Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 17 maja 2025 13:11
  • Data zakończenia: 17 maja 2025 13:22

Egzamin zdany!

Wynik: 28/40 punktów (70,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Jakie medium powinno być użyte do łączenia systemów komunikacyjnych w obiekcie przemysłowym, gdzie występują znaczące zakłócenia elektromagnetyczne?

A. Kabel UTP
B. Światłowód
C. Sygnał radiowy
D. Kabel telefoniczny
Światłowód to najskuteczniejsze medium wykorzystywane do komunikacji w środowiskach, gdzie występują silne zakłócenia elektromagnetyczne. Jego konstrukcja oparta na szkle lub tworzywie sztucznym pozwala na przesyłanie sygnałów świetlnych, co eliminuje problemy związane z zakłóceniami elektromagnetycznymi, które mogą wpływać na inne media transmisyjne, takie jak kable miedziane. W praktyce, zastosowanie światłowodów w halach przemysłowych, w pobliżu dużych maszyn czy urządzeń generujących pole elektromagnetyczne, zapewnia stabilną i niezawodną komunikację. Przykładem może być wdrożenie infrastruktury światłowodowej w fabrykach produkcyjnych, gdzie precyzyjna i szybka wymiana danych pomiędzy różnymi sekcjami jest kluczowa dla efektywności procesów produkcyjnych. Światłowody są także zgodne z wieloma normami, takimi jak ISO/IEC 11801, które definiują standardy kablowe i zapewniają wysoką jakość sygnału oraz bezpieczeństwo w instalacjach telekomunikacyjnych. Dodatkowo, światłowody są odporne na działanie wysokich temperatur oraz chemikaliów, co czyni je idealnym rozwiązaniem w trudnych warunkach przemysłowych.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Jakie jest przesunięcie fazowe sygnału wyjściowego w odniesieniu do sygnału wejściowego sinusoidalnego w regulatorze typu PD?

A. 90°
B. 0°
C. -90°
D. 45°
Odpowiedzi takie jak 45°, 0° i -90° są nieprawidłowe z perspektywy teorii przesunięcia fazowego w regulatorach PD. Sugerowanie, że przesunięcie fazowe wynosi 45° jest błędne, ponieważ odpowiada to określonej konfiguracji układów, która nie jest charakterystyczna dla regulatorów PD. Tego typu wartości przesunięcia są związane z bardziej złożonymi układami, które uwzględniają dodatkowe elementy, takie jak filtry lub inne formy regulacji. Natomiast odpowiedź 0° implikuje, że sygnał wyjściowy jest synchroniczny z wejściowym, co jest sprzeczne z zamierzeniem regulatora PD, który zawsze wprowadza pewne opóźnienie. W przypadku odpowiedzi -90°, sugeruje to, że sygnał wyjściowy jest opóźniony w przeciwnym kierunku, co również nie znajduje potwierdzenia w teorii. W inżynierii, zrozumienie przesunięcia fazowego jest kluczowe dla zapewnienia stabilności systemu regulacji. Błędy w ocenie przesunięcia fazowego mogą prowadzić do oscylacji lub niestabilności, co stanowi jeden z najczęstszych problemów w praktyce inżynierskiej. Dlatego ważne jest, aby dokładnie analizować odpowiedzi na temat przesunięcia fazowego, aby uniknąć błędów projektowych i osiągnąć optymalne działanie systemów automatyki.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Jaka jest objętość oleju w cylindrze siłownika o powierzchni roboczej 20,3 cm2 oraz skoku 200 mm?

A. 4060,00 cm3
B. 40,60 cm3
C. 4,06 cm3
D. 406,00 cm3
Wielu użytkowników może pomylić się w obliczeniach objętości cylindra siłownika, co często wynika z niepełnego zrozumienia wzoru na objętość V = A * h. Niepoprawne odpowiedzi, takie jak 4060,00 cm3, 40,60 cm3 czy 4,06 cm3, mogą być wynikiem błędnych przeliczeń lub nieodpowiedniego przeliczenia jednostek. Na przykład, przy odpowiedzi 4060,00 cm3, użytkownik może błędnie założyć, że skok cylindra powinien być bezpośrednio dodany jako wartość w cm, nie przeliczywszy milimetrów na centymetry. Z kolei 40,60 cm3 może sugerować, że użytkownik źle zinterpretował powierzchnię roboczą, być może myląc jednostki lub pomijając istotne przeliczenia. Natomiast odpowiedź 4,06 cm3 jest rażąco nieadekwatna, co może świadczyć o pominięciu kluczowych elementów w procesie obliczeń. Kluczowym krokiem jest prawidłowe zrozumienie i przeliczenie jednostek, co jest niezbędne dla uzyskania właściwych wyników. W praktyce, właściwe obliczenia objętości siłownika mają znaczenie dla wydajności hydrauliki, a ich błędy mogą prowadzić do niewłaściwego doboru komponentów, co w efekcie może wpłynąć na całościową efektywność systemu oraz jego bezpieczeństwo operacyjne.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

Jakie połączenie można zaklasyfikować jako połączenia trwałe?

A. Sworzniowe
B. Nitowane
C. Wpustowe
D. Wciskowe
Odpowiedź "Nitowane" jest poprawna, ponieważ połączenia nitowane zaliczają się do grupy połączeń nierozłącznych, co oznacza, że ich demontaż jest skomplikowany i wymaga specjalistycznych narzędzi. Połączenia te są powszechnie stosowane w przemyśle lotniczym, motoryzacyjnym oraz w konstrukcjach stalowych, gdzie kluczowa jest wysoka wytrzymałość na obciążenia oraz odporność na zmiany temperatury. Nity, jako elementy łączące, są stosowane do łączenia blach, profili i innych komponentów, gdzie istotna jest trwałość oraz bezpieczeństwo. W praktyce, standardy takie jak ISO 14588 definiują wymagania dotyczące nitu, co zapewnia ich odpowiednią jakość. W przypadku naprawy lub demontażu konstrukcji nitowanych, często konieczne jest przewiercenie nitów, co podkreśla ich nierozłączny charakter. Warto również dodać, że połączenia nitowane są preferowane w sytuacjach, gdzie nie ma możliwości zastosowania spawania, np. w konstrukcjach, które mają być poddawane różnym cyklom pracy temperaturowej.

Pytanie 17

W maszynach wirujących można zdiagnozować nieosiowe położenie wałów, niewyważenie mas wirujących lub ugięcie wałów

A. analizatorem drgań
B. rejestratorem prądu
C. testerem izolacji
D. tachometrem
Analizator drgań jest kluczowym narzędziem w diagnostyce maszyn wirujących, ponieważ umożliwia szczegółową analizę drgań generowanych przez maszyny, co pozwala na wykrycie nieprawidłowości związanych z ich ustawieniem, wyważeniem czy ugięciem wałów. Pomiar drgań jest istotnym elementem monitorowania stanu technicznego maszyn, zgodnie z normami ISO 10816 dotyczącymi oceny stanu maszyn na podstawie pomiarów drgań. Analizator drgań może wykryć różne rodzaje nieprawidłowości, takie jak niewyważenie, które prowadzi do nadmiernych drgań i może skutkować uszkodzeniami łożysk czy innych komponentów. Przykładowo, w przypadku silników elektrycznych, analiza drgań może pomóc w ocenie ich wyważenia oraz identyfikacji problemów z łożyskami, co pozwala na wczesne podjęcie działań serwisowych. W praktyce, regularne monitorowanie drgań może znacznie wydłużyć żywotność maszyn, a także zredukować koszty związane z nieplanowanymi przestojami i naprawami.

Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Prąd jałowy transformatora wynosi około 10% prądu znamionowego. Aby precyzyjnie zmierzyć prąd jałowy transformatora o parametrach SN = 2300 VA, U1N = 230 V, U2N = 10 V, należy zastosować amperomierz prądu przemiennego o zakresie pomiarowym

A. 3,6 A
B. 1,2 A
C. 15,0 A
D. 0,6 A
Wybór amperomierza o zakresie 15,0 A, 0,6 A lub 3,6 A nie jest odpowiedni do pomiaru prądu jałowego transformatora. Prąd jałowy wynoszący około 1 A z całą pewnością nie zostanie należycie odzwierciedlony w przypadku użycia amperomierza o zbyt dużym zakresie, jak 15 A. Taki amperomierz może nie mieć wystarczającej precyzji i w niektórych przypadkach może nie być w stanie wykryć tak małych wartości prądu, co prowadzi do błędnych odczytów oraz możliwości nieodpowiedniej analizy stanu technicznego transformatora. Z drugiej strony, wybór amperomierza o zakresie 0,6 A lub 3,6 A również jest nieodpowiedni, ponieważ nie zapewniają one wystarczającego marginesu dla, co może prowadzić do uszkodzenia urządzenia pomiarowego. Często popełnianym błędem jest założenie, że amperomierz z najwyższym zakresem pomiarowym jest najlepszym rozwiązaniem, co jest nieprawdziwe. W praktyce, stosowanie urządzeń pomiarowych z zakresami, które są zbyt oddalone od rzeczywistych wartości prądów może prowadzić do nieefektywnych pomiarów oraz wprowadzać w błąd, co do stanu technicznego systemu. Dlatego tak ważne jest uwzględnienie dokładnych parametrów transformatora i wymagań pomiarowych przy wyborze odpowiedniego sprzętu, co jest zgodne z najlepszymi praktykami inżynierskimi.

Pytanie 23

Osoba obsługująca elektryczne urządzenie prądu stałego o nominalnym napięciu 60 V oraz III klasie ochronności jest narażona na

A. poranienie prądem elektrycznym w trakcie dotykania ręką metalowej obudowy
B. poranienie prądem elektrycznym podczas dotykania ręką nieizolowanego zacisku PEN
C. odczuwalne efekty przepływu prądu przy kontakcie ręką z nieizolowanymi elementami aktywnymi
D. poranienie prądem elektrycznym w momencie kontaktu ręką z nieizolowanymi elementami aktywnymi
Odpowiedzi wskazujące na porażenie prądem elektrycznym w różnych kontekstach nie uwzględniają specyfiki klasy ochronności III oraz właściwego zrozumienia ryzyka związanych z pracą z urządzeniami elektrycznymi. Porażenie prądem elektrycznym może wystąpić w sytuacjach, gdy pracownik ma kontakt z nieizolowanymi elementami aktywnymi, jednak kluczowe jest zrozumienie, że w przypadku urządzeń z III klasą ochronności ryzyko to jest odpowiednio zminimalizowane. Pierwsza z niewłaściwych odpowiedzi odnosi się do kontaktu z nieizolowanym zaciskiem PEN. W praktyce, zacisk PEN jest elementem instalacji elektrycznej, który pełni rolę zarówno neutralnego, jak i ochronnego, a jego nieizolowane wbudowanie w system może być niezgodne z zasadami projektowymi. Kolejna niepoprawna koncepcja sugeruje, że kontakt z metalową obudową urządzenia skutkuje porażeniem prądem, co w kontekście odpowiednich zabezpieczeń i prawidłowego uziemienia nie powinno mieć miejsca. Ważne jest, aby zrozumieć, że w przypadku prawidłowo skonstruowanych urządzeń klasy III, wszelkie elementy przewodzące powinny być odpowiednio izolowane lub uziemione w celu zapewnienia bezpieczeństwa użytkowników. Typowym błędem jest zatem założenie, że jakikolwiek kontakt z elementami urządzenia o napięciu 60 V musi automatycznie prowadzić do porażenia, co jest sprzeczne z zasadami bezpieczeństwa elektrycznego oraz dobrą praktyką inżynieryjną.

Pytanie 24

Przed przystąpieniem do wymiany zaworu elektropneumatycznego, sterowanego przez PLC, co należy zrobić?

A. wprowadzić sterownik PLC w stan STOP, a następnie wyłączyć zasilanie elektryczne i pneumatyczne układu
B. zatrzymać zasilanie pneumatyczne, odłączyć przewody od cewki elektrozaworu oraz przewody pneumatyczne
C. wyłączyć dopływ sprężonego powietrza, odłączyć siłownik oraz PLC
D. odłączyć przewody zasilające do sterownika oraz przewody pneumatyczne od elektrozaworu
Wprowadzenie sterownika PLC w tryb STOP oraz wyłączenie zasilania elektrycznego i pneumatycznego układu to kluczowe kroki przed rozpoczęciem wymiany zaworu elektropneumatycznego. Takie podejście minimalizuje ryzyko błędów oraz zapewnia bezpieczeństwo podczas prac serwisowych. W trybie STOP sterownik nie wykonuje żadnych operacji, co zapobiega niekontrolowanemu działaniu urządzeń. Wyłączenie zasilania elektrycznego oraz pneumatycznego jest zgodne z najlepszymi praktykami w zakresie bezpieczeństwa pracy z systemami pneumatycznymi i automatyki. Przykładowo, w przemyśle automatycznym często stosuje się blokady mechaniczne i elektryczne, aby upewnić się, że urządzenia są całkowicie unieruchomione. Dobrym standardem jest również przeprowadzenie analizy ryzyka przed rozpoczęciem takich prac oraz oznaczenie strefy roboczej, aby zminimalizować ryzyko wypadków. W ten sposób, poprzez zastosowanie odpowiednich procedur, można uniknąć niebezpiecznych sytuacji i zapewnić bezpieczne warunki pracy.

Pytanie 25

Jaką metodę łączenia materiałów należy wybrać do połączenia stali nierdzewnej z mosiądzem?

A. Lutowania miękkiego
B. Zgrzewania
C. Klejenia
D. Lutowania twardego
Lutowanie twarde jest techniką łączenia, która polega na wykorzystaniu stopu o wyższej temperaturze topnienia niż w przypadku lutowania miękkiego. Jest to proces, który zapewnia silne i trwałe połączenia, co czyni go idealnym do łączenia metali o różnych właściwościach, takich jak stal nierdzewna i mosiądz. W przypadku tych dwóch materiałów, lutowanie twarde umożliwia osiągnięcie wysokiej wytrzymałości na rozciąganie oraz odporności na korozję, co jest kluczowe w aplikacjach przemysłowych. W praktyce lutowanie twarde wymaga zastosowania odpowiednich lutów, które mają podobne właściwości fizyczne i chemiczne do łączonych materiałów. Dobrą praktyką jest również precyzyjne przygotowanie powierzchni, aby zapewnić skuteczną adhezję. Lutowanie twarde jest szeroko stosowane w branży motoryzacyjnej, elektronicznej oraz w produkcji sprzętu medycznego, gdzie niezawodność połączeń jest kluczowa.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Jaką rolę pełni multiplekser?

A. Przesyłanie danych z jednego wejścia do wybranego wyjścia
B. Przesyłanie danych z wybranego wejścia na jedno wyjście
C. Porównywanie sygnałów podawanych na wejścia
D. Kodowanie sygnałów na wejściach
Multiplekser to kluczowy element w systemach cyfrowych, który umożliwia przesyłanie danych z jednego z kilku wejść do jednego wyjścia na podstawie sygnału kontrolnego. Dzięki tej funkcji, multipleksery są szeroko stosowane w telekomunikacji, gdzie pozwalają na efektywne zarządzanie pasmem i organizowanie ruchu danych. Na przykład, w systemach telewizyjnych, multipleksery pozwalają na wybór sygnału z różnych źródeł (np. anteny, kablówki, satelity) i kierowanie go do jednego wyjścia, aby zminimalizować potrzebne okablowanie i uprościć architekturę systemu. Ponadto, w kontekście inżynierii komputerowej, multipleksery są niezbędne do realizacji operacji arytmetycznych w jednostkach ALU (Arithmetic Logic Unit), gdzie wybierają odpowiednie dane do dalszej obróbki. Wykorzystanie standardów takich jak ITU-T G.703 w telekomunikacji pokazuje, jak ważne jest zastosowanie multiplekserów do synchronizacji i multiplexowania sygnałów w sieciach cyfrowych. Dobrze zaprojektowany multiplekser zwiększa wydajność systemów oraz pozwala na oszczędność miejsca i zasobów.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

W celu zamontowania sterownika PLC na szynie DIN, należy użyć

A. zatrzasków
B. śrub
C. łap
D. nitów
Zatrzaski stosowane do montażu sterowników PLC na szynach DIN są popularnym wyborem ze względu na ich prostotę, szybkość montażu oraz bezpieczeństwo. Zatrzaski pozwalają na łatwe i szybkie mocowanie urządzenia bez potrzeby używania narzędzi, co jest szczególnie przydatne w przypadku instalacji w trudnodostępnych miejscach. W praktyce oznacza to, że technik może w krótkim czasie zamontować lub zdemontować urządzenie, co znacznie przyspiesza proces konserwacji i ewentualnej wymiany komponentów. Dodatkowo, zatrzaski zapewniają stabilne mocowanie, które zabezpiecza sterownik przed przypadkowym wypięciem się z szyny, co mogłoby prowadzić do przerw w pracy systemu. Stosowanie zatrzasków przestrzega również normy dotyczące instalacji urządzeń elektrycznych, które zalecają użycie rozwiązań umożliwiających łatwy dostęp do urządzeń bez ryzyka ich uszkodzenia. Warto również zwrócić uwagę, że w przypadku większych instalacji, łatwość montażu i demontażu staje się kluczowym czynnikiem wpływającym na efektywność pracy zespołów zajmujących się utrzymaniem ruchu.

Pytanie 33

Podczas działania napędu zwrotnego z użyciem silnika prądu stałego zaobserwowano, że prędkość obrotowa silnika jest różna w obu kierunkach oraz że iskrzenie szczotek przy obrocie w jedną stronę jest znacznie większe niż przy obrocie w kierunku przeciwnym. Jakie kroki należy podjąć w celu naprawy silnika?

A. Obtoczyć oraz przeszlifować komutator
B. Znormalizować nacisk szczotek
C. Zamienić łożyska
D. Ustawić szczotki w strefie neutralnej
Ustawić szczotki w strefie neutralnej jest kluczowym działaniem w przypadku silników prądu stałego, które doświadczają nierówności prędkości obrotowej oraz nadmiernego iskrzenia szczotek. Strefa neutralna to obszar w komutatorze, w którym nie występuje pole magnetyczne, co minimalizuje zjawisko iskrzenia. Ustawienie szczotek w tej strefie pozwala na równomierne rozłożenie nacisku na komutator i zmniejszenie zużycia materiału szczotek. W praktyce, aby to osiągnąć, należy dokładnie wyregulować położenie szczotek względem komutatora, co wymaga precyzyjnych narzędzi pomiarowych. Przykładem zastosowania tej metody jest konserwacja silników w przemyśle, gdzie regularne kontrole i ustawienia szczotek wpływają na wydajność silnika oraz jego żywotność. Ponadto, poprawne ustawienie szczotek ma znaczenie w kontekście efektywności energetycznej silnika, co jest zgodne z aktualnymi standardami branżowymi dotyczącymi eksploatacji urządzeń elektrycznych.

Pytanie 34

Aby zweryfikować ciągłość połączeń elektrycznych pomiędzy różnymi elementami systemu, należy skorzystać z

A. omomierza
B. wskaźnika napięcia
C. amperomierza
D. woltomierza
Omomierz jest urządzeniem służącym do pomiaru oporu elektrycznego, co czyni go idealnym narzędziem do sprawdzania ciągłości połączeń elektrycznych. W kontekście instalacji elektrycznych, ciągłość połączeń jest kluczowa dla zapewnienia bezpieczeństwa i niezawodności systemu. Użycie omomierza pozwala na szybkie zidentyfikowanie przerw w obwodzie oraz nieprawidłowych połączeń, co może być kluczowe w przypadku awarii. Przykładem praktycznego zastosowania omomierza jest testowanie przewodów przed ich podłączeniem do zasilania - w ten sposób można upewnić się, że nie ma przerw, które mogłyby prowadzić do ryzyka porażenia prądem lub uszkodzenia sprzętu. Dobre praktyki branżowe zalecają regularne sprawdzanie ciągłości połączeń w instalacjach elektrycznych, zwłaszcza w warunkach, gdzie mogą występować zmienne obciążenia lub wysokie napięcia. Ponadto, zgodnie z normami IEC 60364, przeglądy instalacji elektrycznych powinny obejmować pomiar oporu izolacji oraz ciągłości, co podkreśla znaczenie omomierza w codziennej pracy elektryków.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Zwiększenie wartości częstotliwości wyjściowej falownika zasilającego silnik indukcyjny, przy niezmiennym obciążeniu silnika, prowadzi do

A. zwiększenia prędkości obrotowej
B. wzrostu rezystancji uzwojeń
C. zmniejszenia prędkości obrotowej
D. spadku rezystancji uzwojeń
Wzrost wartości częstotliwości wyjściowej falownika zasilającego silnik indukcyjny prowadzi do zwiększenia prędkości obrotowej silnika. Wynika to z faktu, że prędkość obrotowa silnika indukcyjnego jest bezpośrednio proporcjonalna do częstotliwości zasilania, co jest opisane równaniem: n = (120 * f) / p, gdzie n to prędkość obrotowa w obrotach na minutę (RPM), f to częstotliwość w hercach (Hz), a p to liczba par biegunów silnika. W praktyce oznacza to, że zmiana częstotliwości zasilania pozwala na precyzyjne sterowanie prędkością obrotową silnika, co jest kluczowe w wielu aplikacjach przemysłowych, takich jak napędy wentylatorów, pomp czy przenośników taśmowych. Wzrost prędkości obrotowej może również skutkować zwiększeniem wydajności procesu produkcyjnego oraz optymalizacją zużycia energii, ponieważ falowniki pozwalają na dostosowanie parametrów pracy silnika w zależności od aktualnych potrzeb. Współczesne standardy w automatyce przemysłowej promują wykorzystanie falowników jako najbardziej efektywnego sposobu zarządzania napędami elektrycznymi, co przekłada się na większą elastyczność i oszczędności energetyczne.

Pytanie 39

Przepisy dotyczące usuwania używanych urządzeń elektronicznych nakładają obowiązek

A. wrzucić je do kosza na śmieci
B. przekazać je firmie zajmującej się odbiorem odpadów po wcześniejszym uzgodnieniu
C. pozostawić je obok kontenera na śmieci
D. wyrzucić je do pojemnika na śmieci po wcześniejszym stłuczeniu szyjki kineskopu
Odpowiedź "przekazać je firmie wywożącej śmieci po uprzednim uzgodnieniu" jest prawidłowa, ponieważ zgodnie z przepisami dotyczącymi gospodarki odpadami, w tym szczególnie dotyczy to urządzeń elektronicznych, istnieją ściśle określone procedury ich utylizacji. Utylizacja tego typu odpadów wymaga, aby były one przekazywane do wyspecjalizowanych firm, które mają odpowiednie zezwolenia i zasoby do ich bezpiecznego przetwarzania. Tego rodzaju przedsiębiorstwa posiadają technologie pozwalające na recykling części elektronicznych oraz odpowiednie metody unieszkodliwiania niebezpiecznych substancji, takich jak rtęć czy ołów, które mogą występować w niektórych urządzeniach. Przykładowo, wiele z tych firm oferuje usługi odbioru z miejsca zamieszkania, co ułatwia użytkownikom przestrzeganie przepisów. Przekazanie urządzeń wykwalifikowanym specjalistom nie tylko zapewnia zgodność z prawem, ale również chroni środowisko i zdrowie ludzi, zmniejszając ryzyko zanieczyszczenia.

Pytanie 40

Która z poniższych metod nie jest wykorzystywana do trwałego łączenia elementów z tworzyw sztucznych?

A. Zgrzewania
B. Zaginania
C. Klejenia
D. Spawania
Zaginanie to proces, który polega na deformacji materiału w celu nadania mu odpowiedniego kształtu, ale nie łączy trwale dwóch lub więcej elementów. W kontekście tworzyw sztucznych, zaginanie może być wykorzystane do formowania jednego elementu, na przykład przy produkcji obudów czy detali dekoracyjnych. Nie wymaga to jednak żadnych dodatkowych technik łączenia, co czyni je nieodpowiednim wyborem do trwałego łączenia. Techniki takie jak zgrzewanie, spawanie czy klejenie są stosowane do tworzenia trwałych połączeń, natomiast zaginanie jest bardziej procesem wytwórczym. Zgodnie z normami branżowymi, takimi jak ISO 527 dotyczące właściwości mechanicznych tworzyw sztucznych, zginanie może być stosowane do testowania elastyczności materiałów, ale nie do ich łączenia. Przykładem zastosowania zaginania może być produkcja elementów meblowych, gdzie tworzywa sztuczne są formowane w odpowiednie kształty bez potrzeby ich łączenia z innymi elementami. Dlatego zaginanie jest techniką, która doskonale sprawdza się w kształtowaniu detali, ale nie w ich trwałym łączeniu.