Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 29 maja 2025 08:28
  • Data zakończenia: 29 maja 2025 08:48

Egzamin zdany!

Wynik: 23/40 punktów (57,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Do przechowywania stężonego kwasu azotowego(V) w laboratorium należy stosować:

A. Szczelnie zamknięte butelki z ciemnego szkła
B. Otwarty plastikowy pojemnik
C. Aluminiowy termos laboratoryjny
D. Metalową puszkę bez wieczka
Kwas azotowy(V) to substancja wyjątkowo agresywna chemicznie i niebezpieczna. Przechowuje się go w szczelnie zamkniętych butelkach z ciemnego szkła, bo to materiał odporny na jego działanie oraz chroniący przed światłem. Światło przyspiesza rozkład kwasu azotowego, a ciemne szkło ogranicza ten proces, co ma kluczowe znaczenie dla zachowania jego właściwości. Dodatkowo szczelne zamknięcie zapobiega uwalnianiu się szkodliwych par oraz absorpcji wilgoci z powietrza, co mogłoby prowadzić do niepożądanych reakcji i obniżenia stężenia. To rozwiązanie zgodne z większością norm BHP i zaleceniami producentów odczynników chemicznych. W praktyce laboratoryjnej stosowanie ciemnych butelek jest po prostu standardem, bo minimalizuje ryzyko zarówno dla ludzi jak i samej substancji. Warto pamiętać, że kwas azotowy atakuje większość metali oraz niektóre tworzywa sztuczne, dlatego szkło jest tu najbezpieczniejsze. Dodatkowo – dobra praktyka to trzymać takie butelki w szafkach chemoodpornych, najlepiej z wentylacją. Moim zdaniem, jeśli ktoś planuje pracę w laboratorium, powinien znać te zasady na pamięć.

Pytanie 2

Na podstawie zamieszczonych w tabeli opisów metod rozdzielania mieszanin, dobierz odpowiadające im nazwy.

Tabela. Metody rozdzielania mieszanin
Lp.Opis metody
I.Zlewanie cieczy znad osadu.
II.Przeprowadzenie ciekłego rozpuszczalnika w stan pary.
III.Wyodrębnianie z mieszaniny ciał stałych lub cieczy składnika przy pomocy rozpuszczalnika tak dobranego, aby rozpuszczał żądany związek chemiczny.
IV.Powolne opadanie cząstek substancji stałej w cieczy pod wpływem własnego ciężaru.

A. I – dekantacja, II – odparowanie, III – ekstrakcja, IV – sedymentacja.
B. I – sedymentacja, II – sublimacja, III – destylacja, IV – dekantacja.
C. I – dekantacja, II – sublimacja, III – filtracja, IV – sedymentacja.
D. I – sedymentacja II– krystalizacja, III – ekstrakcja, IV – dekantacja.
Wybór niepoprawnej odpowiedzi może wynikać z nieprawidłowego zrozumienia metod separacji mieszanin. Dekantacja to nie tylko proste zlewanie cieczy, lecz także bardziej zaawansowany proces, który wymaga znajomości odpowiednich technik, aby skutecznie oddzielić ciecz od osadu. Z kolei sublimacja, jako proces przejścia substancji z fazy stałej w gazową, ma swoje szczególne zastosowanie, ale nie jest stosowana do oddzielania mieszanych substancji w sposób opisany w pytaniu. Krystalizacja i ekstrakcja to również różne metody separacji, które mają swoje unikalne zastosowania, jednak ich definicje zostały pomieszane. Odparowanie jest procesem, który dokonuje się przez podgrzanie cieczy, a nie poprzez prostą separację. Dodatkowo, sedymentacja jako proces opadania cząstek ciał stałych pod wpływem grawitacji, nie może być mylona z innymi metodami. Kluczowe jest, aby nie mylić terminologii oraz zasad działania tych metod, gdyż każda z nich ma swoje specyficzne zastosowanie w różnych dziedzinach nauki i przemysłu. Zrozumienie różnic między tymi procesami jest niezbędne do ich prawidłowego stosowania i efektywnej pracy w laboratoriach czy zakładach przemysłowych.

Pytanie 3

Na etykiecie odważki analitycznej znajduje się napis: Z odważki tej można przygotować

Odważka analityczna

azotan(V) srebra(I)

AgNO3

0,1 mol/dm3

A. jedną kolbę miarową o pojemności 1000 cm3 mianowanego roztworu AgNO3 o stężeniu 0,1 mol/dm3.
B. cztery kolby miarowe o pojemności 250 cm3 mianowanego roztworu AgNO3 o stężeniu 0,025 mol/dm3.
C. dwie kolby miarowe o pojemności 500 cm3 mianowanego roztworu AgNO3 o stężeniu 0,1 mol/dm3.
D. jedną kolbę miarową o pojemności 500 cm3 mianowanego roztworu AgNO3 o stężeniu 0,05 mol/dm3.
Odpowiedź jest poprawna, ponieważ na etykiecie odważki analitycznej znajduje się informacja o stężeniu 0,1 mol/dm³. Aby przygotować 1000 cm³ (1 dm³) roztworu AgNO₃ o takim stężeniu, potrzebujemy 0,1 mola tego związku. Mnożąc liczbę moli przez masę molową AgNO₃ (169,87 g/mol), otrzymujemy masę potrzebną do przygotowania roztworu, która wynosi 16,987 g. W praktyce, przygotowując roztwór o konkretnym stężeniu, kluczowe jest precyzyjne odmierzenie masy substancji oraz odpowiednie rozcieńczenie. Taka umiejętność jest niezbędna w laboratoriach chemicznych, gdzie dokładność odgrywa podstawową rolę w eksperymentach i analizach. Przygotowanie roztworu o właściwym stężeniu jest zgodne z zasadami dobrej praktyki laboratoryjnej (GLP), które zapewniają wiarygodność wyników badań. Dodatkowo, umiejętność przygotowywania roztworów o określonych stężeniach jest fundamentalna w chemii analitycznej, chemii organicznej oraz wielu zastosowaniach przemysłowych, w tym w farmaceutyce.

Pytanie 4

Zgłębniki o konstrukcji przypominającej świder są wykorzystywane do pobierania próbek różnych materiałów

A. sypkich
B. ciastowatych
C. płynnych
D. półpłynnych
Zgłębniki w kształcie świdra, także znane jako świdry próbne, są specjalistycznymi narzędziami przeznaczonymi do pobierania próbek materiałów o konsystencji ciastowatej. Ich konstrukcja, przypominająca świdry, pozwala na efektywne wwiercanie się w bardziej gęste i lepkie substancje, co jest kluczowe w wielu dziedzinach, takich jak geologia, inżynieria materiałowa oraz nauki przyrodnicze. Przykładem zastosowania zgłębnika świdrowego jest badanie gruntów w celu określenia ich nośności lub składu, co jest istotne podczas projektowania fundamentów budynków. W praktyce, pobieranie próbek ciastowatych materiałów, jak np. gliny czy osady, jest trudne, dlatego użycie zgłębnika w kształcie świdra znacząco zwiększa precyzję i efektywność tego procesu. W standardach branżowych, takich jak ASTM D1586, opisane są metody pobierania próbek gruntów, które uwzględniają użycie takich narzędzi, co podkreśla ich fundamentalne znaczenie dla rzetelności badań geotechnicznych.

Pytanie 5

W tabeli zamieszczono temperatury wrzenia niektórych składników powietrza. Na podstawie tych danych podaj, który ze składników oddestyluje jako ostatni.

Temperatura wrzenia °CSkładniki
-245,9Neon
-182,96Tlen
-195,8Azot
-185,7Argon

A. Azot.
B. Argon.
C. Tlen.
D. Neon.
Wybór azotu, neonu czy argonu jako ostatniego gazu, który oddestyluje, to błąd wynikający z nieprawidłowego rozumienia zasad fizyki gazów i temperatur wrzenia. Azot wrze w -195,79°C, więc jest jednym z tych gazów, które oddzielają się znacznie wcześniej niż tlen. Neon z temperaturą wrzenia -246,08°C też ma znacznie niższą wartość niż tlen, dlatego również wydostaje się przed nim. Argon, z temperaturą -185,85°C, znajduje się gdzieś pomiędzy nimi, także oddestylowuje przed tlenem. To nieprawidłowe podejście wynika z braku zrozumienia, jak działa temperatura wrzenia i jak wpływa na separację gazów. A w praktyce, różnice te są kluczowe w przemyśle. Błędne wnioski mogą prowadzić do problemów w produkcji, dlatego warto znać właściwości fizyczne gazów oraz ich znaczenie w technologii, bo to naprawdę podstawowe aspekty w inżynierii chemicznej.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Jakie urządzenie jest wykorzystywane do oczyszczania próbki gazowej?

A. rozdzielacz
B. płuczka
C. chłodnica
D. zestaw sit
Płuczka jest urządzeniem stosowanym do oczyszczania gazów, które działa na zasadzie przepływu gazu przez ciecz. Proces ten pozwala na usunięcie zanieczyszczeń, takich jak pyły, drobne cząstki stałe oraz różne substancje chemiczne, które mogą być rozpuszczalne w cieczy. W praktyce płuczki wykorzystywane są w różnych gałęziach przemysłu, w tym w energetyce, przemyśle chemicznym oraz w procesach oczyszczania spalin. Standardy branżowe, takie jak ISO 14001 dotyczące zarządzania środowiskowego, podkreślają znaczenie redukcji emisji szkodliwych substancji do atmosfery, co czyni płuczki kluczowym elementem w systemach kontroli zanieczyszczeń. Przykładowo, w elektrowniach węglowych płuczki są używane do oczyszczania spalin przed ich emisją do atmosfery, co przyczynia się do ochrony środowiska oraz spełnienia norm prawnych dotyczących jakości powietrza.

Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Metodą, która nie służy do utrwalania próbek wody, jest

A. dodanie biocydów
B. zakwaszenie do pH < 2
C. schłodzenie do temperatury 2-5°C
D. naświetlanie lampą UV
Naświetlanie próbek wody lampą UV nie jest skuteczną metodą ich utrwalania, ponieważ ta technika służy głównie do dezynfekcji wody, a nie do długoterminowego utrwalania próbek. Proces naświetlania UV eliminuje mikroorganizmy, jednak nie zatrzymuje procesów chemicznych, które mogą prowadzić do zmian w składzie chemicznym próbki. W praktyce, dla zachowania integralności próbki wody, stawia się na metody takie jak schłodzenie do temperatury 2-5°C, co ogranicza aktywność mikroorganizmów i spowalnia procesy biochemiczne. Dodanie biocydów również może być skuteczne w eliminacji niepożądanych mikroorganizmów, natomiast zakwaszenie próbki do pH < 2 ma na celu denaturację białek i stabilizację niektórych związków chemicznych, co jest szczególnie ważne w kontekście analizy chemicznej. W przypadku analizy wody, zwłaszcza w kontekście norm takich jak PN-EN ISO 5667, każda z tych metod ma swoje wytyczne i zasady stosowania, które należy przestrzegać, aby zapewnić wiarygodność wyników.

Pytanie 10

Co oznacza skrót AKT?

A. titranta automatyczną kontrolę
B. amid kwasu tiooctowego
C. kontrolno-techniczną analizę
D. krzywą titracyjną analityczną
Skrót AKT odnosi się do amidu kwasu tiooctowego, który jest istotnym związkiem chemicznym o szerokim zastosowaniu w różnych dziedzinach, w tym w chemii analitycznej i syntezie organicznej. Amid kwasu tiooctowego jest wykorzystywany jako odczynnik w reakcjach chemicznych, w tym w tworzeniu złożonych cząsteczek organicznych. Jego unikalne właściwości sprawiają, że jest przydatny w procesach, takich jak modyfikacja powierzchni materiałów i nanoszenie warstw ochronnych. Przykładowo, w laboratoriach chemicznych używa się go do syntezy związków, które następnie mogą być badane pod kątem ich właściwości biologicznych lub fizykochemicznych. Ponadto, amid kwasu tiooctowego ma zastosowanie w branży farmaceutycznej, gdzie jest wykorzystywany w produkcji niektórych leków. Zrozumienie roli AKT w chemii pozwala na lepsze projektowanie eksperymentów i analizę wyników, co jest kluczowe dla zapewnienia wysokiej jakości badań i zgodności z najlepszymi praktykami w branży.

Pytanie 11

Wskaż, do jakiego typu należą zamieszczone równania reakcji.

I. 2 Mg + O2 → 2 MgO
II. 2 KMnO4 → K2MnO4 + MnO2 + O2
III. BaCl2 + H2SO4→ BaSO4 + 2 HCl

A. I - synteza, II - analiza, HI - wymiana pojedyncza.
B. I - analiza, II - synteza, HI - wymiana podwójna.
C. I - wymiana pojedyncza, II — analiza, III - synteza.
D. I - synteza, II - analiza, DI - wymiana podwójna.
Wybór błędnej odpowiedzi może wynikać z niezrozumienia podstawowych zasad klasyfikacji reakcji chemicznych. Odpowiedzi, które klasyfikują reakcje w sposób niewłaściwy, mogą wskazywać na pomieszanie pojęć dotyczących syntezy, analizy oraz wymiany. Synteza polega na łączeniu dwóch lub więcej reagentów do formowania jednego produktu, co zostało właściwie ukazane w pierwszej reakcji. Jednak w niepoprawnych odpowiedziach często myli się ją z reakcjami analizy, które dotyczą rozkładu substancji na prostsze związki. Dodatkowo, odpowiedzi zawierające niewłaściwe typy wymiany, takie jak wymiana pojedyncza, mogą zmylić, gdyż nie odzwierciedlają one rzeczywistego przebiegu chemicznego. W reakcji wymiany podwójnej, jak w przypadku BaCl2 + H2SO4, istotne jest zrozumienie, że dwa różne związki wymieniają swoje składniki, co skutkuje powstaniem nowych substancji. Kluczowym błędem jest również nieodróżnianie reakcji rozkładu od syntezy; wiele osób może mylić procesy analizy i syntezy, co prowadzi do nieprawidłowych klasyfikacji. Poprawne rozumienie typów reakcji chemicznych jest niezbędne, aby móc efektywnie analizować i przewidywać wyniki reakcji, a także w praktycznych zastosowaniach w laboratoriach i przemyśle chemicznym.

Pytanie 12

Korzystając z wykresu wskaż, w jakiej postaci występuje woda w temperaturze 10°C i pod ciśnieniem 100 barów.

Ilustracja do pytania
A. Ciecz.
B. Gaz.
C. Sublimat
D. Lód.
Wybór odpowiedzi "Ciecz" jest całkowicie poprawny, ponieważ woda w temperaturze 10°C i ciśnieniu 100 barów znajduje się w obszarze fazy ciekłej na wykresie fazowym. Woda przy tych parametrach spełnia warunki, które umożliwiają jej istnienie w stanie ciekłym. To zjawisko jest kluczowe w różnych zastosowaniach technologicznych, takich jak procesy przemysłowe, gdzie woda jako ciecz pełni funkcję chłodziwa czy medium transportującego ciepło. W praktyce, znajomość stanów skupienia wody i ich zależności od ciśnienia i temperatury jest istotna w inżynierii chemicznej, meteorologii oraz inżynierii środowiska. Dobrą praktyką jest regularne analizowanie wykresów fazowych, które mogą wskazywać na potencjalne zmiany stanu skupienia substancji, co jest kluczowe w projektowaniu i eksploatacji systemów, w których woda odgrywa fundamentalną rolę.

Pytanie 13

Aby uzyskać sole sodowe fenoli, należy stopić dany fenol z sodą (M = 106 g/mol), stosując 10% nadmiar w porównaniu do ilości stechiometrycznej, według równania:
2 ArOH + Na2CO3 → 2 ArONa + H2O + CO2 Ile sody jest wymagane do reakcji z 7,2 g 2-naftolu (M = 144 g/mol)?

A. 2,92 g
B. 2,65 g
C. 5,30 g
D. 5,83 g
Podczas rozwiązywania zadania, można się łatwo pomylić w obliczeniach dotyczących reagentów. Często się zdarza, że ktoś po prostu przyjmuje masę sody potrzebną do reakcji z 2-naftolem na podstawie masy 2-naftolu, nie patrząc na stechiometrię reakcji. Z równania to wiadomo, że na każdy 2 mole 2-naftolu potrzeba 1 mol Na2CO3. Jak się to ignoruje, to może się to skończyć błędami w obliczeniach. Często też pomijany jest nadmiar reagentu, co jest dość powszechnym błędem. W praktyce dodanie nadmiaru zapewnia, że reakcja przebiegnie do końca i zmniejsza ryzyko zostawienia nieprzereagowanych reagentów. Również niektórzy mogą się pomylić przy wyliczaniu masy molowej Na2CO3, co też prowadzi do złych wyników. Ważne, żeby dokładnie obliczyć masę molową i użyć odpowiednich wzorów chemicznych, bo nawet małe błędy tu mogą dać duże różnice w wynikach. W końcu, żeby dobrze to rozwiązać, trzeba aplikować zasady chemiczne i stechiometrię oraz skrupulatnie robić obliczenia.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

Podczas przygotowywania roztworów buforowych do analizy pH w laboratorium istotne jest, aby:

A. Zmierzyć pH po przypadkowym zmieszaniu soli i kwasu.
B. Dodać soli buforowej do dowolnej ilości wody.
C. Dokładnie odmierzyć masy składników i rozpuścić je w określonej objętości wody destylowanej.
D. Przygotować bufor wyłącznie z wody kranowej.
Prawidłowo przygotowany roztwór buforowy wymaga bardzo precyzyjnego odmierzania mas poszczególnych składników, jak również dokładnego uzupełnienia do ściśle określonej objętości, zwykle za pomocą wody destylowanej. To jest kluczowe, bo nawet niewielkie odchylenia od zalecanych proporcji mogą skutkować zmianą wartości pH, a co za tym idzie – błędami w analizie. Woda destylowana zapobiega wprowadzeniu dodatkowych jonów, które mogłyby zakłócić działanie buforu i zafałszować wyniki badania pH. Takie postępowanie to podstawa profesjonalnej praktyki laboratoryjnej, opisana w każdej instrukcji doświadczalnej oraz zgodna z normami branżowymi. Z mojego doświadczenia wynika, że najczęściej popełnianym błędem przez początkujących jest bagatelizowanie dokładności – czasem wydaje się, że 'odrobinę więcej' lub 'trochę mniej' nie zrobi różnicy, ale w chemii analitycznej nie ma miejsca na takie uproszczenia. Dobrze przygotowany bufor to podstawa wiarygodnych wyników, a sumienne przygotowanie odczynników świadczy o kompetencji laboranta.

Pytanie 16

Aby odcedzić galaretowaty osad, konieczne jest użycie sączka

A. miękki
B. sztywny
C. utwardzony
D. średni
Odpowiedź 'miękki' jest prawidłowa, ponieważ do przesączania galaretowatego osadu najlepiej zastosować sączek o właściwościach umożliwiających skuteczne oddzielanie cieczy od stałych cząstek. Miękkie sączki charakteryzują się zdolnością do wchłaniania większych cząstek, co czyni je odpowiednim wyborem w przypadku substancji o konsystencji galaretowatej. Przykładem sączków miękkich są te wykonane z papieru filtracyjnego, które mają wysoką porowatość i są w stanie zatrzymać cząstki, jednocześnie pozwalając na przepływ cieczy. W zastosowaniach laboratoryjnych, takie jak analiza chemiczna lub mikrobiologiczna, użycie odpowiednich sączków jest kluczowe dla uzyskania czystych i precyzyjnych wyników. Ponadto, użycie miękkiego sączka minimalizuje ryzyko uszkodzenia delikatnych cząstek, co jest istotne w przypadku analizy próbek, w których struktura materiału jest istotna dla dalszych badań. Zgodnie z normami ISO i dobrą praktyką laboratoryjną, dobór odpowiedniego sączka jest kluczowym etapem procesu filtracji.

Pytanie 17

Odczynnik chemiczny, w którym zawartość domieszek wynosi od 1 do 10%, jest nazywany odczynnikiem

A. spektralnie czysty
B. czysty
C. techniczny
D. czysty do analizy
Odpowiedzi "czysty do analizy", "czysty" oraz "spektralnie czysty" odnoszą się do odczynników o znacznie wyższej czystości niż odczynniki techniczne. Odczynniki czyste do analizy mają czystość na poziomie 99% i są stosowane w zastosowaniach, gdzie precyzyjne pomiary i reakcje chemiczne są kluczowe, na przykład w analizach jakościowych i ilościowych. Odczynniki te są zgodne z surowymi standardami, takimi jak normy ASTM lub ISO, co czyni je odpowiednimi do zastosowań laboratoryjnych, gdzie jakiekolwiek zanieczyszczenia mogłyby wpłynąć na wyniki badań. Z kolei odczynniki czyste oraz spektralnie czyste są wykorzystywane w bardziej zaawansowanych technikach analitycznych, takich jak spektroskopia, gdzie nawet śladowe zanieczyszczenia mogą skutkować błędnymi wynikami. Wybór niewłaściwego typu odczynnika do konkretnego zastosowania często prowadzi do istotnych błędów w badaniach, co podkreśla znaczenie odpowiedniego doboru środków chemicznych. W praktyce laboratoryjnej, nieprawidłowy wybór odczynnika może wynikać z braku znajomości ich właściwości oraz zastosowań, co jest krytyczne w kontekście uzyskiwania wiarygodnych rezultatów. Dlatego kluczowe jest, aby każdy chemik czy technik laboratoryjny był dobrze zaznajomiony z różnymi klasami odczynników oraz ich specyfikacjami.

Pytanie 18

Jaką objętość roztworu NaOH o stężeniu 1 mol/dm3 należy użyć, aby przygotować 50 cm3 roztworu NaOH o stężeniu 0,4 mol/dm3?

A. 10 cm3
B. 25 cm3
C. 20 cm3
D. 50 cm3
W przypadku błędnych odpowiedzi, można zauważyć typowe nieporozumienia związane z obliczeniami stężenia i objętości. Często osoby udzielające niewłaściwych odpowiedzi mylą pojęcia stężenia i objętości, co prowadzi do błędnych wniosków. Na przykład, 25 cm3 sugeruje, że wzięto pod uwagę większą objętość niż wymagana do osiągnięcia zamierzonego stężenia. W rzeczywistości, aby uzyskać roztwór o stężeniu 0,4 mol/dm3, trzeba skupić się na ilości moli NaOH potrzebnych w 50 cm3 roztworu, a to wymaga znajomości zależności pomiędzy stężeniem, objętością i ilością moli. Ponadto, 50 cm3 na pewno nie jest poprawną odpowiedzią, ponieważ oznaczałoby to, że cała objętość roztworu o stężeniu 1 mol/dm3 zostałaby użyta bez jakiejkolwiek modyfikacji stężenia, co jest sprzeczne z założeniem problemu. Dlatego kluczowe jest zrozumienie zasad rozcieńczania roztworów, aby uniknąć takich błędów. W praktyce laboratorium chemicznego, nieumiejętność obliczenia odpowiedniej objętości roztworu może prowadzić do niepoprawnych wyników eksperymentów oraz marnotrawienia materiałów chemicznych.

Pytanie 19

Z 250 g benzenu (M = 78 g/mol) uzyskano 350 g nitrobenzenu (M = 123 g/mol). Jaka jest wydajność reakcji nitrowania?

A. 77,7%
B. 88,8%
C. 83,5%
D. 93,4%
Wydajność reakcji nitrowania obliczamy, porównując masę uzyskanego produktu z maksymalną masą, którą moglibyśmy otrzymać, bazując na ilości reagenta. W przypadku benzenu, z jego masy molowej (M = 78 g/mol) możemy obliczyć, ile moli benzenu mamy w 250 g: 250 g / 78 g/mol = 3,21 mol. Reakcja nitrowania benzenu do nitrobenzenu produkuje jeden mol nitrobenzenu na każdy mol benzenu. Dlatego teoretycznie moglibyśmy otrzymać 3,21 mol nitrobenzenu, co przekłada się na masę: 3,21 mol * 123 g/mol = 394,83 g nitrobenzenu. Jednak w praktyce uzyskaliśmy tylko 350 g. Aby obliczyć wydajność, stosujemy wzór: (masa uzyskana / masa teoretyczna) * 100%. W naszym przypadku wydajność wynosi (350 g / 394,83 g) * 100% = 88,8%. Taka analiza i obliczenia są kluczowe w przemyśle chemicznym, ponieważ pozwalają na ocenę skuteczności procesów oraz optymalizację wykorzystania surowców, co jest zgodne z najlepszymi praktykami w zakresie zarządzania produkcją chemiczną.

Pytanie 20

Określ, jakie informacje powinny być zarejestrowane w ewidencji wydania substancji niebezpiecznych, stosowanych w badaniach laboratoryjnych?

A. Ilości wydane, stan magazynowy, imię i nazwisko osoby, której przekazano substancję
B. Liczba przeprowadzonych prób z użyciem tej substancji, data wydania
C. Data ważności, forma substancji
D. Metoda wydania, imię i nazwisko osoby wydającej
Zawarte w niepoprawnych odpowiedziach koncepcje nie spełniają wymogów dotyczących ewidencji rozchodu substancji niebezpiecznych. Termin przydatności i konsystencja substancji, mimo że są ważnymi informacjami dla użytkowników, nie dotyczą bezpośrednio ewidencji rozchodu. Oceniając substancje chemiczne, istotne jest, aby znać ich stan i właściwości, ale dokumentacja rozchodu skupia się na zapisie ich użycia i dostępności. Sposób wydawania oraz nazwisko osoby wydającej, choć mogą być istotnymi elementami, nie dostarczają wystarczających informacji o stanie zapasów ani o ilości substancji wydanej, co jest kluczowe dla zachowania bezpieczeństwa i zarządzania ryzykiem. Z kolei ilość prowadzonych prób przy użyciu danej substancji oraz termin wydania, to dane, które bardziej pasują do dokumentacji działań laboratoryjnych, a nie do ewidencji rozchodu. Tego typu myślenie może prowadzić do nieefektywnego zarządzania substancjami chemicznymi i ewentualnych naruszeń przepisów dotyczących bezpieczeństwa w laboratoriach, co jest krytyczne zarówno w kontekście ochrony zdrowia pracowników, jak i ochrony środowiska. Ewidencja powinna być zgodna z wytycznymi regulacyjnymi, a prawidłowe podejście do dokumentacji jest kluczowe dla każdej instytucji zajmującej się pracą z substancjami niebezpiecznymi.

Pytanie 21

Ile węglanu sodu trzeba odmierzyć, aby uzyskać 200 cm3 roztworu o stężeniu 8% (m/v)?

A. 1,6 g
B. 8,0 g
C. 16,0 g
D. 9,6 g
Aby obliczyć masę węglanu sodu (Na2CO3) potrzebną do przygotowania 200 cm³ roztworu o stężeniu 8% (m/v), możemy zastosować podstawowe wzory chemiczne. Stężenie masowe (m/v) odnosi się do masy substancji rozpuszczonej w jednostce objętości roztworu. W przypadku 8% roztworu oznacza to, że w 100 cm³ roztworu znajduje się 8 g węglanu sodu. Dla 200 cm³ roztworu odpowiednia masa wynosi zatem 8 g x 2 = 16 g. W kontekście praktycznym, przygotowanie roztworów o określonym stężeniu jest kluczowe w laboratoriach chemicznych oraz w przemyśle, gdzie precyzyjne pomiary są wymagane dla zapewnienia jakości produktów. Na przykład, w analizach chemicznych czy syntezach, właściwe przygotowanie roztworów z odpowiednimi stężeniami ma zasadnicze znaczenie dla uzyskania powtarzalnych i dokładnych wyników. Zgodnie z dobrymi praktykami laboratoryjnymi, zawsze należy stosować odpowiednie metody ważeń oraz kalibracji sprzętu, aby zapewnić dokładność i wiarygodność uzyskanych wyników.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Na podstawie informacji zawartych w tabeli wskaż mieszaninę oziębiającą o temperaturze -21 °C.

Temperatura mieszaninySkład mieszaninyStosunek masowy
-15 °Clód + octan sodu10:9
-18 °Clód + chlorek amonu10:3
-21 °Clód + chlorek sodu3:1
-25 °Clód + azotan amonu1:9

A. 90 g lodu i 30 g chlorku amonu.
B. 150 g lodu i 50 g chlorku sodu.
C. 100 g lodu i 30 g chlorku amonu.
D. 10 g lodu i 3 g chlorku sodu.
W przypadku pozostałych odpowiedzi, które nie są poprawne, można dostrzec pewne powszechne błędy analityczne w rozumowaniu. W pierwszej odpowiedzi, 10 g lodu i 3 g chlorku sodu, proporcja jest niewystarczająca, aby efektywnie obniżyć temperaturę do -21 °C. Oznacza to, że nie zapewni ona odpowiedniej ilości czynnika chłodzącego. W drugiej odpowiedzi, 90 g lodu i 30 g chlorku amonu, chociaż teoretycznie można uzyskać niską temperaturę, stosunek masowy nie odpowiada wymaganemu 3:1, ponieważ chlorek amonu ma inne właściwości fizyczne i reakcyjne niż chlorek sodu. Ostatnia odpowiedź, 100 g lodu i 30 g chlorku amonu, również nie jest zgodna z wymogami, ponieważ nie osiąga oczekiwanej temperatury i ponownie nie uwzględnia faktu, że chlorek amonu nie jest idealnym substytutem dla chlorku sodu w tej konkretnej aplikacji. Często popełniane błędy w takich zadaniach polegają na pomijaniu zasad dotyczących proporcji masowych i sposobów reakcji chemicznych, co prowadzi do nieprawidłowych wniosków. Zrozumienie tych zasad i ich konsekwencji jest niezwykle istotne dla prawidłowego stosowania wiedzy chemicznej w praktyce.

Pytanie 24

Do pojemników na odpady stałe, które są przeznaczone do utylizacji, nie można wprowadzać bezpośrednio cyjanków oraz związków kompleksowych zawierających jony cyjankowe z powodu

A. zajścia nagłej, egzotermicznej reakcji
B. produkcji toksycznych par lub gazów
C. uwalniania związków o drażniącym zapachu
D. powolnego rozkładu związków
Wybór odpowiedzi dotyczącej zajścia gwałtownej, egzotermicznej reakcji jest błędny, ponieważ procesy egzotermiczne nie są jedynym lub najważniejszym zagrożeniem związanym z cyjankami. Choć niektóre reakcje chemiczne mogą wydzielać ciepło, to w przypadku cyjanków kluczowym zagrożeniem jest ich zdolność do generowania toksycznych gazów, które stanowią poważne ryzyko dla zdrowia. Wydanie cyjanków do utylizacji prowadzi do sytuacji, w której ich reakcje z innymi substancjami mogą generować niebezpieczne produkty, jednak nie każde zajście reakcji chemicznej jest oparte na gwałtowności. W kontekście drugiej odpowiedzi, powolne rozkładanie się związków nie odzwierciedla natury cyjanków - w rzeczywistości ich toksyczne właściwości nie są związane z ich rozkładem, ale z ich zdolnością do przekształcania się w jeszcze bardziej niebezpieczne formy. Z kolei koncepcja wydzielania się związków o drażniącym zapachu również jest nieadekwatna, ponieważ nie wszystkie cyjanki emitują zauważalne zapachy, a ich obecność w środowisku może być wykrywana jedynie dzięki specjalistycznym metodom analitycznym. Dlatego kluczowe jest, aby zrozumieć, że cyjanki i ich pochodne wymagają szczególnej uwagi i procedur w zakresie ich zarządzania oraz utylizacji, a nie koncentrowania się na nieodpowiednich aspektach ich chemii. W praktyce, nieprzestrzeganie odpowiednich standardów może prowadzić do poważnych zagrożeń zdrowotnych i środowiskowych, a także naruszenia przepisów dotyczących ochrony środowiska.

Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Do narzędzi pomiarowych zalicza się

A. cylinder
B. naczynko wagowe
C. zlewkę
D. kolbę stożkową
Cylinder miarowy to naprawdę fajne narzędzie, które znajdziesz w każdym laboratorium. Używa się go do dokładnego mierzenia objętości cieczy, co jest mega ważne podczas różnych eksperymentów chemicznych czy fizycznych. W przeciwieństwie do zlewki, cylinder ma wyraźne podziałki i prostokątną formę, co naprawdę ułatwia odczytywanie wartości. Dzięki temu błąd pomiarowy jest znacznie mniejszy. Osobiście uważam, że korzystanie z cylindra to podstawa, gdy przychodzi do przygotowywania roztworów, gdzie musisz mieć pewność, że wszystko jest dokładnie odmierzone. Oczywiście, pamiętaj, żeby cylinder był odpowiednio skalibrowany, bo to pozwala na powtarzalność wyników, a to chyba każdy chce mieć w swoich eksperymentach.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Jak nazywa się naczynie o płaskim dnie, które wykorzystuje się do pozyskiwania substancji stałej poprzez stopniowe odparowanie rozpuszczalnika z roztworu?

A. Kolba Kjeldahla
B. Krystalizator
C. Eksykator
D. Tygiel Schotta
Eksykator to naczynie, które głównie służy do przechowywania substancji w warunkach obniżonego ciśnienia. Właściwie to jego zadanie to osuszanie lub ochrona przed wilgocią, a nie uzyskiwanie substancji stałej przez odparowanie. W chemii eksykatory są używane, kiedy trzeba usunąć wodę z substancji, a nie do krystalizacji. Tygiel Schotta to naczynie, które świetnie się nadaje do wysokich temperatur i topnienia substancji, ale nie ma nic wspólnego z krystalizacją. Choć teoretycznie można w nim robić kryształy, to nie chodzi tu o odparowanie, ale raczej o proces topnienia i później ochładzania. Kolba Kjeldahla z kolei działa w zupełnie inny sposób, bo służy do oznaczania azotu w związkach, co też nie ma związku z krystalizacją. Często ludzie mylą te różne naczynia i ich funkcje, a każde z nich ma swoje specyficzne zastosowanie, ale krystalizator naprawdę jest tym, co pasuje do opisanego pytania.

Pytanie 33

Substancje, które wykorzystuje się do ustalania miana roztworu, to

A. miarowe
B. podstawowe
C. wtórne
D. robocze
Wiele osób myli substancje robocze, wtórne i miarowe z substancjami podstawowymi, co może prowadzić do różnych nieporozumień przy ustalaniu miana roztworu. Substancje robocze to zazwyczaj roztwory, które przygotowujemy w laboratorium i ich jakość oraz stężenie mogą być różne. Użycie takich substancji może prowadzić do błędów w pomiarze, bo nie zawsze mamy pewność, że są one dokładne i stabilne. Substancje wtórne powstają zazwyczaj w procesie syntezy chemicznej lub są pochodnymi substancji podstawowych, więc ich stężenie nie jest tak precyzyjnie określone. Z kolei substancje miarowe, mimo że też używamy ich do pomiarów, nie mają takich samych właściwości jak substancje podstawowe, co może też prowadzić do błędnych wyników. To, co często mylimy, to założenie, że każda substancja w laboratorium jest substancją podstawową, co jest błędnym podejściem do kalibracji i oceny wyników. Żeby mieć wiarygodne i powtarzalne wyniki w analizach chemicznych, musimy naprawdę zrozumieć różnice między tymi substancjami oraz ich zastosowanie w praktyce laboratoryjnej.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Do rozpuszczania próbek wykorzystuje się wodę królewską, która stanowi mieszaninę stężonych kwasów

A. H2SO4 i HCl w proporcji objętościowej 3:1
B. H2SO4 i HCl w proporcji objętościowej 1:3
C. HCl i HNO3 w proporcji objętościowej 3:1
D. HNO3 i HCl w proporcji objętościowej 3:1
Wybór odpowiedzi, która wskazuje na stosunek HNO3 i HCl w proporcji 3:1, jest mylący. Choć kwasy te rzeczywiście stanowią składniki wody królewskiej, to ich stosunek objętościowy jest kluczowy dla skuteczności tej mieszanki. Stosunek 3:1, z HCl jako głównym składnikiem, zapewnia, że reakcja chemiczna między tymi kwasami przebiega efektywnie, co jest istotne przy rozpuszczaniu metali szlachetnych. Z kolei propozycja użycia H2SO4 w połączeniu z HCl w różnych proporcjach, takich jak 1:3 czy 3:1, jest nieprawidłowa, ponieważ kwas siarkowy (H2SO4) nie jest składnikiem wody królewskiej. W rzeczywistości, H2SO4 ma inne właściwości chemiczne i nie działa synergicznie z HCl w kontekście rozpuszczania metali szlachetnych. Powszechnym błędem jest mylenie tych kwasów, co może prowadzić do niewłaściwego użycia i, co ważniejsze, do niebezpiecznych sytuacji w laboratoriach. Warto zauważyć, że skuteczność wody królewskiej, jako rozpuszczalnika dla metali, wynika z odpowiednich proporcji, które stymulują reakcję chemiczną. Dlatego ważne jest, aby mieć pełne zrozumienie właściwych stosunków oraz zastosowań tych substancji w praktyce laboratoryjnej.

Pytanie 36

Woda, która została poddana dwukrotnej destylacji, to woda

A. odejonizowana
B. odmineralizowana
C. redestylowana
D. ultra czysta
Woda demineralizowana to woda, z której usunięto większość minerałów, takich jak wapń, magnez czy inne jony, przy użyciu procesów takich jak filtracja przez wymienniki jonowe. Choć demineralizacja jest skuteczna w redukcji twardości wody, to nie gwarantuje usunięcia wszystkich zanieczyszczeń organicznych czy substancji chemicznych, które mogą być obecne w wodzie. Woda dejonizowana, podobnie jak demineralizowana, jest poddawana procesom mającym na celu usunięcie jonów, jednak również nie jest tożsama z wodą redestylowaną, gdyż proces destylacji prowadzi do usunięcia praktycznie wszystkich substancji, w tym lotnych związków organicznych oraz bakterii. Z kolei ultraczysta woda jest pojęciem, które odnosi się do wody o wyjątkowo niskim poziomie zanieczyszczeń, ale uzyskuje się ją poprzez bardziej zaawansowane techniki, takie jak ultrafiltracja czy osmoza odwrócona, które są bardziej skomplikowane i kosztowne. Wiele osób błędnie utożsamia te terminy, co prowadzi do nieporozumień. Kluczowym błędem jest myślenie, że wszystkie procesy oczyszczania wody są równoważne, podczas gdy każdy z nich ma swoje specyficzne zastosowania i ograniczenia. Dlatego tak ważne jest zrozumienie różnic między tymi procesami oraz ich wpływu na jakość otrzymanej wody.

Pytanie 37

W celu przygotowania 100 cm3 roztworu mianowanego, jaką kolbę należy zastosować?

A. miarową o pojemności 10 cm3
B. stożkową o pojemności 0,1 dm3
C. stożkową o pojemności 100 cm3
D. miarową o pojemności 0,1 dm3
Wybór kolby miarowej 0,1 dm³ (czyli 100 cm³) to dobry ruch. Przygotowując roztwór mianowany, ważne jest, żeby robić to w naczyniu, które zapewnia dokładne pomiary objętości. Kolby miarowe są super dokładne i to ma duże znaczenie w chemii. Nawet małe błędy w objętości mogą namieszać wyniki analizy. Na przykład, jeśli przygotowujesz roztwór standardowy do miareczkowania, kolba miarowa będzie niezbędna. Pamiętaj, że każda kolba powinna być używana zgodnie z jej pojemnością, co sprawia, że wyniki są bardziej rzetelne i powtarzalne. W laboratoriach chemicznych dokładność pomiaru to klucz, więc dobrze jest wiedzieć, jaką kolbę wybrać, żeby wszystko wyszło zgodnie z planem.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

Na podstawie informacji zawartych w tabeli określ, który parametr spośród podanych należy oznaczyć w pierwszej kolejności.

Tabela. Sposoby utrwalania próbek wody i ścieków, miejsce analizy, dopuszczalny czas przechowywania próbek
Oznaczany parametrRodzaj naczynia do przechowywania próbkiSposób utrwalania próbkiMiejsce wykonania analizyDopuszczalny czas przechowywania próbki
Chlorkiszklane
lub polietylenowe
-laboratorium96 godzin
Chlor pozostałyszklane-w miejscu
pobrania próbki
-
ChZTszklanezakwaszenie do pH<2,
schłodzenie
do temperatury 2-5°C
laboratorium24 godziny
Kwasowośćszklane
lub polietylenowe
schłodzenie
do temperatury 2-5°C
laboratorium4 godziny
Manganszklane
lub polietylenowe
zakwaszenie do pH<2,
schłodzenie
do temperatury 2-5°C
laboratorium48 godziny

A. Chemiczne zapotrzebowanie na tlen (ChZT).
B. Chlor pozostały.
C. Mangan.
D. Kwasowość.
Odpowiedzi takie jak 'Chemiczne zapotrzebowanie na tlen (ChZT)', 'Kwasowość' czy 'Mangan' są nieprawidłowe w kontekście priorytetów w oznaczaniu parametrów jakości wody. Chemiczne zapotrzebowanie na tlen, choć istotne, jest wskaźnikiem obciążenia organicznego, który niekoniecznie odzwierciedla bieżący stan dezynfekcji wody. Oznaczanie ChZT powinno następować po ocenie wskaźników dezynfekcji, ponieważ jego analiza wymaga więcej czasu i jest mniej pilna w kontekście bezpieczeństwa zdrowotnego. Kwasowość z kolei jest parametrem, który może mieć wpływ na stabilność wody, jednak nie jest bezpośrednio związana z ryzykiem biologicznym, co sprawia, że nie powinna być pierwszym priorytetem w procedurach monitorowania. Mangan jest związkem, który wpływa na barwę i smak wody, ale jego obecność nie wskazuje na skuteczność dezynfekcji. Pomijając oznaczanie chloru pozostałego, można przeoczyć kluczowy element gwarantujący bezpieczeństwo, co jest sprzeczne z dobrymi praktykami zarządzania jakością wody, które kładą nacisk na bieżące monitorowanie i reagowanie na zagrożenia.

Pytanie 40

Podstawowy zestaw do filtracji, oprócz statywu i sączka, obejmuje

A. lejka, 2 zlewki, bagietki
B. lejka, 2 kolb stożkowych, bagietki
C. lejka, kolby stożkowej, zlewki
D. lejka, zlewki, 2 bagietek
Odpowiedź 'z lejka, 2 zlewek, bagietki' jest prawidłowa, ponieważ podstawowy zestaw do sączenia rzeczywiście obejmuje te elementy. Lejek jest niezbędny do precyzyjnego kierowania cieczy do naczynia, co zapobiega rozlaniu i zapewnia czystość eksperymentu. Zlewki są kluczowe, gdyż jedna jest używana do przechwytywania cieczy podczas sączenia, a druga do gromadzenia płynów, które mogą być użyte w dalszym etapie analizy. Bagietki, znane również jako pipety, są używane do precyzyjnego przenoszenia niewielkich objętości substancji, co jest niezwykle ważne w laboratoriach chemicznych i biologicznych. Poprawne wykorzystanie tego zestawu zapewnia zgodność z dobrymi praktykami laboratoryjnymi, a także ułatwia zrozumienie procesów chemicznych i biologicznych. Przykładem może być ich zastosowanie w filtracji, gdzie odpady są usuwane, a czysta ciecz zbierana do zlewki, co jest kluczowe w wielu procedurach analitycznych.