Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 27 marca 2025 15:34
  • Data zakończenia: 27 marca 2025 15:51

Egzamin zdany!

Wynik: 24/40 punktów (60,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Lista sprzętu kompatybilnego z systemem operacyjnym Windows, publikowana przez firmę Microsoft to

A. DSL
B. GPT
C. HCL
D. DOS
HCL, czyli Hardware Compatibility List, to dokument publikowany przez firmę Microsoft, który zawiera szczegółową listę sprzętu komputerowego, który jest zgodny z określonymi wersjami systemu operacyjnego Windows. HCL jest niezwykle ważny dla administratorów IT oraz użytkowników końcowych, ponieważ pozwala na dokonanie świadomego wyboru sprzętu, który będzie w stanie prawidłowo współpracować z systemem operacyjnym. Przykładowo, przed zakupem nowego komputera lub komponentów, użytkownicy mogą sprawdzić HCL, aby upewnić się, że ich sprzęt jest wspierany przez wybraną wersję Windows, co minimalizuje ryzyko problemów z instalacją i działaniem oprogramowania. Dobrym przykładem zastosowania HCL w praktyce jest sytuacja, gdy firma planuje modernizację infrastruktury IT i potrzebuje zakupić nowe serwery. Konsultacja HCL pozwala na wybór modeli, które są oficjalnie wspierane przez Microsoft, co zapewnia stabilność oraz wsparcie techniczne w przypadku pojawiających się problemów.

Pytanie 2

Jaką konfigurację sieciową może posiadać komputer, który należy do tej samej sieci LAN co komputer z adresem 192.168.1.10/24?

A. 192.168.1.11 i 255.255.255.0
B. 192.168.0.11 i 255.255.255.0
C. 192.168.1.11 i 255.255.0.0
D. 192.168.0.11 i 255.255.0.0
Adres IP 192.168.1.11 z maską 255.255.255.0 jest całkiem nieźle skonfigurowany. Działa, bo oba komputery są w tej samej podsieci, co znaczy, że mają wspólną część adresu. W przypadku tej maski, pierwsze trzy oktety (czyli 192.168.1) identyfikują sieć, a ostatni oktet (11) to jakby numer konkretnego komputera w tej sieci. Czyli można powiedzieć, że komputery z adresami w zakresie od 192.168.1.1 do 192.168.1.254 mogą się dogadać bez potrzeby używania routera, co jest dość ważne dla wydajności w lokalnych sieciach. Pamiętaj, żeby unikać konfliktów adresów, bo w tej samej podsieci każdy komp musi mieć unikalny adres IP. Maski podsieci, jak ta, są popularne w małych sieciach i ułatwiają konfigurację, więc to dobry wybór.

Pytanie 3

Do pielęgnacji elementów łożyskowych oraz ślizgowych w urządzeniach peryferyjnych wykorzystuje się

A. powłokę grafitową
B. smar syntetyczny
C. tetrową ściereczkę
D. sprężone powietrze
Smar syntetyczny jest właściwym wyborem do konserwacji elementów łożyskowanych oraz ślizgowych w urządzeniach peryferyjnych ze względu na swoje wyjątkowe właściwości smarne oraz stabilność chemiczną. Smary syntetyczne, w przeciwieństwie do smarów mineralnych, charakteryzują się lepszymi właściwościami w wysokich temperaturach, a także odpornością na utlenianie i rozkład, co przekłada się na dłuższy czas eksploatacji. W praktyce smary te są często stosowane w silnikach, przekładniach oraz innych elementach mechanicznych, gdzie występują duże obciążenia i prędkości. Warto także zauważyć, że smar syntetyczny zmniejsza tarcie, co przyczynia się do wydajności energetycznej urządzeń oraz ich niezawodności. Zastosowanie smaru syntetycznego wpływa na zmniejszenie zużycia części, co jest zgodne z najlepszymi praktykami branżowymi, takimi jak normy ISO dotyczące smarowania i konserwacji urządzeń mechanicznych. Z tego względu, regularne stosowanie smaru syntetycznego w odpowiednich aplikacjach jest kluczowe dla utrzymania sprawności i długowieczności urządzeń.

Pytanie 4

Który z systemów operacyjnych przeznaczonych do pracy w sieci jest dostępny na podstawie licencji GNU?

A. Unix
B. OS X Server
C. Linux
D. Windows Server 2012
Jak pewnie wiesz, Linux to taki system operacyjny, który jest rozwijany na zasadzie licencji GNU GPL. To dość ważne, bo każdy może go używać, zmieniać i dzielić się nim. Dlatego właśnie Linux zyskał ogromną popularność, szczególnie na serwerach i wśród programistów. Na przykład, wiele stron internetowych działa na serwerach z Linuxem, bo potrafią obsłużyć naprawdę spore ilości danych i użytkowników. Co ciekawe, Linux jest też podstawą dla wielu rozwiązań w chmurze i systemów embedded, co pokazuje, jak jest elastyczny. W branży korzystanie z Linuxa na serwerach to właściwie standard, bo zapewnia stabilność i bezpieczeństwo, a na dodatek mamy wsparcie od społeczności open source. Wiele dystrybucji, takich jak Ubuntu czy CentOS, jest bardzo popularnych w firmach, więc można powiedzieć, że Linux to istotny element w infrastruktuze IT.

Pytanie 5

Na ilustracji widoczny jest

Ilustracja do pytania
A. hub
B. router
C. switch
D. patch panel
Panel krosowy jest kluczowym elementem w infrastrukturze sieciowej, umożliwiającym organizację i zarządzanie kablami sieciowymi w szafie serwerowej. Pozwala na łatwe łączenie i przełączanie połączeń kablowych pomiędzy różnymi urządzeniami sieciowymi, takimi jak serwery, przełączniki czy routery. Dzięki numeracji i etykietowaniu gniazd, panel krosowy ułatwia identyfikację i śledzenie połączeń, co jest niezbędne w dużych instalacjach. Powszechnie stosowany jest w centrach danych oraz korporacyjnych serwerowniach, gdzie standaryzacja i utrzymanie porządku w okablowaniu są kluczowe dla wydajności i bezpieczeństwa sieci. Dobre praktyki obejmują regularne audyty i aktualizację dokumentacji, co zapobiega błędom i przestojom w przypadku konieczności rekonfiguracji. Użycie panelu krosowego pozwala także na elastyczne skalowanie infrastruktury sieciowej wraz z rosnącymi potrzebami organizacji. Jest zgodny ze standardami okablowania strukturalnego, takimi jak TIA/EIA, zapewniając niezawodność i spójność w projektowaniu oraz wdrażaniu sieci komputerowych. W praktyce, panele krosowe są dostępne w różnych kategoriach, np. Cat 5e, Cat 6, co umożliwia dopasowanie do wymagań przepustowości sieci.

Pytanie 6

Jakie polecenie jest wysyłane do serwera DHCP, aby zwolnić wszystkie adresy przypisane do interfejsów sieciowych?

A. ipconfig /renew
B. ipconfig /flushdns
C. ipconfig /release
D. ipconfig /displaydns
W przypadku odpowiedzi 'ipconfig /renew', użytkownik myli proces zwalniania adresu IP z uzyskiwaniem nowego. To polecenie jest używane do żądania nowego adresu IP od serwera DHCP dla karty sieciowej, która już ma przydzielony adres. Użytkownicy często sądzą, że 'renew' zwalnia adresy, ale w rzeczywistości to polecenie odnawia dzierżawę, co jest przeciwieństwem zamierzenia zwolnienia adresu. Z kolei 'ipconfig /flushdns' jest używane do czyszczenia pamięci podręcznej DNS komputera, a nie do zarządzania adresami IP DHCP. Ta odpowiedź nie ma znaczenia w kontekście zwalniania dzierżawy, ponieważ DNS odnosi się do rozwiązywania nazw, a nie przydzielania adresów IP. Ostatnia odpowiedź, 'ipconfig /displaydns', służy do wyświetlania zawartości pamięci podręcznej DNS, co również nie ma związku z zarządzaniem dzierżawami DHCP. Użytkownicy często mylą funkcje poleceń i nie rozumieją ich specyficznych zastosowań, co prowadzi do błędnych wniosków. Aby skutecznie zarządzać siecią, kluczowe jest zrozumienie różnorodnych poleceń dostępnych w systemie, ich funkcji oraz jak mogą one wpływać na operacje sieciowe. Zachęca się do przestudiowania dokumentacji dotyczącej protokołu DHCP oraz poleceń systemowych, aby uniknąć takich pomyłek w przyszłości.

Pytanie 7

Jakie polecenie w systemie Windows służy do monitorowania bieżących połączeń sieciowych?

A. netsh
B. telnet
C. net view
D. netstat
Polecenie 'netstat' jest kluczowym narzędziem w systemie Windows, które umożliwia monitorowanie aktywnych połączeń sieciowych oraz analizy statystyk dotyczących protokołów TCP/IP. Używając 'netstat', użytkownicy mogą uzyskać informacje na temat otwartych portów, aktualnie aktywnych połączeń oraz stanu protokołów sieciowych. Na przykład, polecenie 'netstat -a' wyświetli wszystkie połączenia i porty nasłuchujące, co jest przydatne do diagnozowania problemów z siecią, identyfikowania nieautoryzowanych połączeń czy też weryfikowania działania aplikacji sieciowych. W kontekście bezpieczeństwa, regularne monitorowanie połączeń za pomocą 'netstat' staje się praktyką standardową, pozwalając na szybką reakcję w przypadku wykrycia podejrzanej aktywności. Narzędzie to jest zgodne z najlepszymi praktykami branżowymi w zakresie zarządzania siecią i bezpieczeństwa, umożliwiając administratorom systemów i sieci lepsze zrozumienie ruchu sieciowego oraz podejmowanie świadomych decyzji dotyczących konfiguracji i zabezpieczeń.

Pytanie 8

Aby użytkownik laptopa z systemem Windows 7 lub nowszym mógł korzystać z drukarki przez sieć WiFi, musi zainstalować drukarkę na porcie

A. COM3
B. WSD
C. LPT3
D. Nul
Wybór portu WSD (Web Services for Devices) do instalacji drukarki w systemie Windows 7 lub nowszym jest poprawny, ponieważ WSD to protokół zaprojektowany z myślą o prostocie i wygodzie w zarządzaniu urządzeniami sieciowymi. Umożliwia automatyczne wykrywanie i konfigurację drukarek w sieci bez potrzeby ręcznej konfiguracji. W praktyce oznacza to, że użytkownicy mogą łatwo podłączyć swoje drukarki do sieci WiFi, co pozwala na korzystanie z nich z różnych urządzeń bezpośrednio po zainstalowaniu. Protokół WSD jest zgodny z wieloma nowoczesnymi drukarkami, co czyni go standardem branżowym w kontekście urządzeń sieciowych. Dodatkowo, korzystając z portu WSD, użytkownicy mogą cieszyć się lepszą integracją z systemami Windows, zapewniającą m.in. automatyczne aktualizacje sterowników oraz wsparcie dla funkcji takich jak druk dwustronny czy zdalne zarządzanie zadaniami drukowania.

Pytanie 9

Informacje ogólne dotyczące zdarzeń systemowych w systemie Linux są zapisywane w

A. rejestrze systemowym
B. bibliotece RemoteApp
C. pliku messages
D. programie perfmon
Wybór innych odpowiedzi opiera się na nieporozumieniu dotyczącym zarządzania logami w systemach Linux oraz ich architekturze. Plik messages, znajdujący się w katalogu /var/log, jest kluczowym elementem dla diagnostyki systemu, z kolei program perfmon, choć użyteczny w kontekście monitorowania wydajności, skupia się głównie na analizie wydajności i nie jest przeznaczony do przechowywania ogólnych zdarzeń systemowych. Nie ma również odpowiednika rejestru systemowego, znanego z systemów Windows, ponieważ Linux wykorzystuje inne mechanizmy do rejestrowania i zarządzania dziennikami. Z kolei biblioteka RemoteApp odnosi się do zdalnego dostępu do aplikacji na systemie Windows i nie ma zastosowania w kontekście logów systemowych Linux. Kluczowym błędem myślowym jest mylenie różnych mechanizmów rejestrowania i monitorowania systemu, co prowadzi do pogubienia się w narzędziach dostępnych w różnych systemach operacyjnych. Warto zrozumieć, że w Linuxie logi są zarządzane przez demon syslog, który agreguje informacje z wielu źródeł oraz umożliwia ich dalsze przetwarzanie, co jest standardowym podejściem w branży IT.

Pytanie 10

Do akumulatora w jednostce ALU wprowadzono liczbę dziesiętną 253. Jak wygląda jej reprezentacja binarna?

A. 11111011
B. 11111101
C. 11111001
D. 11110111
Liczba dziesiętna 253 w systemie binarnym jest reprezentowana jako 11111101. Aby uzyskać tę reprezentację, należy wykonać konwersję liczby dziesiętnej na binarną. Proces ten polega na dzieleniu liczby przez 2 i zapisywaniu reszt z tych dzielenia. Gdy 253 dzielimy przez 2, otrzymujemy 126 z resztą 1. Następnie dzielimy 126 przez 2, co daje 63 z resztą 0, i kontynuujemy ten proces, aż dotrzemy do zera. Zbierając reszty w odwrotnej kolejności, otrzymujemy 11111101. Takie konwersje są kluczowe w informatyce, szczególnie w kontekście programowania niskopoziomowego oraz w systemach wbudowanych, gdzie operacje na liczbach binarnych są powszechne i niezbędne do implementacji algorytmów. Warto również zaznaczyć, że każda liczba całkowita w systemie komputerowym jest ostatecznie reprezentowana w postaci binarnej, co czyni tę umiejętność fundamentalną dla każdego programisty.

Pytanie 11

Aby przeprowadzić instalację bez nadzoru w systemie Windows, konieczne jest przygotowanie pliku odpowiedzi o nazwie

A. modprobe.conf
B. unattend.txt
C. boot.ini
D. pagefile.sys
Pliki 'modprobe.conf', 'pagefile.sys' i 'boot.ini' nie pasują do nienadzorowanej instalacji Windows, bo każdy z nich pełni inną funkcję w systemie. 'modprobe.conf' jest typowy dla Linuksa i zajmuje się modułami jądra, więc to nie to samo. 'pagefile.sys' to plik stronicowania, który pomaga RAMowi, ale nie ma nic wspólnego z instalacją. A 'boot.ini' to stary plik do zarządzania opcjami rozruchowymi w Windows XP, więc też nie działa w kontekście nienadzorowanej instalacji. Takie pomyłki biorą się często z mylenia ról plików w różnych systemach. Ważne, żeby wiedzieć, że każdy ma swoje zastosowanie i nie da się ich zamieniać. Jak się tego nie rozumie, to można narobić bałaganu w administracji i mieć niezłe problemy z instalacjami.

Pytanie 12

W systemie Linux zarządzanie parametrami transmisji w sieciach bezprzewodowych jest możliwe dzięki

A. iwconfig
B. ipconfig
C. winipcfg
D. ifconfig
Odpowiedzi 'ifconfig', 'ipconfig' i 'winipcfg' są nieprawidłowe, ponieważ każda z tych opcji ma inny zakres zastosowania i nie spełnia funkcji zarządzania parametrami transmisji bezprzewodowej w systemie Linux. 'ifconfig' jest narzędziem używanym do konfiguracji interfejsów sieciowych w systemach UNIX i Linux, ale koncentruje się głównie na interfejsach przewodowych oraz ogólnych ustawieniach sieciowych, a nie zarządzaniu specyficznymi parametrami sieci bezprzewodowej. 'ipconfig' jest powiązane z systemem Windows i służy do wyświetlania lub zmiany konfiguracji pamięci IP, co również nie obejmuje funkcji dla połączeń bezprzewodowych w systemie Linux. Z kolei 'winipcfg' to starsze narzędzie, również dedykowane systemowi Windows, które pozwala zobaczyć informacje o konfiguracji IP, ale nie jest używane w kontekście sieci bezprzewodowych w Linuxie. Te błędne odpowiedzi wynikają z nieporozumienia dotyczącego funkcji narzędzi sieciowych oraz z pomylenia systemów operacyjnych. Ważne jest, aby znać różnice pomiędzy tymi narzędziami i ich zastosowaniem w odpowiednich środowiskach, co jest kluczowe dla efektywnego zarządzania sieciami.

Pytanie 13

Wykorzystane kasety od drukarek powinny być

A. wyrzucone do pojemnika z odpadami komunalnymi
B. wyrzucone do pojemnika na plastik
C. przekazane do wydziału ochrony środowiska
D. przekazane firmie zajmującej się utylizacją tego typu odpadów
Przekazanie zużytych kaset od drukarek do firmy utylizującej odpady jest najodpowiedniejszym działaniem, ponieważ zapewnia, że materiały te zostaną poddane właściwej obróbce i recyklingowi. Kasety tonerowe zawierają substancje chemiczne i materiały, które mogą być szkodliwe dla środowiska, dlatego ich utylizacja w odpowiednich warunkach jest kluczowa. Firmy zajmujące się utylizacją mają odpowiednie technologie i procedury, które pozwalają na bezpieczne przetwarzanie tych odpadów. Dodatkowo, wiele z tych firm jest w stanie odzyskać surowce wtórne, co przyczynia się do ochrony zasobów naturalnych. Na przykład, części metalowe i plastikowe mogą być przetwarzane, co zmniejsza potrzebę wydobywania nowych surowców. Używanie usług profesjonalnych firm utylizacyjnych jest zgodne z międzynarodowymi standardami ochrony środowiska, takimi jak ISO 14001, które promują zrównoważony rozwój oraz zarządzanie wpływem na środowisko. Dlatego, aby spełnić normy ekologiczne i zminimalizować ślad węglowy, najlepiej jest wybierać tę ścieżkę utylizacji.

Pytanie 14

Procesor RISC to procesor o

A. głównej liście instrukcji
B. pełnej liście instrukcji
C. zmniejszonej liście instrukcji
D. rozbudowanej liście instrukcji
Wielu użytkowników mylnie klasyfikuje procesory jako charakteryzujące się pełną lub kompleksową listą rozkazów, co jest związane z architekturą CISC. Procesory CISC, takie jak x86, mają na celu zapewnienie bogatego zestawu rozkazów, co może prowadzić do większej złożoności w ich projektowaniu i wykonaniu. Dla programistów oznacza to możliwość korzystania z bardziej zaawansowanych instrukcji, które mogą wykonywać skomplikowane operacje w jednym kroku, jednak wiąże się to z dłuższym czasem wykonania każdej z tych instrukcji. W rzeczywistości to skomplikowanie może prowadzić do trudności w optymalizacji oraz wydajności, szczególnie w kontekście nowoczesnych technologii, które dążą do uproszczenia procesów obliczeniowych. Kolejnym błędnym podejściem jest zrozumienie, że procesory powinny mieć 'główną' lub 'pełną' listę rozkazów. Takie sformułowania mogą wprowadzać w błąd, sugerując, że optymalizacja i efektywność są osiągane przez zwiększenie liczby dostępnych instrukcji. W rzeczywistości kluczem do wydajności w architekturach RISC jest ich prostota i efektywność, co zapewnia lepsze wykorzystanie zasobów systemowych oraz skrócenie czasu dostępu do pamięci. Typowe błędy myślowe prowadzące do takich niepoprawnych wniosków to nieporozumienia dotyczące zalet złożonych rozkazów i ich wpływu na ogólną efektywność systemów komputerowych.

Pytanie 15

Na ilustracji przedstawiono sieć komputerową w danej topologii

Ilustracja do pytania
A. gwiazdy
B. magistrali
C. pierścienia
D. mieszanej
Topologia pierścienia jest jednym z podstawowych rodzajów organizacji sieci komputerowych. Charakteryzuje się tym że każde urządzenie jest połączone z dwoma innymi tworząc zamknięty krąg. Dane przesyłane są w jednym kierunku co minimalizuje ryzyko kolizji pakietów. Ta topologia jest efektywna pod względem zarządzania ruchem sieciowym i pozwala na łatwe skalowanie. Dzięki temu można ją znaleźć w zastosowaniach wymagających wysokiej niezawodności takich jak przemysłowe sieci automatyki. W praktyce często stosuje się protokół Token Ring w którym dane przesyłane są za pomocą specjalnego tokena. Umożliwia to równomierne rozłożenie obciążenia sieciowego oraz zapobiega monopolizowaniu łącza przez jedno urządzenie. Choć topologia pierścienia może być bardziej skomplikowana w implementacji niż inne topologie jak gwiazda jej stabilność i przewidywalność działania czynią ją atrakcyjną w specyficznych zastosowaniach. Dodatkowo dzięki fizycznej strukturze pierścienia łatwo można identyfikować i izolować problemy w sieci co jest cenne w środowiskach wymagających ciągłości działania. Standardy ISO i IEEE opisują szczegółowe wytyczne dotyczące implementacji tego typu sieci co pozwala na zachowanie kompatybilności z innymi systemami oraz poprawę bezpieczeństwa i wydajności działania.

Pytanie 16

Po włączeniu komputera wyświetlił się komunikat: "non-system disk or disk error. Replace and strike any key when ready". Jakie mogą być przyczyny?

A. uszkodzony kontroler DMA
B. brak pliku ntldr
C. dyskietka umieszczona w napędzie
D. skasowany BIOS komputera
Odpowiedź 'dyskietka włożona do napędu' jest prawidłowa, ponieważ komunikat o błędzie 'non-system disk or disk error' często pojawia się, gdy komputer nie może znaleźć prawidłowego nośnika systemowego do uruchomienia. W sytuacji, gdy w napędzie znajduje się dyskietka, a komputer jest skonfigurowany do rozruchu z napędu dyskietek, system operacyjny może próbować załadować z niej dane, co skutkuje błędem, jeśli dyskietka nie zawiera odpowiednich plików rozruchowych. Praktyka wskazuje, że należy sprawdzić, czy napęd nie jest zablokowany innym nośnikiem, co często jest pomijane przez użytkowników. Utrzymanie porządku w napędach oraz ich regularna kontrola jest zgodne z dobrymi praktykami zarządzania systemem i minimalizuje ryzyko wystąpienia podobnych problemów. Dobrze jest również znać opcje BIOS/UEFI, które pozwalają na modyfikację kolejności rozruchu, aby uniknąć tego typu komplikacji.

Pytanie 17

Jakie protokoły przesyłają cykliczne kopie tablic routingu do sąsiadującego rutera i NIE ZAWIERAJĄ pełnych informacji o dalekich ruterach?

A. EGP, BGP
B. RIP, IGRP
C. OSPF, RIP
D. EIGRP, OSPF
EIGRP (Enhanced Interior Gateway Routing Protocol) oraz OSPF (Open Shortest Path First) to protokoły routingu, które rzeczywiście przekazują okresowe kopie tablic rutingu do sąsiednich ruterów, jednakże różnią się one w sposobie, w jaki gromadzą i przekazują informacje o sieci. EIGRP jest protokołem opartym na metryce, który łączy cechy protokołów z wektorem odległości oraz stanu łączy. Używa własnego algorytmu DUAL (Diffusing Update Algorithm), co pozwala mu na efektywne zarządzanie zmianami w sieci bez konieczności przesyłania pełnych informacji o topologii. OSPF z kolei jest protokołem stanu łączy, który również nie wymaga od ruterów posiadania pełnej informacji o wszystkich ruterach w sieci, gdyż stosuje mechanizm zwany LSAs (Link State Advertisements), które pozwalają na wymianę informacji o stanie łącz. Przykład zastosowania tych protokołów można zaobserwować w dużych sieciach korporacyjnych, gdzie wydajność i szybkość reakcji na zmiany są kluczowe. Używanie EIGRP i OSPF zgodnie z ich specyfikacjami i najlepszymi praktykami branżowymi, jak np. segmentacja sieci, pozwala na zwiększenie jej niezawodności i efektywności.

Pytanie 18

Aby zmienić port drukarki zainstalowanej w systemie Windows, która funkcja powinna zostać użyta?

A. Menedżer zadań
B. Ostatnia znana dobra konfiguracja
C. Właściwości drukarki
D. Preferencje drukowania
Jak widzisz, odpowiedź "Właściwości drukarki" to strzał w dziesiątkę! W tym miejscu można zmieniać ustawienia drukarki, łącznie z portem, który służy do komunikacji. W systemie Windows zmiana portu jest dość prosta. Trzeba po prostu otworzyć Panel sterowania, iść do "Urządzenia i drukarki", kliknąć prawym przyciskiem myszy na drukarkę i wybrać "Właściwości drukarki". Potem w zakładce "Porty" zobaczysz wszystkie dostępne porty i możesz zmienić ten, na którym masz drukarkę. Na przykład, jeśli drukarka działa teraz na USB, a chcesz, żeby działała na sieci, to zrobisz to bez problemu. W biurach to dosyć istotne, bo jak jest dużo urządzeń w sieci, to dobrze skonfigurowane porty pomagają w utrzymaniu sprawnej komunikacji, no i ogólnej wydajności. Warto też zapisywać, jakie zmiany się robi, żeby potem łatwiej było rozwiązywać problemy, które mogą się pojawić.

Pytanie 19

Norma EN 50167 odnosi się do systemów okablowania

A. horyzontalnego
B. wertykalnego
C. sieciowego
D. szkieletowego
Zrozumienie znaczenia różnych typów okablowania w budynkach jest kluczowe dla efektywnej instalacji sieci telekomunikacyjnych. Okablowanie kampusowe odnosi się do połączeń między różnymi budynkami na terenie kampusu, co jest bardziej złożonym zagadnieniem, które wymaga innego podejścia projektowego, zarówno pod kątem odległości, jak i zastosowanych technologii. W przypadku okablowania pionowego, które łączy różne piętra budynku, istotne jest, aby instalacje były zgodne z lokalnymi normami budowlanymi oraz odpowiednio zabezpieczone przed zakłóceniami. Wreszcie, okablowanie szkieletowe to termin używany do opisania infrastruktury sieciowej obejmującej główne elementy, takie jak przełączniki i routery, które są kluczowe dla efektywnego zarządzania ruchem danych. Zbyt często myli się te terminy, co prowadzi do nieprawidłowych założeń w projektowaniu systemów sieciowych. Każdy z tych rodzajów okablowania ma swoje unikalne wymagania i zastosowania, które muszą być starannie rozważone w kontekście całej infrastruktury sieciowej. Dlatego tak ważne jest, aby przy projektowaniu i wdrażaniu systemów okablowania stosować się do odpowiednich norm i standardów, aby zapewnić ich prawidłowe funkcjonowanie i minimalizować ryzyko awarii.

Pytanie 20

Zgodnie z normą Fast Ethernet 100Base-TX, maksymalna długość kabla miedzianego UTP kategorii 5e, który łączy bezpośrednio dwa urządzenia sieciowe, wynosi

A. 300 m
B. 100 m
C. 150 m
D. 1000 m
Maksymalna długość kabla miedzianego UTP kat. 5e, jeśli mówimy o standardzie Fast Ethernet 100Base-TX, to 100 metrów. To bardzo ważna informacja, szczególnie dla tych, którzy projektują sieci komputerowe. Przekroczenie tej długości może spowodować, że sygnał się pogorszy, a to może wpłynąć na działanie całej sieci. Kabel kat. 5e jest często używany w lokalnych sieciach (LAN) i pozwala na przesyłanie danych z prędkością do 100 Mbps. Standard 100Base-TX korzysta z skręconych par, więc dla najlepszego działania długość kabla nie powinna być większa niż 100 metrów. W praktyce warto pamiętać, że musimy brać pod uwagę nie tylko sam kabel, ale także różne elementy, takie jak gniazdka, złącza czy urządzenia aktywne, bo to też wpływa na długość połączenia. Co więcej, planując instalację, dobrze jest unikać zakłóceń elektrycznych, które mogą obniżyć jakość sygnału. To są dobre praktyki w branży IT – warto o tym pamiętać.

Pytanie 21

Z jakim protokołem związane są terminy 'sequence number' oraz 'acknowledgment number'?

Ilustracja do pytania
A. HTTP (Hypertext Transfer Protocol)
B. UDP (User Datagram Protocol)
C. IP (Internet Protocol)
D. TCP (Transmission Control Protocol)
Protokół HTTP (Hypertext Transfer Protocol) choć powszechnie używany do przesyłania stron internetowych nie posiada mechanizmów bezpośrednio związanych z numerami sekwencyjnymi czy potwierdzeniami. Jest to protokół warstwy aplikacji który korzysta z TCP jako transportu stąd może korzystać z jego niezawodności ale sam z siebie nie implementuje tych funkcji. Protokół UDP (User Datagram Protocol) z kolei jest protokołem bezpołączeniowym co oznacza że nie zapewnia niezawodności ani nie korzysta z numerów sekwencyjnych czy potwierdzeń. UDP jest użyteczny w scenariuszach gdzie szybkość jest ważniejsza niż niezawodność takich jak streaming audio i wideo. W końcu protokół IP (Internet Protocol) jest podstawą komunikacji w sieci ale działa na niższym poziomie niż TCP i UDP. IP jest odpowiedzialny za trasowanie pakietów pomiędzy urządzeniami ale nie zajmuje się kontrolą przepływu czy niezawodnością transmisji. Często dochodzi do nieporozumień gdyż IP, TCP i UDP są używane razem w różnych warstwach modelu TCP/IP ale ich role i funkcje są różne dlatego kluczowe jest zrozumienie że to TCP odpowiada za mechanizmy zapewniające niezawodność transmisji dzięki numerom sekwencyjnym i potwierdzeniom.

Pytanie 22

Na ilustracji zaprezentowano zrzut ekranu z wykonanej analizy

Ilustracja do pytania
A. czas dostępu do nośnika optycznego
B. czas oczekiwania pamięci
C. czas dostępu do dysku HDD
D. czas przepełniania buforu systemowego
Czas, jaki procesor czeka na dostęp do danych w pamięci RAM, to naprawdę ważna sprawa w komputerach. Chodzi o to, że im krótszy ten czas, tym lepiej dla wydajności systemu. Jak pamięć działa wolniej, to może to stworzyć wąskie gardło podczas przetwarzania danych. W inżynierii systemów można to poprawić, stosując różne technologie, jak na przykład dual-channel czy quad-channel, które pomagają zwiększyć przepustowość. Jeśli spojrzymy na przykład na moduły pamięci jak DDR4 czy DDR5, to mają one niższe opóźnienia i większą przepustowość niż starsze wersje. A żeby wszystko działało jak trzeba, warto też pamiętać o aktualizowaniu BIOS-u i sterowników, bo to może pomóc w lepszym zarządzaniu pamięcią. W praktyce, w sytuacjach takich jak serwery czy aplikacje, które potrzebują dużej mocy obliczeniowej, krótszy czas oczekiwania na dane z pamięci to naprawdę klucz do lepszego działania systemu.

Pytanie 23

Jaki program powinien zostać zainstalowany na serwerze internetowym opartym na Linuxie, aby umożliwić korzystanie z baz danych?

A. MySqld
B. httpd
C. sshd
D. vsftpd
Wybór sshd, httpd oraz vsftpd jako odpowiedzi na pytanie o program do obsługi baz danych jest błędny, ponieważ każdy z tych programów ma zupełnie inne zastosowanie w kontekście serwera internetowego. sshd, czyli Secure Shell Daemon, jest używany do zapewnienia bezpiecznego zdalnego dostępu do serwera. Jego główną funkcją jest umożliwienie administratorom bezpiecznego logowania i zarządzania systemem, ale nie ma on żadnych funkcji związanych z zarządzaniem bazami danych. httpd, z kolei, to serwer HTTP, najczęściej Apache, który odpowiada za obsługę żądań HTTP i dostarczanie stron internetowych. Chociaż jest kluczowy w dostarczaniu treści do użytkowników, nie ma funkcji przechowywania ani zarządzania bazami danych. vsftpd to serwer FTP, który służy do przesyłania plików między serwerem a klientami, jednak również nie umożliwia zarządzania bazami danych. W kontekście projektowania aplikacji internetowych, kluczowe jest zrozumienie roli, jaką pełnią różne komponenty. Używanie programów, które nie są przeznaczone do zarządzania bazami danych, prowadzi do dezorientacji i nieefektywności, co jest powszechnym błędem wśród osób, które są nowe w dziedzinie administracji serwerami i programowania aplikacji webowych. Właściwe zrozumienie architektury aplikacji i wyboru odpowiednich narzędzi jest niezbędne dla sukcesu projektów informatycznych.

Pytanie 24

Wskaż złącze, które nie jest stosowane w zasilaczach ATX?

A. SATA Connector
B. MPC
C. DE-15/HD-15
D. PCI-E
Złącza, takie jak MPC, SATA Connector oraz PCI-E są nieodłącznymi elementami zasilaczy ATX, które mają specyficzne funkcje w kontekście zasilania komponentów komputerowych. Złącze SATA służy do dostarczania energii do nowoczesnych dysków twardych i SSD, odgrywając kluczową rolę w zapewnieniu stabilności oraz wydajności systemu. Złącze PCI-E, z kolei, jest używane do zasilania kart graficznych oraz kart rozszerzeń, co jest istotne w kontekście rozbudowy wydajnych stacji roboczych oraz komputerów do gier. Zrozumienie, w jakim celu każde z tych złączy zostało zaprojektowane, jest fundamentalne dla efektywnego wykorzystania zasilacza ATX. Typowe błędy myślowe, które prowadzą do mylnego utożsamienia złącza DE-15/HD-15 z zasilaczami ATX, wynikają z nieznajomości różnic między typami złączy oraz ich funkcjonalnością. Złącze DE-15/HD-15 jest przeznaczone do transmisji sygnałów wideo, co jest zupełnie inną funkcją niż zasilanie komponentów. Różnice te podkreślają znaczenie wiedzy na temat standardów branżowych w kontekście budowy komputerów oraz ich komponentów.

Pytanie 25

Aby stworzyć las w strukturze katalogowej AD DS (Active Directory Domain Services), konieczne jest utworzenie przynajmniej

A. trzech drzew domeny
B. dwóch drzew domeny
C. jednego drzewa domeny
D. czterech drzew domeny
Aby utworzyć las w strukturze katalogowej Active Directory Domain Services (AD DS), konieczne jest stworzenie przynajmniej jednego drzewa domeny. Las to zbiór jednego lub więcej drzew domeny, które dzielą wspólną konfigurację i schemat. Każde drzewo w lesie może zawierać wiele domen, a hierarchia ta zapewnia elastyczność w zarządzaniu relacjami między domenami oraz bezpieczeństwem. Przykładem zastosowania tej architektury może być sytuacja, gdy organizacja posiada kilka jednostek biznesowych, z których każda ma swoją własną domenę. W takim przypadku można utworzyć jedno drzewo, w którym każda jednostka będzie miała swoją domenę, a wszystkie one będą współdzielić wspólny las. Warto również zaznaczyć, że zgodnie z najlepszymi praktykami, lasy powinny być projektowane z myślą o przyszłym rozwoju i ewentualnym rozszerzeniu, co może wiązać się z dodawaniem nowych drzew i domen w miarę wzrostu organizacji.

Pytanie 26

Aby zabezpieczyć system przed atakami typu phishing, nie zaleca się

A. wykorzystywania bankowości internetowej
B. aktualizowania oprogramowania do obsługi e-maili
C. używania stron WWW, które korzystają z protokołu HTTPS
D. posługiwania się przestarzałymi przeglądarkami internetowymi
Używanie starszych przeglądarek internetowych jest niewłaściwe, ponieważ te przeglądarki często nie są aktualizowane, co prowadzi do luk w zabezpieczeniach. Starsze wersje przeglądarek mogą nie obsługiwać najnowszych standardów bezpieczeństwa, takich jak protokoły TLS, co naraża użytkowników na ataki phishingowe. Phishing to technika oszustwa, w której hakerzy podszywają się pod zaufane źródła, aby wyłudzić poufne dane, takie jak hasła czy numery kart kredytowych. Przykładowo, przeglądarki, które nie wspierają nowoczesnych zabezpieczeń, mogą nie ostrzegać użytkowników przed stronami, które są potencjalnie niebezpieczne, co zwiększa ryzyko udanego ataku. Warto regularnie aktualizować przeglądarki oraz korzystać z tych, które mają aktywne wsparcie techniczne i są zgodne z bieżącymi standardami bezpieczeństwa, takimi jak OWASP. Pamiętajmy, że cyberprzestępcy stale udoskonalają swoje metody, dlatego kluczowe jest, aby nasze narzędzia do przeglądania internetu były zawsze na czasie.

Pytanie 27

Na rysunku przedstawiono konfigurację urządzenia WiFi. Wskaż, które z poniższych stwierdzeń dotyczących tej konfiguracji jest poprawne?

Ilustracja do pytania
A. Dostęp do sieci bezprzewodowej jest możliwy tylko dla siedmiu urządzeń
B. W tej chwili w sieci WiFi pracuje 7 urządzeń
C. Filtrowanie adresów MAC jest wyłączone
D. Urządzenia w sieci mają adresy klasy A
Stwierdzenie że dostęp do sieci bezprzewodowej jest dozwolony wyłącznie dla siedmiu urządzeń jest błędne ponieważ widoczna lista sparowanych urządzeń nie odzwierciedla ograniczenia liczby urządzeń które mogą się połączyć z siecią. Brak aktywnego filtrowania adresów MAC oznacza że potencjalnie więcej urządzeń może uzyskać dostęp o ile zna dane dostępowe do sieci. Adresy IP przypisane do urządzeń sugerują że sieć korzysta z adresów klasy C a nie klasy A. Klasa C obejmuje zakres adresów IP od 192.0.0.0 do 223.255.255.255 co jest zgodne z przypisanymi adresami zaczynającymi się od 192. Adresy klasy A natomiast zaczynają się od 1.0.0.0 do 127.255.255.255 co jest wyraźnie sprzeczne z tym co pokazuje tabela. Również stwierdzenie że w tym momencie w sieci WiFi pracuje 7 urządzeń jest mylące ponieważ lista pokazuje sparowane urządzenia a nie aktywne połączenia w danym momencie. Urządzenia mogą być sparowane ale nie muszą być jednocześnie połączone z siecią co oznacza że faktyczna liczba aktywnych urządzeń może być inna. W celu ustalenia liczby aktywnych połączeń należałoby przeanalizować statystyki połączeń w czasie rzeczywistym dostępne w interfejsie administracyjnym routera. Zrozumienie różnic pomiędzy sparowanymi a aktywnymi urządzeniami jest kluczowe w zarządzaniu siecią i optymalizacji jej wydajności. Właściwa konfiguracja sieci wymaga znajomości tych aspektów oraz umiejętności obsługi interfejsu administracyjnego urządzeń sieciowych.

Pytanie 28

Które z poniższych stwierdzeń dotyczących konta użytkownika Active Directory w systemie Windows jest prawdziwe?

A. Nazwa logowania użytkownika może mieć długość przekraczającą 100 bajtów
B. Nazwa logowania użytkownika może zawierać mniej niż 21 znaków
C. Nazwa logowania użytkownika nie może mieć długości większej niż 100 bajtów
D. Nazwa logowania użytkownika powinna mieć nie więcej niż 20 znaków
Odpowiedzi sugerujące, że nazwa logowania użytkownika w Active Directory musi mieć mniej niż 20 lub 21 znaków, są błędne. W rzeczywistości, Active Directory nie wprowadza takiego ograniczenia, co jest kluczowe dla zrozumienia elastyczności systemu. Użytkownicy mogą być wprowadzani do systemu z bardziej złożonymi i dłuższymi nazwami, co jest szczególnie istotne w dużych organizacjach, gdzie unikalne identyfikatory są często niezbędne. Utrzymywanie krótszych nazw logowania może prowadzić do zamieszania i niejednoznaczności, zwłaszcza gdy w danej organizacji pracuje wiele osób o podobnych imionach i nazwiskach. Ponadto, nieprawdziwe jest stwierdzenie, że nazwa logowania nie może mieć długości większej niż 100 bajtów. W rzeczywistości, Active Directory pozwala na dłuższe nazwy, co wspiera różnorodność i unikalność kont użytkowników. Błędne koncepcje związane z długością nazw logowania mogą prowadzić do problemów z integracją systemów oraz zwiększać ryzyko błędów przy logowaniu. Użytkownicy muszą być świadomi właściwych praktyk, aby zminimalizować nieporozumienia i poprawić bezpieczeństwo systemów.

Pytanie 29

Zestaw komputerowy przedstawiony powyżej jest niewłaściwy. Jaki komponent nie został wymieniony w tabeli, a jest kluczowy dla prawidłowego funkcjonowania zestawu i powinien zostać dołączony?

A. Wentylator procesora.
B. Pamięć RAM.
C. Zasilacz.
D. Karta graficzna.
Pojęcie zasilacza odnosi się do komponentu, który dostarcza energię elektryczną do wszystkich podzespołów komputera. Choć istotny, zasilacz nie jest elementem, który bezpośrednio wpływa na działanie procesora, dlatego nie można go uznać za najważniejszy brak w zestawie. Pamięć RAM jest kluczowa dla wydajności systemu, ale jej obecność w zestawie nie jest wymagana do uruchomienia maszyny, ponieważ procesor potrafi wystartować nawet bez RAM na poziomie podstawowym. Karta graficzna może być niezbędna w przypadku gier lub aplikacji graficznych, ale sama płyta główna z zintegrowanym układem graficznym wystarczy do podstawowego działania komputera. To podstawowe zrozumienie hierarchii komponentów komputerowych jest kluczowe dla każdego, kto zajmuje się budową lub modernizacją zestawu komputerowego. W przypadku, gdy system nie dysponuje odpowiednim chłodzeniem procesora, nie tylko wydajność, ale także całkowita funkcjonalność komputera mogą być zagrożone, prowadząc do nieprawidłowego działania i potencjalnych uszkodzeń podzespołów. Dlatego istotne jest, aby przy budowie zestawu komputerowego uwzględnić wszystkie kluczowe komponenty, w tym wentylację, co jest standardem w branży.

Pytanie 30

Zgodnie z normą PN-EN 50174, okablowanie poziome w systemie okablowania strukturalnego to segment okablowania pomiędzy

A. punktem rozdzielczym a gniazdem użytkownika
B. serwerem a szkieletem sieci
C. gniazdkiem użytkownika a terminalem końcowym
D. punktami rozdzielczymi w głównych pionach budynku
Zgodnie z normą PN-EN 50174, okablowanie poziome w systemie okablowania strukturalnego odnosi się do połączeń pomiędzy punktem rozdzielczym a gniazdem użytkownika. Jest to kluczowa część infrastruktury sieciowej, ponieważ to właśnie przez tę część okablowania sygnał trafia do końcowych urządzeń użytkowników, takich jak komputery, telefony czy inne urządzenia sieciowe. W praktyce oznacza to, że projektując system okablowania, inżynierowie muszą dokładnie zaplanować trasę kabli oraz ich rodzaj, aby zapewnić optymalne parametry transmisji danych, minimalizując jednocześnie zakłócenia. Okablowanie poziome powinno spełniać określone normy dotyczące długości kabli, ich jakości oraz ochrony przed zakłóceniami elektromagnetycznymi. Warto również pamiętać o standardach instalacji, takich jak ISO/IEC 11801, które korespondują z PN-EN 50174, co pozwala na uzyskanie wysokiej jakości i niezawodności systemów sieciowych.

Pytanie 31

W systemie Windows Server, możliwość udostępnienia folderu jako zasobu sieciowego, który jest widoczny na stacji roboczej jako dysk oznaczony literą, można uzyskać poprzez realizację czynności

A. oczywiście
B. zerowania
C. mapowania
D. defragmentacji
Mapowanie folderu jako zasobu sieciowego w systemie Windows Server polega na przypisaniu litery dysku do określonego folderu udostępnionego w sieci. Dzięki tej operacji użytkownicy na stacjach roboczych mogą łatwo uzyskiwać dostęp do zasobów, traktując je jak lokalne dyski. Proces ten jest standardową praktyką w zarządzaniu siecią, która zwiększa wygodę oraz efektywność pracy. Na przykład, jeśli administrator sieci udostępni folder \\serwer\udział jako dysk Z:, użytkownicy mogą w prosty sposób otworzyć Eksplorator plików, a następnie wybrać dysk Z: bez potrzeby znajomości pełnej ścieżki folderu. Mapowanie pozwala również na zastosowanie różnych uprawnień dostępu, co jest kluczowe dla bezpieczeństwa danych. Warto również wspomnieć, że mapowanie dysków można zautomatyzować przy użyciu skryptów logowania, co ułatwia zarządzanie zasobami w dużych środowiskach. Zgodnie z najlepszymi praktykami w zarządzaniu infrastrukturą IT, mapowanie dysków to skuteczna metoda organizacji i dostępu do zasobów sieciowych."

Pytanie 32

Koprocesor (Floating Point Unit) w systemie komputerowym jest odpowiedzialny za realizację

A. operacji na liczbach całkowitych
B. podprogramów
C. operacji zmiennoprzecinkowych
D. operacji na liczbach naturalnych
Wybierając odpowiedzi, które nie odnoszą się do operacji zmiennoprzecinkowych, można napotkać kilka nieporozumień dotyczących roli koprocesora. Przykład pierwszej z błędnych odpowiedzi obejmuje podprogramy, które są fragmentami kodu wykonywanymi w ramach programów głównych. W rzeczywistości, koprocesor nie zajmuje się zarządzaniem podprogramami; jego głównym zadaniem jest przyspieszanie obliczeń matematycznych, zwłaszcza związanych z operacjami na liczbach zmiennoprzecinkowych. Kolejna odpowiedź dotycząca operacji na liczbach naturalnych jest również myląca. Liczby naturalne są zwykle reprezentowane jako liczby całkowite i nie wymagają skomplikowanej obliczeniowej logiki, jak ma to miejsce w przypadku operacji zmiennoprzecinkowych. W związku z tym, funkcjonalności koprocesora nie wykorzystuje się do efektywnego przetwarzania tych prostych obliczeń. Ostatni błąd dotyczy operacji na liczbach całkowitych. Choć niektóre procesory również obsługują te operacje, są one realizowane głównie przez jednostkę arytmetyczno-logiczną (ALU), a nie przez FPU. To prowadzi do mylnego przekonania, że koprocesor powinien być wykorzystywany do wszystkich form obliczeń matematycznych, podczas gdy jego właściwe zastosowanie ogranicza się do skomplikowanych operacji wymagających precyzyjnych obliczeń zmiennoprzecinkowych.

Pytanie 33

W systemie dziesiętnym liczba 110011(2) przedstawia się jako

A. 51
B. 50
C. 52
D. 53
Odpowiedź 51 jest poprawna, ponieważ liczba 110011 zapisana w systemie binarnym (dwu-symbolowym) można przeliczyć na system dziesiętny (dziesięcio-symbolowy) przez zsumowanie wartości poszczególnych bitów, które mają wartość 1. W systemie binarnym każdy bit reprezentuje potęgę liczby 2. Rozpoczynając od prawej strony, mamy: 1*2^5 + 1*2^4 + 0*2^3 + 0*2^2 + 1*2^1 + 1*2^0, co daje: 32 + 16 + 0 + 0 + 2 + 1 = 51. Przykładem praktycznego zastosowania tej wiedzy jest programowanie, gdzie często spotykamy się z konwersją między systemami liczbowymi, szczególnie przy wykorzystaniu binarnych reprezentacji danych w pamięci komputerowej. Zrozumienie, jak konwertować różne systemy liczbowej, jest kluczowe dla efektywnego programowania oraz pracy z algorytmami, co stanowi standard w informatyce.

Pytanie 34

Który z komponentów komputera, gdy zasilanie jest wyłączone, zachowuje program inicjujący uruchamianie systemu operacyjnego?

Ilustracja do pytania
A. RAM
B. CPU
C. ROM
D. I/O
ROM czyli Read-Only Memory to rodzaj pamięci komputerowej, która przechowuje dane nawet po wyłączeniu zasilania. Kluczowym elementem ROM w komputerach jest BIOS lub nowsza wersja UEFI które są odpowiedzialne za inicjowanie podstawowych procedur rozruchowych systemu operacyjnego. ROM zawiera programy i dane niezbędne do uruchomienia komputera czyli oprogramowanie które kontroluje początkowy proces inicjalizacji sprzętu oraz przekazuje kontrolę do systemu operacyjnego. Praktyczne zastosowanie ROM obejmuje systemy wbudowane w urządzeniach takich jak routery czy drukarki gdzie niezmienność danych jest kluczowa. Standardowe rozwiązania w zakresie ROM w komputerach osobistych obejmują implementację BIOS lub UEFI zgodnie z normami takimi jak UEFI Specification które definiują jak powinien działać interfejs oprogramowania układowego. Pamięć ROM jest istotna dla zapewnienia stabilności i bezpieczeństwa procesu startowego co jest szczególnie ważne w środowiskach przemysłowych i serwerowych gdzie jakiekolwiek zakłócenia mogłyby prowadzić do poważnych problemów operacyjnych.

Pytanie 35

Jaka jest maksymalna ilość pamięci RAM w GB, do której może uzyskać dostęp 32-bitowa wersja systemu Windows?

A. 12GB
B. 2GB
C. 4GB
D. 8GB
Wybór 2GB jako odpowiedzi opiera się na błędnym zrozumieniu architektury 32-bitowej oraz jej ograniczeń. Użytkownicy często sądzą, że 2GB to wystarczająca ilość pamięci RAM dla współczesnych aplikacji, jednak w rzeczywistości wiele z nich, w tym systemy operacyjne, wymaga więcej pamięci, aby działać płynnie. W przypadku 4GB, niektórzy mogą mylić te wartości z poszczególnymi aplikacjami czy grami, które mogą działać w 32-bitowym środowisku, ale nie potrafią wykorzystać pełnych możliwości. Odpowiedzi takie jak 8GB i 12GB z kolei wynikają z błędnych założeń co do możliwości 32-bitowych systemów. Użytkownicy mogą być przekonani, że większa ilość pamięci RAM jest zawsze lepsza, ale w rzeczywistości 32-bitowe systemy operacyjne mają fizyczne ograniczenie w dostępie do pamięci, które uniemożliwia im rozpoznawanie i wykorzystanie więcej niż 4GB. Zatem, wybierając te wartości, użytkownicy ignorują fundamentalne zasady dotyczące adresowania pamięci, które są kluczowe w architekturze komputerowej. Dlatego też ważne jest zrozumienie, na czym polegają te ograniczenia oraz ich wpływ na wydajność systemu.

Pytanie 36

Na ilustracji zaprezentowano schemat blokowy karty

Ilustracja do pytania
A. sieciowej
B. telewizyjnej
C. dźwiękowej
D. graficznej
Schemat blokowy przedstawia kartę telewizyjną, co można zidentyfikować na podstawie kilku kluczowych elementów. Karty telewizyjne są zaprojektowane do odbioru sygnałów telewizyjnych z anteny i ich przetwarzania na formaty cyfrowe, które mogą być odtwarzane na komputerze. Na schemacie widoczne są takie komponenty jak tuner, który odbiera sygnał RF z anteny, a także dekoder wideo, który przetwarza sygnał na format cyfrowy, często w standardzie MPEG-2. Obecność przetwornika analogowo-cyfrowego (A/C) dla sygnałów wideo i audio wskazuje na funkcję konwersji sygnałów analogowych na cyfrowe. Dodatkowe elementy, takie jak EEPROM i DRAM, wspierają przetwarzanie i przechowywanie danych, co jest typowe dla bardziej zaawansowanych funkcji kart TV, takich jak timeshifting czy nagrywanie programów. Interfejs magistrali umożliwia komunikację karty z resztą systemu komputerowego, co jest niezbędne do przesyłania przetworzonych danych wideo i audio do dalszego odtwarzania. Karty telewizyjne znajdują zastosowanie w systemach multimedialnych, umożliwiając odbiór i nagrywanie telewizji oraz integrację z innymi funkcjami komputerowymi.

Pytanie 37

Element trwale zamontowany, w którym znajduje się zakończenie okablowania strukturalnego poziomego dla abonenta, to

A. punkt konsolidacyjny
B. gniazdo energetyczne
C. punkt rozdzielczy
D. gniazdo teleinformatyczne
Gniazdo teleinformatyczne jest kluczowym elementem infrastruktury okablowania strukturalnego, które służy jako punkt dostępu dla użytkowników końcowych do sieci telekomunikacyjnych i informatycznych. Zakończenie okablowania strukturalnego poziomego odbywa się właśnie w tym gnieździe, co umożliwia podłączenie urządzeń takich jak komputery, telefony IP czy drukarki do sieci. Zgodnie z normami ISO/IEC 11801 oraz ANSI/TIA-568, gniazda teleinformatyczne powinny być instalowane w strategicznych lokalizacjach, aby zapewnić optymalną wydajność sieci oraz minimalizować straty sygnału. Przykładem zastosowania gniazd teleinformatycznych są biura, gdzie pozwalają one na elastyczne podłączanie stanowisk pracy do lokalnej sieci oraz internetu. Dodatkowo, gniazda te są często wyposażone w różnorodne złącza, co pozwala na obsługę różnych typów kabli i protokołów transmisyjnych, co jest zgodne z najlepszymi praktykami projektowania sieci. Właściwe umiejscowienie i typ gniazd teleinformatycznych znacząco wpływa na komfort pracy użytkowników oraz efektywność zarządzania infrastrukturą IT.

Pytanie 38

Graficzny symbol odnosi się do standardów sprzętowych

Ilustracja do pytania
A. FireWire
B. USB
C. SCSI-12
D. LPT
FireWire znany również jako IEEE 1394 to standard technologii komunikacyjnej opracowany przez Apple w latach 90 XX wieku FireWire oferuje szybki transfer danych na poziomie od 400 do 3200 Mb/s w zależności od wersji technologii Jest często stosowany w urządzeniach wymagających dużych przepustowości takich jak kamery wideo oraz zewnętrzne dyski twarde Technologia ta pozwala na podłączenie do 63 urządzeń w jednej sieci dzięki funkcji daisy-chaining co oznacza że urządzenia mogą być łączone szeregowo FireWire ma także możliwość przesyłania zasilania co oznacza że niektóre urządzenia mogą być zasilane bezpośrednio z portu co eliminuje potrzebę dodatkowego zasilacza W porównaniu do innych standardów takich jak USB FireWire oferuje szybszy transfer danych w trybach rzeczywistych co jest kluczowe dla profesjonalnych zastosowań w edycji wideo oraz audio FireWire był powszechnie stosowany w komputerach Apple oraz w urządzeniach audio-wideo chociaż jego popularność spadła na rzecz nowszych standardów takich jak USB 3.0 i Thunderbolt Mimo to FireWire wciąż jest ceniony w niektórych niszowych zastosowaniach ze względu na niezawodność i szybkość przesyłu danych

Pytanie 39

Wydanie w systemie Windows komendy ```ATTRIB -S +H TEST.TXT``` spowoduje

A. ustawienie atrybutu pliku systemowego z zablokowaniem edycji
B. usunięcie atrybutu pliku systemowego oraz atrybutu pliku ukrytego
C. ustawienie atrybutu pliku jako tylko do odczytu oraz jego ukrycie
D. usunięcie atrybutu pliku systemowego oraz aktywowanie atrybutu pliku ukrytego
Wszystkie proponowane odpowiedzi nietrafnie interpretują działanie polecenia ATTRIB. Ustawienie atrybutu pliku tylko do odczytu oraz jego ukrycie nie może być zrealizowane jednocześnie za pomocą podanych parametrów. Atrybut tylko do odczytu (R) nie pojawia się w poleceniu, co oznacza, że użytkownik nie do końca rozumie, jak działa system atrybutów w Windows. Podobnie, stwierdzenie, że polecenie usuwa atrybut pliku systemowego oraz ustawia atrybut pliku ukrytego, jest częściowo prawdziwe, ale nie uwzględnia istotnego faktu, iż atrybut systemowy jest usuwany, co zmienia klasyfikację pliku. Odpowiedzi dotyczące usunięcia atrybutu systemowego oraz ustawienia tylko atrybutu ukrytego również są niepoprawne, ponieważ nie uwzględniają, że plik staje się bardziej dostępny po usunięciu atrybutu systemowego. Ostatnia odpowiedź dotycząca ustawienia atrybutu systemowego z blokadą edycji jest całkowicie myląca, gdyż polecenie w ogóle nie ustawia atrybutu systemowego, a wręcz przeciwnie, go usuwa. Kluczowym błędem w logicznym rozumowaniu uczestników jest założenie, że polecenia w systemie operacyjnym działają w sposób niezmienny, nie uwzględniając kontekstu, w jakim są stosowane. Zrozumienie, jak atrybuty plików wpływają na ich zachowanie, jest niezbędne do skutecznego zarządzania systemem plików w Windows.

Pytanie 40

Jakie ustawienia dotyczące protokołu TCP/IP zostały zastosowane dla karty sieciowej, na podstawie rezultatu uruchomienia polecenia IPCONFIG /ALL w systemie Windows?

Ilustracja do pytania
A. Karta sieciowa nie posiada skonfigurowanego adresu serwera DNS
B. Karta sieciowa nie ma zdefiniowanego adresu bramy
C. Karta sieciowa otrzymała adres IP w sposób automatyczny
D. Karta sieciowa ma przypisany statyczny adres IP
Odpowiedzi inne niż pierwsza są niepoprawne z kilku powodów. Twierdzenie, że karta sieciowa ma przydzielony statyczny adres IP, jest błędne, ponieważ w wynikach polecenia jasno widać, że DHCP jest włączone. Gdyby adres IP był przydzielony statycznie, opcja DHCP nie byłaby aktywna. DHCP włącza automatyczną konfigurację, co eliminuje konieczność ręcznego przypisywania adresów IP. Ułatwia to zarządzanie siecią i minimalizuje ryzyko błędów. Brak ustawienia adresu serwera DNS również nie jest poprawny. Wyniki wskazują na skonfigurowane serwery DNS, co oznacza, że karta ma dostęp do serwerów nazw domenowych, co jest kluczowe dla poprawnej konfiguracji sieciowej i umożliwia tłumaczenie nazw domen na adresy IP. Podobnie, pogląd, że karta nie ma ustawionej bramy, jest błędny, ponieważ adres bramy domyślnej jest wyraźnie podany. Brama domyślna jest kluczowym elementem konfiguracji sieciowej, umożliwia wyjście poza lokalną podsieć. Poprawna konfiguracja bramy pozwala urządzeniu na komunikację z innymi sieciami, w tym internetem. Te niepoprawne odpowiedzi często wynikają z niezrozumienia podstaw działania protokołu DHCP i jego roli w automatyzacji konfiguracji sieci. Zrozumienie tych zasad jest kluczowe dla efektywnego zarządzania siecią i zapewnienia jej płynnego działania. Użycie DHCP oraz poprawne ustawienia DNS i bramy to standardy w nowoczesnych sieciach komputerowych, dlatego ważne jest, aby znać i rozumieć ich zastosowanie i konfigurację. Prawidłowe czytanie wyników polecenia IPCONFIG jest podstawową umiejętnością w diagnostyce i zarządzaniu siecią, co podkreśla znaczenie dokładności i wiedzy technicznej w tej dziedzinie.