Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 15 maja 2025 12:36
  • Data zakończenia: 15 maja 2025 12:47

Egzamin zdany!

Wynik: 30/40 punktów (75,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Podczas działania napędu zwrotnego z użyciem silnika prądu stałego zaobserwowano, że prędkość obrotowa silnika jest różna w obu kierunkach oraz że iskrzenie szczotek przy obrocie w jedną stronę jest znacznie większe niż przy obrocie w kierunku przeciwnym. Jakie kroki należy podjąć w celu naprawy silnika?

A. Ustawić szczotki w strefie neutralnej
B. Znormalizować nacisk szczotek
C. Obtoczyć oraz przeszlifować komutator
D. Zamienić łożyska
Wymiana łożysk nie rozwiąże problemu nierównej prędkości obrotowej oraz intensywnego iskrzenia szczotek. Łożyska odpowiadają za utrzymanie osi silnika w odpowiedniej pozycji i zmniejszenie tarcia, jednakże nie mają wpływu na działanie komutatora ani na kontakt szczotek z wirnikiem. Z kolei ujednolicanie nacisku szczotek, chociaż może wydawać się logicznym rozwiązaniem, nie adresuje bezpośrednio problemu iskrzenia, które jest wynikiem niewłaściwego ustawienia szczotek. Obtoczenie i przeszlifowanie komutatora mogą jedynie częściowo poprawić sytuację, ale nie zlikwidują źródła problemu, jakim jest niewłaściwe ustawienie szczotek. Ustawienie szczotek w strefie neutralnej jest nie tylko najlepszym sposobem na rozwiązanie zaobserwowanych problemów, ale także jest zgodne z praktykami stosowanymi w serwisie silników prądu stałego, co podkreśla znaczenie precyzyjnej diagnostyki oraz regulacji. Ostatecznie, te działania powinny być częścią regularnych przeglądów technicznych, aby zapewnić długotrwałą i efektywną pracę silnika.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Spośród wymienionych zjawisk fizycznych, w urządzeniach przekształcających liniowe przemieszczenie na sygnał elektryczny, najczęściej stosowane jest zjawisko

A. magnotorezystancji (Gaussa)
B. magnetooptyczne (Faradaya)
C. zwane efektem Dopplera
D. piezoelektryczne
Zjawiska piezoelektryczne, zwane efektem Dopplera oraz magnetooptyczne (Faradaya) z pewnością są interesującymi i ważnymi fenomenami, jednak nie odnoszą się one bezpośrednio do przekształcania przemieszczenia liniowego na sygnał elektryczny w takim samym stopniu jak magnotorezystancja. Zjawisko piezoelektryczne polega na generowaniu ładunku elektrycznego w materiale pod wpływem mechanicznego nacisku, co czyni je użytecznym w niektórych zastosowaniach, ale nie w kontekście szerokiego zakresu czujników przemieszczenia. Efekt Dopplera, z kolei, odnosi się do zmiany częstotliwości fali w przypadku ruchu źródła lub obserwatora, co ma zastosowanie głównie w akustyce i optyce, a nie w pomiarze przemieszczenia. Zjawisko magnetooptyczne (Faradaya) związuje się z oddziaływaniem pola magnetycznego na światło, oraz zmiany jego polaryzacji, co ma ograniczone zastosowanie w kontekście przemieszczenia liniowego. Błąd w wyborze odpowiedzi może wynikać z mylnego przekonania o uniwersalności tych zjawisk, mimo że każde z nich posiada swoje specyficzne zastosowanie. W kontekście czujników przemieszczenia, kluczowe jest rozumienie, które zjawiska oferują najlepsze właściwości dla danych aplikacji, a magnotorezystancja wyróżnia się tutaj jako najbardziej efektywne rozwiązanie. Analizując temat, warto zwrócić uwagę na standardy i praktyki branżowe, które wskazują na preferencje dotyczące wyboru odpowiednich technologii w zależności od wymagań aplikacji.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Jaki środek smarny oraz o jakiej konsystencji powinno się wykorzystać w celu zmniejszenia oporu tarcia w siłownikach pneumatycznych?

A. Półciekły smar plastyczny
B. Olej w postaci mgły olejowej
C. Olej w postaci płynnej
D. Smar o stałej konsystencji
Olej w postaci mgły olejowej jest optymalnym środkiem smarnym do zastosowania w siłownikach pneumatycznych, ponieważ skutecznie obniża tarcie i zużycie elementów ruchomych, co przekłada się na ich dłuższą żywotność. Typowa mgła olejowa jest wytwarzana poprzez rozpylanie oleju, co pozwala na równomierne pokrycie powierzchni roboczych. Dzięki temu olej penetruje w najtrudniej dostępne miejsca w mechanizmach, co zwiększa efektywność smarowania. W praktyce, olej w postaci mgły jest często używany w zautomatyzowanych systemach, gdzie precyzja i efektywność smarowania są kluczowe. Zgodnie z normami ISO 6743-99, oleje do smarowania pneumatycznego powinny spełniać określone wymagania dotyczące lepkości i stabilności. Wybór odpowiedniego środka smarnego jest kluczowy nie tylko dla wydajności, ale i dla bezpieczeństwa operacji, dlatego dobór oleju w postaci mgły jest zgodny z najlepszymi praktykami branżowymi.

Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Zgodnie z normami ochrony przeciwpożarowej, do gaszenia urządzeń elektrycznych pod napięciem przekraczającym 1000 V należy zastosować gaśnicę

A. śniegową oznaczoną BC
B. proszkową oznaczoną ABC
C. proszkową oznaczoną ABC/E
D. pianową oznaczoną AF
Odpowiedź z gaśnicą proszkową ABC/E jest jak najbardziej trafna. Ta klasa gaśnicza jest stworzona do gaszenia pożarów, które mogą się zdarzyć w urządzeniach elektrycznych, gdy napięcie przekracza 1000 V. Gaśnice proszkowe ABC/E zawierają specjalny proszek, który świetnie radzi sobie z pożarami różnych typów – od ciał stałych, przez płyny, aż po gazy. To oznaczenie 'E' mówi nam, że można ich używać przy urządzeniach elektrycznych. Gdy wybuchnie pożar w elektryce, to ważne, żeby nie używać wody ani gaśnic pianowych, bo to może prowadzić do porażenia prądem. Przykładem może być sytuacja, kiedy w biurze zaczyna się palić komputer – wtedy użycie gaśnicy ABC/E pozwala na szybkie i bezpieczne ugaszenie pożaru, bez ryzyka dla ludzi. Przepisy przeciwpożarowe oraz normy, jak PN-EN 2, pokazują, jak ważny jest dobór odpowiedniego sprzętu gaśniczego w miejscach z elektroniką.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

Jakie elementy znajdują się w zespole przygotowania powietrza?

A. filtr, zawór dławiący, manometr, smarownica
B. filtr, zawór redukcyjny, manometr, smarownica
C. sprężarka, filtr, zawór redukcyjny, manometr
D. sprężarka, filtr, manometr, smarownica
Zespół przygotowania powietrza to kluczowy element systemów pneumatycznych, którego celem jest zapewnienie odpowiedniego stanu powietrza do dalszego wykorzystania. W skład tego zespołu wchodzi filtr, zawór redukcyjny, manometr i smarownica. Filtr odpowiada za oczyszczanie powietrza z zanieczyszczeń stałych i cieczy, co jest niezbędne do ochrony delikatnych komponentów systemów pneumatycznych. Zawór redukcyjny reguluje ciśnienie powietrza, co pozwala na dostosowanie go do wymagań poszczególnych urządzeń. Manometr umożliwia monitorowanie ciśnienia, co jest kluczowe dla bezpieczeństwa i efektywności pracy systemu. Smarownica natomiast dostarcza olej do elementów roboczych, co zmniejsza tarcie i zużycie, a także zapewnia długą żywotność urządzeń. Zgodnie z normami ISO 8573, odpowiednia jakość powietrza jest kluczowa w zastosowaniach przemysłowych, dlatego właściwa konfiguracja zespołu przygotowania powietrza jest niezbędna dla zapewnienia niezawodności oraz bezpieczeństwa operacji.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Wskaż na podstawie tabeli wymiary wpustu pryzmatycznego, który można osadzić na wale o średnicy 12 mm.

Wałek – d mmWpust
ponaddob x h mm
682 x 2
8103 x 3
10124 x 4
12175 x 5
17226 x 6
22308 x 7

A. 6 x 6 mm
B. 3 x 3 mm
C. 5 x 5 mm
D. 4 x 4 mm
Odpowiedź 4 x 4 mm jest poprawna, ponieważ zgodnie z danymi przedstawionymi w tabeli, wymiary wpustu pryzmatycznego powinny być dostosowane do średnicy wału. Dla wałów o średnicy od 10 mm do 12 mm, wymagany wpust ma wymiary 4 x 4 mm. Odpowiednie dopasowanie wymiarów wpustu jest kluczowe dla prawidłowego przenoszenia momentu obrotowego oraz zapewnienia stabilności i trwałości mechanizmu. Zastosowanie niewłaściwych wymiarów wpustu może prowadzić do luzów, co z kolei może skutkować uszkodzeniem elementów współpracujących. W praktyce, poprawnie dobrany wpust pryzmatyczny stosuje się w wielu zastosowaniach, w tym w przekładniach, wałach napędowych oraz silnikach, gdzie precyzyjne połączenie elementów jest niezbędne. Dobrą praktyką w inżynierii mechanicznej jest zawsze odniesienie się do standardów przemysłowych, takich jak ISO, które precyzują wymagania dotyczące wymiarów i tolerancji wpustów. Takie podejście zapewnia nie tylko funkcjonalność, ale również bezpieczeństwo i niezawodność konstrukcji.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Do czynności przygotowawczych, które pozwalają na późniejszy poprawny montaż nowego paska klinowego w przekładni pasowej, nie należy

A. sprawdzenia poziomu naprężenia
B. weryfikacji wymiarów
C. oceny stopnia zużycia
D. kontroli czystości paska
Weryfikacja wymiarów, ocena stopnia zużycia oraz kontrola czystości paska są kluczowymi etapami przygotowań do montażu nowego paska klinowego i powinny być wykonywane, aby zapewnić prawidłowe funkcjonowanie przekładni pasowej. Weryfikacja wymiarów polega na sprawdzeniu, czy nowe komponenty są zgodne z wymiarami wymaganymi przez producenta, co jest istotne dla prawidłowego działania układu. Jeśli wymiary są niewłaściwe, może to prowadzić do niewłaściwego dopasowania, co wpływa na efektywność całego systemu. Ocena stopnia zużycia jest również niezwykle istotna; zużyte elementy mogą nie tylko wpływać na sprawność paska, ale również na jego żywotność. W praktyce oznacza to, że mechanicy powinni regularnie monitorować stan przekładni pasowej, aby zminimalizować ryzyko awarii. Kontrola czystości paska jest szczególnie ważna, ponieważ zanieczyszczenia mogą powodować uszkodzenie zarówno paska, jak i kół pasowych. Zanieczyszczenia mogą prowadzić do nadmiernego tarcia, co zwiększa ryzyko przegrzania i uszkodzenia. Dlatego ważne jest, aby każdy z tych kroków był integralną częścią procesu montażu, gdyż pomijanie ich może prowadzić do poważnych problemów eksploatacyjnych i zwiększonej awaryjności urządzeń.

Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Podczas rozbierania łożysk kulkowych powinno się wykorzystać

A. ściągacz
B. palnik gazowy
C. młotek
D. klucz dynamometryczny
Ściągacz to narzędzie specjalnie zaprojektowane do usuwania łożysk, kołków i innych elementów, które mogą być trudne do wyjęcia z powodu ich pasowania lub osadzenia na wrzecionie. W przypadku łożysk kulkowych, ściągacz umożliwia równomierne i bezpieczne usunięcie łożyska z wału lub obudowy bez ryzyka uszkodzenia elementów. Użycie ściągacza minimalizuje ryzyko uszkodzeń powierzchni oraz zmniejsza potrzebę stosowania siły, co wpływa na przedłużenie żywotności zarówno łożyska, jak i wału. W praktyce, podczas serwisowania maszyn lub pojazdów, ściągacz jest często standardowym wyposażeniem warsztatu, zgodnym z branżowymi standardami bezpieczeństwa i efektywności. Zaleca się stosowanie ściągaczy o odpowiednim rozmiarze, co zapewnia precyzyjne dopasowanie do usuwanego elementu. Dodatkowo, warto zapoznać się z procedurami demontażu opisanymi w dokumentacji technicznej producentów, aby zapewnić prawidłowe wykonanie operacji.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Jakie rozwiązanie pozwala na zwiększenie prędkości ruchu tłoka w siłowniku pneumatycznym?

A. zawór podwójnego sygnału
B. zawór szybkiego spustu
C. przełącznik obiegu
D. zawór zwrotny
Zawór szybkiego spustu to naprawdę ważny element w systemach pneumatycznych. Jego główną rolą jest szybkie obniżenie ciśnienia w siłownikach. Dzięki temu tłok porusza się znacznie szybciej. Działa to tak, że sprężone powietrze ma szybki ujście, co pozwala na błyskawiczne zwolnienie siłownika. W praktyce, takie zawory są super przydatne, na przykład w przemyśle motoryzacyjnym czy automatyzacji produkcji, gdzie czas reakcji jest mega istotny. Zgodnie z normami ISO 4414, odpowiednio zainstalowany zawór szybkiego spustu powinien być standardem w każdej instalacji pneumatycznej, żeby zwiększyć wydajność i bezpieczeństwo. Jeżeli system jest dobrze zaprojektowany i wykorzystuje te zawory, to może to znacznie poprawić efektywność produkcji, a przy okazji obniżyć zużycie energii i skrócić czas cyklu procesów.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

Jakie czynności są niezbędne do utrzymania sprawności urządzeń hydraulicznych?

A. Regularna wymiana filtrów
B. Miesięczny demontaż oraz montaż pomp
C. Codzienna wymiana oleju
D. Regularna wymiana rozdzielacza
Okresowa wymiana filtrów w urządzeniach hydraulicznych jest kluczowa dla zapewnienia ich sprawności oraz wydajności. Filtry hydrauliczne mają za zadanie zatrzymywać zanieczyszczenia, które mogą uszkodzić pompy, zawory oraz inne elementy układu hydraulicznego. Zanieczyszczenia te mogą pochodzić z różnych źródeł, takich jak procesy tarcia wewnętrznych komponentów, a także z zewnątrz, na przykład w wyniku nieprawidłowego napełniania systemu olejem. Regularna wymiana filtrów zgodnie z zaleceniami producentów oraz standardami branżowymi, takimi jak ISO 4406, pozwala na minimalizację ryzyka awarii oraz wydłużenie żywotności całego systemu hydraulicznego. Przykładem dobrych praktyk jest wprowadzenie harmonogramu konserwacji, który uwzględnia częstotliwość wymiany filtrów, co pozwala na monitorowanie stanu oleju oraz zanieczyszczeń w systemie. Taka praktyka jest szczególnie ważna w zastosowaniach przemysłowych, gdzie nieprzewidziane przestoje mogą generować znaczne straty finansowe.

Pytanie 32

Jedną z kluczowych funkcji oscyloskopu dwukanałowego jest dokonywanie pomiaru

A. przesunięcia fazowego napięciowych przebiegów sinusoidalnych
B. pojemności elektrycznej kondensatorów
C. indukcyjności własnej cewki
D. natężenia pola elektrycznego
Odpowiedź dotycząca pomiaru przesunięcia fazowego napięciowych przebiegów sinusoidalnych jest prawidłowa, ponieważ oscyloskop dwukanałowy jest narzędziem niezwykle przydatnym w analizie sygnałów elektrycznych. W kontekście pomiarów, przesunięcie fazowe jest kluczowym parametrem, który może mieć istotny wpływ na działanie układów elektronicznych, zwłaszcza w aplikacjach audio, telekomunikacyjnych oraz w systemach zasilania. Przykładowo, w układach synchronizacji sygnałów, dokładne ustawienie fazy jest niezbędne do optymalnej wydajności. Oscyloskop umożliwia pomiar różnicy fazy pomiędzy dwoma sygnałami, co może być kluczowe w ocenie stabilności systemów oraz w diagnostyce usterek. Ponadto, zgodnie z najlepszymi praktykami w inżynierii elektronicznej, pomiar fazy powinien być częścią rutynowych testów układów, aby zapewnić ich prawidłowe funkcjonowanie i minimalizować zakłócenia.

Pytanie 33

Silnik elektryczny o mocy 4 kW generuje na wale moment obrotowy 13,1 Nm przy jakiej prędkości obrotowej?

A. 305 obr/min
B. 524 obr/min
C. 5487 obr/min
D. 2916 obr/min
Często, jak wybiera się prędkość obrotową silnika, to można się zaplątać w zrozumieniu, jak moc, moment obrotowy i prędkość się ze sobą łączą. Wiesz, czasem ludzie myślą, że jak moment obrotowy jest większy, to automatycznie prędkość obrotowa też rośnie, a to nie do końca tak działa. Musisz pamiętać, że prędkość obrotowa i moment obrotowy mają odwrotną zależność: jak moc zostaje stała, to większy moment oznacza niższą prędkość i na odwrót. Jeszcze zdarza się, że ludzie mylą jednostki; na przykład, moc mamy w watach, a nie w niutonometrach, i to może prowadzić do różnych pomyłek. Tak samo z prędkością, jak się źle przelicza, to wychodzą błędy. Jeśli chodzi o inżynierię elektryczną i mechaniczną, to ważne jest, żeby stosować właściwe wzory i rozumieć, jak różne parametry wpływają na działanie silników. W praktyce, złe obliczenia mogą skutkować nieodpowiednim doborem części, co potem przekłada się na to, jak efektywnie działa cały system i jego trwałość w czasie.

Pytanie 34

Jakie narzędzia powinno się zastosować do montażu przewlekanego komponentów elektronicznych na płytce PCB?

A. Rozlutownica
B. Lutownica na gorące powietrze z dyszą w kształcie 7x7
C. Stacja lutownicza
D. Lutownica z końcówką 'minifala'
Stacja lutownicza to narzędzie, które zapewnia precyzyjne i stabilne warunki pracy, co jest kluczowe podczas lutowania przewlekanego elementów elektronicznych na płytkach drukowanych. Dzięki regulowanej temperaturze i możliwości dostosowania przepływu powietrza, stacja lutownicza umożliwia skuteczne lutowanie, minimalizując ryzyko przegrzewania komponentów. Na przykład, w przypadku lutowania małych elementów, takich jak kondensatory czy oporniki, stacja lutownicza pozwala na dokładne ustawienie temperatury, co jest niezbędne do uzyskania mocnych połączeń bez uszkodzenia wrażliwych elementów. Dobre praktyki branżowe sugerują użycie stacji z technologią podgrzewania, co umożliwia równomierne rozgrzanie obszaru lutowanego, co jest szczególnie przydatne w przypadku złożonych układów. Stacje lutownicze są także wyposażone w różnorodne końcówki, co zwiększa ich wszechstronność i umożliwia pracę z różnymi rodzajami elementów elektronicznych. W kontekście standardów IPC (Institute of Printed Circuits), stosowanie stacji lutowniczych w procesie montażu jest zalecane, ponieważ pozwala na osiągnięcie wyższej jakości połączeń lutowanych oraz dłuższej żywotności urządzeń elektronicznych.

Pytanie 35

Elementy z komponentów przeznaczone do montażu urządzenia powinny być posegregowane na stanowisku roboczym według

A. poziomu złożoności
B. kolejności montażu
C. kształtu
D. wielkości
Twoja odpowiedź, która mówi o układaniu części według kolejności montażu, jest naprawdę trafna. Wiesz, to mega ważne, bo jak wszystko jest dobrze zorganizowane na stanowisku pracy, to cały proces idzie sprawniej. Jak masz części poukładane po kolei, to szybciej je znajdziesz i mniejsze ryzyko, że coś sknocisz. Na przykład, w produkcji często korzysta się z metod takich jak 'Just-in-Time', które pomagają w efektywnym dostępie do elementów, kiedy akurat ich potrzebujesz. Warto też pamiętać o dobrych praktykach jak 5S, które podkreślają jak ważny jest porządek. Jeśli narzędzia i części są ustawione według kolejności montażu, to nie tylko przyspiesza pracę, ale i sprawia, że praca jest bezpieczniejsza. Dobrze jest też używać wizualnych oznaczeń i instrukcji w pobliżu, bo to naprawdę pomaga utrzymać całość w porządku i zapewnia jakość oraz terminowość.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

Siłownik hydrauliczny o parametrach znamionowych zamieszczonych w tabeli, w warunkach nominalnych zasilany jest czynnikiem roboczym o ciśnieniu

Parametry siłownika hydraulicznego
TłokØ 25 mm ÷ Ø 500 mm
TłoczyskoØ 16 mm ÷ Ø 250 mm
Skokdo 5000 mm
Ciśnienie nominalnePn = 35 MPa (350 bar)
Ciśnienie próbnePp = 1,5 x Pn
Prędkość przesuwu tłokaVmax = 0,5 m/s
Temperatura czynnika roboczego-25°C ÷ +200°C (248 K ÷ 473 K)
Temperatura otoczenia-20°C ÷ +100°C (253 K ÷ 373 K)

A. 525 bar
B. 70 bar
C. 35 bar
D. 350 bar
Wybór odpowiedzi 350 bar jako poprawnej opiera się na danych przedstawionych w tabeli parametrów siłownika hydraulicznego. Według tych danych, ciśnienie nominalne (Pn) wynosi 35 MPa, co jest równoważne 350 bar. Zastosowanie siłowników hydraulicznych o odpowiednich parametrach ciśnienia jest kluczowe w wielu branżach, takich jak budownictwo, przemysł motoryzacyjny czy robotyka, gdzie precyzyjne działanie i niezawodność są niezbędne. W praktyce, jeśli siłownik jest zasilany ciśnieniem przekraczającym jego parametry nominalne, może to prowadzić do uszkodzenia urządzenia, a w rezultacie do awarii systemu. Często w zastosowaniach inżynieryjnych zaleca się stosowanie marginesu bezpieczeństwa, aby uniknąć sytuacji, w której ciśnienie robocze zbliża się do maksymalnych wartości znamionowych. Dobrą praktyką jest również regularne monitorowanie stanu siłowników oraz ich parametrów, aby zapewnić ich prawidłową pracę i wydajność. Znajomość specyfikacji technicznych i właściwości materiałów, z których wykonane są siłowniki, ma bezpośredni wpływ na ich długowieczność i efektywność w działaniu.

Pytanie 38

Na podstawie tabeli z kodami paskowymi rezystorów określ rezystancję rezystora oznaczonego paskami w kolejności: pomarańczowy, niebieski, czarny.

kolor1. cyfra2. cyframnożnik
czarny00100
brązowy11101
czerwony22102
pomarańczowy33103
żółty44104
zielony55105
niebieski66106
fioletowy77107
szary88108
biały99109

A. 36 000 Ω
B. 360 Ω
C. 3600 Ω
D. 36 Ω
Odpowiedź 36 Ω jest poprawna, ponieważ oznaczenia kolorów na rezystorze wskazują wartość rezystancji zgodnie z ogólnie przyjętą normą kodów kolorów rezystorów. Kolor pomarańczowy oznacza cyfrę 3, natomiast niebieski oznacza cyfrę 6. Czarny pasek na końcu wskazuje, że nie ma wartości mnożnika, co w tym przypadku oznacza, że wynik należy odczytać jako 36. Taka interpretacja jest kluczowa w elektronice, gdzie rezystory o dokładnych wartościach są niezbędne do zapewnienia poprawnego funkcjonowania układów elektronicznych. Przykładowo, w obwodach zasilających, dokładne wartości rezystancji są istotne dla regulacji prądu, co ma kluczowe znaczenie dla bezpieczeństwa i efektywności pracy urządzeń. Wiedza na temat kodów kolorów jest nie tylko przydatna w praktyce, ale również stanowi fundament dla bardziej zaawansowanych zastosowań w projektowaniu układów elektronicznych.

Pytanie 39

Jakie zjawisko fizyczne wyróżnia przetwornik piezoelektryczny?

A. Zmiana napięcia na końcach elementu przewodzącego prąd w wyniku działania pola magnetycznego
B. Modyfikacja rezystancji przewodnika w reakcji na przyłożoną siłę rozciągającą
C. Wytwarzanie siły elektromotorycznej na granicy dwóch metali
D. Wytwarzanie ładunku elektrycznego na powierzchni elementu pod wpływem zastosowanej siły kompresyjnej lub rozciągającej
Przetworniki piezoelektryczne działają na zasadzie zjawiska piezoelektrycznego, które polega na generowaniu ładunku elektrycznego na powierzchni materiału pod wpływem przyłożonej siły mechanicznej, takiej jak ściskanie lub rozciąganie. Materiały piezoelektryczne, takie jak kwarc czy ceramika piezoelektryczna, wykazują unikalne właściwości, które pozwalają im przekształcać energię mechaniczną w elektryczną i odwrotnie. To zjawisko znajduje szerokie zastosowanie w technologii, na przykład w mikrofonach, głośnikach oraz czujnikach siły i drgań. W praktyce, gdy na przetwornik piezoelektryczny działa siła, np. podczas nacisku, atomy w materiale przesuwają się, co prowadzi do powstania różnicy potencjałów i wytworzenia ładunku elektrycznego. Przetworniki te są wykorzystywane w medycynie (np. w ultrasonografii) oraz w przemyśle motoryzacyjnym do monitorowania drgań i stanu technicznego pojazdów. Zarówno w projektowaniu, jak i w zastosowaniach inżynieryjnych, znajomość właściwości materiałów piezoelektrycznych oraz ich zastosowania w różnych dziedzinach jest kluczowa dla efektywnego wykorzystania tej technologii.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.