Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik geodeta
  • Kwalifikacja: BUD.18 - Wykonywanie pomiarów sytuacyjnych, wysokościowych i realizacyjnych oraz opracowywanie wyników tych pomiarów
  • Data rozpoczęcia: 27 marca 2025 21:03
  • Data zakończenia: 27 marca 2025 21:26

Egzamin zdany!

Wynik: 26/40 punktów (65,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jeśli odcinkowi na mapie o długości 1 cm odpowiada odległość 50 m w rzeczywistości, to oznacza, że mapa została stworzona w skali

A. 1:500
B. 1:5 000
C. 1:10 000
D. 1:1 000
Odpowiedź 1:5 000 jest całkiem spoko, bo oznacza, że każdy 1 cm na mapie to 5 000 cm w rzeczywistości, a to przekłada się na 50 m. Jak chcesz obliczyć skalę mapy, to musisz przeliczyć długość terenu na długość na mapie. Więc, jak 1 cm na mapie to 50 m w terenie, to przeliczamy to na centymetry i mamy 50 m, co daje nam 5 000 cm. I stąd mamy ten stosunek 1 cm na mapie do 5 000 cm w terenie, zapisany jako 1:5 000. To jest klasyczna skala, której używa się w kartografii, zwłaszcza w geodezji i planach zagospodarowania. Na przykład w mapach topograficznych skala 1:5 000 świetnie oddaje szczegóły terenu i ułatwia orientację. W praktyce, znajomość skali mapy to kluczowa rzecz, która naprawdę się przydaje w nawigacji i analizie przestrzennej, a dla geodetów i architektów to wręcz niezbędne.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Jaką precyzję terenową ma punkt sytuacyjny na mapie o skali 1:5000, jeżeli precyzja graficzna jego umiejscowienia wynosi 0,1 mm?

A. ±0,50 m
B. ±5,00 m
C. ±0,05 m
D. ±50,00 m
Wybór innych odpowiedzi może wynikać z niepełnego zrozumienia przeliczeń związanych z różnymi skalami map. Odpowiedzi ±5,00 m oraz ±50,00 m są znacznie przeszacowane w kontekście skali 1:5000, co wskazuje na fundamentalny błąd w przeliczeniach. Przykładowo, ±5,00 m oznaczałoby, że punkt mógłby znajdować się w odległości 5 metrów od rzeczywistej lokalizacji, co jest nieakceptowalne w kontekście precyzyjnych pomiarów terenowych. Z kolei odpowiedź ±0,05 m mogłaby sugerować nadmierną dokładność, która jest niemożliwa do osiągnięcia przy podanej dokładności graficznej. Błąd ten wynika często z nieznajomości zasad przeliczeń w różnych skalach oraz z niedostatecznej wiedzy na temat wpływu skali na dokładność pomiarów. Kluczowe jest więc, aby uwzględniać zarówno skalę mapy, jak i metodykę pomiaru, aby poprawnie zinterpretować dane sytuacyjne. Prawidłowe zrozumienie tych zależności jest niezbędne dla każdego specjalisty w dziedzinach związanych z geodezją, kartografią czy inżynierią lądową.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

Precyzja graficzna mapy odpowiada długości terenowej, która wynosi 0,1 mm na mapie. Z jaką precyzją został zaznaczony punkt na mapie w skali 1:5000?

A. ± 0,05 m
B. ± 0,50 m
C. ± 5,00 m
D. ± 50,00 m
Wybór odpowiedzi ± 50,00 m, ± 0,05 m lub ± 5,00 m pokazuje, że mamy do czynienia z pewnymi nieporozumieniami, jeśli chodzi o interpretację skali mapy i przeliczanie jednostek. Przy skali 1:5000 ważne jest, żeby zrozumieć, że jednostka na mapie odpowiada pięciokrotnemu powiększeniu w rzeczywistości. Odpowiedź ± 50,00 m jest zdecydowanie za duża, co sugeruje, że mogłeś się pomylić w zrozumieniu skali. Podobnie, ± 0,05 m pomija fakt, że 0,1 mm na mapie to tak naprawdę 0,5 m w terenie, więc ta odpowiedź też nie jest trafiona. Odpowiedź ± 5,00 m pokazuje, że myślisz o większym błędzie pomiarowym, ale nie uwzględnia skali. Te błędy mogą naprawdę wpłynąć na ważne rzeczy, jak planowanie przestrzenne, gdzie precyzyjna lokalizacja punktów ma kluczowe znaczenie. Więc warto zwracać uwagę na detale dotyczące skali i przeliczania jednostek, żeby uniknąć pomyłek i mieć pewność, że wyniki będą rzetelne.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Który z wymienionych obiektów przestrzennych zalicza się do pierwszej kategorii szczegółów terenowych?

A. Tama
B. Most
C. Boisko sportowe
D. Plac zabaw
Most jest obiektem przestrzennym, który pełni kluczową rolę w infrastrukturze transportowej. Jest to konstrukcja, która umożliwia przemieszczanie się ludzi oraz pojazdów nad przeszkodami, takimi jak rzeki, doliny czy inne drogi. Z perspektywy planowania przestrzennego i urbanistyki, mosty są niezwykle istotne, ponieważ łączą różne obszary geograficzne, co wpływa na rozwój społeczno-gospodarczy regionów. Przykładem zastosowania mostów mogą być mosty wiszące, które charakteryzują się dużą wytrzymałością i mogą być budowane w miejscach, gdzie inne rodzaje mostów byłyby niepraktyczne. Wzorcowe projekty mostów powinny odnosić się do norm, takich jak Eurokod, które definiują wymagania dotyczące bezpieczeństwa, użyteczności i trwałości tego typu infrastruktury. Ponadto, mosty mogą wpływać na ekosystemy rzeczne, dlatego ich projektowanie powinno uwzględniać zasady zrównoważonego rozwoju, co oznacza minimalizowanie wpływu na środowisko.

Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Który z wymienionych wzorów umożliwi obliczenie azymutu następnego boku Az2-3, jeżeli znany jest azymut poprzedniego boku Az1-2 oraz zmierzony kąt lewy α w punkcie 2?

A. Az2-3 = Az1-2 + α - 200g
B. Az2-3 = Az1-2 – α + 200g
C. Az2-3 = Az2-1 + α - 200g
D. Az2-3 = Az2-1 – α + 200g
Odpowiedź Az2-3 = Az1-2 + α - 200g jest prawidłowa, ponieważ przy obliczaniu azymutu kolejnego boku w geodezji stosujemy wzór, który uwzględnia azymut boku poprzedniego oraz pomierzony kąt lewy. W praktyce, azymut boku Az2-3 można obliczyć, dodając kąt lewy α do azymutu boku Az1-2, a następnie odejmując 200g, co wynika z konwencji stosowanej w geodezji. Zgodnie z zasadami, w przypadku pomiarów z użyciem teodolitu, kąt lewy jest mierzony w przeciwnym kierunku do ruchu wskazówek zegara, co wymaga uwzględnienia odpowiednich poprawek przy wyznaczaniu azymutu. Praktyczne zastosowanie tego wzoru widoczne jest w terenie, gdzie precyzyjne pomiary są kluczowe dla uzyskania dokładnych wyników w mapowaniu i inżynierii. Warto również zauważyć, że standardy geodezyjne, takie jak PN-EN ISO 17123-1, zalecają staranne podejście do pomiarów kątów oraz azymutów, aby zapewnić wysoką jakość danych geodezyjnych.

Pytanie 10

Danymi źródłowymi numerycznymi wykorzystywanymi do generowania mapy numerycznej nie są

A. zdjęcia fotogrametryczne
B. zdigitalizowane mapy
C. bezpośrednie pomiary geodezyjne
D. wywiady branżowe
Wywiady branżowe to nie to samo co dane numeryczne, które są potrzebne do robienia mapy numerycznej. Te mapy potrzebują danych, które da się zmierzyć, zarejestrować albo sfotografować. Na przykład, zdjęcia fotogrametryczne pozwalają zbudować model terenu na podstawie zdjęć robionych z góry. Do tego dochodzą zdigitalizowane mapy, które przenoszą papierowe mapy do komputera. Pomiary geodezyjne dają nam informacje o konkretnych punktach w terenie, co jest mega ważne, żeby wszystko dobrze odwzorować. Wywiady mogą dostarczyć ciekawe konteksty, ale nie dają konkretnej liczby, więc nie nadają się do map numerycznych.

Pytanie 11

W jakiej skali według układu PL-2000 wykonany jest arkusz mapy zasadniczej z godłem 7.125.30.10.3?

A. 1:500
B. 1:1000
C. 1:5000
D. 1:2000
Wybór innych odpowiedzi, takich jak 1:5000, 1:500 lub 1:2000, wynika z błędnej interpretacji skali mapy oraz jej zastosowania w kontekście dokumentacji geodezyjnej. Skala 1:5000, na przykład, jest stosunkowo dużą skalą, co oznacza, że odwzorowuje większy obszar, ale z mniejszym poziomem szczegółowości. Użycie takiej skali w arkuszu mapy zasadniczej, który powinien przedstawiać szczegóły lokalizacji oraz granice działek, może prowadzić do nieprecyzyjnych i mylnych informacji. Z kolei skala 1:500, choć również nie jest najwłaściwsza, jest zbyt szczegółowa w kontekście większych obszarów i powinna być stosowana w sytuacjach, gdy konieczne jest ścisłe odwzorowanie bardzo małych przestrzeni. Odpowiedź 1:2000, mimo że zbliżona do poprawnej, nie dostarcza wystarczających detali dla lokalizacji, co również czyni ją niewłaściwą w kontekście arkusza mapy zasadniczej. Typowe błędy myślowe, które prowadzą do takich wniosków, obejmują niewłaściwe zrozumienie przeznaczenia skali mapy oraz brak znajomości standardów geodezyjnych, które jasno określają, jakie skale są odpowiednie dla różnych rodzajów dokumentacji. Właściwe zapoznanie się z normami geodezyjnymi oraz praktycznym zastosowaniem map w różnych skalach jest kluczowe dla uzyskania dokładnych i użytecznych informacji przestrzennych.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Zrealizowano pomiar sytuacyjny dla budynku jednorodzinnego, parterowego z poddaszem, które nie jest przeznaczone do użytku. Jakim symbolem powinno się oznaczyć ten obiekt na mapie?

A. m
B. mj2
C. mj
D. m1
Wybór symboli 'm1', 'm' czy 'mj2' jest niepoprawny z kilku powodów. Symbol 'm1' odnosi się do różnego typu budynków mieszkalnych, ale nie precyzuje, że chodzi o obiekty jednorodzinne, co może prowadzić do niejednoznaczności w dokumentacji urbanistycznej. Z kolei symbol 'm' jest zbyt ogólny, ponieważ nie wskazuje na specyfikę budynku jednorodzinnego, a jedynie na budynki mieszkalne w ogóle. Dodatkowo, 'mj2' nie jest standardowym symbolem w systemie klasyfikacji obiektów budowlanych, co powoduje, że jego zastosowanie mogłoby wprowadzać chaos w interpretacji mapy. Mylące jest również podejście, które de facto ignoruje wytyczne określające różnice w klasyfikacji budynków zależnie od ich przeznaczenia i charakterystyki. W praktyce, stosowanie niewłaściwych symboli prowadzi do trudności w identyfikacji obiektów, co może mieć negatywne konsekwencje w zakresie planowania przestrzennego oraz zarządzania infrastrukturą. Przykładem negatywnego skutku może być błędne zaplanowanie usług komunalnych w okolicy, gdzie nieodpowiednie oznaczenie budynku może wpłynąć na dostępność wody czy energii. Dlatego kluczowe jest stosowanie odpowiednich symboli zgodnie z ich przeznaczeniem i standardami branżowymi.

Pytanie 18

Wizury pomiędzy sąsiednimi punktami geodezyjnej osnowy poziomej powinny być przeprowadzone w trakcie

A. niwelacji punktów osnowy
B. wywiadu terenowego
C. sporządzania opisu topograficznego
D. pomiarów rzeźby terenu
Wywiad terenowy jest kluczowym elementem w procesie geodezyjnego pomiaru, gdyż umożliwia dokładne sprawdzenie wizur pomiędzy sąsiednimi punktami geodezyjnej osnowy poziomej. W trakcie wywiadu terenowego geodeta zbiera informacje o warunkach terenowych, które mogą wpłynąć na pomiary. Przykładem może być ocena przeszkód, takich jak budynki czy drzewa, które mogą zasłaniać widok pomiędzy punktami pomiarowymi. Wysokiej jakości wizury są istotne, gdyż pozwalają na minimalizowanie błędów w pomiarach, co jest zgodne z normami geodezyjnymi, takimi jak PN-EN ISO 17123, które określają metody pomiarów geodezyjnych. Dobre praktyki w tej dziedzinie zakładają systematyczne sprawdzanie i weryfikację wizur w różnych warunkach, co przyczynia się do zwiększenia precyzji i rzetelności uzyskiwanych danych. W przypadku pomiarów osnowy poziomej, wywiad terenowy powinien być integralną częścią planowania pomiarów, co umożliwia lepsze zarządzanie ryzykiem i dostosowanie metod pracy do specyfiki terenu.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Co wpływa na wysokości opisów w mapie głównej?

A. Od typu i stylu pisma
B. Od metody wykonania opisu
C. Od opisywanej treści i skali mapy
D. Od wartości skalarnej mapy
Wysokości opisów na mapie zasadniczej zależą w pierwszej kolejności od opisywanej treści oraz skali mapy. Skala mapy definiuje, w jakim stopniu rzeczywista powierzchnia została odwzorowana na mapie, co wpływa na sposób przedstawiania informacji. W praktyce oznacza to, że w przypadku map o dużej skali, które reprezentują mały obszar, opisy mogą być bardziej szczegółowe i tym samym wyższe, aby oddać specyfikę terenu. Na przykład, w mapie, która przedstawia obszar miejski, opisy budynków, ulic czy parków będą miały większą wysokość, aby były czytelne i zrozumiałe dla użytkowników. Dodatkowo, treść opisu, jak np. nazwy ulic czy obiektów, również ma wpływ na ich wysokość, gdyż dłuższe nazwy wymagają więcej miejsca. W branży kartograficznej ważne jest przestrzeganie standardów, takich jak Ustawodawstwo o geoinformacji oraz normy ISO, które określają zasady projektowania map, w tym sposoby przedstawiania opisów. Właściwe zrozumienie tych zasad pozwala tworzyć czytelne i funkcjonalne mapy.

Pytanie 25

Jakiej wartości pomiaru w przód z łaty niwelacyjnej należy się spodziewać, jeśli poszukiwany punkt znajduje się w odległości 60,00 m od punktu wyjściowego niwelety drogi o nachyleniu i = -3%, a odczyt w tył z łaty ustawionej na początku niwelety wyniósł w = 1500 mm?

A. p = 1800 mm
B. p = 3390 mm
C. p = 3000 mm
D. p = 3300 mm
Wybór innych wartości odczytu w przód z łaty niwelacyjnej wynika z różnych nieporozumień dotyczących sposobu obliczeń związanych z niwelacją. Na przykład, przy odpowiedzi p = 3000 mm, można zauważyć, że ignoruje się wpływ pochylenia na przemieszczenie wysokościowe, co prowadzi do zaniżenia rzeczywistego wyniku. Kolejna nieprawidłowa odpowiedź, p = 3390 mm, również nie uwzględnia poprawnie spadku, co sugeruje, że osoba odpowiadająca mogła dodać spadek zamiast go odjąć od odczytu wstecz. W przypadku p = 1800 mm, wartość ta jest nie tylko zaniżona, ale również nie ma żadnego uzasadnienia w kontekście podanych danych: odczyt nie powinien być mniejszy niż odczyt wstecz, co jest fundamentalną zasadą w pomiarach. Kluczowym błędem myślowym jest zaniedbanie wpływu pochylenia na rzeczywistą wysokość punktu docelowego, co może prowadzić do poważnych błędów w obliczeniach inżynieryjnych. Zrozumienie tego procesu wymaga znajomości podstaw niwelacji oraz umiejętności analizy danych pomiarowych w kontekście zastosowania norm i dobrych praktyk inżynieryjnych.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Jakie jest pole powierzchni kwadratowej działki na mapie w skali 1:2000, jeżeli na mapie w skali 1:500 wynosi ono 4,00 cm2?

A. 25 mm2
B. 50 mm2
C. 5 mm2
D. 10 mm2
Błędy w obliczaniach polegają głównie na niedokładnym zrozumieniu, jak skala wpływa na pole powierzchni. Wiele osób może mylnie sądzić, że zmiana skali przelicza się w sposób liniowy, co prowadzi do mylnego założenia, że pole powierzchni również zmienia się liniowo. W rzeczywistości, zmiana skali ma charakter kwadratowy. Przykładowo, jeśli osoba oblicza pole na nowej skali bez uwzględnienia przeliczenia na mm², mogłoby to prowadzić do błędnych wyników, takich jak 5 mm² czy 10 mm², które nie uwzględniają rzeczywistej różnicy w skali. Ponadto, osoby mogą zapominać o przeliczeniu jednostek, co skutkuje niepoprawnym oszacowaniem powierzchni. Każdy projektant map czy inżynier musi być świadomy tych zasad, aby unikać poważnych błędów w dokumentacji i projektowaniu, które mogą prowadzić do niezgodności w danych. Precyzyjność w obliczeniach powierzchni jest kluczowa dla zapewnienia zgodności z normami branżowymi oraz dla poprawnego wykonania projektów w budownictwie czy urbanistyce. Zrozumienie, jak skala wpływa na pomiary, jest fundamentalnym aspektem dla profesjonalistów zajmujących się geodezją i kartografią.

Pytanie 28

Punkty kontrolne, które są używane w trakcie analizy przemieszczeń obiektów budowlanych, powinny być rozmieszczane

A. jak najdalej od analizowanego obiektu
B. bezpośrednio na analizowanym obiekcie
C. jak najbliżej punktów odniesienia dotyczących badanego obiektu
D. w bezpośredniej bliskości analizowanego obiektu
Umieszczanie punktów kontrolnych bezpośrednio na badanym obiekcie budowlanym jest kluczowym aspektem precyzyjnych pomiarów przemieszczeń. Tylko w ten sposób można uzyskać dokładne i wiarygodne wyniki, ponieważ punkty te są bezpośrednio związane z deformacjami obiektu. Przykładem zastosowania tej metody jest monitoring mostów, gdzie punkty kontrolne są instalowane na elementach konstrukcyjnych, co pozwala na bieżące śledzenie ich stanu oraz identyfikację ewentualnych zagrożeń. Stanowisko pomiarowe powinno być zgodne z odpowiednimi normami, takimi jak PN-EN 1992-1-1, które określają wymagania dotyczące projektowania i wykonania konstrukcji. Dzięki umiejscowieniu punktów kontrolnych na obiekcie, możliwe jest również zastosowanie nowoczesnych technologii, takich jak skanowanie laserowe, które pozwala na uzyskanie danych o przemieszczeniach w skali nano. To podejście zwiększa nie tylko dokładność pomiarów, ale także umożliwia przeprowadzanie analizy trendów, co jest niezbędne w zarządzaniu cyklem życia budynków i infrastruktury.

Pytanie 29

Jaką maksymalną liczbę boków może mieć jednostronnie nawiązany wielokąt?

A. 5 boków
B. 2 boki
C. 4 boki
D. 3 boki
Wybór innych opcji, takich jak 5, 3 czy 4 boki, wynika z nieporozumienia odnośnie definicji poligonów jednostronnie nawiązanych. Poligon ten, jak sama nazwa wskazuje, charakteryzuje się tym, że jest formą zamkniętą, której wierzchołki są połączone w sposób umożliwiający ich zamknięcie, jednakże jednocześnie nie może mieć więcej niż dwóch boków ze względu na reguły geometrii. W przypadku odpowiedzi wskazujących na 3 boki, 4 boki czy 5 boków, pojawia się typowy błąd myślowy związany z interpretacją poligonu jako figury wielokątnej, co wprowadza w błąd. Tego typu koncepcje są powszechnie spotykane, szczególnie w kontekście nauczania geometrii, gdzie uczniowie często mylą definicje figur. Aby wyjaśnić, dlaczego te odpowiedzi są nieprawidłowe, warto zaznaczyć, że każdy dodany bok w rzeczywistości przekształca jednostronnie nawiązany poligon w inną klasę figur, co narusza definicję jednostronnych poligonów. Z tego powodu, dla prawidłowego rozumienia koncepcji geometrycznych, kluczowe jest precyzyjne zaznajomienie się z definicjami i regułami rządzącymi poszczególnymi typami figur, co jest istotne w kontekście nauk matematycznych i inżynierskich.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Który z poniższych elementów terenu zalicza się do pierwszej kategorii dokładnościowej?

A. Drzewo przyuliczne
B. Boisko sportowe
C. Linia brzegowa jeziora
D. Budynek szkoły
Budynek szkoły to coś, co możemy spokojnie wrzucić do pierwszej grupy dokładnościowej, jeśli mówimy o analizie terenowej i geodezyjnej. W tej grupie są obiekty, które mają naprawdę wysoką precyzję. To znaczy, że ich lokalizacja jest dokładnie określona i można je wykorzystać w różnych sytuacjach, jak planowanie przestrzenne czy urbanistyka. Jak to z budynkami bywa, zwłaszcza tymi publicznymi, jak szkoły, mają one duże znaczenie dla analizy przestrzennej, bo ich lokalizacja wpływa na to, jak dostępne są usługi dla ludzi w okolicy. Kiedy tworzymy mapy społeczne czy sprawdzamy dostęp do edukacji, precyzyjna lokalizacja szkół jest super ważna, żeby ocenić jakość życia i infrastruktury w danym miejscu. A wiesz, stosowanie standardów jak ISO 19115, które dotyczą metadanych geograficznych, pomaga w tym, żeby te dane były zebrane i użyte tak, jak trzeba. To naprawdę ważne dla dalszych analiz.

Pytanie 34

W niwelacji powierzchniowej przy użyciu punktów rozproszonych dystans mierzonych pikiet względem stanowiska pomiarowego oblicza się według wzoru: D = kl + c. Mając odczyty z łaty niwelacyjnej, wykonane kreską górną oraz dolną siatki dalmierczej instrumentu, wartość l należy obliczyć wg wzoru:

A. l = g - d
B. l = g · d
C. l = g + d
D. l = g/d
Odpowiedź l = g - d jest poprawna, ponieważ w kontekście niwelacji powierzchniowej, 'g' odnosi się do odczytu z łaty niwelacyjnej, a 'd' to różnica wysokości pomiędzy górną a dolną kreską siatki dalmierczej. W obliczeniach niwelacyjnych, kluczowym celem jest określenie odległości l, która reprezentuje rzeczywistą odległość mierzonych pikiet od stanowiska pomiarowego. Poprawne zastosowanie wzoru D = kl + c oraz zrozumienie jego składników jest istotne dla osiągnięcia precyzyjnych wyników. Przykładowo, jeśli na łacie odczytano wartość g = 2.5 m, a różnica między kreskami wynosi d = 0.3 m, to obliczenie l daje 2.5 m - 0.3 m = 2.2 m. Taki sposób obliczeń jest zgodny z praktykami branżowymi, które zalecają dokładne pomiary oraz analizowanie różnic wysokości w kontekście punktów referencyjnych. Dbałość o detale w takiej procedurze może znacząco wpłynąć na jakość projektu budowlanego czy inżynieryjnego, dlatego ważne jest, aby stosować sprawdzone metody i wzory.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

W niwelacji geometrycznej podczas pomiarów przyjmuje się, że wagi są

A. wprost proporcjonalne do długości ciągów
B. wprost proporcjonalne do różnic wysokości ciągów
C. odwrotnie proporcjonalne do różnic wysokości ciągów
D. odwrotnie proporcjonalne do długości ciągów
Wagi stosowane w niwelacji geometrycznej nie są wprost proporcjonalne do różnic wysokości ciągów ani długości ciągów. Założenie, że wagi powinny być wprost proporcjonalne do różnic wysokości, prowadzi do nieporozumienia w kontekście pomiarów geodezyjnych. W rzeczywistości różnice wysokości są jedynie jednym z czynników wpływających na dokładność pomiaru, a ich wpływ nie jest bezpośrednio proporcjonalny do długości ciągu. Dłuższe ciągi mogą generować większe błędy systematyczne z powodu wpływu warunków atmosferycznych oraz nierówności terenu, co sprawia, że ich waga musi być mniejsza, aby zrekompensować potencjalne błędy. Ponadto, waga wprost proporcjonalna do długości ciągów wprowadzałaby niepotrzebne złożoności w obliczeniach, co mogłoby prowadzić do błędnych wyników. Należy pamiętać, że zasady stosowane w niwelacji geometrycznej mają na celu zapewnienie wysokiej precyzji i dokładności pomiarów, co jest kluczowe w praktyce inżynieryjnej i geodezyjnej. Kluczowe jest, aby stosować odpowiednie metody i normy branżowe, które uwzględniają wszystkie istotne czynniki, a nie tylko różnice wysokości czy długości ciągów, co pozwala na precyzyjne i wiarygodne wyniki.

Pytanie 39

Cyfra 2 w oznaczeniu 2/5, użytym przy oznaczaniu w terenie punktów hektometrowych utworzonych podczas wytyczania w terenie linii profilu podłużnego, wskazuje na

A. całkowitą liczbę metrów w jednym odcinku trasy
B. kompletną liczbę kilometrów od startu trasy
C. liczbę hektometrów w danym kilometrze trasy
D. numer hektometra w konkretnej sekcji kilometra
Odpowiedź jest prawidłowa, ponieważ cyfra 2 w symbolu 2/5 odnosi się do pełnej liczby kilometrów od początku trasy. W systemie oznaczania tras, szczególnie w kontekście budowy i utrzymania infrastruktury drogowej czy kolejowej, stosuje się taki zapis, aby jednoznacznie określić lokalizację punktu w odniesieniu do całej długości trasy. Przykładowo, jeśli mamy trasę o długości 5 km, to zapis 2/5 wskazuje, że dany punkt znajduje się na 2 km od początku trasy. Z perspektywy praktycznej, takie oznaczenia są kluczowe w zarządzaniu projektami budowlanymi, gdzie dokładne lokalizacje punktów pomiarowych są niezbędne do precyzyjnego planowania i realizacji robót. Standardy branżowe, takie jak normy PN-EN 13450, podkreślają znaczenie precyzyjnego oznaczania punktów w terenie dla celów geodezyjnych oraz budowlanych, co ułatwia komunikację między różnymi zespołami pracującymi nad realizacją projektu.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.