Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 22 maja 2025 09:58
  • Data zakończenia: 22 maja 2025 10:13

Egzamin zdany!

Wynik: 22/40 punktów (55,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Gdy ciśnienie w zbiorniku kompresora rośnie, zakładając, że wilgotność i temperatura powietrza pozostają niezmienne, stan pary wodnej w zgromadzonym powietrzu

A. nie zmienia się w stosunku do linii punktu rosy
B. nie zmienia się, pod warunkiem, że wilgotność absolutna jest stała
C. zbliża się do linii punktu rosy
D. oddala się od linii punktu rosy
W przypadku wzrostu ciśnienia w zbiorniku sprężarki, odpowiedzi które sugerują, że stan pary wodnej w zgromadzonym powietrzu nie ulega zmianie lub oddala się od linii punktu rosy, opierają się na mylnych założeniach dotyczących zachowania wilgotności i ciśnienia. Po pierwsze, wilgotność względna, będąca stosunkiem aktualnego ciśnienia pary wodnej do ciśnienia pary nasyconej przy danej temperaturze, jest ściśle związana z ciśnieniem. Wzrost ciśnienia przy stałej temperaturze prowadzi do zwiększenia ciśnienia cząstkowego pary wodnej, co w efekcie zmienia dynamiczny balans pomiędzy stanem gazowym a stanem ciekłym w systemie. Odpowiedzi sugerujące, że wilgotność pozostaje bez zmian, ignorują fundamentalne zasady termodynamiki oraz charakterystykę zachowań gazów. Ponadto, odniesienia do „stałej wilgotności absolutnej” są nieprecyzyjne, ponieważ wilgotność absolutna jest miarą ilości pary wodnej w jednostce objętości powietrza, co nie wpływa na zmiany wynikające z wyższego ciśnienia. Typowe błędy w interpretacji tego zjawiska często są wynikiem braku zrozumienia pojęcia punktu rosy oraz wpływu ciśnienia na zachowanie pary wodnej w gazach. W praktyce inżynierskiej, zrozumienie tych zjawisk jest kluczowe, aby unikać problemów związanych z kondensacją, co może prowadzić do poważnych awarii w systemach sprężonego powietrza oraz innych procesów przemysłowych.

Pytanie 2

Po wymianie łożysk należy przykręcić pokrywę łożyska śrubami metrycznymi M6x80. Wskaż na podstawie tabeli, jaka powinna być wartość momentu dociągającego.

Nazwa elementuMoment dociągający dla śrub [Nm]
M5M6M8M10M12M16M20
Tabliczka łożyska--254575170275
Pokrywa łożyska58152020--
Skrzynka zaciskowa-47,512,5-20-

A. 25 Nm
B. 8 Nm
C. 15 Nm
D. 4 Nm
Moment dociągający śrub M6x80 wynoszący 8 Nm jest zgodny z normami branżowymi dotyczącymi montażu łożysk. Właściwie dobrany moment pozwala na odpowiednie przyleganie elementów oraz zapobiega ich luzowaniu się w trakcie eksploatacji. Przykręcanie pokrywy łożyska z właściwym momentem jest kluczowe dla zapewnienia trwałości i stabilności całej konstrukcji. Zbyt niski moment dociągający może prowadzić do luzów, co w konsekwencji może powodować uszkodzenia łożysk oraz innych komponentów. Z kolei zbyt wysoki moment może prowadzić do uszkodzenia gwintów lub deformacji elementów, co również wpływa negatywnie na funkcjonowanie maszyny. Dlatego ważne jest, aby stosować się do zaleceń producenta oraz norm technicznych przy dokręcaniu elementów. Przykłady zastosowania tej wiedzy obejmują montaż łożysk w silnikach, skrzyniach biegów oraz innych mechanizmach, gdzie precyzyjne dociąganie śrub ma kluczowe znaczenie dla bezpieczeństwa i wydajności.

Pytanie 3

Aby zmierzyć nieznaną rezystancję z wysoką precyzją przy użyciu trzech rezystorów odniesienia o znanych wartościach, jaki przyrząd powinno się zastosować?

A. megaomomierz
B. mostek Wheatstone'a
C. omomierz
D. mostek Thomsona
Omomierz, mimo że na pierwszy rzut oka wydaje się odpowiednim narzędziem do pomiaru rezystancji, ma swoje ograniczenia, zwłaszcza w kontekście bardzo dokładnych pomiarów. Jego działanie opiera się na bezpośrednim pomiarze rezystancji, co może prowadzić do błędów wynikających z wpływu temperatury, pojemności czy indukcyjności. Ponadto, omomierze mogą mieć ograniczoną dokładność w przypadku pomiarów bardzo niskich lub wysokich wartości rezystancji, co czyni je mniej skutecznymi niż mostek Wheatstone'a. Megaomomierz, chociaż jest narzędziem do pomiaru dużych rezystancji, również może nie zapewniać wystarczającej precyzji w pomiarze wartości nieznanych, ponieważ jego zastosowanie jest głównie ograniczone do testów izolacji. Mostek Thomsona, z kolei, jest bardziej skomplikowanym układem, który nie jest powszechnie stosowany w praktycznych zastosowaniach w porównaniu do mostka Wheatstone'a. Typowe błędy myślowe prowadzące do wyboru tych narzędzi obejmują niedocenienie znaczenia równowagi w pomiarze oraz niezrozumienie wpływu czynników zewnętrznych na wyniki pomiarów. Dlatego istotne jest, aby przed dokonaniem wyboru narzędzia pomiarowego zrozumieć różnice między nimi oraz ich zastosowania w kontekście wymaganych standardów dokładności.

Pytanie 4

Siłownik pneumatyczny ze sprężyną zwrotną przeznaczony jest do podnoszenia masy (ruch powolny, obciążenie na całym skoku). Ciśnienie robocze w instalacji pneumatycznej wynosi 6*105 N/m2. Obliczona średnica cylindra, z uwzględnieniem sprawności siłownika η = 0,75 oraz stwierdzonych w instalacji pneumatycznej wahań ciśnienia roboczego rzędu 5% wartości nominalnej, wynosi 65 mm. Z zamieszczonego w tabeli typoszeregu siłowników dobierz średnicę cylindra spełniającą powyższe warunki.

Tabl. 1. Parametry siłowników
średnica cylindra w mm121620253240506380100125160200
średnica tłoczyska w mm68810121620202525324040
gwinty otworów przyłączeniowychM5M5G⅛G⅛G⅛G⅜G⅜G⅜
siła pchająca przy
po = 6 bar w N
siłownik jednostron. dział.5096151241375644968156025304010------
siłownik dwustron. dział.58106164259422665104016502660415064501060016600
siła ciągnąca przy
po = 6 bar w N
siłownik dwustronnego
działania
54791372163645508701480240038906060996015900
siłownik jednostron. dział.10, 25, 5025, 50, 80, 100--
skoki w mmsiłownik dwustron. dział.do
160
do
200
do
320
10, 25, 50, 80, 100, 160, 200, 250, 320, 400, 500........2000

A. 80 mm
B. 63 mm
C. 100 mm
D. 50 mm
Wybór średnicy cylindra siłownika pneumatycznego jest kluczowy dla efektywności jego działania. W tym przypadku, obliczona średnica wynosi 65 mm, jednak ze względu na wahania ciśnienia wynoszące 5% oraz sprawność siłownika równą 0,75, należy zastosować większą wartość, aby zapewnić odpowiednią moc i wydajność. Średnica 80 mm, którą wybrano, zapewnia nie tylko odpowiednią siłę napędową przy nominalnym ciśnieniu, ale również dodatkowy margines, co jest niezbędne w praktyce. Przy zastosowaniu siłowników pneumatycznych, istotne jest, aby dobierać elementy z odpowiednim zapasem, co może mieć kluczowe znaczenie w sytuacjach, gdy ciśnienie robocze może ulegać wahaniom. W branży pneumatyki, standardem jest stosowanie siłowników, które mają nieco większą średnicę niż obliczona, aby zminimalizować ryzyko ich niewydolności. Dlatego wybór 80 mm wpisuje się w dobre praktyki i standardy bezpieczeństwa w projektowaniu systemów pneumatycznych.

Pytanie 5

Który rodzaj smaru powinien być regularnie uzupełniany w smarownicy pneumatycznej?

A. Olej
B. Proszek
C. Silikon
D. Pastę
Olej jest kluczowym środkiem smarnym w smarownicach pneumatycznych, ponieważ zapewnia niezbędne smarowanie ruchomych części oraz minimalizuje tarcie, co przekłada się na dłuższa żywotność urządzenia. W kontekście smarownic pneumatycznych, olej ułatwia również transport powietrza, co jest istotne dla efektywności działania systemu. W praktyce, regularne uzupełnianie oleju w smarownicach zapewnia optymalne warunki pracy, co jest zgodne z zaleceniami producentów urządzeń oraz normami branżowymi. Na przykład, w systemach pneumatycznych stosuje się oleje syntetyczne lub mineralne, które są dedykowane do konkretnego zastosowania, co zwiększa ich skuteczność oraz zmniejsza ryzyko awarii. Przy odpowiednim doborze oleju, można także poprawić efektywność energetyczną urządzeń, co jest istotne w kontekście oszczędności oraz zrównoważonego rozwoju.

Pytanie 6

Napięcie wyjściowe zasilacza zasilającego sterownik PLC zainstalowany w urządzeniu mechatronicznym, zgodnie z parametrami przedstawionymi w tabeli, może wynosić

Parametry techniczne sterownika
Normy i przepisyIEC 61131-2
Typ produktuSterownik kompaktowy
Liczba wejść dyskretnych6
Napięcie wejść dyskretnych24 V DC
Liczba wyjść dyskretnych4 przekaźnikowe
Typ wyjśćprzekaźnikowe
Sygnalizacja stanówLED
Napięcie zasilania24 V DC
Dopuszczalny zakres napięcia zasilania21,2÷28,8 V DC
Tętnienia<5%

A. 30 V DC
B. 25 V DC
C. 20 V DC
D. 15 V DC
Odpowiedź 25 V DC jest zgodna z parametrami napięcia zasilania sterownika PLC, które wynosi od 21,2 V DC do 28,8 V DC. Wybierając napięcie w tym zakresie, zapewniamy stabilną pracę urządzenia mechatronicznego, co jest kluczowe dla prawidłowego działania systemów automatyki. Przykładowo, w systemach przemysłowych będziemy mieli do czynienia z zasilaczami, które dostarczają napięcia 24 V DC, co jest standardem w wielu aplikacjach. Wybór 25 V DC nie tylko mieści się w zalecanym zakresie, ale także minimalizuje ryzyko uszkodzeń komponentów elektronicznych, które mogą wystąpić przy zasilaniu napięciem poza określonym zakresem. W praktyce, stosowanie napięcia zasilania zgodnego z dokumentacją techniczną zapewnia dłuższą żywotność urządzeń oraz ich niezawodność w działaniu. W przypadku stosowania zasilaczy, ważne jest również, aby były one zgodne z normami bezpieczeństwa i zapewniały odpowiednie zabezpieczenia przeciwprzepięciowe.

Pytanie 7

W siłowniku o jednostronnym działaniu, w trakcie realizacji ruchu roboczego tłoka, doszło do nagłego wstrzymania ruchu tłoczyska. Ruch ten odbywał się bez obciążenia i nie zaobserwowano nieszczelności w układzie pneumatycznym. Jakie mogą być przyczyny zatrzymania tłoczyska?

A. blokada odpowietrzania
B. wyboczenie tłoczyska
C. zakleszczenie tłoka
D. niespodziewany spadek ciśnienia roboczego
W analizowanej sytuacji, wyboczenie tłoczyska, nagły spadek ciśnienia roboczego oraz blokada odpowietrzania mogą wydawać się możliwymi przyczynami zatrzymania ruchu tłoczyska, ale ich rzeczywista analiza wskazuje na inne aspekty. Wyboczenie tłoczyska, czyli jego odkształcenie, zazwyczaj prowadzi do nieregularnych ruchów, a nie do nagłego zatrzymania. Tego typu problem najczęściej występuje w wyniku niewłaściwego montażu lub użycia nieodpowiednich komponentów, lecz w opisywanej sytuacji tłok pracował bez obciążenia, co znacząco zmniejsza ryzyko wystąpienia tego zjawiska. Spadek ciśnienia roboczego mógłby być powiązany z nieszczelnościami, jednak, jak zaznaczone w pytaniu, nie zaobserwowano takich usterek. Blokada odpowietrzania również nie jest typową przyczyną nagłego zatrzymania, gdyż raczej skutkowałaby ona powolnym wzrostem ciśnienia, a nie natychmiastowym zatrzymaniem ruchu. Takie myślenie może wynikać z niepełnej analizy pojęć związanych z układami pneumatycznymi, a warto zwrócić uwagę na to, że przyczyną problemu mogą być zewnętrzne czynniki, takie jak zanieczyszczenia lub uszkodzenia mechaniczne, które nie zostały uwzględnione w analizie. Wiedza na temat poprawnej diagnostyki i konserwacji układów pneumatycznych jest kluczowa dla prawidłowego funkcjonowania tego typu systemów.

Pytanie 8

Jakie są właściwe etapy postępowania podczas rozbierania urządzenia mechatronicznego?

A. Odłączenie instalacji zewnętrznych, zdjęcie osłon oraz pokryw, wyciągnięcie elementów zabezpieczających, wyciągnięcie elementów ustalających
B. Odłączenie instalacji zewnętrznych, wyciągnięcie elementów ustalających, zdjęcie osłon oraz pokryw, wyciągnięcie elementów zabezpieczających
C. Wyciągnięcie elementów zabezpieczających, odłączenie instalacji zewnętrznych, zdjęcie osłon oraz pokryw, wyciągnięcie elementów ustalających
D. Zdjęcie osłon oraz pokryw, wyciągnięcie elementów zabezpieczających, odłączenie instalacji zewnętrznych, wyciągnięcie elementów ustalających
Prawidłowa kolejność czynności podczas demontażu urządzenia mechatronicznego zaczyna się od odłączenia instalacji zewnętrznych, co jest kluczowe dla zapewnienia bezpieczeństwa i ochrony przed przypadkowymi uszkodzeniami. Po odłączeniu zasilania i innych systemów zewnętrznych, można przejść do zdjęcia osłon i pokryw, które mają na celu ochronę wewnętrznych komponentów przed zanieczyszczeniami oraz uszkodzeniami mechanicznymi. Następnie, wyciągnięcie elementów zabezpieczających jest niezbędne, by umożliwić dostęp do kluczowych części mechanizmu. Na końcu usuwa się elementy ustalające, co pozwala na swobodne wyjęcie podzespołów. Ta sekwencja jest zgodna z najlepszymi praktykami w zakresie BHP i technik demontażu, które podkreślają znaczenie bezpieczeństwa w miejscu pracy oraz minimalizację ryzyka uszkodzenia sprzętu. Przykładem zastosowania tej metody może być demontaż silnika elektrycznego, gdzie każdy z tych kroków ma kluczowe znaczenie dla skuteczności i bezpieczeństwa operacji.

Pytanie 9

W aplikacjach sterujących, wykonywanych przy użyciu sterownika PLC, do zapisywania sygnałów impulsowych oraz ich konwersji na sygnały trwałe (włączanie z samopodtrzymaniem) wykorzystuje się moduły

A. filtrów komparatorowych
B. zegarów czasowych
C. rejestrów licznikowych
D. przerzutników
Funkcje czasowe, komparatory i liczniki są ważnymi elementami w automatyce, ale nie pełnią one funkcji związanych z zapamiętywaniem i przetwarzaniem sygnałów impulsowych w sposób, w jaki robią to przerzutniki. Funkcje czasowe, takie jak timery, są wykorzystywane do wprowadzenia opóźnień w działaniu systemów, ale nie mogą same w sobie utrzymywać stanu bez ciągłego sygnału wejściowego. Z kolei komparatory służą do porównywania wartości napięcia lub sygnałów, co jest istotne w kontekście regulacji, ale nie odnoszą się do przechowywania stanów. Liczniki, z drugiej strony, mają zastosowanie głównie do zliczania impulsów, co jest przydatne w zastosowaniach takich jak monitorowanie liczby cykli produkcyjnych, ale również nie mogą same w sobie przechowywać stanu w długim okresie. Typowym błędem myślowym jest mylenie funkcji liczników i przerzutników, ponieważ oba te elementy operują na sygnałach, ale różnią się zasadniczo w sposobie ich działania oraz zastosowania. Zrozumienie tych różnic jest kluczowe dla projektowania efektywnych systemów automatyki i sterowania. Właściwy dobór elementów w zależności od wymagań aplikacji jest niezbędny do osiągnięcia niezawodności i efektywności systemów sterujących.

Pytanie 10

Jakie jest właściwe podłączenie dla przyłącza oznaczonego literą 'T' w zaworze hydraulicznym 4/2, które ma oznaczenia A, B, P i T?

A. Do zbiornika sprężonego powietrza
B. Do siłownika dwustronnego działania
C. Do siłownika jednostronnego działania
D. Do zbiornika oleju hydraulicznego
Odpowiedź "Do zbiornika oleju hydraulicznego" jest jak najbardziej trafna. Przyłącze oznaczone literą "T" w układzie hydrauliki siłowej faktycznie działa jako odpływ. W standardowych zaworach hydraulicznych 4/2 to właśnie tam kierowany jest olej, którego nie wykorzystujemy w danym momencie do pracy siłownika. Moim zdaniem, świetnym przykładem jest hydraulika w maszynach budowlanych - po prostu musimy odprowadzać nadmiar oleju, żeby nie było problemów z przegrzewaniem się układu. Dobrze jest też regularnie sprawdzać poziom oleju w zbiorniku, bo jak będzie zbyt niski, to może się zdarzyć, że pompa zacznie zassysać powietrze, a to już poważnie obniża efektywność całego systemu.

Pytanie 11

Tachogenerator przy obrotach 1000 obr./min. wytwarza napięcie 30 V. Jaką wartość napięcia wygeneruje ten tachogenerator przy prędkości obrotowej 200 obr./min?

A. 15 V
B. 6 V
C. 3 V
D. 5 V
Prądnica tachometryczna działa na zasadzie generowania napięcia proporcjonalnego do prędkości obrotowej. W tym przypadku, przy prędkości obrotowej 1000 obr./min, prądnica generuje napięcie wynoszące 30 V. Możemy obliczyć napięcie przy niższej prędkości obrotowej, stosując proporcję. Zauważmy, że 200 obr./min to 20% 1000 obr./min. Jeśli napięcie jest proporcjonalne do prędkości, to przy 200 obr./min prądnica wygeneruje 20% z 30 V, co daje 6 V. Tego rodzaju obliczenia są powszechnie stosowane w inżynierii, szczególnie w systemach automatyki, gdzie precyzyjne pomiary napięcia są kluczowe dla prawidłowego działania urządzeń. Przykładowo, w systemach pomiarowych oraz w kontrolach zadań w automatyce przemysłowej, znajomość zależności między prędkością a generowanym napięciem pozwala na optymalizację procesów oraz zwiększenie efektywności energetycznej.

Pytanie 12

Aby ustalić wznios silnika indukcyjnego, należy wykonać pomiar

A. średnicy stojana
B. odległości między osią wału a podstawą uchwytów silnika
C. szerokości silnika oraz średnicy wirnika
D. wysokości silnika
Odległość między osią wału a podstawą łap silnika to naprawdę ważna sprawa, jeśli chodzi o wznios silnika indukcyjnego. W zasadzie pokazuje, jak ten silnik jest zamontowany w danym miejscu. Z tego wynika, na jakiej wysokości silnik jest w stosunku do jego osi obrotu, co ma spory wpływ na to, jak wszystko działa w całym układzie napędowym. Na przykład, jak wznios jest źle ustawiony, to może to spowodować, że silnik będzie dużo więcej zużywał energii i szybciej się psuł. W przemyśle, gdzie silniki indukcyjne są na porządku dziennym, na przykład w wentylacjach czy taśmach transportowych, dokładne pomiary wzniosu są niezbędne, żeby wszystko działało jak należy. Przydaje się też trzymanie się standardów, jak IEC 60034, bo to pomaga w montażu i eksploatacji silników elektrycznych.

Pytanie 13

Z odległości jednego metra można zarejestrować temperaturę obudowy urządzenia

A. pirometrem.
B. fotometrem.
C. multimetrem.
D. daloczułkiem.
Wybór dalmierza, fotometru czy multimetru jako narzędzi do pomiaru temperatury obudowy urządzenia jest nieprawidłowy, ponieważ każde z tych urządzeń ma swoje specyficzne zastosowania, które nie obejmują bezpośredniego pomiaru temperatury. Dalmierz jest narzędziem wykorzystywanym do pomiaru odległości, które działa na zasadzie pomiaru czasu, w jakim fala elektromagnetyczna przebywa dystans między nadajnikiem a obiektem. Nie posiada on jednak zdolności do wyczuwania temperatury, co czyni go nieodpowiednim do tego typu pomiarów. Fotometr, z drugiej strony, jest urządzeniem służącym do pomiaru natężenia światła, co również nie ma związku z pomiarem temperatury. Użycie fotometru w tym kontekście prowadzi do fundamentalnych błędów myślowych dotyczących jego funkcji i przeznaczenia. Multimetr, chociaż jest wszechstronnym narzędziem pomiarowym, również nie może być użyty do bezpośredniego pomiaru temperatury obiektu z odległości. Jego główne funkcje obejmują pomiar napięcia, prądu i oporu, a nie temperatury. W przypadku pomiarów temperatury, multimetr może być użyty tylko w połączeniu z odpowiednimi czujnikami, jednak wymaga to kontaktu z obiektem lub jego bliskiego umiejscowienia, co nie jest zgodne z zasadą pomiaru stosowaną w pirometrii. Zrozumienie właściwego zastosowania tych narzędzi jest kluczowe dla uzyskania dokładnych i wiarygodnych wyników pomiarów.

Pytanie 14

Silnik bezszczotkowy (ang. BLDC Brushless Direct Current motor) jest zasilany napięciem

A. dwufazowym
B. trójfazowym
C. jednofazowym
D. stałym
Silnik bezszczotkowy (BLDC) zasilany jest napięciem stałym, co jest fundamentalną cechą jego konstrukcji. Ten typ silnika charakteryzuje się brakiem szczotek, co prowadzi do mniejszych strat energii i większej efektywności w porównaniu do tradycyjnych silników komutatorowych. W zastosowaniach przemysłowych, takich jak robotyka, drony czy napędy elektryczne w pojazdach, silniki BLDC zyskują na popularności dzięki swojej niezawodności i długowieczności. Przykładem zastosowania silników bezszczotkowych zasilanych napięciem stałym są napędy w elektrycznych hulajnogach, gdzie wymagane są wysoka wydajność oraz kontrola prędkości. W silnikach BLDC zastosowanie napięcia stałego pozwala na prostotę układów sterujących, które mogą być oparte na zaawansowanych systemach PWM (modulacja szerokości impulsu), co umożliwia precyzyjne dostosowanie momentu obrotowego i prędkości silnika. W praktyce, standardy takie jak IEC 60034 dotyczące maszyn elektrycznych podkreślają znaczenie efektywności energetycznej i niezawodności, które są kluczowe w projektowaniu systemów opartych na silnikach BLDC.

Pytanie 15

Pomiary izolacyjności w instalacjach elektrycznych realizuje się

A. laboratoryjnym mostkiem Thomsona
B. megaomomierzem
C. technicznym mostkiem Thomsona
D. omomierzem
Chociaż istnieje wiele narzędzi do pomiarów elektrycznych, nie każde z nich jest odpowiednie do oceny rezystancji izolacji. Omomierz, który jest jednym z wymienianych urządzeń, jest używany do pomiaru rezystancji w obwodach niskonapięciowych, ale nie nadaje się do pomiarów izolacji. Podczas pomiarów rezystancji izolacji kluczowe jest stosowanie wysokich napięć, które są generowane tylko przez megaomomierze. Z kolei laboratoria często korzystają z mostków Thomsona, jednak te urządzenia są bardziej przeznaczone do precyzyjnych pomiarów rezystancji w warunkach laboratoryjnych, a nie do oceny stanu izolacji w rzeczywistych instalacjach. Istotnym błędem w myśleniu jest przekonanie, że jakiekolwiek urządzenie pomiarowe wystarczy do oceny izolacji. W rzeczywistości, aby zapewnić bezpieczeństwo i niezawodność instalacji, należy korzystać z odpowiednich narzędzi i technik, które są zgodne z wytycznymi branżowymi. Ignorowanie tej zasady może prowadzić do niebezpiecznych sytuacji, takich jak porażenie prądem czy pożar, co jest sprzeczne z najlepszymi praktykami w dziedzinie elektryki. Właściwy wybór narzędzi pomiarowych jest kluczowy dla uzyskania wiarygodnych wyników oraz zapobiegania potencjalnym zagrożeniom.

Pytanie 16

W trakcie użytkowania urządzenia mechatronicznego pracownik doznał porażenia prądem, lecz po chwili odzyskał oddech. Co należy zrobić?

A. ustawić go w pozycji bocznej ustalonej
B. położyć go na plecach z uniesionymi nogami
C. rozpocząć wykonywanie sztucznego oddychania i kontynuować przez około 30 minut
D. przystąpić do pośredniego masażu serca
Ułożenie osoby w pozycji bocznej ustalonej (PBU) jest kluczowym działaniem w przypadku osób po porażeniu prądem, które odzyskały oddech. Ta pozycja ma na celu zapewnienie swobodnego przepływu powietrza oraz zapobiegnięcie zadławieniu się, co jest szczególnie ważne, gdy pacjent jest nieprzytomny lub osłabiony. W PBU pacjent leży na boku, co pozwala na swobodne wydostawanie się wydzielin z jamy ustnej i zapobiega aspiracji. Wytyczne dotyczące pierwszej pomocy, takie jak te zawarte w standardach Europejskiego Ruchu na Rzecz Bezpieczeństwa (ERS), podkreślają znaczenie stosowania PBU w przypadkach utraty przytomności. Przykładem zastosowania jest sytuacja, gdy osoba po porażeniu prądem odzyskuje świadomość, ale nie jest w stanie samodzielnie kontrolować swoich dróg oddechowych. W takich przypadkach, szybka reakcja i odpowiednie ułożenie mogą uratować życie, dlatego znajomość tego działania jest niezbędna dla każdego, kto może być świadkiem takiego zdarzenia.

Pytanie 17

W trakcie inspekcji efektywności systemu sterującego urządzeń transportujących elementy aluminiowe, w środowisku produkcyjnym o podwyższonym poziomie hałasu powinno się używać

A. ochronników słuchu
B. okularów ochronnych
C. kasku ochronnego
D. rękawic dielektrycznych
Ochronniki słuchu są kluczowym elementem ochrony osobistej w środowisku pracy, gdzie poziom hałasu przekracza dopuszczalne normy. W przypadku kontroli sprawności układu sterowania urządzenia transportującego kształtki aluminiowe, które mogą generować wysokie poziomy hałasu, zastosowanie ochronników słuchu jest niezbędne dla minimalizacji ryzyka uszkodzenia słuchu. Zgodnie z normami takimi jak PN-N-01307:2013, każdy pracownik narażony na hałas o poziomie przekraczającym 85 dB powinien stosować odpowiednie środki ochrony. Ochronniki słuchu mogą występować w różnych formach, takich jak nauszniki lub wkładki douszne, dostosowane do specyfiki pracy. W praktyce, ich stosowanie nie tylko chroni zdrowie pracownika, ale również zwiększa komfort pracy, umożliwiając lepszą koncentrację na wykonywanych zadaniach. Dbanie o zdrowie pracowników poprzez stosowanie wymaganych środków ochrony osobistej jest nie tylko kwestią zgodności z przepisami, ale także wpływa na ogólną wydajność i morale w zespole.

Pytanie 18

Ciśnienie o wartości 1 N/m2 to

A. 1 at
B. 1 Pa
C. 1 mmHg
D. 1 bar
Ciśnienie równe 1 N/m² jest równoznaczne z 1 Pa (paskalem), co jest jednostką miary ciśnienia w układzie SI. Definicja ciśnienia mówi, że jest to siła działająca na jednostkę powierzchni. W praktyce, 1 Pa oznacza, że na powierzchnię o wymiarach 1 m² działa siła o wartości 1 N. Paskal jest powszechnie stosowany w wielu dziedzinach, takich jak inżynieria mechaniczna, budownictwo oraz nauki przyrodnicze. Dla przykładu, w kontekście hydrauliki, ciśnienie 1 Pa jest niewielkie, ale w kontekście atmosferycznym, na poziomie morza, ciśnienie wynosi około 101325 Pa (czyli 1 atm), co pokazuje, jak mała jest jednostka 1 Pa w porównaniu do standardowego ciśnienia atmosferycznego. W praktyce, ciśnienie wyrażane w paskalach jest również często używane w procesach przemysłowych i laboratoryjnych, co czyni tę jednostkę kluczową w zrozumieniu i obliczeniach dotyczących sił działających w różnych systemach.

Pytanie 19

Ciągłe sensory oraz wzmacniacze operacyjne stanowią standardowe komponenty systemu sterowania?

A. binarnego
B. analogowego
C. programowalnego
D. cyfrowego
Wybór odpowiedzi związanej z układami cyfrowymi nie jest najlepszy. Układy cyfrowe działają na dyskretnych wartościach, a nie na ciągłych sygnałach. Sensory i wzmacniacze analogowe muszą być najpierw odpowiednio przetworzone, na przykład przez konwersję analogowo-cyfrową, zanim będą mogły współpracować z systemami cyfrowymi. Odpowiedzi związane z układami programowalnymi czy binarnymi również nie mają sensu, bo nie odnoszą się do kluczowych cech analogowych sygnałów. Układy programowalne, jak PLC, łączą zarówno analogowe, jak i cyfrowe komponenty, ale same działają na zupełnie innych zasadach. Trzeba zrozumieć, że układy binarne nie mogą współpracować bezpośrednio z elementami działającymi w trybie ciągłym, ponieważ wymaga to zastosowania konwerterów. Kluczowe jest, żeby znać podstawy przetwarzania sygnałów, co pomoże lepiej zrozumieć różnice między tymi układami.

Pytanie 20

W instalacjach niskonapięciowych (systemach TN) jako elementy zabezpieczające mogą być wykorzystywane

A. wyłączniki montażowe
B. wyłączniki różnicowoprądowe
C. izolatory długiej osi
D. dławiki blokujące
Wybór innych urządzeń ochronnych, takich jak wyłączniki natynkowe, dławiki zaporowe czy izolatory długopniowe, nie jest odpowiedni w kontekście ochrony przed porażeniem prądem w układach niskiego napięcia. Wyłączniki natynkowe to elementy, które głównie służą do włączania i wyłączania obwodów, ale nie oferują ochrony przed upływem prądu, co czyni je nieodpowiednimi do ochrony ludzi. Dławiki zaporowe z kolei są stosowane w celu ograniczania zakłóceń elektromagnetycznych, a ich funkcja nie ma nic wspólnego z bezpieczeństwem użytkowników w przypadku awarii instalacji elektrycznej. Izolatory długopniowe są istotnymi elementami w systemach przesyłowych, jednak ich rola polega na zapewnieniu izolacji elektrycznej w sieciach wysokiego napięcia, a nie na ochronie przed prądem różnicowym w instalacjach niskonapięciowych. W praktyce, wybór niewłaściwych urządzeń ochronnych może prowadzić do poważnych zagrożeń dla zdrowia i życia użytkowników. Zastosowanie wyłączników różnicowoprądowych jest kluczowe dla zapewnienia bezpieczeństwa, a ignorowanie tej zasady może skutkować nie tylko zagrożeniem dla osób korzystających z energii elektrycznej, ale również naruszeniem obowiązujących norm i przepisów. Właściwe podejście do ochrony przed porażeniem prądem w instalacjach elektrycznych powinno opierać się na znajomości zasad działania i zastosowań odpowiednich urządzeń ochronnych, zgodnych z aktualnymi standardami branżowymi.

Pytanie 21

Weryfikacja połączeń nitowanych, realizowana poprzez uderzanie młotkiem w nit, ma na celu wykrycie nieprawidłowości

A. odkształcenia nitu
B. luźnego osadzenia nitu
C. pęknięcia powierzchni łba i zakuwki nitu
D. nieprawidłowego kształtu zakuwki
Skrzywienie nitu, pęknięcia powierzchni łba oraz zakuwki nitu oraz nieprawidłowe ukształtowanie zakuwki to zagadnienia, które w kontekście kontroli połączeń nitowanych mogą być mylące. Skrzywienie nitu, na przykład, może być problematyczne, ale nie jest bezpośrednio wykrywane poprzez ostukiwanie, ponieważ ta metoda nie pozwala na pełną analizę geometrii nitu. Pęknięcia na łbie lub zakuwce, mimo że są istotne, także wymagają zaawansowanych metod diagnostycznych, takich jak ultradźwięki, które są bardziej skuteczne w wykrywaniu wewnętrznych wad materiałowych. Nieprawidłowe ukształtowanie zakuwki to inny problem, który często wynika z błędów produkcyjnych, a nie z samego procesu nitowania, co może prowadzić do mylnego wniosku, że kontrola opiera się na luźnym osadzeniu. Często błędne interpretacje wynikają z braku zrozumienia mechanizmów działania nitu oraz jego interakcji z materiałem, w którym jest osadzony. Właściwe szkolenie z zakresu technik nitowania i diagnostyki jest niezbędne, aby uniknąć takich nieporozumień i skutecznie oceniać jakość połączeń nitowanych.

Pytanie 22

Jakim przyrządem pomiarowym można zmierzyć wartość napięcia zasilającego cewkę elektrozaworu?

A. Miernik mocy
B. Woltomierz
C. Miernik prądu
D. Miernik oporności
Woltomierz jest przyrządem pomiarowym, który służy do pomiaru napięcia elektrycznego w obwodach. W przypadku cewki elektrozaworu, której działanie zależy od odpowiedniego napięcia zasilającego, użycie woltomierza pozwala na precyzyjne określenie wartości tego napięcia. Prawidłowy pomiar napięcia jest kluczowy, ponieważ zbyt niskie napięcie może prowadzić do nieprawidłowego działania cewki, a w konsekwencji do awarii systemu. W praktyce, aby zmierzyć napięcie na cewce elektrozaworu, należy podłączyć woltomierz równolegle do cewki, co pozwala na odczyt wartości napięcia, które w danym momencie jest dostarczane do cewki. Standardowe woltomierze cyfrowe, zgodne z normami IEC 61010, charakteryzują się wysoką dokładnością i bezpieczeństwem użytkowania, co czyni je niezastąpionym narzędziem w pracy technika. Użycie woltomierza powinno być wykonywane zgodnie z dobrymi praktykami, takimi jak zapewnienie, że urządzenie jest odpowiednio skalibrowane i że przewody pomiarowe są w dobrym stanie, aby uniknąć błędów pomiarowych.

Pytanie 23

W pomiarze deformacji konstrukcji nośnych najczęściej wykorzystuje się czujniki, które działają na zasadzie

A. efektu piezoelektrycznego
B. zmiany pojemności elektrycznej
C. zmiany indukcyjności własnej
D. zmiany rezystancji
W przypadku pomiarów odkształceń, metody oparte na zmianie indukcyjności własnej, pojemności elektrycznej oraz efekcie piezoelektrycznym nie są tak powszechnie stosowane jak tensometry. Zmiana indukcyjności własnej może być wykorzystywana w niektórych aplikacjach, jednak nie jest ona standardowym rozwiązaniem w kontekście monitorowania odkształceń konstrukcji nośnych. Wzory analityczne związane z tą metodą często wymagają skomplikowanych obliczeń oraz precyzyjnego dostrojenia, co czyni je mniej praktycznymi w realnych zastosowaniach budowlanych. Zmiana pojemności elektrycznej może być używana w czujnikach pojemnościowych, jednak ich zastosowanie w kontekście monitorowania odkształceń wymaganych w inżynierii budowlanej nie jest tak efektywne. Efekt piezoelektryczny, zaś, mimo że ma swoje miejsce w technologii czujników, głównie w aplikacjach takich jak detekcja drgań, nie jest typowym sposobem na pomiar odkształceń konstrukcyjnych. Te metody mogą prowadzić do błędów pomiarowych, zwłaszcza w dynamicznych warunkach pracy konstrukcji, gdzie tensometry zapewniają znacznie większą dokładność i niezawodność. Zastosowanie bardziej skomplikowanych technologii powinno być zarezerwowane dla specyficznych przypadków, gdzie prostsze metody, takie jak zmiana rezystancji, nie mogą być zastosowane.

Pytanie 24

Siłownik, zasilany sprężonym powietrzem o ciśnieniu roboczym 8 barów, działa z prędkością 50 cykli na minutę i zużywa 1,4 litra powietrza w trakcie jednego cyklu. Jakie parametry powinna mieć sprężarka tłokowa do zasilania siłownika?

A. wydajność 5,3 m3/h, ciśnienie maksymalne 0,7 MPa
B. wydajność 5,3 m3/h, ciśnienie maksymalne 1,0 MPa
C. wydajność 3,6 m3/h, ciśnienie maksymalne 0,7 MPa
D. wydajność 3,6 m3/h, ciśnienie maksymalne 1,0 MPa
Odpowiedzi z wydajnością 3,6 m3/h są błędne, ponieważ nie spełniają podstawowych wymagań dla zasilania siłownika sprężonym powietrzem. Siłownik potrzebuje 4,2 m3/h (jak to przeliczymy z litrów na metry sześcienne), więc sprężarka musi mieć moc do dostarczania przynajmniej tyle powietrza. Ta wydajność 3,6 m3/h na pewno nie wystarczy, by pokryć potrzeby, a siłownik mógłby mieć problemy z pełnym cyklem roboczym. To by wpłynęło na działanie całego systemu. Dodatkowo, maksymalne ciśnienie 0,7 MPa (7 bar) to za mało, bo siłownik działa przy ciśnieniu 8 barów. Jeśli sprężarka nie dostarczy odpowiedniego ciśnienia, to wyjdą problemy z wydajnością siłownika i mogą być awarie. W praktyce coś takiego to już ryzyko, a to się nie trzyma zasad dobrej praktyki w projektowaniu systemów pneumatycznych, gdzie trzeba dobierać urządzenia z odpowiednią wydajnością i parametrami, żeby wszystko działało bez zarzutu.

Pytanie 25

Czujnik, który działa na zasadzie generowania różnicy potencjałów w kontakcie z przewodnikami wykonanymi z różnych metali, to

A. termistor
B. pirometr
C. element termoelektryczny
D. element bimetaliczny
Wybierając termistor, można wprowadzić się w błąd przez mylną interpretację działania tego elementu. Termistor działa na zasadzie zmiany oporu elektrycznego w zależności od temperatury, jednak nie generuje napięcia na podstawie różnicy potencjałów dwóch różnych metali. Jego zastosowanie obejmuje głównie czujniki temperatury w układach elektronicznych, ale nie ma związku z efektem Seebecka. Z kolei pirometr, który również może być mylnie wskazany jako odpowiedź, jest narzędziem wykorzystywanym do bezdotykowego pomiaru temperatury, lecz opiera się na pomiarze promieniowania cieplnego, a nie na różnicy potencjałów między metalami. Element bimetaliczny, pomimo że wykorzystywany do pomiaru temperatury, działa na zasadzie różnicy rozszerzalności cieplnej dwóch metali, co prowadzi do zginania się elementu, ale także nie wykorzystuje efektu Seebecka. Zrozumienie różnic między tymi technologiami jest kluczowe dla prawidłowego doboru czujników w aplikacjach przemysłowych, gdzie precyzja i specyfika pomiarów mają kluczowe znaczenie dla efektywności procesów produkcyjnych.

Pytanie 26

Której z podanych metod nie wykorzystuje się do trwałego łączenia elementów wykonanych z plastiku?

A. Spawania
B. Zaginania
C. Zgrzewania
D. Klejenia
Zaginanie to proces, który polega na deformacji materiału pod wpływem siły mechanicznej, co prowadzi do zmiany jego kształtu. W przypadku tworzyw sztucznych, zaginanie nie jest techniką umożliwiającą trwałe połączenie elementów, ponieważ nie łączy dwóch odrębnych części w jeden element. Zamiast tego, zginanie zmienia kształt jednego elementu, co może być użyteczne w projektowaniu, ale nie umożliwia wykonania trwałego połączenia. Techniki, które rzeczywiście służą do trwałego łączenia, to spawanie, klejenie i zgrzewanie. Spawanie wykorzystuje wysoką temperaturę do stopienia materiałów, co pozwala na ich złączenie, natomiast klejenie polega na zastosowaniu odpowiednich substancji, które wiążą ze sobą różne elementy. Zgrzewanie, podobnie jak spawanie, wykorzystuje ciepło do fuzji materiałów. Przykładem aplikacji zaginania mogą być procesy formowania elementów do zastosowań estetycznych lub funkcjonalnych w przemyśle, gdzie zmiana kształtu jest istotna, ale nie prowadzi do trwałego połączenia z innym elementem.

Pytanie 27

Jakie zadanie w obwodach elektronicznych realizuje transoptor?

A. Wytwarza sygnały sinusoidalne
B. Izoluje galwanicznie sygnały
C. Zwiększa prąd
D. Dodaje napięcia
Funkcje, które podałeś w innych odpowiedziach, nie są zgodne z tym, co naprawdę robią transoptory. Na przykład generowanie przebiegów sinusoidalnych, które sugerujesz, nie dotyczy transoptorów, bo one nie wytwarzają sygnałów – tylko je przesyłają i izolują. A ta idea sumowania napięć? Również nie jest trafiona. Transoptory nie służą do sumowania sygnałów elektrycznych, lecz do separacji i ochrony między różnymi układami. Co do wzmacniania prądu, to jest to zadanie dla wzmacniaczy, a nie transoptorów, które nie zwiększają prądu, tylko zapewniają izolację. Wiele błędów myślowych może wynikać z tego, że nie do końca rozumiesz, jak działają elementy elektroniczne i jakie mają zastosowania. W elektronice ważne jest, by zrozumieć, że każdy element ma swoje właściwości i spełnia konkretne funkcje – to klucz do dobrego projektowania systemów elektronicznych.

Pytanie 28

Wielkością charakterystyczną układu elektrycznego, mierzona w watach, jest jaka?

A. moc pozorna
B. moc bierna
C. energia elektryczna
D. moc czynna
Moc bierna, energia elektryczna i moc pozorna to terminy, które sporo osób myli z mocą czynną. Słuchaj, moc bierna ma związek z elementami, które są indukcyjne i pojemnościowe w układzie elektrycznym i nie generują żadnej realnej pracy, tylko tak sobie 'krążą' w systemie. Więc moc bierna, mierzona w warach, nie przyczynia się do wykonywania pracy i przez to jest jakoś mniej istotna, jeśli chodzi o wydajność urządzeń. Z drugiej strony, energia elektryczna to całkowita ilość energii, którą zużywają urządzenia w określonym czasie, a mierzymy to w kilowatogodzinach (kWh). To też jest coś innego niż moc, która to jest miarą chwilową. Co do mocy pozornej, ona jest określona jako iloczyn napięcia i natężenia prądu bez brania pod uwagę kąta fazowego. To jest taka całkowita miara, ale nie pokazuje nam rzeczywistej wydajności systemu, bo nie bierze pod uwagę strat związanych z mocą bierną. Często ludzie mylą te pojęcia i to prowadzi do błędnych wniosków o efektywności i kosztach eksploatacji instalacji elektrycznych. W konsekwencji, ignorowanie tych różnic może skutkować nieodpowiednim projektowaniem instalacji i wyższymi opłatami za energię, ponieważ moc bierna może obciążać dostawców energii.

Pytanie 29

Prędkość ruchu tłoczyska w siłowniku hydraulicznym ma odwrotną zależność od

A. natężenia przepływu medium roboczego do siłownika
B. wydajności siłownika
C. efektywności siłownika
D. powierzchni roboczej tłoka
Wybór odpowiedzi dotyczącej sprawności siłownika, mocy wyjściowej lub natężenia przepływu czynnika roboczego jako czynników wpływających na prędkość tłoczyska siłownika hydraulicznego ilustruje kilka błędnych koncepcji w zakresie zrozumienia zasad hydrauliki. Sprawność siłownika odnosi się do efektywności przetwarzania energii hydraulicznej na energię mechaniczną, która nie ma bezpośredniego wpływu na prędkość tłoczyska, a raczej na to, jak efektywnie siłownik wykonuje pracę w danym cyklu. Można zauważyć, że wysoka sprawność może prowadzić do lepszej wydajności systemu, ale nie zmienia samego związku między natężeniem przepływu a prędkością tłoczyska. Z kolei moc wyjściowa siłownika, która jest produktem ciśnienia i wydajności, również nie jest bezpośrednio powiązana z prędkością tłoczyska, ponieważ moc może być zachowana przy różnych prędkościach w zależności od warunków pracy. Ostatecznie, natężenie przepływu czynnika roboczego jest zwarcie związane z prędkością tłoczyska, jednak to powierzchnia tłoka decyduje o tym, jak to natężenie wpływa na ruch tłoczyska. W wielu przypadkach, błędne wnioski prowadzą do nieoptymalnych wyborów w projektowaniu układów hydraulicznych, co może skutkować zmniejszoną efektywnością i zwiększonym zużyciem energii.

Pytanie 30

W procesie TIG stosuje się technikę spawania

A. łukiem plazmowym
B. elektrodą wolframową w osłonie argonowej
C. elektrodą topliwą w osłonie dwutlenku węgla
D. strumieniem elektronów
W metodzie TIG kluczowym elementem jest użycie elektrod wolframowych, co odróżnia ją od innych technik spawalniczych. Odpowiedź wskazująca na strumień elektronów odnosi się do spawania elektronowego, które działa na zupełnie innej zasadzie, gdzie wiązka elektronów jest kierowana na spawany materiał w próżni, co nie ma zastosowania w metodzie TIG. Ponadto, spawanie elektrodą topliwą w osłonie dwutlenku węgla odnosi się do metody MAG (Metal Active Gas), która również różni się zasadniczo od TIG, gdyż wykorzystuje elektrodę, która topnieje podczas procesu spawania. Łuk plazmowy to inna forma spawania, która stosuje plazmę do generowania wysokiej temperatury, ale również nie jest tożsama z metodą TIG. Wiele osób myli te metody ze względu na ich podobieństwa w użyciu gazu ochronnego, jednak różnice w zastosowaniu elektrod i mechanizmach spawania są kluczowe dla zrozumienia, która technika jest odpowiednia w danym kontekście. Niezrozumienie tych różnic prowadzi do błędnych wniosków i wyborów technologicznych, co może skutkować problemami z jakością spoin oraz efektywnością produkcji.

Pytanie 31

Woltomierz, podłączony do prądniczki tachometrycznej o stałej 10 V/1000 obr/min, pokazuje napięcie 7,5 V. Jaką prędkość obrotową mierzymy?

A. 7500 obr/min
B. 7 obr/min
C. 750 obr/min
D. 75 obr/min
Odpowiedź 750 obr/min jest poprawna, ponieważ woltomierz wskazuje napięcie 7,5 V, a prądniczka tachometryczna ma stałą 10 V przypadającą na 1000 obr/min. Aby obliczyć prędkość obrotową, stosujemy proporcję: jeśli 10 V odpowiada 1000 obr/min, to 7,5 V odpowiada x obr/min. Wykonując obliczenia, otrzymujemy: x = (7,5 V * 1000 obr/min) / 10 V = 750 obr/min. Praktyczne zastosowanie takiej analizy można znaleźć w automatyce i inżynierii, gdzie prędkości obrotowe silników są kluczowe dla precyzyjnego sterowania procesami. W branży motoryzacyjnej, na przykład, prędkości obrotowe silników są monitorowane za pomocą tachometrów, które mogą być oparte na prądnicach tachometrycznych. Zrozumienie tych zasad jest istotne zarówno dla projektantów, jak i techników, aby zapewnić efektywność i bezpieczeństwo systemów napędowych.

Pytanie 32

Transformator specjalny działający w warunkach zbliżonych do zwarcia, do którego podłącza się przyrząd pomiarowy, nosi nazwę

A. transformator do zmiany liczby faz
B. transformator bezpieczeństwa
C. przekładnik prądowy
D. przekładnik napięciowy
Zarówno transformator bezpieczeństwa, jak i przekładnik napięciowy, posiadają swoje unikalne zastosowania, ale nie pełnią funkcji zbliżonej do przekładnika prądowego. Transformator bezpieczeństwa jest zaprojektowany w celu ograniczenia napięcia i ochrony systemów pomiarowych przed wysokimi wartościami napięcia, co sprawia, że nie może pracować w pełni obciążonym stanie zwarcia, jak to ma miejsce w przypadku przekładników prądowych. Jego zastosowanie głównie koncentruje się na zapewnieniu bezpieczeństwa ludzi oraz urządzeń w obwodach elektrycznych. Z kolei przekładnik napięciowy działa na zasadzie przekształcania wysokiego napięcia na niskie w celu pomiaru napięcia w obwodach. Oba te urządzenia są używane w systemach pomiarowych, ale ich struktura i funkcjonalność są inne. Zastosowanie transformatorów do zmiany liczby faz dotyczy innego aspektu konwersji energii elektrycznej i nie ma zastosowania w kontekście pomiarów prądowych. Wybór niewłaściwego urządzenia do określonego pomiaru często wynika z braku zrozumienia różnic między tymi urządzeniami, co może prowadzić do poważnych błędów w analizie działania systemu. W praktyce ważne jest, aby dokładnie rozumieć zastosowania różnych typów transformatorów i przekładników, aby odpowiednio je wykorzystać w projektach elektrycznych oraz zapewnić bezpieczeństwo i efektywność operacji.

Pytanie 33

Który z elementów tyrystora ma funkcję sterowania?

A. Bramka
B. Źródło
C. Katoda
D. Anoda
Bramka tyrystora, znana również jako terminal bramkowy, odgrywa kluczową rolę w jego działaniu, pełniąc funkcję sterującą. W momencie dostarczenia sygnału sterującego na bramkę, dochodzi do zainicjowania przewodzenia prądu pomiędzy anodą a katodą. Tyrystory są szeroko stosowane w aplikacjach wymagających precyzyjnego zarządzania dużymi prądami i napięciami, takich jak prostowniki, regulatory mocy oraz układy przełączające. Dzięki możliwości sterowania prądem za pomocą niskiego napięcia na bramce, tyrystory pozwalają na zdalne zarządzanie obciążeniem bez konieczności stosowania skomplikowanych układów mechanicznych. W praktyce, tyrystory z bramką są kluczowe w systemach automatyki przemysłowej, gdzie stabilna i efektywna kontrola mocy jest niezbędna do zapewnienia prawidłowego funkcjonowania maszyn.

Pytanie 34

Elektrozawór typu normalnie zamknięty o parametrach 230V AC, 50Hz, DN 3/8" FAF 61 mm, nie aktywuje się po podaniu napięcia znamionowego. Przystępując do serwisu elektrozaworu, trzeba najpierw wyłączyć napięcie zasilające, a następnie, w pierwszej kolejności

A. zmierzyć rezystancję cewki
B. wymienić membranę
C. wymienić uszczelkę
D. zwiększyć napięcie zasilania i podać je na cewkę elektrozaworu
Mierzenie rezystancji cewki elektrozaworu jest kluczowym krokiem w diagnostyce problemów z jego działaniem. Cewka, będąca sercem elektrozaworu, generuje pole elektromagnetyczne, które otwiera lub zamyka zawór. Sprawdzenie rezystancji cewki pozwala określić, czy nie występuje uszkodzenie, takie jak przerwanie drutu lub zwarcie. Standardowe wartości rezystancji dla cewki elektrozaworu powinny odpowiadać temu, co podano w specyfikacji producenta. Jeśli wartość ta jest znacznie niższa lub nieodpowiednia, może to wskazywać na uszkodzenie cewki. W praktyce, aby przeprowadzić pomiar, należy użyć multimetru ustawionego na pomiar rezystancji, co jest standardową procedurą w branży. Po potwierdzeniu, że cewka jest sprawna, można kontynuować diagnostykę, sprawdzając inne elementy zaworu, jak membrana lub uszczelki. Właściwe podejście oparte na pomiarze rezystancji cewki jest nie tylko zgodne z najlepszymi praktykami, ale może znacznie przyspieszyć proces naprawy.

Pytanie 35

Jakie jest moment obrotowy na wale silnika synchronicznego o mocy 3,14 kW przy prędkości obrotowej 3000 obr/min?

A. 1 Nm
B. 986 Nm
C. 9 420 Nm
D. 10 Nm
W przypadku momentu obrotowego na wale silnika synchronicznego, istnieje kilka kluczowych koncepcji, które mogą prowadzić do błędnych odpowiedzi. Moment obrotowy jest miarą siły, która powoduje obrót ciała wokół osi. Odpowiedzi takie jak 986 Nm, 1 Nm, czy 9 420 Nm nie uwzględniają prawidłowego przeliczenia mocy na moment obrotowy. Często mylnie przyjmuje się, że moc silnika bezpośrednio przekłada się na moment obrotowy, co jest nieprawidłowe. Prawidłowe obliczenie wymaga uwzględnienia zarówno mocy, jak i prędkości obrotowej. Typowym błędem jest także mylenie jednostek, zwłaszcza przy konwersji mocy z kilowatów na waty, co może prowadzić do znacznych niedoszacowań lub przeszacowań momentu obrotowego. Przykładowo, odpowiedź 986 Nm sugeruje, że silnik jest znacznie bardziej mocny niż to wynika z podanych danych. Z drugiej strony, odpowiedzi takie jak 1 Nm czy 10 Nm również nie oddają rzeczywistej wartości momentu, co może wpłynąć na niewłaściwy dobór napędu w praktycznych zastosowaniach przemysłowych. Dokładne zrozumienie tych zasad jest kluczowe dla inżynierów i techników, aby unikać potencjalnych problemów w projektowaniu układów napędowych.

Pytanie 36

Jakie wymiary biorą pod uwagę dopuszczalne odchylenia w wykonaniu elementu mechanicznego?

A. Rzeczywiste
B. Jednostronne
C. Graniczne
D. Nominalne
Odpowiedź 'Graniczne' jest prawidłowa, ponieważ wymiary graniczne definiują dopuszczalne zakresy odchyleń od wymiarów nominalnych, które są kluczowe w inżynierii mechanicznej. Wymiary te określają maksymalne i minimalne wartości, w ramach których element mechaniczny może być wykonany, aby zapewnić jego funkcjonalność i interoperacyjność z innymi komponentami. Przykładowo, w produkcji wałów, wymiary graniczne pozwalają na określenie, jak blisko rzeczywiste wymiary mogą być do wartości nominalnych, a jednocześnie nie wpłyną na działanie maszyny. W praktyce, normy takie jak ISO 286 określają zasady tolerancji wymiarowych, co jest niezbędne do zapewnienia odpowiedniej jakości i wymienności części. Wiedza na temat wymiarów granicznych jest kluczowa, ponieważ niewłaściwe ich zdefiniowanie może prowadzić do wadliwego działania całego układu mechanicznego lub nawet do jego awarii. Dlatego inżynierowie muszą dokładnie analizować te parametry podczas projektowania i produkcji.

Pytanie 37

Jakie elementy znajdują się w zespole przygotowania powietrza?

A. filtr, zawór dławiący, manometr, smarownica
B. filtr, zawór redukcyjny, manometr, smarownica
C. sprężarka, filtr, manometr, smarownica
D. sprężarka, filtr, zawór redukcyjny, manometr
Zespół przygotowania powietrza to kluczowy element systemów pneumatycznych, którego celem jest zapewnienie odpowiedniego stanu powietrza do dalszego wykorzystania. W skład tego zespołu wchodzi filtr, zawór redukcyjny, manometr i smarownica. Filtr odpowiada za oczyszczanie powietrza z zanieczyszczeń stałych i cieczy, co jest niezbędne do ochrony delikatnych komponentów systemów pneumatycznych. Zawór redukcyjny reguluje ciśnienie powietrza, co pozwala na dostosowanie go do wymagań poszczególnych urządzeń. Manometr umożliwia monitorowanie ciśnienia, co jest kluczowe dla bezpieczeństwa i efektywności pracy systemu. Smarownica natomiast dostarcza olej do elementów roboczych, co zmniejsza tarcie i zużycie, a także zapewnia długą żywotność urządzeń. Zgodnie z normami ISO 8573, odpowiednia jakość powietrza jest kluczowa w zastosowaniach przemysłowych, dlatego właściwa konfiguracja zespołu przygotowania powietrza jest niezbędna dla zapewnienia niezawodności oraz bezpieczeństwa operacji.

Pytanie 38

Jakie czynności trzeba wykonać, aby zamocować koło pasowe na wale przy użyciu pasowania?

A. Obniżyć temperaturę koła pasowego i wału
B. Podgrzać wał i schłodzić koło pasowe
C. Podgrzać koło pasowe i schłodzić wał
D. Podgrzać koło pasowe oraz wał
Rozgrzanie koła pasowego i schłodzenie wału to technika stosowana w celu uzyskania odpowiedniego pasowania między tymi elementami. Kiedy koło pasowe jest podgrzewane, jego średnica zwiększa się, co pozwala na jego łatwe nałożenie na wał. Z kolei schłodzenie wału powoduje jego kurczenie, co dodatkowo ułatwia proces montażu. Po zakończeniu procesu chłodzenia wał wraca do pierwotnych wymiarów, a koło pasowe, które stygło, kurczy się, mocno przylegając do wału. Tego typu pasowanie nazywa się pasowaniem cieplnym i jest szeroko stosowane w przemyśle, zwłaszcza w przypadku montażu wałów napędowych i innych elementów ruchomych. Przykładem praktycznego zastosowania tej metody jest montaż kół pasowych w silnikach spalinowych, gdzie precyzyjne dopasowanie elementów ma kluczowe znaczenie dla ich wydajności oraz żywotności. Warto także zauważyć, że ta procedura powinna być przeprowadzana zgodnie z zaleceniami producentów, aby zapewnić optymalne efekty oraz uniknąć uszkodzenia elementów.

Pytanie 39

Przed przystąpieniem do wymiany zaworu elektropneumatycznego, który jest sterowany przez PLC, należy zająć się zasilaniem pneumatycznym.

A. wprowadzić sterownik PLC w tryb STOP, odłączyć zasilanie elektryczne oraz pneumatyczne układu
B. wyłączyć dopływ sprężonego powietrza, odłączyć siłownik oraz wyłączyć PLC
C. dezaktywować zasilanie pneumatyczne, odłączyć przewody od cewki elektrozaworu i przewody
D. odłączyć przewody zasilające sterownik oraz przewody pneumatyczne od elektrozaworu
Poprawna odpowiedź wskazuje na kluczowe etapy przygotowania do wymiany zaworu elektropneumatycznego, który jest zintegrowany z systemem sterowania PLC. Wprowadzenie sterownika PLC w tryb STOP jest niezbędne, aby zapobiec niekontrolowanemu działaniu systemu podczas przeprowadzania prac serwisowych. Wyłączenie zasilania elektrycznego oraz pneumatycznego całego układu eliminuje ryzyko wystąpienia niebezpiecznych sytuacji, takich jak przypadkowe uruchomienie czy wyciek sprężonego powietrza, co mogłoby prowadzić do uszkodzeń sprzętu lub zagrożenia dla operatorów. Dobrym przykładem jest procedura serwisowa w przemyśle automatyzacyjnym, gdzie przed wymianą komponentów pneumatycznych zawsze stosuje się blokady i procedury bezpieczeństwa, zgodne z normami ISO 13849, które regulują bezpieczeństwo maszyn. Praktyczne zastosowanie tej wiedzy zwiększa bezpieczeństwo operacji oraz efektywność pracy, minimalizując ryzyko awarii i wypadków.

Pytanie 40

Podczas prac związanych z montażem mechatronicznych elementów konstrukcyjnych na znacznej wysokości, co należy założyć?

A. buty ochronne
B. okulary ochronne
C. maskę przeciwpyłową
D. kask ochronny
Kask ochronny jest kluczowym elementem wyposażenia ochronnego podczas prac na wysokości, zwłaszcza przy montażu mechatronicznych elementów konstrukcyjnych. Jego głównym zadaniem jest ochrona głowy przed urazami w przypadku upadku przedmiotów, co jest szczególnie istotne w środowiskach przemysłowych. Standardy takie jak PN-EN 397:2012 podkreślają konieczność stosowania kasków, które spełniają określone normy bezpieczeństwa. Przykładowo, w sytuacjach, gdzie mogą wystąpić spadające narzędzia lub materiały, kask może zapobiec poważnym obrażeniom lub nawet urazom śmiertelnym. Warto również zwrócić uwagę na dodatkowe funkcje kasków, takie jak możliwość montażu osłon twarzy czy słuchawek komunikacyjnych, co zwiększa komfort i bezpieczeństwo pracy. W kontekście mechatroniki, gdzie elementy są często ciężkie i wymagają precyzyjnego montażu, odpowiednia ochrona głowy staje się niezbędna.