Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 19 maja 2025 15:06
  • Data zakończenia: 19 maja 2025 15:37

Egzamin zdany!

Wynik: 23/40 punktów (57,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakie urządzenie wykorzystuje się do pomiaru lepkości cieczy?

A. aparat Boetiusa
B. wiskozymetr
C. kriometr
D. piknometr
Wiskozymetr to narzędzie, które służy do pomiaru lepkości cieczy, co jest naprawdę ważne w różnych branżach, jak chemia, inżynieria materiałowa czy nawet przemysł spożywczy. Lepkość to w sumie miara tego, jak bardzo ciecz opiera się zmianom. W praktyce ma to znaczenie podczas mieszania, transportu czy przerabiania cieczy. Wiskozymetry działają na różne sposoby. Na przykład, wiskozymetr kinematyczny mierzy czas, w którym ciecz przepływa przez określony przekrój, a wiskozymetr dynamiczny oblicza lepkość na podstawie siły potrzebnej do przepływu. Przykładowo, w przemyśle farmaceutycznym ważne, żeby lepkość była odpowiednia, bo to wpływa na działanie leków. W przemyśle spożywczym natomiast, lepkość ma spory wpływ na to, jak mają smakować i wyglądać produkty. Poza tym, wiskozymetry są często spotykane w laboratoriach, a metody pomiaru lepkości są nawet określone przez normy ISO.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Ile gramów 80% kwasu mrówkowego trzeba zważyć, aby uzyskać 200 g 20% roztworu tego kwasu?

A. 20g
B. 80g
C. 200g
D. 50g
Aby obliczyć, ile gramów 80% kwasu mrówkowego należy użyć do przygotowania 200 g 20% roztworu, stosujemy zasadę zachowania masy oraz obliczenia dotyczące stężenia. Zacznijmy od ustalenia, ile czystego kwasu mrówkowego potrzebujemy w roztworze końcowym. 20% roztwór o masie 200 g zawiera 40 g czystego kwasu mrówkowego (20% z 200 g = 0,2 * 200 g). Teraz musimy ustalić, ile gramów 80% roztworu potrzeba, aby uzyskać te 40 g czystego kwasu. W 80% roztworze znajduje się 0,8 g czystego kwasu w 1 g roztworu. Dlatego, aby uzyskać 40 g czystego kwasu, musimy odważyć 50 g 80% roztworu (40 g / 0,8 = 50 g). To podejście jest zgodne z praktycznymi zasadami przygotowywania roztworów chemicznych, gdzie precyzyjne obliczenia mają kluczowe znaczenie dla uzyskania pożądanych stężeń. Takie umiejętności są niezbędne w chemii analitycznej oraz w laboratoriach, gdzie dokładność ma znaczenie dla wyników eksperymentów i analiz.

Pytanie 5

Jaką masę wodorotlenku potasu trzeba odważyć, żeby przygotować 500 cm3 roztworu o stężeniu 0,02 mola? Masy molowe poszczególnych pierwiastków wynoszą: potas K - 39 g/mol, tlen O - 16 g/mol, wodór H - 1 g/mol?

A. 56,00 g
B. 0,56 g
C. 5,60 g
D. 0,28 g
Aby obliczyć, ile gramów wodorotlenku potasu (KOH) należy odważyć do przygotowania 500 cm³ 0,02-molowego roztworu, należy zastosować wzór na obliczenie masy substancji w roztworze: m = C × V × M, gdzie m to masa w gramach, C to stężenie molowe, V to objętość roztworu w litrach, a M to masa molowa substancji. Masa molowa KOH wynosi: 39 g/mol (K) + 16 g/mol (O) + 1 g/mol (H) = 56 g/mol. Podstawiając dane do wzoru, otrzymujemy: m = 0,02 mol/L × 0,5 L × 56 g/mol = 0,56 g. W praktyce, precyzyjne odważenie substancji chemicznych jest kluczowe w laboratoriach, aby uzyskać odpowiednie stężenie roztworu, co jest istotne w wielu procesach chemicznych, takich jak syntezy, analizach chemicznych czy w badaniach naukowych.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

W celu rozdrabniania niewielkich ilości bardzo twardego materiału wykorzystuje się moździerze

A. ze stali molibdenowej
B. agatowe
C. teflonowe
D. melaminowe
Wybór moździerzy teflonowych, melaminowych czy agatowych na rozdrabnianie twardych materiałów jest niewłaściwy z kilku powodów. Moździerze teflonowe, mimo że są odporne na działanie wielu chemikaliów, są zbyt miękkie, aby skutecznie rozdrabniać twarde substancje. Ich struktura nie pozwala na osiągnięcie odpowiedniej siły nacisku, a dodatkowo mogą ulegać zarysowaniom, co w dłuższym okresie może prowadzić do kontaminacji mieszanek. Z kolei moździerze melaminowe, chociaż lekkie i łatwe w czyszczeniu, również nie mają wystarczającej twardości, by poradzić sobie z twardymi materiałami. Mogą pękać lub się łamać pod wpływem dużych obciążeń. Moździerze agatowe są estetyczne i dobrze sprawdzają się w przypadku miększych materiałów, ale ich koszt oraz możliwość pękania przy dużych obciążeniach sprawiają, że nie są najlepszym wyborem do rozdrabniania twardych substancji. Wybierając odpowiedni moździerz, ważne jest, aby wziąć pod uwagę zarówno twardość materiału, jak i jego przeznaczenie. Dlatego też, do rozdrabniania twardych materiałów, moździerz ze stali molibdenowej jest najlepszym rozwiązaniem, zapewniającym zarówno efektywność, jak i trwałość podczas pracy.

Pytanie 10

Substancje chemiczne, które zazwyczaj wykorzystuje się w eksperymentach preparatywnych oraz w jakościowych analizach, charakteryzujące się czystością w przedziale 99-99,9%, nazywa się

A. czystymi do badań
B. czystymi chemicznie
C. czystymi spektralnie
D. czystymi
Odpowiedź 'czyste' jest poprawna, ponieważ odnosi się do odczynników chemicznych o wysokiej czystości, które są powszechnie stosowane w laboratoriach do prac preparatywnych i analitycznych. Odczynniki te charakteryzują się czystością wynoszącą od 99% do 99,9%, co czyni je odpowiednimi do wykonywania precyzyjnych pomiarów i analiz chemicznych. Przykładem zastosowania takich odczynników może być ich użycie w chromatografii czy spektroskopii, gdzie zanieczyszczenia mogą znacząco wpłynąć na wyniki eksperymentu. W laboratoriach analitycznych przestrzega się standardów takich jak ISO lub ASTM, które nakładają obowiązek stosowania odczynników o określonej czystości, aby zminimalizować ryzyko błędów w analizach. Czystość odczynników jest kluczowa w kontekście reprodukowalności wyników oraz zgodności z procedurami badawczymi, co jest niezbędne dla uzyskania wiarygodnych danych.

Pytanie 11

Wybierz poprawny zapis jonowy spośród podanych reakcji, w których otrzymywany jest siarczan(VI) baru.

A. Ba2+ + 2Cl- + 2H+ + SO42- → BaSO4 + 2H+ + 2Cl-
B. BaCl2 + H2SO4 → BaSO4 + 2HCl
C. BaCl2 + 2H+ + SO42- → BaSO4 + 2H+ + 2Cl-
D. Ba2+ + 2Cl- + 2H+ + SO42- → BaSO4 + 2H+ + Cl-
Wybór niepoprawnych odpowiedzi wynika często z niepełnego zrozumienia procesu reakcji chemicznych oraz zasad tworzenia zapisów jonowych. Wiele z tych odpowiedzi zawiera nieprawidłowe reprezentacje reagentów i produktów reakcji, co prowadzi do zamieszania w ich interpretacji. Przykładowo, wybór BaCl2 + H2SO4 → BaSO4 + 2HCl błędnie przedstawia fizyczną rzeczywistość zachodzącej reakcji. Nie uwzględnia on stanu jonowego reagentów, co jest kluczowe w analizie reakcji kwas-zasada. W tym przypadku, BaCl2, będący solą, nie jest odpowiednio przetworzony do formy jonowej. Takie błędy prowadzą do nieporozumień, zwłaszcza w kontekście rozróżniania reagentów od produktów, co jest istotnym aspektem w chemii teoretycznej i praktycznej. Dodatkowo, odpowiedzi sugerujące, że jony H+ i Cl- są traktowane jako produkty, wskazują na niewłaściwe zrozumienie równowagi reakcji oraz zachowania jonów w roztworze. Często studenci mylą jony, które reagują, z tymi, które pozostają w roztworze, co może prowadzić do błędnych wniosków w bardziej złożonych reakcjach chemicznych. Konieczne jest, aby zrozumieć różnicę pomiędzy zapisami reakcji cząsteczkowej a zapisem jonowym, który jednoznacznie pokazuje, jakie jony biorą udział w reakcji, eliminując te, które nie zmieniają się i nie wpływają na produkty końcowe.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Aby podnieść temperaturę roztworu do 330 K, jakie wyposażenie jest potrzebne?

A. trójnogu, siatki ceramicznej, zlewki, termometru z zakresem temperatur 0-+100°C
B. statywu, siatki, zlewki, termometru z zakresem temperatur 0--50°C
C. trójnogu, siatki ceramicznej, zlewki, termometru z zakresem temperatur 0--0°C
D. statywu, siatki, zlewki, termometru z zakresem temperatur 0+100°C
Poprawna odpowiedź to wykorzystanie trójnogu, siatki ceramicznej, zlewki oraz termometru z zakresem temperatur 0-+100°C. Ta konfiguracja jest właściwa, ponieważ umożliwia bezpieczne i efektywne ogrzewanie roztworu do wymaganej temperatury 330 K (około 57°C). Trójnóg zapewnia stabilność podczas ogrzewania, co jest kluczowe w laboratoriach, gdzie bezpieczeństwo jest priorytetem. Siatka ceramiczna rozkłada ciepło równomiernie, co minimalizuje ryzyko lokalnych przegrzań, które mogą prowadzić do niepożądanych reakcji chemicznych. Użycie zlewki do podgrzewania roztworu jest standardową praktyką, ponieważ zlewki wykonane z odpowiednich materiałów (np. szkło borokrzemowe) są odporne na zmiany temperatury. Termometr z zakresem 0-+100°C jest odpowiedni do monitorowania temperatury, ponieważ pozwala na bezpieczne kontrolowanie wzrostu temperatury roztworu w bezpiecznym zakresie, nie przekraczającym maksymalnej temperatury mierzonej przez termometr. W laboratoriach chemicznych kluczowe jest przestrzeganie standardów bezpieczeństwa oraz stosowanie odpowiednich narzędzi, co zapewnia nie tylko dokładność eksperymentów, ale również ochronę przed zagrożeniami związanymi z wysoką temperaturą.

Pytanie 14

Które z poniższych działań należy wykonać przed rozpoczęciem pracy z nowym szkłem laboratoryjnym?

A. Włożyć szkło do zamrażarki na 30 minut
B. Przetrzeć szkło suchą szmatką
C. Ogrzać szkło w suszarce do 200°C bez mycia
D. Dokładnie umyć, wypłukać wodą destylowaną i wysuszyć
Przed przystąpieniem do pracy w laboratorium, odpowiednie przygotowanie szkła laboratoryjnego jest kluczowe dla uzyskania wiarygodnych wyników analitycznych. Zaleca się, aby każdy nowy element szkła został dokładnie umyty, wypłukany wodą destylowaną i następnie wysuszony. To nie jest tylko formalność – na powierzchni nowego szkła mogą pozostawać resztki środków produkcyjnych, pyłów, opiłków lub nawet tłuszczów używanych w procesie produkcji i transportu. Takie zanieczyszczenia potrafią znacząco wpłynąć na przebieg reakcji chemicznych, fałszować wyniki pomiarów czy powodować wytrącanie się niepożądanych osadów. W praktyce laboratoryjnej normą jest wieloetapowe mycie szkła: najpierw wodą z detergentem, następnie dokładne płukanie wodą z kranu, a na końcu kilkukrotne płukanie wodą destylowaną. Suszenie zapewnia, że do wnętrza próbki nie dostanie się woda o nieznanym składzie. Moim zdaniem, sumienne podejście do czystości szkła jest jedną z najważniejszych zasad pracy laboranta. Każdy zawodowiec wie, że nawet drobny brud czy mgiełka tłuszczu mogą przekreślić godziny żmudnej pracy. W wielu laboratoriach, szczególnie tych akredytowanych, są nawet specjalne protokoły przygotowania sprzętu – warto je poznać i stosować, bo to naprawdę się opłaca.

Pytanie 15

Rozpuszczalnik stosowany w procesie krystalizacji powinien

A. doskonale rozpuszczać zanieczyszczenia lub w niewielkim stopniu
B. wchodzić w reakcję z substancją krystalizowaną
C. rozpuszczać zanieczyszczenia w przeciętnym zakresie
D. być substancją łatwopalną
Rozpuszczalnik używany do krystalizacji odgrywa kluczową rolę w procesie uzyskiwania czystych kryształów substancji chemicznych. Poprawna odpowiedź, dotycząca rozpuszczania zanieczyszczeń bardzo dobrze lub w nieznacznym stopniu, jest istotna, ponieważ umożliwia selektywne wydobycie pożądanej substancji. W idealnym scenariuszu, rozpuszczalnik powinien dobrze rozpuszczać czystą substancję, pozwalając na jej krystalizację podczas schładzania lub odparowania. Na przykład, podczas krystalizacji soli, rozpuszczalniki takie jak woda są wykorzystywane, ponieważ dobrze rozpuszczają NaCl, ale nie rozpuszczają innych zanieczyszczeń, jak np. siarczany. W praktyce, techniki jak recrystalizacja często wykorzystują różne temperatury i stężenia, aby maksymalizować czystość finalnego produktu. Zgodnie z dobrą praktyką laboratoryjną, wybór odpowiedniego rozpuszczalnika i jego właściwości fizykochemiczne mają istotny wpływ na efektywność procesu krystalizacji, dlatego ważne jest, aby stosować właściwe metody analizy przed wyborem rozpuszczalnika.

Pytanie 16

Na podstawie informacji zawartej na pipecie, została ona skalibrowana na

A. zimno.
B. wlew.
C. gorąco.
D. wylew.
Odpowiedź 'wylew' jest prawidłowa, ponieważ oznacza, że pipecie nadano skalę pomiarową, która jest używana do precyzyjnego dozowania cieczy. W kontekście laboratoriów i procedur naukowych, pipecie, zwanej również pipetą, należy przypisać odpowiednią kalibrację, aby zapewnić dokładność i powtarzalność wyników. Standardy ISO oraz normy, takie jak ISO 8655, podkreślają znaczenie kalibracji pipet, co jest kluczowe w analizach chemicznych oraz biologicznych. W praktyce, pipecie skalibrowanej na 'wylew' przypisuje się objętość, którą można precyzyjnie odmierzyć i przenieść z jednego naczynia do drugiego, co ma istotne zastosowanie w produkcji leków oraz testach laboratoryjnych. Przykładem może być przygotowanie roztworu, gdzie każdy mililitr musi być dokładnie odmierzone, by uniknąć błędów w badaniach. Ponadto, kalibracja na 'wylew' pozwala na minimalizację strat cieczy, co jest niezbędne w przypadku drobnych reagentów o wysokich kosztach.

Pytanie 17

Czysty odczynnik (skrót: cz.) charakteryzuje się poziomem czystości wynoszącym

A. 99,9-99,99%
B. 99-99,9%
C. 90-99%
D. 99,99-99,999%
Odpowiedź 99-99,9% jest poprawna, gdyż odczynnik czysty (skrót: cz.) jest definiowany przez stopień czystości, który powinien mieścić się w określonym zakresie. Zgodnie z normami międzynarodowymi, substancje charakteryzujące się czystością w tym zakresie są uznawane za wysokiej jakości, co ma kluczowe znaczenie w takich dziedzinach jak chemia analityczna, farmacja czy przemysł spożywczy. W praktyce, substancje o czystości 99-99,9% mogą być wykorzystywane w wytwarzaniu leków, gdzie nawet niewielkie zanieczyszczenie może wpłynąć na skuteczność i bezpieczeństwo preparatu. Przykłady takich substancji to wiele reagentów używanych w laboratoriach, które muszą spełniać wysokie standardy czystości, aby zapewnić wiarygodne wyniki w badaniach. Ponadto, ogólnie przyjęte normy, takie jak ISO 9001, podkreślają znaczenie monitorowania i zapewniania jakości materiałów, co jest istotne w kontekście czystości chemicznej.

Pytanie 18

Który symbol literowy umieszczany na naczyniach miarowych wskazuje na kalibrację do "wlewu"?

A. IN
B. B
C. EX
D. A
Odpowiedź 'IN' oznacza, że to naczynie miarowe jest skalibrowane na 'wlew'. To jest naprawdę ważne, gdy chodzi o dokładne pomiary objętości cieczy. W praktyce to znaczy, że ilość cieczy, którą zobaczysz na naczyniu, odnosi się do tego, co wlewasz do środka, a nie do tego, co zostaje po opróżnieniu. Kiedy używasz naczynia z takim oznaczeniem, działasz zgodnie z normami ISO i metrologicznymi. To ma znaczenie, zwłaszcza w laboratoriach chemicznych lub medycznych, gdzie dokładne pomiary objętości są kluczowe. Używając naczyń oznaczonych jako 'IN', masz pewność, że otrzymujesz dokładną ilość płynu potrzebną do eksperymentów czy analiz. Warto też dodać, że to oznaczenie jest zwłaszcza istotne w badaniach, bo każda pomyłka w pomiarze może prowadzić do błędnych wyników.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

Po rozpuszczeniu substancji w kolbie miarowej, należy odczekać przed dopełnieniem jej wodą "do kreski" miarowej. Taki sposób postępowania jest uzasadniony

A. opóźnieniem w ustaleniu się kontrakcji objętości
B. potrzebą wyrównania temperatury roztworu z otoczeniem
C. opóźnieniem w osiągnięciu równowagi dysocjacji
D. koniecznością dokładnego wymieszania roztworu
Odpowiedź dotycząca konieczności wyrównania temperatury roztworu i otoczenia jest prawidłowa, ponieważ temperatura ma kluczowe znaczenie dla dokładności pomiarów oraz właściwości fizykochemicznych roztworów. Po rozpuszczeniu substancji w kolbie miarowej, ważne jest, aby roztwór osiągnął równowagę temperaturową przed dopełnieniem do kreski. Różnice temperatur mogą prowadzić do błędów w objętości, ponieważ cieczy o wyższej temperaturze mają tendencję do rozszerzania się. W praktyce, standardy laboratoryjne, takie jak normy ISO dotyczące przygotowywania roztworów, zalecają odczekiwanie, aby uniknąć nieprecyzyjnych wyników analitycznych. Na przykład, w chemii analitycznej, nawet niewielkie różnice w objętości mogą wpłynąć na stężenie roztworu, co ma bezpośredni wpływ na wyniki pomiarów spektroskopowych czy titracji. Przygotowując roztwory, należy także brać pod uwagę efekty, takie jak rozpuszczalność substancji w różnych temperaturach, co może wpływać na ostateczny skład roztworu. Dlatego przestrzeganie protokołów dotyczących wyrównania temperatury jest kluczowe dla uzyskania wiarygodnych i powtarzalnych wyników w laboratoriach.

Pytanie 21

W przypadku odczynnika, w którym nawet najczulsze techniki analizy chemicznej nie są w stanie wykryć zanieczyszczeń, a jego badanie wymaga zastosowania metod opartych na zjawiskach fizycznych, zalicza się on do kategorii czystości

A. czysty
B. techniczny
C. czysty do analizy
D. chemicznie czysty
Odpowiedzi "czysty do analizy", "techniczny" oraz "czysty" nie są właściwe w kontekście omawianego pytania, ponieważ nie oddają one precyzyjnie specyfiki czystości chemicznej. "Czysty do analizy" może sugerować, że substancja jest wystarczająco czysta do przeprowadzenia analizy, ale nie gwarantuje, że zanieczyszczenia są na poziomie, który pozwala na stosowanie metod analitycznych wymagających wysokiej klasy czystości. Termin "techniczny" odnosi się zazwyczaj do substancji, które są odpowiednie do zastosowań przemysłowych, ale mogą zawierać zanieczyszczenia, które są akceptowalne w kontekście procesów technologicznych, jednak nie nadają się do zastosowań wymagających wysokiej czystości. Z kolei "czysty" jest terminem ogólnym, który nie precyzuje klasy czystości substancji, co sprawia, że nie jest zastosowaniem właściwe w kontekście szczególnych wymagań analitycznych. Użytkownicy mogą popełnić błąd, myśląc, że wszystkie te terminy są równoważne, podczas gdy w rzeczywistości różnią się one znacząco. Kluczowe jest zrozumienie różnic w wymaganiach dotyczących czystości, aby móc właściwie dobierać substancje do konkretnego zastosowania w laboratoriach chemicznych i przemysłowych.

Pytanie 22

Do pojemników na odpady stałe, które są przeznaczone do utylizacji, nie można wprowadzać bezpośrednio cyjanków oraz związków kompleksowych zawierających jony cyjankowe z powodu

A. zajścia nagłej, egzotermicznej reakcji
B. produkcji toksycznych par lub gazów
C. uwalniania związków o drażniącym zapachu
D. powolnego rozkładu związków
Cyjanki i związki kompleksowe zawierające jony cyjankowe są substancjami niezwykle niebezpiecznymi, ponieważ ich rozkład może prowadzić do wytwarzania toksycznych par i gazów, które mają szkodliwy wpływ na zdrowie ludzi oraz środowisko. W procesie utylizacji, gdy te substancje są narażone na działanie wysokich temperatur, mogą wydzielać cyjanowodór, który jest silnie trującym gazem. Zgodnie z wytycznymi dotyczącymi gospodarki odpadami niebezpiecznymi, należy unikać mieszania cyjanków z innymi odpadami, aby zminimalizować ryzyko ich reakcji chemicznych. Przykładem zastosowania tych zasad mogą być zakłady utylizacyjne, które stosują systemy segregacji odpadów niebezpiecznych oraz specjalistyczne procedury ich przetwarzania, aby zapewnić bezpieczeństwo pracy i ochronę środowiska. Dobre praktyki obejmują także regularne szkolenia personelu oraz stosowanie odpowiednich środków ochrony osobistej, aby uniknąć narażenia na toksyczne substancje. W związku z tym, wprowadzenie cyjanków do pojemników na odpady stałe jest surowo zabronione.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Zjawisko fizyczne, które polega na rozkładaniu struktury krystalicznej substancji stałej oraz przenikaniu jej cząsteczek lub jonów do cieczy, nosi nazwę

A. roztwarzaniem
B. sublimacją
C. stapianiem
D. rozpuszczaniem
Stapianie to proces zmiany stanu skupienia substancji z fazy stałej na ciecz, który zachodzi w wyniku podgrzewania materiału do jego temperatury topnienia. W tym przypadku, struktura krystaliczna nie jest niszczona w sposób, w jaki ma to miejsce podczas rozpuszczania. Z kolei sublimacja odnosi się do bezpośredniej przemiany substancji z fazy stałej w gazową, omijając fazę ciekłą. Ten proces również nie dotyczy rozpuszczania, które wymaga obecności rozpuszczalnika, aby cząsteczki solutu mogły się rozproszyć. Roztwarzanie jest terminem często mylonym z rozpuszczaniem, jednak w kontekście chemicznym może odnosić się do różnych procesów, które zachodzą podczas mieszania substancji, a niekoniecznie do samego procesu rozpuszczania, gdzie zachodzi interakcja pomiędzy cząsteczkami solutu a cząsteczkami rozpuszczalnika. Typowe błędy myślowe w tej kwestii obejmują nieuzasadnione utożsamianie procesów fizycznych oraz brak zrozumienia mechanizmów, które za nimi stoją. Wiedza o tych różnicach jest kluczowa w naukach przyrodniczych, ponieważ może wpływać na interpretacje wyników eksperymentów oraz na projektowanie procesów przemysłowych związanych z rozpuszczaniem i jego zastosowaniami.

Pytanie 25

Wskaż, do jakiego typu należą zamieszczone równania reakcji.

I. 2 Mg + O2 → 2 MgO
II. 2 KMnO4 → K2MnO4 + MnO2 + O2
III. BaCl2 + H2SO4→ BaSO4 + 2 HCl

A. I - analiza, II - synteza, HI - wymiana podwójna.
B. I - wymiana pojedyncza, II — analiza, III - synteza.
C. I - synteza, II - analiza, HI - wymiana pojedyncza.
D. I - synteza, II - analiza, DI - wymiana podwójna.
Odpowiedź "I - synteza, II - analiza, DI - wymiana podwójna" jest prawidłowa, ponieważ precyzyjnie klasyfikuje przedstawione reakcje chemiczne. Reakcja I, 2 Mg + O2 → 2 MgO, to klasyczny przykład reakcji syntezy, kiedy to dwa reagenty łączą się, tworząc jeden produkt. Takie reakcje są fundamentalne w chemii, ponieważ ilustrują procesy, które są podstawą wielu syntez chemicznych w przemyśle, na przykład w produkcji różnych związków chemicznych. Reakcja II, 2 KMnO4 → K2MnO4 + MnO2 + O2, jest reakcją analizy, gdzie jeden reagent ulega rozkładowi na kilka produktów, co jest kluczowym procesem w chemii analitycznej i przy wytwarzaniu różnych substancji chemicznych. Reakcja III, BaCl2 + H2SO4 → BaSO4 + 2 HCl, to reakcja wymiany podwójnej, podczas której dwa reagenty wymieniają składniki, co jest powszechną metodą w chemii nieorganicznej. Takie klasyfikacje są nie tylko istotne w akademickiej chemii, ale również mają zastosowanie w różnych gałęziach przemysłu chemicznego, gdzie zrozumienie typologii reakcji jest kluczowe dla optymalizacji procesów produkcyjnych.

Pytanie 26

Aby ustalić miano roztworu wodnego NaOH, należy zastosować

A. naważkę kwasu mrówkowego
B. odmierzoną ilość kwasu azotowego(V)
C. odmierzoną porcję roztworu kwasu octowego
D. naważkę kwasu benzenokarboksylowego
Wybór innych kwasów, takich jak kwas mrówkowy, kwas azotowy(V) czy kwas octowy, nie jest odpowiedni do ustalania miana roztworu wodorotlenku sodu z kilku powodów. Kwas mrówkowy, mimo że jest kwasem organicznym, charakteryzuje się innymi właściwościami, które mogą prowadzić do błędnych wyników podczas miareczkowania ze względu na jego zmienność i trudności w ustaleniu punktu końcowego. Kwas azotowy(V) jest silnym kwasem nieorganicznych, którego użycie do kalibracji roztworu zasadowego może powodować nieprawidłowości w wynikach z uwagi na reakcje redoks, które mogą zachodzić w trakcie miareczkowania. Kwas octowy, z kolei, jest słabym kwasem, co sprawia, że jego możliwości w zakresie określania miana są ograniczone, ponieważ reakcje z wodorotlenkiem sodu mogą nie być wystarczająco wyraźne do precyzyjnego ustalenia stężenia roztworu. Właściwy dobór reagentów do miareczkowania jest kluczowy, aby uniknąć błędów systematycznych, które mogą wpłynąć na dalsze analizy jakościowe i ilościowe. Dlatego tak istotne jest, aby w procesie kalibracyjnym stosować substancje o stabilnych właściwościach chemicznych, co w przypadku kwasu benzenokarboksylowego jest zapewnione.

Pytanie 27

Opis w ramce przedstawia sposób oczyszczania substancji poprzez

Próbke substancji stałej należy umieścić w kolbie kulistej, zaopatrzonej w chłodnicę zwrotną, dodać rozpuszczalnika - etanolu i delikatnie ogrzewać do wrzenia. Po lekkim ostudzeniu dodać do roztworu niewielką ilość węgla aktywnego, zagotować i przesączyć na gorąco. Przesącz pozostawić do ostygnięcia, a wydzielony osad odsączyć pod zmniejszonym ciśnieniem, przemyć niewielką ilością rozpuszczalnika, przenieść na szalkę, pozostawić do wyschnięcia, a następnie zważyć.

A. ekstrakcję.
B. krystalizację.
C. sublimację.
D. destylację.
Destylacja, ekstrakcja, sublimacja i krystalizacja to różne techniki separacji substancji, które często są mylone ze względu na ich podobieństwa, ale zasadniczo różnią się mechanizmem działania. Destylacja polega na wykorzystaniu różnicy temperatur wrzenia substancji, co pozwala na oddzielenie cieczy o różnych punktach wrzenia. W kontekście oczyszczania substancji, destylacja jest skuteczna, kiedy substancje mają znacznie różniące się temperatury wrzenia, co nie jest celem procesu opisanego w pytaniu. Ekstrakcja z kolei opiera się na rozpuszczalności różnych substancji w różnych rozpuszczalnikach, ale nie prowadzi do uzyskania czystych kryształów, jak w przypadku krystalizacji. Sublimacja, czyli przejście substancji ze stanu stałego w gazowy, a następnie z powrotem w stały, również nie jest odpowiednia w tym kontekście, ponieważ dotyczy tylko substancji, które mogą sublimować, a nie wszystkich substancji chemicznych. Typowym błędem myślowym jest założenie, że wszystkie procesy oczyszczania prowadzą do uzyskania czystych substancji w formie stałej, co nie jest prawdą. Znajomość różnic pomiędzy tymi procesami jest kluczowa dla skutecznego stosowania technik oczyszczania w laboratoriach i przemyśle chemicznym. Dlatego ważne jest, aby rozróżniać te metody i stosować je w odpowiednich sytuacjach.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Podstawowy zestaw do filtracji składa się ze statywu oraz

A. zlejka Büchnera, zlewki i bagietki
B. z dwóch zlewek i bagietki
C. zlejka, zlewki i pipety
D. zlejka, dwóch zlewek i bagietki
Wszystkie pozostałe odpowiedzi zawierają nieścisłości dotyczące składu podstawowego zestawu do sączenia. Odpowiedzi wskazujące na zlewki i pipety, czy też zlewkowe elementy, nie uwzględniają kluczowych komponentów, które są niezbędne do przeprowadzenia skutecznego procesu sączenia. Odpowiedzi te mogą prowadzić do błędnych wniosków dotyczących procedur laboratoryjnych oraz funkcji narzędzi chemicznych. Niezrozumienie, że statyw, zlewki oraz zlejka muszą współpracować, by efektywnie przeprowadzić filtrację, wykazuje braki w podstawowej wiedzy z zakresu chemii analitycznej. Zlewki pełnią funkcję przechowywania i transportu substancji, a ich pominięcie z zestawu do sączenia jest rażącym błędem, przez co można stracić cenną próbkę lub nieprawidłowo przeprowadzić analizę. Dodatkowo, wprowadzenie pipet jako elementu zestawu jest nieadekwatne, ponieważ ich głównym przeznaczeniem jest dozowanie cieczy, a nie bezpośrednia filtracja. Zrozumienie, jakie elementy są niezbędne do skutecznej pracy w laboratorium, jest kluczowe, aby uniknąć niebezpieczeństw oraz błędów w wynikach analitycznych.

Pytanie 30

Wybór lokalizacji do poboru próbek wody z rzeki nie jest uzależniony od

A. usytuowania źródeł zanieczyszczeń
B. celu oraz zakresu badań
C. rodzaju pojemników do ich przechowywania
D. usytuowania dopływów
Wybór miejsca pobierania próbek wody z rzeki jest procesem, który musi uwzględniać wiele czynników, aby uzyskane wyniki były wiarygodne i reprezentatywne. Analiza celu i zakresu badań jest pierwszym krokiem, który pozwala na określenie, jakie parametry będą monitorowane. Na przykład, w sytuacji, gdy celem jest ocena wpływu zanieczyszczeń na ekosystem rzeki, kluczowe będzie wybranie miejsc w pobliżu źródeł zanieczyszczenia, aby uchwycić ich oddziaływanie. W kontekście rozmieszczenia dopływów, warto zauważyć, że miejsca ich zrzutu mogą znacząco zmieniać jakość wody w rzece, a tym samym wpływać na wyniki badań. Ignorowanie tych aspektów przy wyborze lokalizacji może prowadzić do błędnych wniosków dotyczących stanu wód. Nie można zatem lekceważyć wpływu rozmieszczenia źródeł zanieczyszczenia oraz dopływów, gdyż są to czynniki bezpośrednio związane z jakością próbek. Często popełnianym błędem jest przekonanie, że najmniej istotnym elementem są naczynia do przechowywania próbek, co jest mylnym założeniem. Choć rodzaj naczyń jest istotny dla zapewnienia integralności próbki, nie powinien wpływać na wybór miejsca ich pobierania, które powinno wynikać z badań i norm jakościowych.

Pytanie 31

Aby przygotować 250 cm3 roztworu wodorotlenku potasu o stężeniu 0,25 mola, potrzebne będzie

A. 0,35 g KOH
B. 35,0 g KOH
C. 3,5 g KOH
D. 14,0 g KOH (K — 39 g/mol, O — 16 g/mol, H — 1 g/mol)
Aby przygotować 0,25-molowy roztwór KOH o objętości 250 cm³, trzeba najpierw policzyć, ile tej substancji potrzebujemy. Wodorotlenek potasu ma masę molową 56 g/mol (liczymy K — 39 g/mol, O — 16 g/mol, H — 1 g/mol). Używając równania C = n/V, gdzie C to stężenie molowe, n to liczba moli, a V to objętość w litrach, możemy ustalić, ile moli potrzebujemy: n = C * V = 0,25 mol/dm³ * 0,250 dm³ = 0,0625 mol. Następnie, żeby obliczyć masę KOH, stosujemy wzór: m = n * M, czyli m = 0,0625 mol * 56 g/mol = 3,5 g. Te obliczenia są naprawdę istotne w chemii analitycznej, bo dokładne przygotowanie roztworów jest kluczowe, żeby wyniki były wiarygodne. Z własnego doświadczenia mogę powiedzieć, że umiejętność liczenia molowości i mas molowych jest podstawą w chemicznych reakcjach i analizach, co ma ogromne znaczenie w laboratorium.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Jakim rozpuszczalnikiem o niskiej temperaturze wrzenia wykorzystuje się do suszenia szkła laboratoryjnego?

A. kwas siarkowy(VI)
B. roztwór węglanu wapnia
C. alkohol etylowy
D. woda amoniakalna
Kwas siarkowy(VI) jest silnym kwasem, który nie jest odpowiedni jako rozpuszczalnik do suszenia szkła laboratoryjnego. Jego agresywne właściwości chemiczne mogą prowadzić do uszkodzenia szkła, a także stanowią zagrożenie dla zdrowia i bezpieczeństwa użytkowników. Woda amoniakalna, chociaż może być używana w niektórych procesach laboratoryjnych, również nie jest zalecanym rozpuszczalnikiem do suszenia szkła. Składa się z wody z amoniakiem, co sprawia, że jest substancją żrącą, a jej stosowanie wymaga szczególnej ostrożności. Roztwór węglanu wapnia nie ma właściwości rozpuszczalnika i jest stosowany głównie w innych procesach chemicznych, takich jak neutralizacja kwasów, a nie do suszenia szkła. Typowe błędy myślowe mogą wynikać z mylenia funkcji różnych substancji w laboratoriach. Użytkownicy często nie rozumieją, że nie wszystkie substancje chemiczne o silnych właściwościach mogą być stosowane w procesach, które nie są ich przeznaczeniem. Kluczowe jest stosowanie substancji zgodnych z ich właściwościami fizykochemicznymi oraz znajomość ich zastosowań w kontekście wytycznych dotyczących bezpieczeństwa i efektywności w laboratoriach. Właściwy wybór rozpuszczalnika jest fundamentem uzyskiwania dokładnych i powtarzalnych wyników w badaniach laboratoryjnych.

Pytanie 34

Komora przeszklona w formie dużej szafy, wyposażona w wentylator, która zapobiega wydostawaniu się szkodliwych substancji do atmosfery laboratorium oraz chroni przed pożarami i eksplozjami, to

A. zespół powietrzny
B. komora laminarna
C. urządzenie do sterylizacji
D. dygestorium
Dygestorium to specjalistyczne urządzenie stosowane w laboratoriach, które ma na celu zapewnienie bezpieczeństwa podczas pracy z substancjami chemicznymi oraz biologicznymi. Jego konstrukcja, często przypominająca dużą szafę, wyposażona jest w wentylator, który zapewnia ciągły przepływ powietrza, co skutecznie zapobiega wydostawaniu się szkodliwych oparów lub cząstek do otoczenia. To istotne, szczególnie w kontekście ochrony zdrowia pracowników oraz przestrzeni laboratoryjnej. Dygestoria są zgodne z normami takimi jak PN-EN 14175, które określają wymagania dotyczące ich projektowania i użytkowania. Przykładem zastosowania dygestoriów może być praca z toksycznymi chemikaliami lub substancjami łatwopalnymi, gdzie ich użycie minimalizuje ryzyko pożaru oraz narażenia na niebezpieczne substancje. W praktyce laboratoria chemiczne, biotechnologiczne oraz farmaceutyczne korzystają z dygestoriów, aby zapewnić maksymalne bezpieczeństwo, co jest kluczowe w kontekście dobrych praktyk laboratoryjnych.

Pytanie 35

Do metalowego sprzętu laboratoryjnego używanego w praktykach analitycznych zalicza się

A. bagietka
B. eksykator
C. statyw
D. zlewka
Statyw jest kluczowym elementem wyposażenia w laboratoriach analitycznych, używanym do stabilnego podtrzymywania różnych narzędzi i urządzeń, takich jak probówki czy kolby. Jego głównym celem jest zapewnienie bezpieczeństwa i precyzji podczas przeprowadzania doświadczeń, co jest niezbędne w pracy laboratoryjnej. Użycie statywu minimalizuje ryzyko przypadkowego przewrócenia się substancji chemicznych, co może prowadzić do niebezpiecznych sytuacji. Dobre praktyki laboranckie wskazują, że stabilne mocowanie sprzętu zwiększa dokładność pomiarów i powtarzalność wyników. Ponadto, statyw może być wykorzystywany w połączeniu z innymi narzędziami, takimi jak palniki Bunsena, co pozwala na przeprowadzanie bardziej złożonych eksperymentów. Warto również zauważyć, że w zależności od zastosowania, statywy mogą mieć różne konstrukcje i materiały, co wpływa na ich funkcjonalność i odporność na działanie substancji chemicznych.

Pytanie 36

Jaką masę NaCl uzyskuje się poprzez odparowanie do sucha 250 g roztworu 10%?

A. 25 g
B. 2,5 g
C. 250 g
D. 0,25 g
Aby obliczyć ilość NaCl w 250 g 10% roztworu, należy zastosować wzór na stężenie procentowe. Stężenie 10% oznacza, że w 100 g roztworu znajduje się 10 g substancji rozpuszczonej. Dla 250 g roztworu, proporcja ta jest taka sama, co można obliczyć, stosując przeliczenie: (10 g / 100 g) * 250 g = 25 g NaCl. W praktyce, takie obliczenia są niezwykle istotne w laboratoriach chemicznych oraz w przemyśle farmaceutycznym, gdzie precyzyjne przygotowanie roztworów jest kluczowe dla uzyskania odpowiednich reakcji chemicznych. Zrozumienie stężenia roztworów pozwala na ich prawidłowe stosowanie w różnych procedurach, takich jak przygotowanie leków, analiza chemiczna czy też wytwarzanie materiałów. Warto również znać zasady dotyczące przechowywania oraz rozcieńczania roztworów, co jest zgodne z najlepszymi praktykami laboratoryjnymi.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Które spośród substancji wymienionych w tabeli pozwolą pochłonąć wydzielający się tlenek węgla(IV)?

IIIIIIIVV
Ca(OH)2(aq)NaOH(s)HNO3(stęż)CuO(s)CaO(s)

A. II, IV, V.
B. I, II, IV.
C. I, II, V
D. I, III, IV.
W przypadku wyboru odpowiedzi, która nie obejmuje substancji I, II i V, można zauważyć, że nie uwzględnia się kluczowych właściwości reakcji chemicznych między tlenkiem węgla(IV) a substancjami, które są zasadami. Takie podejście prowadzi do nieporozumień dotyczących chemii gazów i ich interakcji z zasadami. Odpowiedzi zawierające substancje III (HNO3) i IV (CuO) są w rzeczywistości błędne, ponieważ HNO3 jest kwasem azotowym, który nie ma zdolności do reakcji z CO2 w sposób, który prowadziłby do jego absorpcji; zamiast tego reaguje on z zasadami, a jego właściwości jako kwasu oznaczają, że nie będzie on efektywnym reagentem w kontekście usuwania CO2. CuO, czyli tlenek miedzi(II), również nie jest substancją, która mogłaby reagować z CO2, a jego zastosowanie koncentruje się bardziej na reakcjach utleniania i redukcji metali, co nie ma związku z pochłanianiem tego gazu. Zrozumienie właściwości substancji chemicznych oraz ich reakcji jest kluczowe do prawidłowego wyboru reagentów w procesach przemysłowych. Ignorowanie tych faktów może prowadzić do nieefektywnych rozwiązań w kontekście zarządzania emisją CO2, co jest szczególnie istotne w dobie globalnych wysiłków na rzecz ochrony środowiska oraz zrównoważonego rozwoju.

Pytanie 39

Podaj kolejność odczynników chemicznych według rosnącego stopnia czystości?

A. Czysty spektralnie, chemicznie czysty, czysty do analizy, czysty
B. Czysty, chemicznie czysty, czysty do analizy, czysty spektralnie
C. Czysty, czysty do analizy, chemicznie czysty, czysty spektralnie
D. Czysty do analizy, chemicznie czysty, czysty spektralnie, czysty
Twoje uszeregowanie odczynników chemicznych jako 'Czysty, czysty do analizy, chemicznie czysty, czysty spektralnie' jest całkiem trafne. To widać, bo pokazuje to, jak rośnie czystość tych substancji. Zaczynając od 'Czysty', to jest taki poziom czystości, który może mieć zanieczyszczenia. Potem mamy 'czysty do analizy' - ta substancja była oczyszczona na tyle, że można ją używać w analizach chemicznych, gdzie te zanieczyszczenia naprawdę mogą namieszać wyniki. 'Chemicznie czysty' to taki poziom, który nie ma zanieczyszczeń chemicznych, więc nadaje się do bardziej wymagających zastosowań. I na koniec, 'czysty spektralnie' oznacza, że dana substancja jest wolna od zanieczyszczeń, które mogą zepsuć analizy spektroskopowe. W laboratoriach chemicznych często korzysta się z takich preparatów do uzyskiwania wiarygodnych wyników. Czyli, jak widać, odpowiednie standardy czystości są mega ważne dla powtarzalności i precyzji w eksperymentach i analizach.

Pytanie 40

Jakiego koloru nabierze lakmus w roztworze NaOH?

A. malinowy
B. fioletowy
C. niebieski
D. czerwony
Lakmus jest wskaźnikiem pH, który zmienia kolor w zależności od kwasowości lub zasadowości roztworu. W roztworze sodu wodorotlenku (NaOH), który jest silną zasadą, lakmus zabarwia się na kolor niebieski. To zjawisko jest wynikiem reakcji chemicznych zachodzących w obecności zasad, które zmieniają konfigurację cząsteczek lakmusu. NaOH, jako substancja alkaliczna, podnosi pH roztworu powyżej 7, co skutkuje zmianą koloru wskaźników pH z czerwonego (typowego dla kwasów) na niebieski. W praktyce, lakmus jest często stosowany w laboratoriach i edukacji, aby szybko ocenić pH różnych substancji, co jest niezwykle istotne w chemii analitycznej oraz w przemyśle chemicznym. Zrozumienie reakcji lakmusu z różnymi substancjami jest kluczowe dla wielu procesów, takich jak kontrola jakości wody czy reakcje chemiczne w przemyśle farmaceutycznym.