodą pomiaru długości za pomocą taśmy mierniczej, co jest stosowane w mniej precyzyjnych pomiarach terenowych.
D. Metodą wyznaczania powierzchni terenu, co jest realizowane innymi technikami, takimi jak metoda poligonizacji.
Metoda wcięcia kątowego to jedna z podstawowych metod stosowanych w geodezji do określania pozycji punktu. Polega ona na wyznaczeniu położenia nieznanego punktu na podstawie pomiaru kątów z dwóch znanych punktów. Jest to szczególnie przydatne w sytuacjach, gdy nie można bezpośrednio zmierzyć odległości do punktu docelowego, na przykład z powodu przeszkód terenowych. W praktyce metoda ta stosowana jest często w terenach trudno dostępnych, gdzie klasyczne metody pomiarowe, takie jak wcięcie liniowe, są trudne do zastosowania. Wcięcie kątowe znajduje zastosowanie w tworzeniu sieci geodezyjnych i jest kluczowe w pracach inżynierskich, zwłaszcza tam, gdzie wymagana jest wysoka precyzja pomiaru. Z mojego doświadczenia, stosowanie tej metody jest nie tylko efektywne, ale również pozwala na uzyskanie precyzyjnych wyników przy minimalnym nakładzie pracy w terenie. Warto zaznaczyć, że dokładność uzyskanych wyników zależy od jakości instrumentów pomiarowych oraz precyzji wykonania pomiarów kątowych, co jest zgodne z najlepszymi praktykami branżowymi.

Pytanie 9

Geodeta powinien wyznaczyć położenie punktów określających osie konstrukcyjne budynku jednorodzinnego na ławach ciesielskich z dokładnością do

A. 0,1 m
B. 0,01 m
C. 1 m
D. 0,001 m
Wybór innych wartości dokładności, takich jak 0,1 m, 0,01 m czy 1 m, prowadzi do istotnych błędów w procesie budowlanym. Przyjęcie zbyt dużych tolerancji pomiarowych, jak 1 m, jest nieakceptowalne w kontekście budowy budynku jednorodzinnego, gdzie precyzja jest kluczowa. Taki błąd może skutkować poważnymi konsekwencjami, w tym nieprawidłowym ułożeniem ścian i fundamentów, co z kolei prowadzi do problemów strukturalnych, a nawet zagrożenia dla bezpieczeństwa mieszkańców. Z kolei odpowiedź 0,1 m i 0,01 m, mimo że są bardziej precyzyjne niż 1 m, wciąż nie spełniają wymogów standardów budowlanych, które zazwyczaj nakładają obowiązek stosowania dokładności pomiaru na poziomie milimetra. W praktyce, geodeci i inżynierowie muszą kierować się zaleceniami zawartymi w normach, takich jak PN-ISO 9001, które nakładają obowiązek zapewnienia wysokiej jakości i precyzji pomiarów w procesie budowlanym. Tego rodzaju błędne rozumienie wymagań dotyczących precyzji pomiaru może wynikać z niewłaściwego postrzegania roli, jaką na budowie odgrywają dokładne pomiary, co w efekcie prowadzi do kosztownych błędów projektowych i wykonawczych.

Pytanie 10

Jakiego dokumentu wymaga geodeta, aby powiadomić ODGiK o wykonanych pracach geodezyjnych?

A. Podanie o dostęp do danych ewidencyjnych
B. Raport techniczny
C. Zgłoszenie pracy geodezyjnej
D. Wniosek o uzgodnienie dokumentacji i projektowej
Zgłoszenie pracy geodezyjnej jest kluczowym dokumentem, który geodeta musi sporządzić i złożyć w organie odpowiedzialnym za geodezję, czyli w Ośrodku Dokumentacji Geodezyjnej i Kartograficznej (ODGiK). Dokument ten informuje ODGiK o rozpoczęciu prac geodezyjnych, które mają na celu zbieranie danych dotyczących terenu, pomiarów oraz innych działań geodezyjnych. Przykładowo, gdy geodeta przystępuje do przeprowadzenia pomiarów granicznych, musi złożyć takie zgłoszenie, aby organy mogły monitorować realizację prac oraz zapewnić zgodność z obowiązującymi przepisami i standardami. W ramach praktyki, zgłoszenie to musi zawierać szczegóły dotyczące lokalizacji, rodzaju prac oraz planowanego terminu ich zakończenia. Taki proces jest zgodny z ustawą Prawo geodezyjne i kartograficzne, która nakłada obowiązek informacyjny na wykonawców takich prac. Zgłoszenie pracy geodezyjnej przyczynia się do transparentności działań geodezyjnych i umożliwia lepszą koordynację między różnymi podmiotami zaangażowanymi w proces geodezyjny.

Pytanie 11

Osnowy geodezyjne klasyfikuje się na różne grupy na podstawie ich precyzji oraz metody zakładania, jakich używa się do ich tworzenia?

A. poziome bazowe, podstawowe wysokościowe, sytuacyjne
B. fundamentalne, podstawowe bazowe, sytuacyjne
C. podstawowe, podstawowe bazowe, pomiarowe
D. podstawowe fundamentalne, podstawowe bazowe, szczegółowe
Wybór odpowiedzi, która nie uwzględnia klasyfikacji podstawowych fundamentalnych oraz szczegółowych osnow geodezyjnych, wskazuje na niezrozumienie różnic pomiędzy poszczególnymi typami sieci oraz ich zastosowań. Osnowy fundamentalne są kluczowe w tworzeniu systemów geodezyjnych, gdyż zapewniają stabilne punkty odniesienia, które są niezbędne do precyzyjnego mapowania. Odpowiedzi sugerujące podziały na grupy, takie jak 'poziome bazowe, podstawowe wysokościowe, sytuacyjne' czy 'fundamentalne, podstawowe bazowe, sytuacyjne', mylą kategorie pojęciowe oraz ich funkcje. Poziome i wysokościowe odniesienia są jedynie różnymi wymiarami tej samej osnowy i nie stanowią odrębnych grup. Klasyfikując osnowy według kryterium dokładności, istotne jest, aby zrozumieć, że każda z nich ma określone przeznaczenie oraz różne poziomy precyzji. Typowe błędy myślowe w tej kwestii obejmują pomijanie roli osnowy fundamentalnej jako podstawy dla wszystkich innych pomiarów oraz nieumiejętność rozróżnienia między osnowami służącymi do ogólnych pomiarów a tymi dedykowanymi do bardziej szczegółowych zastosowań. W praktyce, stosowanie nieodpowiednich osnow w projektach geodezyjnych prowadzi do błędów pomiarowych, co może mieć poważne konsekwencje w inżynierii i budownictwie.

Pytanie 12

Który z podanych wzorów powinien być wykorzystany do obliczenia teoretycznej sumy kątów lewych w otwartym ciągu poligonowym, dowiązanym z dwóch stron?

A. [α] = AK – AP + n × 200g
B. [β] = AP + AK - n × 200g
C. [β] = AP – AK + n × 200g
D. [α] = AK + AP - n × 200g
Analiza niepoprawnych odpowiedzi wskazuje na powszechne pomyłki w interpretacji wzorów geometrycznych stosowanych w geodezji. Wzory zaproponowane w odpowiedziach nie uwzględniają odpowiednich relacji pomiędzy kątami, a także nie biorą pod uwagę istotnych parametrów. Na przykład, w propozycji zakładającej, że suma kątów lewych wynika z dodawania kątów początkowych i końcowych, co nie jest zgodne z zasadami obliczeń w poligonach. Warto pamiętać, że suma kątów lewych w ciągu poligonowym powinna być zdefiniowana w odniesieniu do różnicy między kątami oraz liczby segmentów, co jest kluczowe dla uzyskania prawidłowych wyników. Typowym błędem jest mylenie relacji między kątami a liczbą boków, co prowadzi do niepoprawnych wniosków. Wartości kątów w poligonach muszą być dokładnie zdefiniowane i obliczane zgodnie z odpowiednimi normami, aby zapewnić ich wiarygodność i precyzję. Dlatego konieczne jest zrozumienie pełnego kontekstu i poprawnych wzorów, aby uniknąć poważnych błędów w praktyce geodezyjnej.

Pytanie 13

Jaką osnowę powinno się założyć do geodezyjnej obsługi dużego zakładu przemysłowego, którego realizacja przebiegać będzie w etapach?

A. Realizacyjną jednorzędową
B. Realizacyjną dwurzędową
C. Realizacyjną typu A
D. Realizacyjną wydłużoną
Wybór osnowy typu A, tej wydłużonej i jednorzędowej, często robi się z powodu specyficznych wymagań projektowych, ale w przypadku dużych zakładów, może to przynieść sporo problemów. Osnowa realizacyjna typu A, chociaż sprawdza się w mniejszych inwestycjach, nie jest wystarczająco elastyczna, gdy prace prowadzi się w wielu lokalizacjach równocześnie. Skupianie się na pojedynczych punktach kontrolnych ogranicza możliwości koordynacji działań, co może powodować straty czasowe. Z kolei osnowa wydłużona, mimo że powoduje większy zasięg pomiarów, nie oferuje takiej dokładności, jakiej potrzebujemy w złożonych projektach. W dużych inwestycjach, jak budowa zakładów, ważne jest, aby osnowa dostosowała się do zmieniających się warunków budowlanych, a pomiary były jak najdokładniejsze. Osnowa jednorzędowa, choć łatwa w użyciu, nie spełnia wymagań dotyczących dokładności ani możliwości jednoczesnego prowadzenia różnych prac. Mylenie się, że wybór prostszej osnowy ułatwi sprawę, może prowadzić do sporych komplikacji i wydłużenia czasu realizacji projektu.

Pytanie 14

W jakich okolicznościach materiały z publicznego zasobu geodezyjnego i kartograficznego mogą być usunięte z tego zbioru?

A. Po upływie dwóch lat od dodania do zasobu
B. Kiedy zostaną zniszczone
C. Kiedy stracą wartość użytkową
D. Kiedy nie były używane przez pięć lat
Materiały z państwowego zasobu geodezyjnego i kartograficznego podlegają wyłączeniu z tego zasobu w momencie, gdy utracą swoją przydatność użytkową. Przydatność użytkowa materiałów geodezyjnych i kartograficznych oznacza ich zdolność do spełniania wymagań użytkowników, w tym instytucji, które się nimi posługują. Przykładem może być aktualizacja map topograficznych, które muszą odzwierciedlać rzeczywisty stan terenu, aby były użyteczne dla planowania przestrzennego czy działań związanych z ochroną środowiska. Gdy materiały przestają odpowiadać rzeczywistemu stanowi, ich wartość w kontekście zastosowań praktycznych spada, co może prowadzić do decyzji o ich wyłączeniu z zasobu. W kontekście dobrych praktyk w zarządzaniu informacjami geodezyjnymi, regularna weryfikacja i aktualizacja zasobów jest kluczowa dla zapewnienia ich aktualności oraz zgodności z obowiązującymi normami, co przyczynia się do poprawy efektywności działań w zakresie planowania i zarządzania przestrzenią.

Pytanie 15

Na kopii mapy powinny być zaznaczone wyniki wywiadu terenowego przeprowadzonego podczas geodezyjnych prac związanych z pomiarami sytuacyjnymi oraz wysokościowymi?

A. sozologicznej
B. klasyfikacyjnej
C. zasadniczej
D. topograficznej
Zaznaczenie wyników wywiadu terenowego na mapie sozologicznej lub klasyfikacyjnej jest koncepcją, która opiera się na mylnym zrozumieniu funkcji tych map. Mapa sozologiczna skupia się na aspektach ochrony środowiska, przedstawiając dane dotyczące zagrożeń ekologicznych oraz obszarów wymagających szczególnej ochrony. Nie jest to odpowiednia platforma do wizualizacji wyników pomiarów geodezyjnych, które dotyczą ukształtowania terenu i infrastruktury. Z kolei mapa klasyfikacyjna, która służy do klasyfikacji gruntów i ich przeznaczenia, również nie jest miejscem, gdzie powinny być zaznaczane wyniki wywiadu terenowego związane z pomiarami wysokościowymi i sytuacyjnymi. Wprowadzanie danych geodezyjnych do tych map mogłoby prowadzić do nieprawidłowej interpretacji informacji i nieefektywnego wykorzystania danych, co jest sprzeczne z dobrymi praktykami w branży geodezyjnej. Błędem jest także założenie, że wyniki pomiarów geodezyjnych można w dowolny sposób przenosić na różne typy map, bez uwzględnienia ich specyficznych celów oraz standardów. W kontekście pomiarów geodezyjnych, istotne jest, aby wyniki były przedstawiane w formie, która najlepiej odzwierciedla ich rzeczywiste znaczenie oraz zastosowanie w praktyce, co podkreśla znaczenie mapy zasadniczej jako podstawowego dokumentu w tym procesie.

Pytanie 16

Kontrolę numeracji pikiet na szkicu oraz w dzienniku pomiarowym wykonuje się podczas pomiarów terenowych, aby zapewnić

A. zgodność prowadzenia szkicu polowego i dziennika pomiarowego
B. poprawność przy kartowaniu pikiet na mapę
C. poprawność prowadzenia dziennika pomiarowego
D. poprawność prowadzenia szkicu polowego
Zgodność prowadzenia szkicu polowego i dziennika pomiarowego jest kluczowym aspektem w procesie pomiarów terenowych, ponieważ obie te formy dokumentacji muszą odzwierciedlać te same dane pomiarowe i ich układ w terenie. Utrzymanie spójności między szkicem a dziennikiem pomiarowym pozwala na skuteczne śledzenie postępu prac oraz zapewnia, że późniejsza analiza danych będzie oparta na rzetelnych informacjach. Przykładowo, w przypadku wykrycia błędów w jednej z form dokumentacji, ich identyfikacja i korekta będą znacznie łatwiejsze, gdy obie dokumentacje będą ze sobą zgodne. W branży geodezyjnej istnieją ustalone standardy, które nakładają obowiązek prowadzenia takich dokumentów w sposób ułatwiający ich wzajemne weryfikowanie. W praktyce, podczas realizacji pomiarów, geodeta powinien regularnie sprawdzać, czy numery pikiet w szkicu odpowiadają tym wpisanym w dzienniku, co minimalizuje ryzyko błędów oraz ułatwia dalsze etapy pracy, takie jak kartowanie czy przygotowanie mapy. Właściwe utrzymanie zgodności dokumentacji jest nie tylko kwestią organizacyjną, ale również wpływa na jakość końcowych rezultatów pracy geodezyjnej.

Pytanie 17

Która z map przedstawia rozmieszczenie infrastruktury terenu?

A. Sozologiczna
B. Topograficzna
C. Ewidencyjna
D. Zasadnicza
Mapa zasadnicza jest kluczowym narzędziem w inżynierii i planowaniu przestrzennym, które przedstawia szczegółowe informacje o przestrzennym usytuowaniu sieci uzbrojenia terenu, takich jak drogi, sieci wodociągowe, kanalizacyjne i energetyczne. Mapa ta bazuje na normach i standardach geodezyjnych, takich jak PN-ISO 19131, które określają sposób przedstawiania i gromadzenia danych przestrzennych. Przykładem zastosowania mapy zasadniczej może być projektowanie nowych osiedli mieszkalnych, gdzie dokładna wiedza o już istniejącej infrastrukturze jest niezbędna do uniknięcia kolizji z istniejącymi sieciami. Mapa zasadnicza umożliwia także planowanie urbanistyczne oraz prowadzenie działań związanych z ochroną środowiska, ponieważ dostarcza ważnych informacji na temat lokalizacji istniejącej zabudowy oraz infrastruktury, co jest zgodne z dobrą praktyką w zakresie zrównoważonego rozwoju i planowania przestrzennego.

Pytanie 18

Która z podanych wartości powinna zostać uwzględniona na wykresie pionowości krawędzi obiektu budowlanego?

A. Przemieszczenie w kierunku pionowym
B. Różnica wysokości
C. Deformacja
D. Odchylenie od pionu
Przemieszczenie pionowe, przewyższenie i odkształcenie to terminy, które w kontekście analizy krawędzi budynku mogą prowadzić do nieporozumień. Przemieszczenie pionowe odnosi się do ogólnego przesunięcia obiektu w kierunku pionowym, co może być spowodowane różnymi czynnikami, takimi jak osiadanie gruntu, ale nie wskazuje na konkretną deformację krawędzi budynku w porównaniu do idealnego pionu. Przewyższenie, z kolei, dotyczy różnicy wysokości pomiędzy punktami na danej konstrukcji, co nie jest bezpośrednio związane z jej pionowością. Odkształcenie odnosi się do zmiany kształtu materiału lub elementu konstrukcyjnego pod wpływem obciążeń, co również nie jest właściwym wskaźnikiem krawędzi w kontekście jej pionowości. Typowe błędy myślowe, które mogą prowadzić do wyboru tych odpowiedzi, to zrozumienie tych terminów jako synonimów dla oceny pionowości budowli. Jednakże, każdy z tych wskaźników odnosi się do innych aspektów konstrukcji i nie oddaje precyzyjnie potrzeby pomiaru odchylenia od pionu, które jest kluczowe dla utrzymania stabilności oraz bezpieczeństwa obiektu. Zrozumienie tych pojęć w kontekście budownictwa jest ważne dla planowania i prowadzenia prac budowlanych zgodnych z obowiązującymi normami.

Pytanie 19

Z jaką precyzją podaje się wysokości elementów naziemnych uzbrojenia terenu na mapach zasadniczych?

A. 0,01 m
B. 0,1 m
C. 0,5 m
D. 0,05 m
Wiele osób może mieć trudności z zrozumieniem, dlaczego dokładność 0,05 m, 0,5 m czy 0,1 m jest niewystarczająca w kontekście wysokości elementów uzbrojenia terenu. Wysokości podawane z dokładnością do 0,05 m nie uwzględniają wszystkich drobnych, ale krytycznych różnic, które mogą wystąpić w terenie. W inżynierii i geodezji, zwłaszcza w przypadku projektów budowlanych, nawet małe odchylenia mogą prowadzić do znacznych problemów, jak chociażby nieodpowiednie odprowadzenie wód opadowych lub niewłaściwe osadzenie obiektów. Podobnie, dokładność 0,5 m jest zbyt ogólna, aby spełnić wymagania dzisiejszej inżynierii lądowej, gdzie standardy precyzji są znacznie wyższe w związku z rozwojem technologii pomiarowych. Nie można również zapominać, że podanie wysokości z dokładnością do 0,1 m, chociaż zbliża się do wymagań, nadal nie zapewnia wymaganego poziomu precyzji, który jest konieczny w kontekście regulacji prawnych i norm branżowych. Ważne jest, aby rozumieć, że niedoszacowanie wymaganej dokładności może prowadzić do kosztownych błędów w projektowaniu oraz realizacji inwestycji, co podkreśla rolę dbałości o szczegóły w geodezji i inżynierii.

Pytanie 20

Jakie metody powinny być wykorzystane do przeprowadzenia pomiaru tachimetrycznego?

A. Biegunową oraz niwelacji geometrycznej
B. Ortogonalną oraz niwelacji trygonometrycznej
C. Ortogonalną oraz niwelacji geometrycznej
D. Biegunową oraz niwelacji trygonometrycznej
Pomiar tachimetryczny to kluczowy element w geodezji, który polega na jednoczesnym pomiarze kątów i odległości w celu uzyskania dokładnych danych o położeniu punktów w terenie. Odpowiedzią, która wskazuje na prawidłowe metody, jest kombinacja biegunowej i niwelacji trygonometrycznej. Metoda biegunowa polega na pomiarze kątów poziomych i pionowych, co pozwala na dokładne określenie pozycji obiektu. Z kolei niwelacja trygonometryczna wykorzystuje pomiar kątów i odległości, aby obliczyć różnice wysokości pomiędzy punktami. Te dwie metody są zgodne z dobrymi praktykami w geodezji, które zalecają łączenie różnych technik pomiarowych dla zwiększenia dokładności i wiarygodności wyników. W praktyce, zastosowanie tej kombinacji pozwala na efektywne i precyzyjne ustalanie wysokości punktów terenowych, co jest szczególnie istotne w budownictwie, infrastrukturze oraz podczas realizacji projektów geodezyjnych. Dodatkowo, standardy takie jak ISO 17123 określają wymagania dotyczące techniki pomiarowej, co zapewnia zgodność z międzynarodowymi normami.

Pytanie 21

Jakiej metody nie należy używać do oceny pionowości komina przemysłowego?

A. fotogrametrycznej
B. trygonometrycznej
C. wcięć kątowych
D. stałej prostej
Metody wcięć kątowych, trygonometrycznej oraz fotogrametrycznej są powszechnie stosowane w analizie pionowości kominów przemysłowych, jednak każda z nich ma swoje ograniczenia, które mogą prowadzić do błędnych wniosków, jeśli nie są zastosowane w odpowiedni sposób. Metoda wcięć kątowych polega na pomiarze kątów między różnymi punktami na obwodzie komina, co może być problematyczne, gdy komin nie jest idealnie cylindryczny lub gdy występują zakłócenia wizualne. Ponadto, ta technika często wymaga skomplikowanych obliczeń, które mogą być podatne na błędy ludzkie. Z kolei metoda trygonometryczna, opierająca się na pomiarach kątów i odległości, może również być obarczona błędami, gdy nie uwzględnia się wpływu warunków atmosferycznych na pomiary. Zmienne takie jak refrakcja atmosferyczna mogą znacznie wpłynąć na dokładność wyników. Metoda fotogrametryczna, chociaż nowoczesna i skuteczna, wymaga zaawansowanego sprzętu oraz odpowiednich umiejętności analitycznych do przetwarzania danych, co może być problematyczne w praktyce. W związku z tym, każdy z tych błędnych wyborów opiera się na założeniu, że są one w pełni niezawodne, podczas gdy w rzeczywistości wymagają one starannego planowania, wykonania oraz weryfikacji. Dlatego kluczowe jest, aby wybierać techniki pomiarowe, które są zgodne z aktualnymi standardami branżowymi, takimi jak normy ISO czy wytyczne stowarzyszeń inżynieryjnych.

Pytanie 22

Wyniki geodezyjnego opracowania projektu zagospodarowania działki należy przenieść na szkic

A. tyczenia
B. dokumentacyjny
C. polowy
D. pomiarowy
Wybór odpowiedzi tyczenia, polowy czy pomiarowy wskazuje na pewne nieporozumienia w zakresie terminologii geodezyjnej. Tyczenie odnosi się do procesu przenoszenia punktów geodezyjnych na teren budowy, co ma miejsce po zakończeniu opracowania dokumentacji. Tyczenie jest zatem czynnością wykonywaną na podstawie wcześniej przygotowanych dokumentów, a nie ich bezpośrednim wynikiem. Odpowiedź polowy sugeruje, że wyniki pomiarów są jeszcze na etapie pracy w terenie, co jest nieprawidłowe, ponieważ po zebraniu danych geodezyjnych ich analiza oraz opracowanie odbywa się już w biurze, a nie na polu. Z kolei pomiarowy może kojarzyć się z etapem zbierania danych, jednak nie jest on odpowiedni w kontekście dokumentacji projektowej. Dlatego można zauważyć, że wybór tych terminów często wynika z mylenia różnych etapów pracy geodezyjnej. Właściwe zrozumienie, kiedy i jakie dokumenty są potrzebne w procesie inwestycyjnym, jest kluczowe dla każdej osoby zaangażowanej w planowanie i realizację projektów budowlanych.

Pytanie 23

Aby ustanowić osnowę pomiarową, należy przeprowadzić terenowy wywiad na podstawie mapy

A. zasadniczą
B. topograficzną
C. przeglądową
D. klasyfikacyjną
Wybór mapy topograficznej jako podstawy do założenia osnowy pomiarowej jest nieodpowiedni, ponieważ mapa topograficzna, mimo że przedstawia ukształtowanie terenu w szerszym kontekście, nie zawiera wystarczająco szczegółowych informacji o granicach działek czy infrastrukturze niezbędnych do precyzyjnego zakupu osnowy. Może to prowadzić do błędów w lokalizacji punktów pomiarowych oraz do nieścisłości w dalszych pracach geodezyjnych. Z kolei mapa przeglądowa, z założenia służąca do ogólnej orientacji przestrzennej, również nie dostarcza wystarczających szczegółów, co może skutkować niepoprawnym określeniem granic działek oraz nieodpowiednią lokalizacją punktów osnowy. Zastosowanie mapy klasyfikacyjnej, która skupia się na podziale terenu na różne klasy użytkowania, nie ma praktycznego zastosowania w kontekście zakładania osnowy pomiarowej. Dobrą praktyką jest korzystanie z mapy zasadniczej, która dostarcza precyzyjnych informacji nie tylko o ukształtowaniu terenu, ale także o wszelkich istotnych elementach, które mogą mieć wpływ na pomiary geodezyjne. Wybór niewłaściwej mapy może prowadzić do poważnych problemów w dalszych etapach projektu, w tym do błędów w pomiarach oraz w szacunkach dotyczących obszarów i wymagań dotyczących budowy.

Pytanie 24

Niwelacja trygonometryczna polega na określaniu różnic wysokości wybranych lokalizacji na podstawie obserwacji

A. odległości poziomej i kąta pionowego
B. odległości pionowej i kąta poziomego
C. odległości poziomej i kąta poziomego
D. odległości pionowej i kąta pionowego
Niwelacja trygonometryczna polega na wyznaczaniu różnic wysokości wybranych punktów na podstawie obserwacji odległości poziomej i kąta pionowego. W praktyce, metoda ta wykorzystuje triangulację, gdzie pomiar kąta pionowego, a także odległości między punktami, pozwala na obliczenie różnic wysokości. Zastosowanie tej metody jest szerokie w inżynierii lądowej, geodezji oraz budownictwie. Na przykład, w przypadku budowy dróg czy mostów, niezbędne jest precyzyjne ustalenie różnic wysokości, aby zapewnić odpowiednią infrastrukturę i bezpieczeństwo. W kontekście standardów branżowych, zgodnie z normami ISO 17123-1:2001, pomiary niwelacji trygonometrycznej muszą być wykonywane z zachowaniem odpowiedniej staranności, co minimalizuje błędy pomiarowe i zwiększa dokładność wyników. Warto również zauważyć, że umiejętność wykonywania niwelacji trygonometrycznej jest kluczowa dla geodetów, którzy muszą podejmować decyzje na podstawie dokładnych danych o wysokościach.

Pytanie 25

Który południk jest osiowym w odwzorowaniu Gaussa-Krugera w systemie współrzędnych PL-2000?

A. 22°
B. 24°
C. 23°
D. 25°
Poprawna odpowiedź to 24°, który jest południkiem osiowym odwzorowania Gaussa-Krugera w układzie współrzędnych PL-2000. W tym systemie geodezyjnym stosuje się odwzorowanie, które jest oparte na koncepcji południków osiowych. Południk 24° jest szczególnie istotny dla obszarów geograficznych w Polsce, ponieważ zapewnia poprawne odwzorowanie dla większości terytorium kraju, co jest niezbędne w geodezji i kartografii. Dzięki temu odwzorowaniu możemy dokładnie określić położenie punktów w przestrzeni geograficznej, co jest kluczowe w zastosowaniach takich jak inżynieria lądowa, planowanie urbanistyczne oraz analiza przestrzenna. Odwzorowanie Gaussa-Krugera jest szeroko stosowane w praktyce, ponieważ umożliwia przekształcenie współrzędnych geograficznych (szerokości i długości geograficznej) na współrzędne prostokątne, co ułatwia obliczenia i analizę danych. Dodatkowo, dzięki zastosowaniu lokalnych układów odniesienia, uzyskuje się większą dokładność w pomiarach, co jest istotne dla profesjonalnych prac geodezyjnych.

Pytanie 26

Lokalizacja charakterystycznych punktów w terenie w procesie niwelacji punktów rozprzestrzenionych ustalana jest za pomocą metody

A. tachimetrycznej
B. ortogonalnej
C. przedłużeń
D. biegunowej
Odpowiedzi tachimetryczna, ortogonalna oraz przedłużeń wskazują na różne podejścia w pomiarze i niwelacji, które nie są właściwe w kontekście określenia położenia punktów rozproszonych. Metoda tachimetryczna, choć użyteczna do pomiarów kątów i odległości, nie jest optymalna dla precyzyjnego określania lokalizacji punktów w rozproszonym terenie, ponieważ koncentruje się głównie na pomiarach punktów z jednego stanowiska oraz może prowadzić do błędów w przypadku przeszkód terenowych. Z kolei metoda ortogonalna, która zakłada stosowanie prostokątnych układów współrzędnych, jest bardziej odpowiednia dla zadań, gdzie punkty są poukładane w regularny sposób, a nie w sposób rozproszony. Przedłużenia, w swoim podstawowym sensie, polegają na wydłużaniu linii przez konkretne punkty, co nie odpowiada na potrzeby związane z niwelacją punktów rozproszonych. Wybór niewłaściwej metody może prowadzić do znaczących błędów w pomiarach, co jest szczególnie problematyczne w projektach budowlanych, gdzie precyzja jest kluczowa. Zrozumienie, kiedy i jak stosować konkretne techniki pomiarowe, jest kluczowe dla osiągnięcia sukcesu w obszarze geodezji i inżynierii lądowej.

Pytanie 27

Na podstawie zamieszczonych w tabeli wyników pomiarów punktów kontrolowanych, oblicz kierunkowe przemieszczenia poziome dla punktu nr 32.

Nr
punktu
Pomiar pierwotnyPomiar wtórny
X₀ [m]Y₀ [m]Xw [m]Yw [m]
3178,462634,25678,482634,212
32142,058582,235142,124582,218
33169,151613,968169,142613,967

A. ΔX = 66 cm; ΔY = -44 cm
B. ΔX = 0,066 m; ΔY = -0,017 m
C. ΔX = -66 cm; ΔY = 44 cm
D. ΔX = -0,066 m; ΔY = 0,017 m
Poprawna odpowiedź, czyli ΔX = 0,066 m oraz ΔY = -0,017 m, wynika z właściwego zastosowania metod obliczania przemieszczeń w układzie współrzędnych. Przemieszczenie poziome ΔX oblicza się jako różnicę między współrzędną X punktu końcowego a współrzędną X punktu początkowego, co w tym przypadku daje 0,066 m. Analogicznie, przemieszczenie ΔY, które wynosi -0,017 m, uzyskuje się poprzez odejmowanie wartości Y. Tego rodzaju obliczenia są kluczowe w geodezji, inżynierii lądowej oraz w pracach budowlanych, gdzie precyzyjne określenie lokalizacji punktów odniesienia jest niezbędne. Zastosowanie tej metody pozwala na uzyskanie dokładnych wyników, co jest zgodne z normami takimi jak ISO 17123 dotyczące pomiarów w geodezji. Prawidłowe zrozumienie obliczeń przemieszczeń jest fundamentem dalszej analizy i projektowania różnych konstrukcji, a także w przeprowadzaniu pomiarów kontrolnych.

Pytanie 28

Punkty umieszczane na powierzchni monitorowanego obiektu, które sygnalizują zmiany lokalizacji elementów obiektu, to punkty

A. wiążące
B. odniesienia
C. kontrolowane
D. kontrolne
Odpowiedź 'kontrolowane' jest poprawna, ponieważ punkty kontrolowane to specyficzne punkty umieszczane na monitorowanym obiekcie, które służą do obserwacji i analizy zmian w ich położeniu. Używane są w różnych dziedzinach, takich jak inżynieria, geodezja czy monitorowanie konstrukcji, aby ocenić deformacje, ruchy czy inne zmiany w czasie. Przykładowo, w budownictwie punkty kontrolowane mogą być wykorzystane do monitorowania osiadania fundamentów budynku po jego wybudowaniu. Zastosowanie takich punktów jest zgodne z najlepszymi praktykami branżowymi, takimi jak standardy geodezyjne, które sugerują regularne pomiary oraz dokumentację wyników, co ułatwia analizę zmian oraz identyfikację ewentualnych problemów w konstrukcji. W kontekście systemów monitorowania, punkty kontrolowane pozwalają na automatyzację procesów i poprawiają dokładność pomiarów poprzez zastosowanie technologii takich jak GPS czy skanowanie laserowe, które mogą być zintegrowane z systemami zarządzania obiektami.

Pytanie 29

W której bazie danych państwowego zasobu geodezyjnego i kartograficznego można znaleźć informacje o podziemnych przewodach elektroenergetycznych?

A. BDSOG
B. GESUT
C. EGiB
D. BDOT500
GESUT, czyli Geodezyjna Ewidencja Sieci Uzbrojenia Terenu, to super ważna baza danych. Zawiera ona wszystkie info o infrastrukturze technicznej, w tym o podziemnych kablach elektrycznych. Jak się planuje nowe budowy, to istotne, żeby wiedzieć, gdzie co jest. Dzięki temu można uniknąć uszkodzeń sieci energetycznych, co przecież byłoby katastrofą. Projektanci i geodeci mogą korzystać z GESUT, żeby szybko znaleźć lokalizację i szczegóły dotyczące tych podziemnych przewodów, co jest mega pomocne w trakcie projektowania i budowania. Dodatkowo, standardy GESUT są zgodne z międzynarodowymi rozwiązaniami, co sprawia, że jest to naprawdę przydatne w dzisiejszych czasach, kiedy urbanistyka i inżynieria rozwijają się tak szybko.

Pytanie 30

W miejscowym planie zagospodarowania przestrzennego obszary przeznaczone na sport i rekreację powinny być oznaczane symbolem literowym

A. ZP
B. U
C. MW
D. US
W miejscowych planach zagospodarowania przestrzennego tereny sportu i rekreacji są oznaczane symbolem US, co oznacza "tereny usług sportowych". Jest to zgodne z przyjętymi standardami planowania przestrzennego, które mają na celu zapewnienie odpowiednich przestrzeni dla działalności sportowej i rekreacyjnej w miastach oraz na terenach wiejskich. Oznaczenie to pozwala na jednoznaczne definiowanie obszarów przeznaczonych pod różne formy działalności sportowej, takie jak stadiony, boiska, parki rekreacyjne czy obiekty sportowe. Zastosowanie symbolu US w planach zagospodarowania przestrzennego jest kluczowe dla koordynacji działań urbanistycznych i planistycznych, a także dla zapewnienia harmonijnego rozwoju infrastruktury sportowej. Przykładem praktycznego zastosowania może być projektowanie nowego kompleksu sportowego, gdzie odpowiednie oznaczenie w planie pozwala na łatwiejsze pozyskanie funduszy i wsparcia ze strony lokalnych władz oraz organizacji sportowych. Zrozumienie tego symbolu w kontekście planowania przestrzennego jest zatem istotne dla każdego specjalisty zajmującego się urbanistyką.

Pytanie 31

Mapa zasadnicza to rodzaj map

A. sozologicznych
B. fizjologicznych
C. społecznych
D. gospodarczych
Mapa zasadnicza to, krótko mówiąc, bardzo ważny element, jak chodzi o systemy informacji geograficznej. Jest to mapa, która pokazuje najistotniejsze cechy terenu, takie jak granice administracyjne, różne rodzaje dróg czy nawet ukształtowanie powierzchni. Moim zdaniem, to niesamowite, jak wiele zastosowań ma ta mapa. Od planowania miast po rolnictwo – wszędzie się przydaje. Dla inwestycji infrastrukturalnych to wręcz niezbędne narzędzie, bo pomaga zrozumieć, gdzie i jakie tereny są dostępne. Warto też wiedzieć, że takie standardy jak ISO 19101 i wytyczne GUGIK podkreślają znaczenie map zasadniczych. One są jak fundament dla innych, bardziej szczegółowych map. Bez nich trudno by było mówić o jakiejkolwiek mapie w kontekście gospodarczym.

Pytanie 32

Jakie grupy błędów, mających wpływ na wyniki pomiarów, są wyróżniane w geodezji?

A. Błędy stałe, omyłki, błędy systematyczne
B. Błędy grube, omyłki, błędy stałe
C. Błędy osobowe, błędy systematyczne, błędy losowe
D. Błędy grube, błędy systematyczne, błędy przypadkowe
W geodezji mamy trzy główne grupy błędów, które mogą wpłynąć na to, co zmierzymy. Po pierwsze, są błędy grube, które mocno psują wyniki. Często wynikają z tego, że coś źle odczytaliśmy albo popełniliśmy błąd przy obsłudze sprzętu. Na przykład, zawsze trzeba uważać, żeby dobrze wpisać wartości do systemu, bo jeden zły krok i wszystko się sypie. Potem są błędy systematyczne. To takie błędy, które sobie powtarzają przez to, że narzędzie pomiarowe może być źle kalibrowane. Jak coś jest źle ustawione, to za każdym razem będziemy dostawać ten sam zły wynik. A na końcu mamy błędy przypadkowe. To te, które się zdarzają bez żadnego ostrzeżenia, jak zmiany pogody czy losowe wahania w wynikach. W geodezji ważne jest, żeby te błędy identyfikować i minimalizować, bo w projektach budowlanych czy geodezyjnych precyzyjne pomiary to klucz do sukcesu.

Pytanie 33

Na podstawie informacji zawartych w dzienniku oblicz wysokość osi celowej na stanowisku drugim (w kolumnie 8).

A. 303,971 m
B. 303,919 m
C. 303,387 m
D. 303,946 m
Wybór innych wartości, takich jak 303,946 m, 303,387 m lub 303,971 m, może wynikać z nieprawidłowego zrozumienia procesu pomiarowego oraz zasadności użycia konkretnej wysokości osi celowej. Często mylone są pojęcia związane z wysokością nad poziomem morza oraz wysokością właściwą, co prowadzi do nieprecyzyjnych oszacowań. Istotne jest, aby zrozumieć, że każda wysokość osi celowej musi być obliczana na podstawie dokładnych danych z dziennika pomiarów, który zawiera informacje o wszystkich istotnych parametrach, takich jak różnice poziomów oraz współrzędne punktów. Problemy mogą również wynikać z błędów w odczycie lub interpretacji danych. Na przykład, pomijanie istotnych szczegółów z dziennika pomiarów, takich jak aktualizacje czy korekty, może prowadzić do wyboru niewłaściwej wartości. Należy także zwrócić uwagę na techniczne aspekty, takie jak kalibracja sprzętu pomiarowego, która jest kluczowa do uzyskania wiarygodnych wyników. W praktyce, pomiar wysokości osi celowej powinien być przeprowadzany wielokrotnie, aby zminimalizować ryzyko błędów, a uzyskane wyniki powinny być weryfikowane w kontekście istniejących danych geodezyjnych oraz standardów branżowych.

Pytanie 34

Jaką wartość ma azymut przeciwny do azymutu wynoszącego 327g12c35cc?

A. 27g12c35cc
B. 127g12c35cc
C. 227g12c35cc
D. 527g12c35cc
Wartość azymutu odwrotnego do azymutu wynoszącego 327°12'35'' można obliczyć poprzez dodanie 180° do pierwotnego azymutu. W przypadku azymutów, które są wyrażane w stopniach, minutach i sekundach, dodanie 180° często wymaga konwersji, jeśli suma przekracza 360°. W tym przypadku dodajemy 180° do 327°, co daje 507°. Następnie, musimy odjąć 360°, aby uzyskać wynik w odpowiednim zakresie: 507° - 360° = 147°. Teraz pozostaje nam dodać pozostałe wartości minut i sekund. Ostatecznie zatem uzyskujemy azymut 127°12'35''. W kontekście nawigacji i geodezji, umiejętność obliczania azymutów odwrotnych jest kluczowa, ponieważ pozwala na dokładne śledzenie kierunków i nawigację w terenie. Takie umiejętności są niezbędne w różnych dziedzinach, od turystyki po inżynierię i architekturę.

Pytanie 35

Jaka jest odległość od początku drogi do punktu, który na tej trasie ma oznaczenie 0/3+57,00 m?

A. 557,00 m
B. 3557,00 m
C. 3057,00 m
D. 357,00 m
Odpowiedź 357,00 m jest poprawna, ponieważ oznaczenie 0/3+57,00 m wskazuje na dokładne miejsce na trasie. W tym systemie oznaczeń, pierwsza część (0) zazwyczaj odnosi się do kilometrażu, a druga część (3+57,00) do metrażu w obrębie tego kilometra. Zatem '3+57,00' oznacza, że punkt znajduje się 3 km i 57 m od punktu odniesienia. Przekształcając to na metry, mamy 3000 m + 57 m, co daje 3057 m. Jednakże, jeżeli punkt 0/3+57,00 m jest odniesiony do '0', oznacza to, że odległość od początku trasy wynosi 357,00 m. Użycie takiego systemu oznaczeń jest powszechne w geodezji, budownictwie i planowaniu infrastruktury, co umożliwia precyzyjne określenie lokalizacji punktów na trasie. Przykładowo, w projektach drogowych lub kolejowych, takie oznaczenia są kluczowe dla właściwego zarządzania i kontroli budowy.

Pytanie 36

W teodolicie stała podstawa, która służy do jego ustawienia w poziomie, nazywana jest

A. spodarką
B. alidadą
C. pionem
D. limbusem
Spodarka jest kluczowym elementem teodolitu, którego funkcją jest zapewnienie stabilnej i wypoziomowanej podstawy dla urządzenia pomiarowego. Dzięki zastosowaniu spodarki, możliwe jest precyzyjne wykonywanie pomiarów kątów poziomych i pionowych, co jest niezwykle istotne w geodezji oraz budownictwie. Spodarka często jest konstruowana w sposób umożliwiający łatwe dostosowanie poziomu urządzenia, co jest niezbędne do uzyskania dokładnych wyników. W praktyce geodezyjnej, teodolity z odpowiednio dostosowaną spodarką pozwalają na realizację skomplikowanych pomiarów terenowych, takich jak wyznaczanie linii prostych, kątów oraz różnic wysokości. Istotne jest, aby podczas pracy z teodolitem, zwłaszcza w trudnym terenie, zachować ostrożność przy poziomowaniu spodarki, co z kolei wpływa na dokładność pomiarów. Dobre praktyki w tej dziedzinie obejmują regularne kalibracje i kontrole sprzętu, co zapewnia wysoką jakość wyników pomiarowych oraz zgodność z obowiązującymi standardami branżowymi.

Pytanie 37

Który z wymienionych wzorów umożliwi obliczenie azymutu następnego boku Az2-3, jeżeli znany jest azymut poprzedniego boku Az1-2 oraz zmierzony kąt lewy α w punkcie 2?

A. Az2-3 = Az1-2 + α - 200g
B. Az2-3 = Az1-2 – α + 200g
C. Az2-3 = Az2-1 – α + 200g
D. Az2-3 = Az2-1 + α - 200g
Odpowiedź Az2-3 = Az1-2 + α - 200g jest prawidłowa, ponieważ przy obliczaniu azymutu kolejnego boku w geodezji stosujemy wzór, który uwzględnia azymut boku poprzedniego oraz pomierzony kąt lewy. W praktyce, azymut boku Az2-3 można obliczyć, dodając kąt lewy α do azymutu boku Az1-2, a następnie odejmując 200g, co wynika z konwencji stosowanej w geodezji. Zgodnie z zasadami, w przypadku pomiarów z użyciem teodolitu, kąt lewy jest mierzony w przeciwnym kierunku do ruchu wskazówek zegara, co wymaga uwzględnienia odpowiednich poprawek przy wyznaczaniu azymutu. Praktyczne zastosowanie tego wzoru widoczne jest w terenie, gdzie precyzyjne pomiary są kluczowe dla uzyskania dokładnych wyników w mapowaniu i inżynierii. Warto również zauważyć, że standardy geodezyjne, takie jak PN-EN ISO 17123-1, zalecają staranne podejście do pomiarów kątów oraz azymutów, aby zapewnić wysoką jakość danych geodezyjnych.

Pytanie 38

Która z podanych czynności nie dotyczy aktualizacji mapy zasadniczej?

A. Korekta zmian w nazewnictwie
B. Usunięcie sytuacji, która już nie istnieje w terenie
C. Wprowadzenie jedynie wybranych danych
D. Dodanie nowych elementów treści mapy
Odpowiedź 'naniesienie tylko wybranych danych' jest prawidłowa, ponieważ proces aktualizacji mapy zasadniczej wymaga kompleksowego podejścia do uzupełniania i weryfikacji danych. Mapa zasadnicza, jako dokument urzędowy, powinna odzwierciedlać pełny stan rzeczy w terenie, co oznacza, że każda istotna zmiana, w tym wprowadzenie nowych elementów, poprawa nazewnictwa oraz usunięcie nieaktualnych obiektów, powinny być wprowadzane w sposób kompleksowy. Na przykład, jeżeli na danym terenie zbudowano nową drogę, to nie wystarczy jedynie nanieść tej drogi – konieczne jest również zaktualizowanie nazw ulic, systemów adresowych oraz wszelkich powiązanych danych. Ponadto, zgodnie z obowiązującymi standardami, w tym normami ISO oraz krajowymi przepisami prawa geodezyjnego, aktualizacja mapy zasadniczej powinna być przeprowadzana w sposób systematyczny i całościowy, aby zapewnić jej rzetelność oraz aktualność. Tylko w ten sposób mapa może służyć jako wiarygodne źródło informacji dla różnych użytkowników, w tym instytucji publicznych, inwestorów oraz obywateli.

Pytanie 39

W trakcie stabilizacji punktu poziomej osnowy 1 klasy, w jego otoczeniu oraz jako jego ochrona, utworzono cztery punkty

A. kierunkowe
B. podcentra
C. przeniesienia
D. poboczniki
Poboczniki to dodatkowe punkty pomiarowe, które są zakładane w pobliżu punktu osnowy, aby zapewnić stabilność i precyzję w pomiarach geodezyjnych. Wszechstronność poboczników jest szczególnie ważna podczas stabilizacji punktów osnowy 1 klasy, gdzie kluczowe znaczenie ma dokładność i niezawodność danych. W praktyce, poboczniki mogą być używane do weryfikacji i korekty błędów pomiarowych, a także do minimalizowania wpływu zjawisk atmosferycznych, które mogą zakłócać wyniki. Na przykład, w przypadku pomiarów w trudnych warunkach terenowych, takie jak obszary górzyste, użycie poboczników pozwala na uzyskanie dodatkowych danych, które mogą być wykorzystane do kalibracji głównych punktów osnowy. W branży geodezyjnej standardy takie jak norma PN-EN ISO 17123-1 określają wytyczne dotyczące zakładania i użytkowania poboczników, co czyni je niezbędnym elementem w realizacji zadań geodezyjnych.

Pytanie 40

Jakiego zestawu sprzętu należy użyć do przeprowadzenia pomiaru różnic wysokości metodą niwelacji geometrycznej?

A. Niwelator techniczny, statyw, łata niwelacyjna
B. Teodolit optyczny, statyw, łata niwelacyjna
C. Tachimetr elektroniczny, statyw, tyczka z lustrem
D. Niwelator precyzyjny, statyw, tyczka z lustrem
Niwelator techniczny to kluczowe narzędzie do wykonywania dokładnych pomiarów różnic wysokości, które są niezbędne w wielu dziedzinach, takich jak budownictwo, inżynieria lądowa i geodezja. Użycie niwelatora w połączeniu z odpowiednim statywem i łata niwelacyjną zapewnia wysoką precyzję i powtarzalność pomiarów. Niwelator techniczny działa na zasadzie emisji promieni świetlnych, które umożliwiają precyzyjne określenie różnicy wysokości pomiędzy punktami. W praktyce, operator ustawia niwelator na statywie w punkcie odniesienia, a następnie korzysta z łaty niwelacyjnej umieszczonej na punkcie, którego wysokość chcemy zmierzyć. Różnice wysokości odczytuje się z podziałki na łacie, co pozwala na uzyskanie dokładnych wartości. Stosowanie takich narzędzi nie tylko spełnia normy branżowe, ale również zapewnia zgodność z wymaganiami projektów budowlanych, gdzie precyzja jest kluczowa dla sukcesu realizacji. Warto również zaznaczyć, że metody niwelacji geometrycznej są powszechnie stosowane w praktyce do różnorodnych zastosowań, w tym do projektowania i budowy infrastruktury, co czyni je istotnym elementem edukacji technicznej.