Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik teleinformatyk
  • Kwalifikacja: INF.07 - Montaż i konfiguracja lokalnych sieci komputerowych oraz administrowanie systemami operacyjnymi
  • Data rozpoczęcia: 22 maja 2025 08:58
  • Data zakończenia: 22 maja 2025 09:12

Egzamin zdany!

Wynik: 21/40 punktów (52,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Wykonanie komendy ```net use Z:\M92.168.20.2\data /delete``` spowoduje

A. przyłączenie folderu data do dysku Z.
B. odłączenie folderu data od dysku Z:
C. przyłączenie zasobów z hosta 192.168.20.2 do dysku Z:
D. odłączenie zasobów z hosta 192.168.20.2 od dysku Z
Wykonanie polecenia 'net use Z: \\192.168.20.2\data /delete' skutkuje odłączeniem katalogu 'data' od dysku Z:. To polecenie jest używane w systemach Windows do zarządzania połączeniami z udziałami sieciowymi. Odłączenie zasobu sieciowego oznacza, że dostęp do danych przechowywanych na tym udziale nie będzie już możliwy z poziomu litery dysku Z:. Tego typu operacje są szczególnie przydatne w sytuacjach, gdy użytkownik przestaje korzystać z danego zasobu, a także w kontekście zarządzania bezpieczeństwem i porządkiem w systemie plików. Przykładowo, jeśli użytkownik kończy pracę z danymi znajdującymi się na zdalnym serwerze, zaleca się odłączenie połączenia, aby uniknąć nieautoryzowanego dostępu. Warto również pamiętać, że zgodnie z dobrymi praktykami, systemy Windows umożliwiają zarządzanie połączeniami sieciowymi z poziomu wiersza poleceń, co może być istotne w kontekście zautomatyzowanych skryptów administracyjnych."

Pytanie 2

W której części edytora lokalnych zasad grupy w systemie Windows można ustawić politykę haseł?

A. Konfiguracja komputera / Szablony administracyjne
B. Konfiguracja użytkownika / Szablony administracyjne
C. Konfiguracja komputera / Ustawienia systemu Windows
D. Konfiguracja użytkownika / Ustawienia systemu Windows
Odpowiedzi niepoprawne zawierają pewne nieścisłości w zakresie zrozumienia struktury edytora lokalnych zasad grupy oraz roli różnych sekcji w zarządzaniu politykami bezpieczeństwa. Odpowiedzi związane z "Konfiguracją użytkownika" w kontekście polityki haseł są mylące, ponieważ polityki te są przypisane do systemu operacyjnego jako całości, a nie do poszczególnych użytkowników. Konfiguracja użytkownika w edytorze lokalnych zasad grupy dotyczy zasad, które mają zastosowanie do kont użytkowników, takich jak ustawienia pulpitu, aplikacji i uprawnień. Użytkownicy mogą mieć różne prawa dostępu i interfejsy w zależności od polityk przypisanych do ich kont, ale polityka haseł pozostaje niezależna od tych ustawień. Ponadto, polityki dotyczące haseł w systemie Windows są głównie umieszczane w sekcji "Konfiguracja komputera", ponieważ dotyczą one zabezpieczeń całego systemu operacyjnego, a nie pojedynczych użytkowników. Właściwe zrozumienie, w jaki sposób polityki są podzielone i jakie mają zastosowanie, jest kluczowe dla skutecznego zarządzania bezpieczeństwem w organizacji. Stosowanie zasad z "Szablonów administracyjnych" również nie jest adekwatne, ponieważ te szablony są wykorzystywane do zarządzania konfiguracjami aplikacji i systemów, a nie bezpośrednio do polityk haseł. Dlatego kluczowe jest, aby administratorzy sieci posiadali jasne zrozumienie tej struktury oraz jej wpływu na bezpieczeństwo organizacji.

Pytanie 3

Jakie polecenie służy do analizy statystyk protokołów TCP/IP oraz bieżących połączeń sieciowych w systemach operacyjnych rodziny Windows?

A. ping
B. tracert
C. route
D. netstat
Polecenie 'netstat' jest podstawowym narzędziem w systemach Windows, które umożliwia użytkownikom sprawdzenie statystyk protokołów TCP/IP oraz bieżących połączeń sieciowych. Dzięki 'netstat' można uzyskać informacje o aktywnych połączeniach TCP, korzystających z portów, a także o stanie tych połączeń. Przykładowo, użycie polecenia 'netstat -a' wyświetli wszystkie aktywne połączenia oraz porty nasłuchujące, co jest szczególnie przydatne w diagnostyce problemów z siecią czy w analizie bezpieczeństwa. Ponadto, 'netstat' potrafi zidentyfikować, które programy są odpowiedzialne za otwarte połączenia, co pozwala na lepszą kontrolę nad bezpieczeństwem systemu. Narzędzie to jest zgodne ze standardami administracji sieci, a jego zastosowanie w codziennej pracy może znacznie usprawnić zarządzanie infrastrukturą sieciową. Warto także wspomnieć, że 'netstat' jest wszechstronnym narzędziem, które znajduje zastosowanie w różnych systemach operacyjnych, co czyni je uniwersalnym rozwiązaniem dla specjalistów zajmujących się sieciami.

Pytanie 4

Pierwsze trzy bity adresu IP w postaci binarnej mają wartość 010. Jaki to adres?

A. klasy C
B. klasy A
C. klasy B
D. klasy D
Adresy IP można klasyfikować w zależności od wartości ich najstarszych bitów. W przypadku adresu z wartością najstarszych trzech bitów równą 010 mówimy o adresie klasy A. Adresy klasy A mają zakres od 0.0.0.0 do 127.255.255.255 i są przeznaczone dla dużych sieci. W praktyce oznacza to, że adresy klasy A mogą obsługiwać ogromne liczby hostów, co jest szczególnie przydatne dla dużych organizacji i usługodawców internetowych. Standardy IETF definiują tę klasyfikację w dokumencie RFC 791, który opisuje całą strukturę adresowania IP. Dla lepszego zrozumienia, adresy klasy A używają maski podsieci 255.0.0.0, co oznacza, że pierwsza część adresu jest używana do identyfikacji sieci, a pozostałe części do identyfikacji hostów. Dzięki zrozumieniu tej klasyfikacji można lepiej projektować sieci i zasoby adresowe, co jest kluczowe w infrastrukturze informatycznej.

Pytanie 5

Jakie zakresy adresów IPv4 można zastosować jako adresy prywatne w lokalnej sieci?

A. 127.0.0.0 ÷ 127.255.255.255
B. 172.16.0.0 ÷ 172.31.255.255
C. 168.172.0.0 ÷ 168.172.255.255
D. 200.186.0.0 ÷ 200.186.255.255
Odpowiedzi, które nie dotyczą zakresu 172.16.0.0 do 172.31.255.255, nie są adresami prywatnymi. Na przykład, zakres 127.0.0.0 do 127.255.255.255 jest zarezerwowany dla adresów loopback, co oznacza, że jest wykorzystywany do komunikacji wewnętrznej samego urządzenia. Adresy te nie nadają się do sieci lokalnej, bo działają tylko w ramach jednego komputera. Kolejny zły przykład to zakres 200.186.0.0 do 200.186.255.255, który to już są publiczne adresy IP. One mogą być routowane w Internecie i są zarządzane przez odpowiednie organizacje. Używanie takich adresów w lokalnej sieci nie tylko łamie zasady, ale też może spowodować konflikty i problemy z zarządzaniem. No i ten ostatni zakres 168.172.0.0 do 168.172.255.255 też nie jest uznawany za prywatny, bo nie wchodzi w te zdefiniowane przez RFC 1918. Wybieranie złych odpowiedzi często wynika z braku wiedzy o klasyfikacji adresów IP i mylenia ich zastosowania w sieciach.

Pytanie 6

Urządzenie sieciowe typu most (ang. Bridge) działa w:

A. pierwszej warstwie modelu OSI
B. jest urządzeniem klasy store and forward
C. osiemnej warstwie modelu OSI
D. nie ocenia ramki pod względem adresu MAC
Most (ang. Bridge) jest urządzeniem sieciowym, które działa w drugiej warstwie modelu OSI, znanej jako warstwa łącza danych. Jego głównym zadaniem jest segmentacja ruchu sieciowego oraz poprawa wydajności i bezpieczeństwa komunikacji. Pracując w trybie 'store and forward', most odbiera ramki danych, buforuje je, a następnie analizuje ich nagłówki, aby określić, czy wysłać je do danego segmentu sieci. To podejście pozwala na eliminację ewentualnych błędów w danych, ponieważ most może zignorować ramki, które są uszkodzone. Mosty są często wykorzystywane w architekturach LAN (Local Area Network), gdzie pozwalają na łączenie różnych segmentów sieci, co z kolei umożliwia lepsze zarządzanie ruchem i zwiększa dostępność sieci. W kontekście standardów, mosty są zgodne z protokołem IEEE 802.1D, który definiuje standardy dla mostowania oraz zarządzania ruchami w sieciach Ethernet. Dobre praktyki w projektowaniu sieci zalecają stosowanie mostów w sytuacjach, gdzie istnieje potrzeba podziału ruchu lub zwiększenia przepustowości bez konieczności inwestowania w droższe przełączniki.

Pytanie 7

Dokument PN-EN 50173 wskazuje na konieczność zainstalowania minimum

A. 1 punktu rozdzielczego na cały wielopiętrowy budynek.
B. 1 punktu rozdzielczego na każde piętro.
C. 1 punktu rozdzielczego na każde 100 m2 powierzchni.
D. 1 punktu rozdzielczego na każde 250 m2 powierzchni.
Odpowiedź dotycząca instalacji jednego punktu rozdzielczego na każde piętro budynku jest zgodna z normą PN-EN 50173, która reguluje zagadnienia związane z infrastrukturą telekomunikacyjną w budynkach. W kontekście projektowania systemu telekomunikacyjnego, kluczowe jest zapewnienie odpowiedniej liczby punktów rozdzielczych, aby umożliwić efektywne zarządzanie siecią oraz zapewnić dostęp do usług komunikacyjnych w każdym z pomieszczeń. Zgodnie z normą, umieszczanie punktów rozdzielczych na każdym piętrze zwiększa elastyczność w rozmieszczaniu urządzeń i zmniejsza długość kabli, co przekłada się na łatwiejszą instalację oraz konserwację systemu. Przykładowo, w budynkach o większej liczbie pięter, odpowiednia gęstość punktów rozdzielczych pozwala na lepsze dostosowanie infrastruktury do zmieniających się potrzeb użytkowników, takich jak dodawanie nowych urządzeń czy zmiany w organizacji przestrzeni biurowej. Dodatkowo, takie podejście jest zgodne z najlepszymi praktykami branżowymi oraz trendami w kierunku elastycznych rozwiązań telekomunikacyjnych.

Pytanie 8

Parametr, który definiuje stosunek liczby wystąpionych błędnych bitów do ogólnej liczby odebranych bitów, to

A. Bit Error Rate
B. Return Loss
C. Near End Crosstalk
D. Propagation Delay Skew
Bit Error Rate (BER) to kluczowy parametr w telekomunikacji, który określa stosunek liczby błędnych bitów do całkowitej liczby otrzymanych bitów. Mierzy on jakość transmisji danych oraz niezawodność systemów komunikacyjnych. Niska wartość BER jest pożądana, ponieważ wskazuje na wysoką jakość sygnału i efektywność przesyłania informacji. W zastosowaniach praktycznych, takich jak sieci komputerowe czy systemy satelitarne, monitorowanie BER pozwala na szybką identyfikację problemów związanych z zakłóceniami sygnału, co jest kluczowe dla utrzymania wysokiej jakości usług. Standardy, takie jak ITU-T G.826, definiują sposoby pomiaru BER oraz akceptowalne poziomy w różnych aplikacjach. Zrozumienie i kontrola BER pozwala inżynierom na projektowanie bardziej niezawodnych systemów oraz na świadome podejmowanie decyzji dotyczących wyboru technologii transmisji, co w praktyce przekłada się na lepsze doświadczenia użytkowników końcowych.

Pytanie 9

Jakie urządzenie pozwala na stworzenie grupy komputerów, które są do niego podłączone i operują w sieci z identycznym adresem IPv4, w taki sposób, aby komunikacja między komputerami miała miejsce jedynie w obrębie tej grupy?

A. Punkt dostępu
B. Przełącznik zarządzalny
C. Ruter z WiFi
D. Konwerter mediów
Przełącznik zarządzalny (ang. managed switch) to urządzenie, które umożliwia tworzenie segmentów sieciowych, co pozwala na wydzielenie grup komputerów pracujących w tej samej sieci lokalnej (LAN), które mogą komunikować się ze sobą bezpośrednio. W przeciwieństwie do przełączników niezarządzalnych, przełączniki zarządzalne oferują szereg zaawansowanych funkcji, takich jak VLAN (Virtual Local Area Network), które umożliwiają izolację grupy w obrębie tej samej fizycznej infrastruktury. Dzięki tym funkcjom, administratorzy sieci mogą zarządzać ruchem danych oraz zwiększyć bezpieczeństwo poprzez ograniczenie komunikacji do wybranych urządzeń. Przykładem zastosowania może być środowisko biurowe, gdzie różne departamenty są odseparowane w swoich VLAN-ach, co zmniejsza ryzyko nieautoryzowanego dostępu do danych. Standardami, które często są stosowane w kontekście przełączników zarządzalnych, są IEEE 802.1Q dla VLAN oraz SNMP (Simple Network Management Protocol) do zarządzania siecią. Te praktyki są kluczowe w nowoczesnych infrastrukturach IT, gdzie zarządzanie ruchem i bezpieczeństwo danych są priorytetami.

Pytanie 10

Planowanie wykorzystania przestrzeni dyskowej komputera do przechowywania i udostępniania informacji, takich jak pliki i aplikacje dostępne w sieci oraz ich zarządzanie, wymaga skonfigurowania komputera jako

A. serwer terminali
B. serwer plików
C. serwer DHCP
D. serwer aplikacji
Serwer plików jest dedykowanym systemem, którego główną rolą jest przechowywanie, udostępnianie oraz zarządzanie plikami w sieci. Umożliwia on użytkownikom dostęp do plików z różnych lokalizacji, co jest istotne w środowiskach biurowych oraz edukacyjnych, gdzie wiele osób współdzieli dokumenty i zasoby. Przykłady zastosowania serwera plików obejmują firmy, które chcą centralizować swoje zasoby, umożliwiając pracownikom łatwy dostęp do dokumentów oraz aplikacji. Serwery plików mogą być konfigurowane z wykorzystaniem różnych protokołów, takich jak SMB (Server Message Block) dla systemów Windows czy NFS (Network File System) dla systemów Unix/Linux, co pozwala na interoperacyjność w zróżnicowanych środowiskach operacyjnych. Warto także wspomnieć o znaczeniu bezpieczeństwa i praw dostępu, co jest kluczowe w zarządzaniu danymi, aby zapewnić, że tylko uprawnione osoby mają dostęp do wrażliwych informacji. Dobrą praktyką jest również regularne wykonywanie kopii zapasowych danych znajdujących się na serwerze plików, co chroni przed ich utratą.

Pytanie 11

Administrator systemu Linux chce nadać plikowi dokument.txt uprawnienia tylko do odczytu dla wszystkich użytkowników. Jakiego polecenia powinien użyć?

A. chmod 444 dokument.txt
B. chmod 777 dokument.txt
C. chmod 600 dokument.txt
D. chmod 755 dokument.txt
Wiele osób wybiera błędne ustawienia uprawnień, bo nie zawsze rozumie, jak działa system trzech cyfr w poleceniu chmod. Przykładowo, wartość 777 daje wszystkim pełne prawo do odczytu, zapisu i wykonania – to ogromne zagrożenie dla bezpieczeństwa, bo każdy użytkownik może dowolnie modyfikować lub usuwać plik. To typowy błąd początkujących, którzy chcą „rozwiązać problem raz na zawsze”, a w rzeczywistości otwierają system na potencjalne nadużycia. Z kolei 600 daje uprawnienia tylko właścicielowi – odczyt i zapis, reszta nie ma żadnego dostępu. To dobre, jeśli plik ma być prywatny, ale nie spełnia założeń pytania – nie jest wtedy „czytelny dla wszystkich”. Uprawnienia 755 często są używane dla katalogów lub plików wykonywalnych (np. skryptów), bo umożliwiają właścicielowi edycję i wykonanie, a reszcie tylko odczyt i wykonanie. Jednak w przypadku zwykłego pliku tekstowego nadawanie uprawnienia do wykonania (execute) jest całkowicie zbędne, a wręcz może prowadzić do nieprzewidzianych sytuacji, np. prób uruchomienia pliku czy podatności w środowiskach serwerowych. W praktyce najlepszą metodą jest nadawanie uprawnień możliwie najmniejszych, które spełniają wymagania funkcjonalne – nadmiarowe uprawnienia to zawsze potencjalne ryzyko. Codzienna praca administratora to balansowanie pomiędzy wygodą a bezpieczeństwem i – moim zdaniem – zrozumienie tych niuansów jest kluczowe przy zarządzaniu systemami Linux w sieciach lokalnych, szczególnie w większych organizacjach. Warto zawsze zastanawiać się, czy dany plik rzeczywiście musi być wykonywalny, zapisywalny czy tylko czytelny, bo to wpływa nie tylko na bezpieczeństwo, ale i na porządek w systemie plików.

Pytanie 12

Jakie jest adres rozgłoszeniowy (broadcast) dla hosta z adresem IP 192.168.35.202 oraz 26-bitową maską?

A. 192.168.35.63
B. 192.168.35.192
C. 192.168.35.255
D. 192.168.35.0
Adresy 192.168.35.63, 192.168.35.0 oraz 192.168.35.192 są błędnymi odpowiedziami, ponieważ wynikają z niepoprawnego zrozumienia struktury adresacji IP oraz zasad obliczania adresu rozgłoszeniowego. Rozpoczynając od adresu 192.168.35.0, który jest adresem sieciowym, należy zauważyć, że nie może być użyty jako adres rozgłoszeniowy, ponieważ jest to adres identyfikujący sieć, a nie konkretne urządzenie. Kolejnym błędnym podejściem jest wybranie adresu 192.168.35.192; ten adres jest pierwszym adresem, który może być przypisany do hostów w tej podsieci, a zatem nie może być adresem rozgłoszeniowym. Ostatecznie, 192.168.35.63 nie jest poprawnym adresem rozgłoszeniowym, gdyż mieści się w niewłaściwym zakresie, który wynika z zastosowanej maski. Właściwy sposób obliczania adresów IP wymaga staranności oraz znajomości koncepcji dotyczących podziału sieci i adresowania. Mocna znajomość tych zasad jest kluczowa dla administratorów sieci, aby skutecznie zarządzać połączeniami i optymalizować ruch w sieci, co stanowi fundament dobrej praktyki w inżynierii sieciowej.

Pytanie 13

Jaką maksymalną liczbę komputerów można zaadresować adresami IP w klasie C?

A. 254 komputery
B. 255 komputerów
C. 252 komputery
D. 256 komputerów
Adresy IP klasy C mają strukturę, która pozwala na podział sieci na mniejsze segmenty, co jest idealne w przypadku małych sieci lokalnych. Klasa C posiada 24 bity dla identyfikacji sieci i 8 bitów dla identyfikacji hostów. Wartość 2^8 daje nam 256 możliwych adresów dla hostów. Jednak z tych adresów należy odjąć dwa: jeden jest zarezerwowany dla adresu sieci, a drugi dla adresu rozgłoszeniowego (broadcast). Dlatego maksymalna liczba komputerów, które można zaadresować w sieci klasy C wynosi 254. W praktyce takie sieci są często stosowane w biurach oraz małych organizacjach, gdzie liczy się efektywne wykorzystanie dostępnych adresów IP. Umożliwia to łatwe zarządzanie urządzeniami, a także zwiększa bezpieczeństwo poprzez ograniczenie dostępu do pozostałych segmentów sieci. W branży IT, zgodnie z normami IETF, zaleca się staranne planowanie adresacji IP, aby uniknąć konfliktów i zapewnić płynność działania sieci.

Pytanie 14

Który z poniższych adresów jest adresem prywatnym zgodnym z dokumentem RFC 1918?

A. 172.32.0.1
B. 172.16.0.1
C. 171.0.0.1
D. 172.0.0.1
Odpowiedzi 172.32.0.1, 172.0.0.1 oraz 171.0.0.1 są błędne, ponieważ nie mieszczą się w zakresie adresów prywatnych określonych przez RFC 1918. Adres 172.32.0.1 należy do zakresu publicznych adresów IP i może być routowany bezpośrednio w Internecie. Podobnie, adres 172.0.0.1 jest niepoprawny, ponieważ cała klasa A 0.0.0.0/8 nie jest przydzielona do użytku ogólnego, a 171.0.0.1 również jest adresem publicznym, należącym do innej klasy adresowej. Warto zauważyć, że w obszarze sieci komputerowych istnieje wiele standardów definiujących różne typy adresów IP. Adresy prywatne są kluczowe dla projektowania i zarządzania lokalnymi sieciami, ponieważ umożliwiają ich sprawne funkcjonowanie bez potrzeby wykupywania publicznych adresów IP dla każdego urządzenia w sieci. Typowe błędy myślowe prowadzące do tych niepoprawnych odpowiedzi obejmują mylenie zakresów adresów klasowych z zakresami prywatnymi oraz brak znajomości zasad routingu w kontekście adresów IP.

Pytanie 15

Jaka jest maksymalna liczba adresów sieciowych dostępnych w adresacji IP klasy A?

A. 32 adresy
B. 254 adresy
C. 64 adresy
D. 128 adresów
Wybór odpowiedzi sugerującej, że dostępnych jest 32, 64 lub 254 adresy sieciowe w klasie A opiera się na mylnym zrozumieniu zasad podziału i przydziału adresów IP. Odpowiedzi te mogą wynikać z nieprawidłowej interpretacji struktury adresów IP, gdzie użytkownicy mylą liczbę adresów sieciowych z liczbą dostępnych adresów hostów. Odpowiedź 32 adresy mogłaby odnosić się do małych podsieci, ale w kontekście klasy A, jest to nieprawidłowe. Liczba 64 adresów mogłaby sugerować błąd w obliczeniach, uwzględniając niepełne zrozumienie maski podsieci. Podobnie, 254 adresy jest wartością typową dla podsieci klasy C, gdzie dostępne adresy hostów są ograniczone do 256 minus dwa (adres sieci i adres rozgłoszeniowy). Te błędy pokazują, jak ważne jest zrozumienie, że klasa A oferuje 128 sieci, co jest wynikiem obliczenia 2^7, a każda z tych sieci może pomieścić ogromną liczbę hostów. W praktyce, niewłaściwe przydzielenie adresów może prowadzić do problemów z routingiem i zarządzaniem siecią, co wpływa na jakość i efektywność komunikacji w sieci. Zrozumienie klasyfikacji adresów IP oraz ich zastosowań jest kluczowe dla każdego, kto pracuje w dziedzinie IT i telekomunikacji.

Pytanie 16

Norma PN-EN 50174 nie obejmuje wytycznych odnoszących się do

A. montażu instalacji na zewnątrz budynków
B. realizacji instalacji w obrębie budynków
C. zapewnienia jakości instalacji kablowych
D. uziemień systemów przetwarzania danych
Norma PN-EN 50174 rzeczywiście nie zawiera wytycznych dotyczących uziemień instalacji urządzeń przetwarzania danych, co czyni tę odpowiedź poprawną. Uziemienie jest kluczowym elementem bezpieczeństwa w instalacjach elektrycznych, szczególnie w kontekście urządzeń przetwarzania danych, które są narażone na różne zakłócenia elektromagnetyczne oraz mogą generować potencjalnie niebezpieczne napięcia. W praktyce, dla prawidłowego zabezpieczenia tych instalacji, często stosuje się normy takie jak PN-IEC 60364, które szczegółowo regulują wymagania dotyczące uziemień. Użycie odpowiednich systemów uziemiających minimalizuje ryzyko uszkodzeń sprzętu oraz zapewnia bezpieczeństwo użytkowników. Warto zaznaczyć, że uziemienie powinno być projektowane z uwzględnieniem specyfiki budynku oraz urządzeń, co w praktyce oznacza, że każdy przypadek powinien być analizowany indywidualnie przez specjalistów. Zrozumienie tych kwestii jest niezbędne dla skutecznego projektowania i utrzymania systemów IT.

Pytanie 17

Jakie ograniczenie funkcjonalne występuje w wersji Standard systemu Windows Server 2019?

A. Wirtualizacja maksymalnie dla dwóch instancji
B. Brak interfejsu graficznego
C. Licencjonowanie na maksymalnie 50 urządzeń
D. Obsługuje najwyżej dwa procesory
Nieprawidłowe odpowiedzi wskazują na powszechne nieporozumienia dotyczące możliwości i ograniczeń Windows Server 2019 w wersji Standard. Na przykład, licencjonowanie na maksymalnie 50 urządzeń nie jest prawdziwe, ponieważ wersja Standard pozwala na licencjonowanie serwerów w oparciu o liczbę rdzeni procesora, a nie na określoną liczbę urządzeń. Ograniczenie do dwóch procesorów jest również mylące; w rzeczywistości edycja Standard wspiera maksymalnie dwa procesory fizyczne, ale liczba rdzeni, które mogą być wykorzystane na każdym z procesorów, nie jest ograniczona, co może prowadzić do nieprawidłowych wniosków o całkowitej mocy obliczeniowej. Co więcej, twierdzenie dotyczące braku środowiska graficznego jest błędne, ponieważ Windows Server 2019 może być zainstalowany z interfejsem graficznym, chociaż istnieje opcja instalacji w trybie core, który ogranicza interfejs graficzny i zwiększa bezpieczeństwo. To podejście jest zgodne z najlepszymi praktykami w zakresie zarządzania serwerami, ale nie oznacza, że graficzny interfejs nie jest dostępny. Właściwe zrozumienie architektury Windows Server 2019 i jej edycji jest niezbędne do prawidłowego planowania i wdrażania rozwiązań serwerowych, a także do uniknięcia błędów związanych z licencjonowaniem i konfiguracją.

Pytanie 18

Jakie miejsce nie powinno być używane do przechowywania kopii zapasowych danych z dysku twardego komputera?

A. Zewnętrzny dysk
B. Pamięć USB
C. Inna partycja dysku tego komputera
D. Płyta CD/DVD
Przechowywanie kopii bezpieczeństwa na dysku zewnętrznym jest powszechnie uznawane za dobry praktykę, ponieważ zapewnia fizyczną separację kopii zapasowej od oryginalnych danych. Dyski zewnętrzne są mobilne, co ułatwia ich transport, a także można je łatwo odłączyć, aby uniknąć ryzyka usunięcia danych w wyniku ataku wirusa czy innej awarii systemu. Płyty CD/DVD, choć mogą być używane do archiwizacji danych, mają swoje ograniczenia, takie jak niewielka pojemność, podatność na uszkodzenia oraz długi czas zapisu i odczytu. Warto jednak pamiętać, że są one dobrym rozwiązaniem do długoterminowego przechowywania danych, jeśli są odpowiednio zabezpieczone. Pamięć USB jest również popularnym nośnikiem danych, który łączy w sobie mobilność z możliwością przechowywania większej ilości danych niż tradycyjne płyty optyczne. Użytkownicy często decydują się na nie, nie zdając sobie sprawy, że ich niewłaściwe przechowywanie może prowadzić do utraty danych. Typowym błędem myślowym jest założenie, że kopie zapasowe są zawsze bezpieczne, jeżeli znajdują się na tym samym urządzeniu. W rzeczywistości, w przypadku awarii dysku twardego, cała zawartość, w tym kopie, może zostać utracona, co podkreśla znaczenie zróżnicowanego podejścia do tworzenia kopii zapasowych.

Pytanie 19

Do jakiej sieci jest przypisany host o adresie 172.16.10.10/22?

A. 172.16.16.0
B. 172.16.4.0
C. 172.16.12.0
D. 172.16.8.0
Patrząc na twoje odpowiedzi, można zauważyć, że niektóre z nich wynikają z braku pełnego zrozumienia działania subnettingu i struktury adresów IP. Każdy adres IP dzieli się na część, która identyfikuje sieć, i część, która identyfikuje samego hosta. To jest kluczowe, żeby dobrze skonfigurować sieć. W przypadku adresu 172.16.10.10 z maską /22, żeby stwierdzić, do której sieci ten host przynależy, trzeba obliczyć adres sieci i rozumieć, jak działa maska podsieci. Ta maska wskazuje na 4 podsieci, a adres 172.16.8.0 to ta, z którą ma się łączyć nasz host. Odpowiedzi takie jak 172.16.4.0, 172.16.12.0 czy 172.16.16.0 są błędne, bo nie mieszczą się w odpowiednich przedziałach dla tej maski. Szczególnie 172.16.4.0 byłoby z innej podsieci, a 172.16.12.0 to tylko koniec zakresu tej samej podsieci, więc nie może być adresem sieciowym dla hosta 172.16.10.10. Często ludzie myślą, że adresy podsieci to po prostu liczby, a w rzeczywistości są one jasno określone przez maskę podsieci, co trzeba mieć na uwadze przy projektowaniu sieci. Dobrze jest też pamiętać, że stosowanie odpowiednich zasad i praktyk w subnettingu, jak CIDR, jest mega ważne dla efektywnego zarządzania adresami IP w nowoczesnych sieciach.

Pytanie 20

NAT64 (Network Address Translation 64) to proces, który przekształca adresy

A. adresy IPv4 na adresy MAC
B. prywatne na publiczne adresy
C. adresy MAC na adresy IPv4
D. adresy IPv4 na adresy IPv6
NAT64 (Network Address Translation 64) to mechanizm, który umożliwia komunikację między sieciami IPv6 a IPv4 poprzez translację adresów. Jego głównym celem jest umożliwienie urządzeniom w sieci IPv6 komunikację z zasobami dostępnymi tylko w sieci IPv4. W praktyce, NAT64 mapuje adresy IPv4 do adresów IPv6, co jest niezwykle ważne w kontekście rosnącej liczby urządzeń korzystających z IPv6, podczas gdy nadal istnieje wiele usług i systemów operacyjnych opartych na IPv4. Przykładem zastosowania NAT64 może być sytuacja, gdy organizacja migruje z IPv4 na IPv6, a jednocześnie musi zapewnić dostęp do starszych aplikacji działających tylko w IPv4. Dzięki NAT64, użytkownicy mogą korzystać z tych usług bez potrzeby modyfikacji infrastruktury lub aplikacji. Warto także wspomnieć, że NAT64 działa w tandemie z innym protokołem, zwanym DNS64, który przekształca zapytania DNS w taki sposób, aby umożliwić urządzeniom IPv6 odnalezienie zasobów IPv4. Tego rodzaju rozwiązanie jest zgodne z obowiązującymi standardami IETF i jest szeroko stosowane w nowoczesnych architekturach sieciowych.

Pytanie 21

Kabel skręcany o czterech parach, w którym każdy z przewodów jest otoczony ekranem foliowym, a ponadto wszystkie pary są dodatkowo zabezpieczone siatką, to kabel

A. F/UTP
B. S/FTP
C. U/UTP
D. SF/UTP
Odpowiedź S/FTP jest prawidłowa, ponieważ oznaczenie to wskazuje na kabel, w którym każda para przewodów jest ekranowana folią, a dodatkowo wszystkie pary są ekranowane wspólnie siatką. Takie rozwiązanie znacząco zwiększa odporność na zakłócenia elektromagnetyczne, co jest kluczowe w zastosowaniach, gdzie wymagane są wysokie prędkości przesyłu danych oraz stabilność sygnału. Kable S/FTP są często wykorzystywane w nowoczesnych sieciach komputerowych, w tym w centrach danych oraz w aplikacjach wymagających przesyłu dużych ilości danych, takich jak streaming wideo czy aplikacje VoIP. Stosowanie kabli ekranowanych zgodnych z międzynarodowymi standardami, takimi jak ISO/IEC 11801, zapewnia nie tylko bezpieczeństwo, ale również wysoką jakość transmisji danych. Dzięki zastosowaniu ekranów, kable S/FTP minimalizują ryzyko zakłóceń, co jest istotne w środowiskach o dużym natężeniu źródeł zakłóceń elektromagnetycznych.

Pytanie 22

W biurze należy zamontować 5 podwójnych gniazd abonenckich. Średnia odległość od gniazda abonenckiego do lokalnego punktu dystrybucyjnego wynosi 10 m. Jaki będzie szacunkowy koszt nabycia kabla UTP kategorii 5e, przeznaczonego do budowy sieci lokalnej, jeśli cena brutto 1 m kabla UTP kategorii 5e to 1,60 zł?

A. 160,00 zł
B. 80,00 zł
C. 320,00 zł
D. 800,00 zł
Obliczenia dotyczące kosztów zakupu kabla UTP kategorii 5e dla 5 podwójnych gniazd abonenckich mogą być mylące, gdyż wiele osób błędnie interpretuje dane liczbowe. Przykładowo, bywa, że przyjmuje się zbyt niską lub zbyt wysoką długość kabla, co prowadzi do niewłaściwego określenia całkowitych kosztów. Osoby często mylą ogół długości potrzebnego kabla, co skutkuje rachunkami, które nie odzwierciedlają rzeczywistych kosztów. Niektórzy mogą pomyśleć, że wystarczy pomnożyć liczbę gniazd przez cenę metra kabla bez uwzględnienia konieczności połączenia kabli z urządzeniem końcowym oraz dodatkowymi elementami instalacyjnymi. Innym typowym błędem jest nieprzemyślane oszacowanie długości kabli, które powinny uwzględniać ewentualne zakręty, przejścia przez ściany lub inne przeszkody, co również wpływa na ostateczną długość kabli. Należy także pamiętać o standardach instalacji, które zalecają dodanie zapasu na ewentualne błędy podczas montażu. W wyniku tych nieporozumień, niepoprawne odpowiedzi takie jak 80,00 zł, 320,00 zł czy 800,00 zł nie tylko wskazują na błędne obliczenia, ale również na zagadnienia związane z organizacją i planowaniem instalacji sieci, co jest kluczowe dla funkcjonowania każdej organizacji.

Pytanie 23

Jakim skrótem oznacza się zbiór zasad filtrujących dane w sieci?

A. VLAN
B. QoS
C. PoE
D. ACL
Wybór VLAN, QoS lub PoE jako zestawu reguł filtrujących ruch w sieci jest błędny i wynika z nieporozumienia dotyczącego roli tych technologii w zarządzaniu siecią. VLAN, czyli Virtual Local Area Network, jest technologią, która segreguje ruch w sieci na różne segmenty, co umożliwia izolację grup użytkowników lub urządzeń. Chociaż VLANy mogą pomóc w organizacji sieci, nie definiują one reguł dostępu ani nie blokują ruchu, co jest kluczowe w kontekście bezpieczeństwa. Z kolei QoS, czyli Quality of Service, odnosi się do zarządzania przepustowością i priorytetowaniem ruchu, co ma na celu poprawę wydajności aplikacji niezbędnych do funkcjonowania w sieci, ale nie kontroluje dostępu do zasobów. PoE, czyli Power over Ethernet, to technologia, która umożliwia przesyłanie zasilania przez kable Ethernet, co jest użyteczne w kontekście zasilania urządzeń, takich jak kamery IP czy punkty dostępowe, ale nie ma wpływu na zasady filtrowania ruchu. Te nieporozumienia mogą prowadzić do błędnych wniosków i niewłaściwej konfiguracji sieci, co w rezultacie może obniżyć bezpieczeństwo i wydajność systemów. Wiedza o tym, jak te technologie funkcjonują i jakie mają zastosowanie, jest niezbędna dla każdego profesjonalisty zajmującego się zarządzaniem siecią.

Pytanie 24

Do właściwości pojedynczego konta użytkownika w systemie Windows Serwer zalicza się

A. maksymalna objętość pulpitu użytkownika
B. numer telefonu, na który serwer ma oddzwonić w przypadku nawiązania połączenia telefonicznego przez tego użytkownika
C. maksymalna objętość profilu użytkownika
D. maksymalna objętość pojedynczego pliku, który użytkownik może zapisać na dysku serwera
Odpowiedź dotycząca numeru telefonu, pod który ma oddzwonić serwer w przypadku nawiązania połączenia telefonicznego przez użytkownika, jest poprawna, ponieważ jedno z zadań systemu Windows Serwer to zarządzanie połączeniami użytkowników, w tym obsługa połączeń telefonicznych w ramach funkcji komunikacyjnych. W praktyce, szczególnie w środowiskach korporacyjnych, administratorzy mogą skonfigurować systemy, które umożliwiają użytkownikom nawiązywanie połączeń telefonicznych z serwerem poprzez VoIP (Voice over Internet Protocol), co wymaga zdefiniowania numerów telefonów w profilu użytkownika. Dobre praktyki w zarządzaniu kontami użytkowników sugerują, że każdy profil powinien być dokładnie skonfigurowany, aby odpowiadał potrzebom użytkowników, co może obejmować również integrację z systemami telefonicznymi. Warto wiedzieć, że w systemach opartych na Windows Serwer, takie funkcje są często zintegrowane z Active Directory, gdzie profile użytkowników można łatwo zarządzać i dostosowywać do wymogów organizacyjnych.

Pytanie 25

Jakie znaczenie ma zapis /26 w adresie IPv4 192.168.0.0/26?

A. Liczba bitów o wartości 1 w adresie
B. Liczba bitów o wartości 1 w masce
C. Liczba bitów o wartości 0 w adresie
D. Liczba bitów o wartości 0 w masce
Ta odpowiedź jest jak najbardziej trafna, bo zapis /26 oznacza, że w masce podsieci adresu IPv4 192.168.0.0 mamy 26 bitów o wartości 1. W skrócie, maska podsieci jest bardzo ważna, bo pozwala nam określić, która część adresu to sieć, a która to urządzenia. Kiedy mamy maskę /26, to pierwsze 26 bitów to właśnie bity maski, a zostałe 6 bitów (32 minus 26) możemy użyć do adresowania hostów. To w praktyce znaczy, że w takiej podsieci możemy mieć maks 64 adresy IP, z czego 62 będą dostępne dla urządzeń, bo musimy usunąć adres sieci i adres rozgłoszeniowy. Taka maska przydałaby się w małej sieci biurowej, gdzie nie ma więcej niż 62 urządzenia, więc zarządzanie adresami IP jest łatwiejsze. Dobrze jest pamiętać, że odpowiednie wykorzystanie maski podsieci może znacznie poprawić ruch w sieci oraz efektywność wykorzystania zasobów.

Pytanie 26

Aby użytkownicy sieci lokalnej mogli przeglądać strony WWW przez protokoły HTTP i HTTPS, zapora sieciowa powinna pozwalać na ruch na portach

A. 90 i 443
B. 80 i 443
C. 80 i 434
D. 90 i 434
Wybór portów 434, 90 oraz podobnych do 80 i 443 może wynikać z nieporozumień dotyczących standardowych portów przypisanych do protokołów internetowych. Port 434 nie jest standardowym portem do przesyłania danych przez HTTP ani HTTPS, co oznacza, że zapora sieciowa blokując ruch na tym porcie uniemożliwiłaby użytkownikom dostęp do stron internetowych. Z kolei port 90, mimo że może być używany w niektórych aplikacjach, nie jest powszechnie akceptowany jako standardowy port dla protokołu HTTP. Takie podejście może prowadzić do sytuacji, w której użytkownicy doświadczają problemów z łącznością, co może wpływać na efektywność pracy i komunikacji w firmie. Typowym błędem jest mylenie portów specyficznych dla danej aplikacji z portami standardowymi; każdy protokół TCP/IP ma przypisane domyślne porty, które są ustalone przez IANA (Internet Assigned Numbers Authority). Dlatego ważne jest, aby przy konfigurowaniu zapór sieciowych stosować się do tych standardów i upewnić się, że ruch na portach 80 i 443 jest dozwolony, aby umożliwić prace w środowisku internetowym.

Pytanie 27

Interfejs graficzny Menedżera usług IIS (Internet Information Services) w systemie Windows służy do ustawiania konfiguracji serwera

A. terminali
B. WWW
C. wydruku
D. DNS
Wybór odpowiedzi dotyczących terminali, DNS czy wydruku świadczy o braku zrozumienia podstawowych funkcji menedżera IIS. Terminale nie mają związku z zarządzaniem serwerem WWW, ponieważ są to interfejsy umożliwiające dostęp do systemów operacyjnych, a nie do obsługi protokołów sieciowych. DNS, czyli system nazw domenowych, odpowiada za tłumaczenie nazw domen na adresy IP, co również nie jest bezpośrednio związane z zarządzaniem stronami internetowymi, a raczej z ich lokalizacją w sieci. Z kolei usługi wydruku są całkowicie niezwiązane z IIS, który koncentruje się na serwerach WWW. Typowy błąd myślowy w przypadku wyboru tych odpowiedzi polega na myleniu różnych dziedzin zarządzania siecią i usługami. W kontekście technologii informacyjnej, kluczowe jest zrozumienie, które narzędzia służą do jakich celów, aby uniknąć nieporozumień i błędnych konfiguracji. Użycie odpowiednich technologii i narzędzi zgodnie z ich przeznaczeniem jest fundamentem efektywnego zarządzania infrastrukturą IT, a ignorowanie tych zasad prowadzi do nieefektywności i problemów z dostępnością usług.

Pytanie 28

Która norma określa parametry transmisyjne dla komponentów kategorii 5e?

A. EIA/TIA 607
B. CSA T527
C. TIA/EIA-568-B-1
D. TIA/EIA-568-B-2
Wybór EIA/TIA 607 jako odpowiedzi na to pytanie jest niepoprawny, ponieważ norma ta koncentruje się na wymaganiach dotyczących instalacji i zarządzania kablami w budynkach, a nie na specyfikacji parametrów transmisyjnych kabli. Z kolei norma TIA/EIA-568-B-1 dotyczy ogólnych zasad dotyczących infrastruktury okablowania, ale nie szczegółowych parametrów transmisyjnych dla komponentów kategorii 5e. Błędne jest także odwoływanie się do CSA T527, ponieważ ta norma odnosi się do standardów dla kabli telekomunikacyjnych w Kanadzie, ale nie dostarcza szczegółowych wytycznych dotyczących parametrów transmisyjnych dla komponentów kategorii 5e. Osoby, które mylnie wybierają te odpowiedzi, często nie dostrzegają, że odpowiednie normy są kluczowe dla zapewnienia jakości i wydajności systemów sieciowych. Wiedza o tym, że różne normy mają różne cele i zakresy, jest fundamentalna w kontekście projektowania i instalacji systemów telekomunikacyjnych. Niezrozumienie różnicy między normami dotyczącymi ogólnych zasad instalacji a tymi, które obejmują szczegółowe wymagania dotyczące parametrów transmisyjnych, może prowadzić do wyboru niewłaściwych komponentów i w efekcie do problemów z wydajnością sieci.

Pytanie 29

Jakie oprogramowanie do wirtualizacji jest dostępne jako rola w systemie Windows Server 2019?

A. Virtual Box
B. Hyper-V
C. Virtual PC
D. VMware
Hyper-V to zaawansowane oprogramowanie do wirtualizacji, które jest dostępne jako rola w systemie Windows Server 2019. Umożliwia ono tworzenie i zarządzanie wirtualnymi maszynami (VM), co pozwala na efektywne wykorzystanie zasobów serwera fizycznego. Hyper-V obsługuje różne systemy operacyjne, co czyni go elastycznym narzędziem dla administratorów IT. Przykładowo, dzięki Hyper-V można uruchamiać wiele serwerów na jednym fizycznym urządzeniu, co znacząco obniża koszty sprzętowe oraz zmniejsza zużycie energii. Hyper-V wspiera również funkcje takie jak migracja maszyn wirtualnych, co pozwala na przenoszenie VM między hostami bez przerywania ich pracy. W kontekście standardów branżowych, Hyper-V spełnia wymogi wielu organizacji dotyczące efektywności i bezpieczeństwa, oferując mechanizmy izolacji i zarządzania zasobami. Dodatkowo, integracja z powiązanymi technologiami Microsoft, takimi jak System Center, umożliwia zaawansowane zarządzanie infrastrukturą wirtualną, co czyni Hyper-V preferowanym rozwiązaniem dla wielu przedsiębiorstw.

Pytanie 30

Protokół używany do konwertowania fizycznych adresów MAC na adresy IP w sieciach komputerowych to

A. ARP (Address Resolution Protocol)
B. RARP (Reverse Address Resolution Protocol)
C. DHCP (Dynamic Host Configuration Protocol)
D. DNS (Domain Name System)
RARP, czyli Reverse Address Resolution Protocol, to protokół, który służy do przekształcania fizycznych adresów MAC na adresy IP. Działa na poziomie warstwy 2 (łącza danych) oraz warstwy 3 (sieci) modelu OSI. W praktyce, RARP jest używany przez urządzenia, które znają tylko swój adres MAC i potrzebują uzyskać przypisany adres IP w celu komunikacji w sieci. RARP jest szczególnie przydatny w sytuacjach, gdy urządzenie uruchamia się i nie ma przypisanego adresu IP, na przykład w przypadku stacji roboczych w sieciach lokalnych. Przykładem wykorzystania RARP może być bootowanie stacji roboczej w sieci bezdyskowej, gdzie urządzenie musi uzyskać adres IP przed kontynuowaniem ładowania systemu operacyjnego. Stosowanie RARP jest zgodne ze standardami IETF i stanowi przykład dobrych praktyk w zakresie dynamiki zarządzania adresacją w sieciach komputerowych, chociaż w nowoczesnych sieciach częściej stosuje się inne protokoły, takie jak DHCP.

Pytanie 31

Na serwerze Windows udostępniono folder C:\dane w sieci, nadając wszystkim użytkownikom prawa do odczytu i modyfikacji. Użytkownik pracujący na stacji roboczej może przeglądać zawartość tego folderu, lecz nie jest w stanie zapisać w nim swoich plików. Co może być przyczyną tej sytuacji?

A. Zablokowane konto użytkownika na stacji roboczej
B. Zablokowane konto użytkownika na serwerze
C. Brak uprawnień do modyfikacji w ustawieniach udostępniania folderu na serwerze
D. Brak uprawnień do zmiany w zabezpieczeniach folderu na serwerze
Analizując inne możliwe przyczyny problemu, warto zauważyć, że brak uprawnień do zmiany w udostępnianiu folderu na serwerze nie powinien być przyczyną problemów z zapisem, pod warunkiem, że uprawnienia NTFS są skonfigurowane poprawnie. W rzeczywistości, jeśli uprawnienia udostępniania są przyznane, użytkownicy powinni mieć możliwość zapisywania plików, o ile mają odpowiednie uprawnienia NTFS. Ponadto, zablokowane konto użytkownika na stacji roboczej nie powinno wpływać na możliwość zapisu w folderze udostępnionym na serwerze, ponieważ sytuacja ta odnosi się do lokalnego dostępu do systemu, a nie do zasobów sieciowych. Z kolei zablokowanie konta użytkownika na serwerze również nie jest bezpośrednią przyczyną problemu, ponieważ powiązanie konta serwera z dostępem do folderu udostępnionego jest istotne tylko w kontekście autoryzacji. W praktyce, typowym błędem w rozumieniu tej sytuacji jest mylenie poziomów uprawnień oraz zakładanie, że jeden typ uprawnień automatycznie wystarcza bez sprawdzenia ustawień NTFS. Ważne jest, aby administratorzy systemów pamiętali, że skuteczne zarządzanie dostępem do zasobów wymaga zrozumienia zarówno uprawnień udostępniania, jak i NTFS, a także regularnego monitorowania i audytowania tych ustawień, co jest kluczowe dla bezpieczeństwa danych w organizacji.

Pytanie 32

W jakiej topologii fizycznej sieci każde urządzenie ma dokładnie dwa połączenia, z których jedno prowadzi do najbliższego sąsiada, a dane są przesyłane z jednego komputera do następnego w formie pętli?

A. Gwiazda.
B. Drzewo.
C. Siatka.
D. Pierścień.
Topologia pierścienia charakteryzuje się tym, że każde urządzenie sieciowe, zwane węzłem, jest połączone z dokładnie dwoma innymi węzłami. Taki układ tworzy zamkniętą pętlę, przez którą dane są przesyłane w jednym kierunku, co znacząco upraszcza proces transmisji. Główną zaletą topologii pierścienia jest to, że pozwala na ciągłe przekazywanie informacji bez potrzeby skomplikowanego routingu. Przykładem zastosowania tej topologii mogą być sieci token ring, które były popularne w latach 80. i 90. XX wieku. W takich sieciach stosowano tokeny, czyli specjalne ramki, które kontrolowały dostęp do medium transmisyjnego, co pozwalało uniknąć kolizji danych. Warto wspomnieć, że w przypadku uszkodzenia jednego z węzłów, sieć może przestać działać, co jest istotnym ograniczeniem tej topologii. Aby zwiększyć niezawodność, często stosuje się różne mechanizmy redundancji, takie jak dodatkowe połączenia zapewniające alternatywne ścieżki dla danych. W nowoczesnych aplikacjach sieciowych znajomość i umiejętność konfiguracji różnych topologii jest kluczowa, zwłaszcza w kontekście zapewnienia odpowiedniej wydajności i bezpieczeństwa sieci.

Pytanie 33

Mechanizm ograniczeń na dysku, który umożliwia kontrolowanie wykorzystania zasobów dyskowych przez użytkowników, nazywany jest

A. spool
B. ąuota
C. release
D. management
Odpowiedzi 'release', 'spool' oraz 'management' nie odnoszą się bezpośrednio do mechanizmu limitów dyskowych, co może prowadzić do mylnych przekonań o ich funkcji. Odpowiedź 'release' odnosi się do procesu zwalniania zasobów, co nie ma związku z przydzielaniem i zarządzaniem przestrzenią dyskową. Często myląc te pojęcia, można sądzić, że zwolnienie zasobów oznacza ich ograniczenie, co jest błędne. Z kolei odpowiedź 'spool' dotyczy zarządzania danymi w kolejkach wydruku lub buforach, co znowu nie jest związane z kontrolowaniem przestrzeni dyskowej, a bardziej z tymczasowym przechowywaniem danych. Natomiast 'management' jest terminem ogólnym, który odnosi się do zarządzania zasobami w szerszym kontekście, ale nie wskazuje na konkretne mechanizmy ograniczające dostęp do przestrzeni dyskowej. Prawidłowe zrozumienie tych terminów jest kluczowe dla efektywnego zarządzania systemami komputerowymi oraz zasobami w sieciach, a pomylenie ich z mechanizmami cząty może prowadzić do nieefektywnego gospodarowania przestrzenią dyskową.

Pytanie 34

Przekazywanie tokena (ang. token) ma miejsce w sieci o topologii fizycznej

A. magistrali
B. pierścienia
C. gwiazdy
D. siatki
Przekazywanie żetonu w sieci typu pierścieniowego to naprawdę ciekawy proces. W praktyce oznacza to, że dane krążą wokół zamkniętej pętli, co ułatwia dostęp do informacji dla każdego węzła. Każdy węzeł łączy się z dwoma innymi, tworząc coś w rodzaju zamkniętej sieci. Kiedy jeden węzeł chce przesłać dane, po prostu umieszcza je w żetonie, który następnie krąży, aż dotrze do celu. To rozwiązanie zmniejsza ryzyko kolizji, bo tylko jeden żeton jest aktywny w danym momencie, co poprawia wydajność. Ciekawe jest, że tego typu sieci często znajdziemy w lokalnych sieciach komputerowych, gdzie stała wymiana danych jest bardzo ważna. Dobrym przykładem jest technologia Token Ring, która była popularna w latach 80. i 90. XX wieku. Standardy IEEE 802.5 dokładnie opisują, jak te sieci powinny działać, co pozwala różnym urządzeniom na współpracę. W skrócie, zarządzanie przekazywaniem żetonu w sieci pierścieniowej sprawia, że jest to naprawdę funkcjonalne rozwiązanie w wielu zastosowaniach.

Pytanie 35

Jakie medium transmisyjne w sieciach LAN wskazane jest do używania w obiektach historycznych?

A. Fale radiowe
B. Kabel typu "skrętka"
C. Kabel koncentryczny
D. Światłowód
Fale radiowe są zalecanym medium transmisyjnym w zabytkowych budynkach ze względu na ich zdolność do omijania przeszkód fizycznych, takich jak grube mury czy elementy architektoniczne, które mogą utrudniać tradycyjnym kablom dostęp do miejsc, gdzie potrzebna jest infrastruktura sieciowa. Wykorzystanie technologii Wi-Fi, które działa na falach radiowych, jest praktycznym rozwiązaniem, ponieważ nie wymaga dużych modyfikacji budowlanych, co jest kluczowe w kontekście zachowania integralności zabytków. Dodatkowo, fale radiowe oferują elastyczność w instalacji, umożliwiając łatwą adaptację w miarę zmieniających się potrzeb użytkowników. Stosowanie systemów bezprzewodowych w takich lokalizacjach jest zgodne ze standardami branżowymi, które promują minimalne zakłócenia w strukturze obiektu. Przykładem zastosowania mogą być hotele w zabytkowych budynkach, gdzie bezprzewodowy dostęp do Internetu umożliwia gościom korzystanie z sieci bez ingerencji w zabytkowe elementy wystroju.

Pytanie 36

AES (ang. Advanced Encryption Standard) to co?

A. wykorzystuje algorytm szyfrujący symetryczny
B. jest wcześniejszą wersją DES (ang. Data Encryption Standard)
C. nie może być zrealizowany w formie sprzętowej
D. nie może być użyty do szyfrowania dokumentów
AES (Advanced Encryption Standard) to standard szyfrowania, który wykorzystuje symetryczny algorytm szyfrujący. Oznacza to, że ten sam klucz jest używany zarówno do szyfrowania, jak i deszyfrowania danych. AES jest powszechnie stosowany w różnych aplikacjach, takich jak zabezpieczenie danych w chmurze, transmisje internetowe, szyfrowanie plików oraz w protokołach takich jak SSL/TLS. Wybór AES jako standardu szyfrowania przez National Institute of Standards and Technology (NIST) w 2001 roku wynikał z jego wysokiego poziomu bezpieczeństwa oraz wydajności. AES obsługuje różne długości kluczy (128, 192 i 256 bitów), co pozwala na dostosowanie poziomu zabezpieczeń do konkretnych potrzeb. W praktyce, stosując AES, można zapewnić bezpieczeństwo danych osobowych, transakcji finansowych oraz komunikacji, co czyni go fundamentem nowoczesnych systemów kryptograficznych.

Pytanie 37

Aby uzyskać spis wszystkich dostępnych urządzeń w sieci lokalnej, należy użyć aplikacji typu

A. spoofer
B. port scanner
C. IP scanner
D. sniffer
Port scanner to narzędzie służące do skanowania otwartych portów na danym hoście, a nie do identyfikacji urządzeń w sieci. Choć skanowanie portów jest ważnym elementem analizy bezpieczeństwa, nie dostarcza informacji o wszystkich dostępnych urządzeniach w lokalnej sieci. Z kolei sniffer to program do przechwytywania i analizy ruchu sieciowego, który umożliwia monitorowanie pakietów przesyłanych w sieci, ale również nie identyfikuje urządzeń. Użycie sniffera wymaga zaawansowanej wiedzy z zakresu analizy ruchu sieciowego, a także może wiązać się z kwestiami prawnymi, jeśli jest używany bez zgody. Spoofer natomiast jest narzędziem do fałszowania adresów IP, co może być wykorzystywane w atakach na sieci, lecz nie ma zastosowania w kontekście identyfikacji urządzeń w sieci lokalnej. Typowe błędy myślowe, które prowadzą do takich niepoprawnych wniosków, obejmują mylenie funkcji poszczególnych narzędzi oraz niewłaściwe zrozumienie ich zastosowań w kontekście zarządzania siecią. Użycie niewłaściwego narzędzia może prowadzić do nieefektywnego zarządzania oraz potencjalnych problemów z bezpieczeństwem.

Pytanie 38

Urządzenie warstwy dystrybucji, które odpowiada za połączenie odrębnych sieci oraz zarządzanie przepływem danych między nimi, nazywane jest

A. routerem
B. serwerem
C. przełącznikiem
D. koncentratorem
Router jest urządzeniem, które pełni kluczową rolę w łączeniu różnych sieci komputerowych oraz zarządzaniu przepływem danych między nimi. W przeciwieństwie do innych urządzeń sieciowych, jak przełączniki czy koncentratory, routery są zdolne do podejmowania decyzji o trasowaniu pakietów danych na podstawie ich adresów IP. Używają do tego protokołów routingu, takich jak RIP, OSPF czy BGP, co pozwala im na dynamiczne dostosowywanie tras w zależności od warunków w sieci. Przykładem zastosowania routera może być łączenie lokalnej sieci domowej z Internetem, gdzie router zarządza zarówno ruchem lokalnym, jak i komunikacją z siecią globalną. Dobre praktyki w zakresie konfiguracji routerów obejmują zabezpieczanie dostępu do panelu administracyjnego, aktualizowanie oprogramowania oraz stosowanie zapór sieciowych, aby chronić sieć przed nieautoryzowanym dostępem. Zrozumienie funkcji routerów jest kluczowe dla projektowania efektywnych i bezpiecznych architektur sieciowych.

Pytanie 39

Ransomware to rodzaj szkodliwego oprogramowania, które

A. rejestruje naciskane przez użytkownika klawisze.
B. używa zainfekowanego komputera do rozsyłania wiadomości spam.
C. ukrywa pliki lub procesy, aby wspierać kontrolę nad zainfekowanym komputerem.
D. szyfruje lub blokuje dane w celu wyłudzenia okupu.
Zrozumienie zagrożeń związanych z cyberbezpieczeństwem wymaga szczegółowego przemyślenia różnych typów złośliwego oprogramowania, w tym ransomware, które nie należy mylić z innymi formami ataków. Oprogramowanie, które wykorzystuje zainfekowany komputer do rozsyłania spamu, to typ malware znany jako botnet, który działa na zupełnie innych zasadach, koncentrując się na wykorzystaniu mocy obliczeniowej zainfekowanych urządzeń do masowych ataków, takich jak spamowanie lub przeprowadzanie ataków DDoS. Z kolei rejestrowanie sekwencji klawiszy, czyli keylogging, to technika stosowana przez niektóre rodzaje złośliwego oprogramowania, ale nie jest to związane z ransomware. Keyloggerzy zbierają dane osobowe użytkowników, takie jak hasła, co prowadzi do kradzieży tożsamości, ale nie blokują ani nie szyfrują danych. Ukrywanie plików lub procesów w celu utrzymania kontroli nad zainfekowanym systemem jest z kolei charakterystyczne dla rootkitów, które mają na celu ukrywanie obecności złośliwego oprogramowania w systemie, co także jest różne od działania ransomware. Warto zrozumieć, że każdy typ złośliwego oprogramowania ma swoje unikalne cele oraz metody działania, co podkreśla znaczenie zróżnicowanego podejścia do zabezpieczeń. Aby skutecznie bronić się przed zagrożeniami, organizacje powinny przyjąć kompleksowe strategie oparte na aktualnych standardach branżowych, takich jak NIST Cybersecurity Framework, oraz wprowadzić wielowarstwowe zabezpieczenia.

Pytanie 40

Protokół ARP (Address Resolution Protocol) pozwala na konwersję logicznych adresów z poziomu sieci na rzeczywiste adresy z poziomu

A. łącza danych
B. aplikacji
C. transportowej
D. fizycznej
Wybór niewłaściwych odpowiedzi opiera się na kilku kluczowych nieporozumieniach dotyczących warstw modelu OSI oraz funkcji poszczególnych protokołów. Protokół ARP jest ściśle związany z warstwą łącza danych, a nie z warstwą transportową. Warstwa transportowa (TCP/UDP) odpowiada za dostarczanie danych pomiędzy aplikacjami, a nie za mapowanie adresów. Wybór związany z warstwą aplikacji również wprowadza w błąd, ponieważ ARP nie działa na poziomie aplikacji, lecz na poziomie sieciowym i łącza danych, co oznacza, że nie ma bezpośredniego związku z funkcjami aplikacyjnymi czy interfejsami użytkownika. Wreszcie, twierdzenie, że ARP jest związany z warstwą fizyczną, jest również mylące. Warstwa fizyczna dotyczy aspektów takich jak sygnały, media transmisyjne, a nie zarządzania adresami logicznymi i fizycznymi. Takie błędne zrozumienie prowadzi do problemów w projektowaniu i zarządzaniu sieciami, ponieważ kluczowe funkcje protokołów mogą być mylone lub niewłaściwie stosowane. Aby lepiej zrozumieć rolę ARP, warto zwrócić uwagę na standardy i dobre praktyki związane z zarządzaniem adresacją w sieciach komputerowych, takie jak DHCP dla dynamicznego przypisywania adresów IP, które są często używane w połączeniu z ARP w celu efektywnego zarządzania zasobami sieciowymi.