Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 4 maja 2025 19:22
  • Data zakończenia: 4 maja 2025 19:24

Egzamin niezdany

Wynik: 4/40 punktów (10,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Który z podanych łączników elektrycznych jest przeznaczony do osobnego sterowania dwiema sekcjami oświetlenia w żyrandolu?

A. Schodowy
B. Świecznikowy
C. Krzyżowy
D. Dwubiegunowy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Świecznikowy łącznik instalacyjny jest zaprojektowany w taki sposób, aby umożliwiać niezależne sterowanie różnymi sekcjami źródeł światła w lampach, w tym żyrandolach. Jego konstrukcja pozwala na włączenie i wyłączenie poszczególnych źródeł światła, co jest szczególnie przydatne w przypadku żyrandoli z wieloma żarówkami. Dzięki temu użytkownik może dostosować natężenie oświetlenia w pomieszczeniu w zależności od potrzeb, co zwiększa funkcjonalność i komfort użytkowania. Przykładowo, w jadalni, gdzie często zasiadamy z rodziną lub gośćmi, można włączyć tylko kilka żarówek, aby stworzyć przytulną atmosferę. Zastosowanie łącznika świecznikowego jest zgodne z ogólnymi normami instalacji elektrycznych, które zalecają elastyczność w sterowaniu oświetleniem. Dobrą praktyką w projektowaniu systemów oświetleniowych jest również uwzględnienie możliwości dalszej rozbudowy instalacji oraz zastosowanie łączników, które umożliwiają późniejszą modyfikację układów oświetleniowych.

Pytanie 2

Aby zrealizować instalację zasilającą dla urządzeń, które potrzebują do działania napięcia AC 230V, w rurkach podtynkowych w pomieszczeniu, gdzie temperatura osiąga 100 °C, należy zastosować przewody oznaczone symbolem

A. DY 100
B. DYc 150
C. DY 700
D. DYc 750

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przewody oznaczone symbolem DYc 750 są przeznaczone do pracy w warunkach wysokotemperaturowych, co czyni je odpowiednim wyborem do instalacji zasilającej w pomieszczeniach, gdzie temperatura może osiągnąć 100°C. Symbol "DY" wskazuje na przewody elastyczne, a litera "c" oznacza, że przewody te są odporne na działanie wysokich temperatur. W praktyce, przewody DYc 750 często stosuje się w instalacjach przemysłowych oraz w aplikacjach, gdzie istnieje ryzyko wystąpienia ekstremalnych warunków temperaturowych. Stosowanie odpowiednich przewodów jest kluczowe dla zapewnienia bezpieczeństwa oraz długoterminowej wydajności systemu zasilania. Przewody te są zgodne z normami PN-EN 50525, które określają wymagania dla przewodów elektrycznych, i powinny być używane w miejscach, gdzie są narażone na wysokie temperatury, aby zminimalizować ryzyko uszkodzeń oraz pożaru.

Pytanie 3

Podaj rodzaj i miejsce uszkodzenia w trójfazowym silniku indukcyjnym o uzwojeniach połączonych w gwiazdę, jeżeli wyniki pomiarów rezystancji jego uzwojeń przedstawione są w tabeli.

Rezystancja między zaciskamiWartość
U - V20,0 Ω
V - W15,0 Ω
W - U15,0 Ω

A. Zwarcie międzyzwojowe w fazie W
B. Zwarcie międzyzwojowe w fazie V
C. Przerwa w uzwojeniu fazy W
D. Przerwa w uzwojeniu fazy V
Odpowiedź "Zwarcie międzyzwojowe w fazie W" jest prawidłowa, ponieważ analiza wyników pomiarów rezystancji uzwojeń trójfazowego silnika indukcyjnego wskazuje na istotne różnice w wartościach rezystancji, które są kluczowym wskaźnikiem stanu uzwojeń. W przypadku uzwojenia W, wartość rezystancji wynosi 5,0 Ω, co jest znacznie niższe od wartości uzwojeń U i V, które wynoszą odpowiednio 20,0 Ω i 15,0 Ω. Taka różnica wskazuje na wystąpienie zwarcia międzyzwojowego. W praktyce, gdy rezystancja jednego z uzwojeń jest znacznie niższa, oznacza to, że w tym uzwojeniu doszło do nieprawidłowości, która prowadzi do utraty właściwości izolacyjnych. W przypadku silników indukcyjnych, regularne monitorowanie rezystancji uzwojeń jest kluczowe dla wczesnego wykrywania uszkodzeń, co pozwala na zapobieganie poważniejszym awariom. Standardy branżowe, takie jak IEC 60034, podkreślają znaczenie regularnych przeglądów oraz testów, by zapewnić niezawodność i efektywność pracy urządzeń elektrycznych. Dodatkowo, znajomość typowych uszkodzeń, takich jak zwarcia międzyzwojowe, jest niezbędna dla techników w celu szybkiej diagnozy i naprawy silników elektrycznych.

Pytanie 4

Aby zweryfikować ciągłość przewodów w kablu YDY 4x2,5 mm2, jaki sprzęt należy zastosować?

A. wskaźnika kolejności faz
B. omomierza
C. miernika izolacji
D. mostka LC
Wybór wskaźnika kolejności faz do sprawdzania ciągłości żył w przewodzie YDY 4x2,5 mm2 wskazuje na pewne nieporozumienie dotyczące przeznaczenia tego urządzenia. Wskaźniki kolejności faz służą do identyfikacji i potwierdzania poprawnego ustawienia faz w układzie trójfazowym. Ich główną funkcją jest ocena kolejności przychodzących faz w instalacji, a nie mierzenie oporu elektrycznego czy ciągłości przewodów. Dlatego stosowanie ich w kontekście sprawdzania ciągłości żył może prowadzić do błędnych wniosków. Mostek LC, który jest używany do pomiarów impedancji w obwodach, również nie jest odpowiednim narzędziem w tej sytuacji, ponieważ tak samo jak wskaźnik kolejności faz, nie jest przystosowany do pomiaru oporu w przewodach. Miernik izolacji, z kolei, ma swoje zastosowanie w testach odporności izolacji przewodów, ale nie służy do bezpośredniego pomiaru ciągłości żył. Zastosowanie niewłaściwych narzędzi do specyficznych zadań technicznych może prowadzić do zaniedbań w ocenie stanu instalacji, co z kolei stwarza ryzyko bezpieczeństwa. Zrozumienie funkcji i ograniczeń różnych narzędzi pomiarowych jest kluczowe w pracy elektryka, aby unikać błędów, które mogą mieć poważne konsekwencje.

Pytanie 5

Jakie parametry powinno się zmierzyć podczas przeglądu instalacji elektrycznej funkcjonującej w systemie TN-S?

A. Rezystancję izolacji przewodów oraz rezystancję uziemienia
B. Rezystancję izolacji przewodów oraz impedancję pętli zwarcia
C. Impedancję pętli zwarcia oraz pomiar prądu upływu
D. Rezystancję przewodów ochronnych i rezystancję uziemienia

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
W instalacji elektrycznej pracującej w sieci TN-S kluczowe jest zapewnienie odpowiedniego poziomu bezpieczeństwa oraz właściwej funkcjonalności systemu. Pomiar rezystancji izolacji przewodów jest niezbędny, aby upewnić się, że izolacja nie zawiera uszkodzeń, które mogłyby prowadzić do niebezpiecznego przebicia czy upływu prądu. Normy takie jak PN-EN 61557-1 i PN-EN 61557-2 wskazują na konieczność regularnego przeprowadzania takich pomiarów. Drugi aspekt, czyli pomiar impedancji pętli zwarcia, jest kluczowy dla oceny skuteczności zabezpieczeń nadprądowych oraz wyłączników różnicowoprądowych. Zgodnie z wymaganiami normy DIN VDE 0100, impedancja pętli zwarcia powinna być na tyle niska, aby zapewnić szybkie wyłączenie obwodu w przypadku wystąpienia zwarcia. Praktycznie, te pomiary umożliwiają ocenę stanu instalacji oraz podejmowanie odpowiednich działań konserwacyjnych lub naprawczych, co przekłada się na bezpieczeństwo użytkowników i ciągłość pracy instalacji elektrycznych.

Pytanie 6

Na podstawie danych katalogowych przedstawionych w tabeli określ, którym wyłącznikiem należy zastąpić uszkodzony wyłącznik różnicowoprądowy P304 25/0,03 A w instalacji mieszkaniowej trójfazowej o napięciu znamionowym 230/400 V.

Prąd znamionowy25 A25 A25 A25 A
Liczba biegunów2P4P4P2P
Znamionowy prąd różnicowy30 mA30 mA300 mA300 mA
Typ wyłączaniaACACACAC
Znamionowe napięcie izolacji500 V500 V500 V500 V
Częstotliwość znamionowa50 Hz50 Hz50 Hz50 Hz
Wytrzymałość elektryczna (liczba cykli)2 0002 0002 0002 000
Temperatura pracy-25°C ÷ 40°C-25°C ÷ 40°C-25°C ÷ 40°C-25°C ÷ 40°C
Znamionowa zwarciowa zdolność łączeniowa15 kA15 kA15 kA15 kA
A.B.C.D.

A. C.
B. D.
C. B.
D. A.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybranie odpowiedzi B. jest właściwe, ponieważ wyłącznik różnicowoprądowy P304 25/0,03 A ma specyfikację prądu znamionowego 25 A oraz prądu różnicowego 30 mA. W kontekście instalacji mieszkaniowych trójfazowych, istotne jest, aby odpowiedni wyłącznik miał te same parametry. Wyłącznik oznaczony literą B. również spełnia te normy: 25 A prądu znamionowego i 30 mA prądu różnicowego, co zapewnia efektywne zabezpieczenie przed porażeniem elektrycznym oraz przeciążeniem. Dodatkowo, typ wyłączania AC jest zgodny z typowymi wymaganiami dla instalacji domowych, gdzie obciążenia są zwykle jednofazowe, a występowanie prądów różnicowych jest minimalne. Zastosowanie wyłączników różnicowoprądowych zgodnych z tymi parametrami nie tylko zwiększa bezpieczeństwo użytkowników, ale także spełnia standardy określone w normach PN-EN 61008-1, które regulują kwestie instalacji elektrycznych. Znajomość tych zasad jest kluczowa dla każdego elektryka, aby zapewnić właściwe działanie instalacji elektrycznych.

Pytanie 7

Jakim oznaczeniem charakteryzuje się przewód jednożyłowy z żyłą wykonaną z aluminium, w izolacji z PVC, o przekroju 2,5 mm2, przeznaczony na napięcie znamionowe izolacji 500 V?

A. YLY 500 V 2,5 mm2
B. ALY 500 V 2,5 mm2
C. YDY 500 V 2,5 mm2
D. ADY 500 V 2,5 mm2
Odpowiedź ADY 500 V 2,5 mm2 jest jak najbardziej trafna. To standardowy symbol przewodu jednożyłowego wykonanego z aluminium, który ma izolację z PVC, czyli polichlorku winylu. W tej nazwie 'A' oznacza, że materiał żyły to aluminium, 'D' informuje nas, że mamy do czynienia z PVC, a 'Y' pokazuje, że to przewód jednożyłowy. Wiedza o takich oznaczeniach jest naprawdę ważna w inżynierii, bo dzięki temu można dobrze dobierać przewody do różnych zastosowań. To jest kluczowe dla bezpieczeństwa instalacji elektrycznych. Przewody o średnicy 2,5 mm2 są szeroko stosowane w budynkach mieszkalnych i przemysłowych, gdzie potrzebna jest odpowiednia wydolność prądowa. Napięcie 500 V oznacza maksymalne napięcie, które można stosować, co jest zgodne z normą PN-EN 60228 dotyczącą przewodów elektrycznych.

Pytanie 8

Jakie urządzenie, oprócz lutownicy, jest kluczowe podczas naprawy przeciętego przewodu LY poprzez połączenie lutowane?

A. Płaskoszczypce
B. Zagniatarka
C. Szczypce boczne
D. Nóż monterski

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Nóż monterski jest kluczowym narzędziem przy naprawie przeciętego przewodu, gdyż umożliwia precyzyjne przygotowanie końcówek przewodów do lutowania. W praktyce, przed przystąpieniem do lutowania, należy odpowiednio odizolować końce przewodów, co wymaga użycia ostrego noża monterskiego. Dzięki odpowiedniej technice użycia noża, możemy uniknąć uszkodzenia żył przewodu oraz zapewnić ich czystą powierzchnię lutowniczą. Istotne jest, aby stosować nóż monterski zgodnie z zasadami BHP, co zapobiega urazom. Ponadto, zgodnie z normami branżowymi, każda naprawa powinna być przeprowadzana z użyciem narzędzi zapewniających dokładność oraz bezpieczeństwo. Dlatego nóż monterski powinien być zawsze w dobrym stanie, a jego ostrze powinno być regularnie wymieniane, aby zminimalizować ryzyko uszkodzenia przewodu. Stosowanie noża monterskiego w połączeniu z lutownicą jest zgodne z najlepszymi praktykami w branży elektrycznej oraz elektronicznej.

Pytanie 9

Jaka jest minimalna wartość napięcia probierczego, która jest wymagana podczas pomiarów rezystancji izolacji przewodów w obwodach SELV oraz PELV?

A. 100 V
B. 500 V
C. 1000 V
D. 250 V
Minimalna wymagana wartość napięcia probierczego przy pomiarach rezystancji izolacji w obwodach SELV i PELV wynosi 250 V. Tego rodzaju obwody są projektowane z myślą o bezpieczeństwie użytkowników, a ich izolacja musi spełniać określone standardy jakości. Przeprowadzenie pomiaru rezystancji izolacji z użyciem napięcia 250 V pozwala na skuteczne zidentyfikowanie ewentualnych uszkodzeń izolacji, które mogą prowadzić do niebezpieczeństwa porażenia prądem elektrycznym. W praktyce, przy pomiarach tego typu, wartość 250 V jest uznawana za wystarczającą do zbadania jakości izolacji, a także zapewnia odpowiedni margines bezpieczeństwa. Na przykład, w przypadku instalacji elektrycznych w budynkach mieszkalnych, stosowanie tego napięcia probierczego pozwala na wykrycie nieprawidłowości, które mogą powstać w wyniku starzenia się materiałów lub niewłaściwego montażu. Warto również zauważyć, że normy międzynarodowe, takie jak IEC 60364, wskazują na konieczność przeprowadzania pomiarów izolacji przy odpowiednich wartościach napięcia, aby zapewnić bezpieczeństwo użytkowania elektrycznych urządzeń i instalacji.

Pytanie 10

W jakich okolicznościach instalacja elektryczna nie wymaga konserwacji ani naprawy?

A. Kiedy prowadzone są prace konserwacyjne w obiekcie, na przykład malowanie ścian
B. Gdy użytkowanie instalacji stwarza zagrożenie dla bezpieczeństwa personelu lub otoczenia
C. Kiedy zostanie zauważone uszkodzenie instalacji elektrycznej
D. Gdy stan techniczny instalacji jest niedostateczny lub wartości jej parametrów są poza zakresem określonym w instrukcji eksploatacji

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź wskazująca, że instalacja elektryczna nie musi być poddawana konserwacji w przypadku przeprowadzania prac konserwacyjnych, takich jak malowanie ścian, jest prawidłowa, ponieważ w tym kontekście nie zachodzi ryzyko uszkodzenia instalacji ani zagrożenie dla bezpieczeństwa. W rzeczywistości, prace konserwacyjne są często planowane i wykonywane w sposób, który minimalizuje ryzyko dla istniejącej instalacji. Przykładowo, przed rozpoczęciem malowania należy zabezpieczyć gniazdka elektryczne i kable, co pozwala na bezpieczne i zgodne z normami ISO i PN wykonywanie takich prac. Dobrą praktyką jest również przeprowadzenie przeglądu stanu instalacji przed rozpoczęciem jakichkolwiek działań konserwacyjnych, aby upewnić się, że nie ma ukrytych usterek, które mogłyby wpłynąć na bezpieczeństwo. Ostatecznie, przestrzeganie regularnych harmonogramów konserwacji i inspekcji jest kluczowe dla utrzymania bezpieczeństwa oraz wydajności instalacji elektrycznych.

Pytanie 11

Naciśnięcie przycisku TEST na wyłączniku różnicowoprądowym, imituje

A. przepięcie
B. uszkodzenie przewodu
C. upływ prądu
D. przeciążenie
Wciśnięcie przycisku TEST na wyłączniku różnicowoprądowym (RCD) ma na celu symulację upływu prądu, co jest kluczowym elementem działania tego urządzenia. Wyłączniki różnicowoprądowe są zaprojektowane w celu ochrony przed porażeniem prądem elektrycznym oraz pożarami spowodowanymi przez upływ prądu, dlatego ich regularne testowanie jest niezwykle istotne. Kiedy użytkownik naciska przycisk TEST, wewnętrzny mechanizm wyłącznika wytwarza sztuczny upływ prądu, co powinno spowodować natychmiastowe wyłączenie obwodu. To działanie pozwala użytkownikom na weryfikację, czy urządzenie działa prawidłowo i jest w stanie wykryć rzeczywisty upływ prądu. Zgodnie z normami branżowymi, takie testowanie powinno być przeprowadzane co najmniej raz w miesiącu, aby zapewnić bezpieczeństwo instalacji elektrycznej. Przykładowo, w przypadku zużycia izolacji przewodów lub uszkodzeń urządzeń elektrycznych, wyłącznik różnicowoprądowy powinien zareagować, wyłączając zasilanie, co zapobiega potencjalnym wypadkom i uszkodzeniom mienia. Regularne testowanie RCD przyczynia się do wyższej ochrony użytkowników oraz zgodności z przepisami bezpieczeństwa elektrycznego, jak normy PN-EN 61008-1.

Pytanie 12

Jakie z podanych powodów wpływa na wzrost iskrzenia na komutatorze w trakcie działania sprawnego silnika bocznikowego prądu stałego po wymianie szczotek?

A. Zbyt duże wzbudzenie silnika
B. Zbyt mała powierzchnia styku szczotek z komutatorem
C. Zbyt małe wzbudzenie silnika
D. Zbyt duży nacisk szczotek na komutator

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź dotycząca za małej powierzchni styku szczotek z komutatorem jest poprawna, ponieważ kontakt między szczotkami a komutatorem jest kluczowy dla prawidłowego działania silnika prądu stałego. Niewłaściwa powierzchnia styku może prowadzić do zwiększonego oporu elektrycznego, co skutkuje większym iskrzeniem i nadmiernym zużyciem szczotek. W praktyce, odpowiedni dobór szczotek, które powinny być dobrze dopasowane do średnicy komutatora, jest istotny dla optymalizacji ich kontaktu. Standardy branżowe, takie jak normy IEC, podkreślają znaczenie jakości materiałów używanych do produkcji szczotek i ich geometrii, aby zapewnić skuteczny transfer prądu. Wymiana szczotek na modele o większej powierzchni styku lub z lepszymi właściwościami przewodzącymi może znacząco poprawić wydajność silnika i zmniejszyć iskrzenie, co zwiększa jego trwałość oraz bezpieczeństwo eksploatacji. Poprawny dobór szczotek i regularne ich kontrolowanie to praktyki, które powinny być stosowane w każdej aplikacji wykorzystującej silniki prądu stałego.

Pytanie 13

Który z urządzeń elektrycznych, zainstalowany w obwodzie systemu zasilania elektrycznego kuchenki trójfazowej, jest w stanie zidentyfikować przerwę w ciągłości przewodów jednej z faz?

A. Stycznik elektromagnetyczny
B. Odgromnik
C. Czujnik zaniku fazy
D. Przekaźnik priorytetowy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Czujnik zaniku fazy to urządzenie, którego głównym zadaniem jest monitorowanie i wykrywanie ewentualnych przerw w zasilaniu w poszczególnych fazach obwodu elektrycznego. W kontekście kuchenek trójfazowych, które wymagają stabilnego zasilania z trzech faz, czujnik ten odgrywa kluczową rolę w zapewnieniu bezpieczeństwa oraz sprawnego funkcjonowania urządzenia. Gdy zachodzi przerwa w jednej z faz, czujnik natychmiast wykrywa ten stan i może zainicjować odpowiednie działania, takie jak odłączenie urządzenia od zasilania, co zapobiega jego uszkodzeniu. Przykładowo, w kuchniach przemysłowych, gdzie kuchenki trójfazowe są wykorzystywane na dużą skalę, zastosowanie czujników zaniku fazy jest standardem, co wpływa na zwiększenie niezawodności i bezpieczeństwa operacji. Zgodnie z normami branżowymi, takie jak PN-EN 61439, zaleca się stosowanie czujników do monitorowania ciągłości zasilania w instalacjach elektrycznych, co w praktyce przekłada się na wyższą efektywność i minimalizację ryzyka awarii.

Pytanie 14

Jakie urządzenie powinno zostać zainstalowane w pośrednim układzie pomiarowym mocy czynnej w zakładzie przemysłowym?

A. Transformator separacyjny
B. Przetwornicę napięcia
C. Przekładnik prądowy
D. Transformator bezpieczeństwa

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przekładnik prądowy jest kluczowym elementem w pośrednich układach pomiarowych mocy czynnej, ponieważ jego główną funkcją jest przekształcenie dużych prądów roboczych na niższe, które mogą być bezpiecznie zmierzone przez urządzenia pomiarowe. Działa to na zasadzie indukcji elektromagnetycznej, gdzie prąd w obwodzie pierwotnym generuje pole magnetyczne, które z kolei indukuje prąd w obwodzie wtórnym. Dzięki zastosowaniu przekładników prądowych, możliwe jest monitorowanie i obliczanie zużycia energii, co jest niezwykle istotne w zarządzaniu efektywnością energetyczną w zakładach przemysłowych. Przykładem zastosowania mogą być instalacje, w których przekładniki prądowe są wykorzystywane do pomiarów w systemach monitorujących zużycie energii elektrycznej w czasie rzeczywistym. Dobrą praktyką w branży jest również regularna kalibracja przekładników, aby zapewnić ich dokładność oraz niezawodność w długoterminowym użytkowaniu. W kontekście norm, należy również odnosić się do standardów IEC 61869, które regulują kwestie dotyczące przekładników prądowych oraz ich zastosowań w układach pomiarowych.

Pytanie 15

Jakie działania są uwzględnione w procederze oględzin systemu elektrycznego w budynku mieszkalnym?

A. Mierzenie ciągłości przewodów ochronnych i czynnych w obwodach odbiorczych, a także ocena efektywności ochrony w razie uszkodzenia za pomocą automatycznego wyłączenia zasilania
B. Nastawienie sprzętu zabezpieczającego i sygnalizacyjnego, ocena dostępności urządzeń, co umożliwia komfortową obsługę, identyfikację oraz konserwację
C. Kontrola zabezpieczeń z użyciem SELV, PELV, separacji elektrycznej lub nieuziemionych połączeń wyrównawczych lokalnych
D. Pomiar rezystancji izolacji przewodów, weryfikacja ciągłości przewodów ochronnych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź dotycząca nastawienia urządzeń zabezpieczających i sygnalizacyjnych oraz sprawdzenia dostępności urządzeń jest prawidłowa, ponieważ wchodzą one w zakres oględzin instalacji elektrycznej w budynku mieszkalnym. W procesie oględzin kluczowe jest zapewnienie, że urządzenia zabezpieczające, takie jak wyłączniki różnicowoprądowe (RCD) i zabezpieczenia przeciążeniowe, działają zgodnie z wymaganiami norm, takich jak PN-EN 61010-1. Oprócz tego istotne jest, aby sprawdzić dostępność urządzeń, co pozwala na szybką reakcję w razie awarii. Użytkownik musi mieć możliwość łatwego dostępu do tych urządzeń w celu przeprowadzenia ewentualnych napraw lub konserwacji. Dobre praktyki branżowe sugerują regularne przeglądy tych urządzeń, aby potwierdzić ich funkcjonalność i kompletność, co z kolei zwiększa bezpieczeństwo całej instalacji. Warto również zaznaczyć, że zgodność z odpowiednimi normami i regulacjami prawnymi jest kluczowa dla zapewnienia bezpieczeństwa użytkowników budynków mieszkalnych.

Pytanie 16

Przedstawiony na rysunku zrzut ekranu miernika zawiera między innymi wyświetlaną w trakcie pomiaru wartość

Ilustracja do pytania
A. znamionowego prądu instalacji.
B. prądu zadziałania zabezpieczenia.
C. spodziewanego prądu zwarcia.
D. maksymalnego prądu obciążenia.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Dobra robota z odpowiedzią "spodziewany prąd zwarcia"! Na zrzucie ekranu widzimy, że wartość "Ik=17,79A" to rzeczywiście prąd zwarcia. To jest bardzo ważne w kontekście bezpieczeństwa instalacji elektrycznych, bo to pozwala określić, jakie mogą wystąpić przeciążenia w razie zwarcia. Moim zdaniem, znajomość tego prądu jest kluczowa, aby prawidłowo dobrać zabezpieczenia, takie jak wyłączniki nadprądowe czy różnicowoprądowe. Wiesz, zgodnie z normą PN-EN 60947-2, projektanci muszą brać pod uwagę, żeby zabezpieczenia były odpowiednio dobrane do spodziewanych wartości prądów zwarciowych. To pomaga uniknąć uszkodzeń instalacji i chroni przed porażeniem prądem. Wiedza o prądzie zwarcia przyda się też przy pomiarach impedancji pętli zwarcia, co z kolei pozwala ocenić, jak skuteczne są te zabezpieczenia. Zredukowanie wartości prądu zwarcia to dobry pomysł, dlatego ważne jest, by projektować instalacje z odpowiednimi parametrami. To zwiększa bezpieczeństwo i trwałość całej instalacji.

Pytanie 17

Jaka jest maksymalna wartość napięcia dotykowego bezpiecznego dla człowieka przy normalnych warunkach eksploatacji?

A. 230 V
B. 100 V
C. 50 V
D. 12 V

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Napięcie dotykowe bezpieczne dla człowieka przy normalnych warunkach eksploatacji wynosi 50 V. To stwierdzenie opiera się na normach elektrycznych, takich jak PN-EN 61140, które definiują granice bezpieczeństwa w kontekście ochrony przed porażeniem prądem elektrycznym. Powyżej tej wartości istnieje znaczne ryzyko wystąpienia niebezpiecznych sytuacji zdrowotnych, w tym migotania komór serca. W praktyce, przestrzeganie tego limitu jest kluczowe w projektowaniu i eksploatacji instalacji elektrycznych, aby zapewnić ochronę użytkowników. Przykładem mogą być instalacje niskonapięciowe, które są szeroko stosowane w budynkach mieszkalnych oraz przemysłowych, gdzie zachowanie tego limitu jest absolutnie konieczne. Dodatkowo, stosowanie odpowiednich środków ochrony, takich jak izolacja i uziemienie, pomaga w utrzymaniu bezpieczeństwa elektrycznego. Z mojego doświadczenia, wiedza o tych wartościach jest podstawą dla każdego fachowca zajmującego się instalacjami elektrycznymi i warto ją mieć na uwadze, szczególnie podczas inspekcji i konserwacji.

Pytanie 18

Które oznaczenie literowe ma przewód o przekroju przedstawionym na rysunku?

Ilustracja do pytania
A. YDYp
B. YDY
C. LgY
D. DY

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź YDY jest poprawna, ponieważ oznaczenie to dotyczy przewodów miedzianych, które są izolowane polwinitiem i posiadają ekran zewnętrzny. Przewody te znajdują zastosowanie w instalacjach elektrycznych, gdzie wymagane jest zabezpieczenie przed zakłóceniami elektromagnetycznymi oraz ochrona przed wpływem warunków atmosferycznych. W praktyce, przewody YDY są często stosowane w budynkach mieszkalnych i użyteczności publicznej do zasilania urządzeń elektrycznych, a także w obiektach przemysłowych. Dzięki zastosowaniu ekranu, przewody te charakteryzują się wysoką odpornością na zakłócenia, co jest kluczowe dla utrzymania stabilności i jakości sygnałów. Oznaczenie to jest zgodne z normami PN-EN 50525-2-51, które określają wymagania dla przewodów w instalacjach niskiego napięcia. Znajomość tych oznaczeń jest niezbędna dla każdej osoby zajmującej się projektowaniem lub wykonawstwem instalacji elektrycznych.

Pytanie 19

Który z wymienionych rodzajów wkładek topikowych powinien być użyty do zabezpieczenia przed zwarciem jednofazowego silnika indukcyjnego klatkowego?

A. gR
B. aM
C. aL
D. gG

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wkładki topikowe typu aM są zaprojektowane specjalnie do zabezpieczania silników elektrycznych, w tym jednofazowych silników indukcyjnych klatkowych, przed zwarciem. Ich konstrukcja pozwala na tolerowanie przeciążeń, które mogą wystąpić podczas rozruchu silnika, co czyni je idealnym wyborem w tego typu aplikacjach. Wkładki aM oferują wysoką zdolność przerywania prądu oraz szybkie działanie, co jest kluczowe w przypadku zwarć. Przykładowo, w zastosowaniach przemysłowych, gdzie silniki są narażone na różne obciążenia, wkładki aM zapewniają nie tylko ochronę, ale również zwiększają niezawodność całego systemu. Dobrą praktyką jest stosowanie wkładek aM w połączeniu z odpowiednimi zabezpieczeniami przeciążeniowymi, aby zapewnić kompleksową ochronę silników. Tego rodzaju wkładki są zgodne z normami IEC 60269 oraz EN 60269, co potwierdza ich wysoką jakość i skuteczność.

Pytanie 20

W jakim układzie sieciowym punkt neutralny transformatora zasilającego sieć nie jest metalicznie połączony z ziemią?

A. TT
B. TN-S
C. TN-C
D. IT

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Układ sieciowy IT jest charakterystyczny tym, że punkt neutralny transformatora nie jest połączony metalicznie z ziemią. W systemie tym, w przypadku awarii, nie występuje bezpośredni kontakt z ziemią, co minimalizuje ryzyko porażenia prądem. Zastosowanie układu IT ma istotne znaczenie w obiektach, gdzie wymagana jest wysoka niezawodność zasilania, takich jak szpitale czy obiekty przemysłowe. Dzięki temu, w przypadku uszkodzenia izolacji, prąd płynący do ziemi jest ograniczony, co pozwala na kontynuację pracy urządzeń. Praktyczne zastosowanie tego typu układu można zauważyć w sieciach niskiego napięcia, gdzie większy poziom bezpieczeństwa i ciągłość zasilania są priorytetem. Zgodnie z normami IEC 60364, system IT jest zalecany w środowiskach, gdzie awarie mogą prowadzić do poważnych konsekwencji, ponieważ zapewnia on możliwość pracy w warunkach awarii bez ryzyka porażenia."

Pytanie 21

Które urządzenie przedstawiono na ilustracji?

Ilustracja do pytania
A. Przekaźnik priorytetowy.
B. Regulator temperatury.
C. Automat zmierzchowy.
D. Przekaźnik czasowy.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Urządzenie przedstawione na ilustracji to przekaźnik czasowy, co można stwierdzić na podstawie charakterystycznych oznaczeń obecnych na jego obudowie, w tym symboli związanych z czasem oraz pokręteł służących do ustawiania opóźnień. Przekaźniki czasowe są kluczowymi elementami w systemach automatyki, umożliwiającymi kontrolowanie działania urządzeń w określonych odstępach czasu. Na przykład, w instalacjach oświetleniowych, przekaźniki czasowe mogą być ustawiane tak, aby włączać światło o zmierzchu i wyłączać je o świcie, co jest zgodne z zasadami efektywnego zarządzania energią. Dodatkowo, oznaczenia takie jak 'T1' i 'T2' na urządzeniu wskazują na różne funkcje czasowe, co potwierdza jego przeznaczenie. Zastosowanie przekaźników czasowych jest powszechne w różnych sektorach, od budynków mieszkalnych, gdzie automatyzują oświetlenie, po przemysł, gdzie kontrolują maszyny w zależności od czasu pracy. Stosowanie przekaźników czasowych w zgodzie z normami branżowymi, takimi jak IEC 60947, zapewnia bezpieczeństwo oraz efektywność operacyjną systemów elektrycznych i elektronicznych.

Pytanie 22

Podłączenie gniazda wtykowego pozbawionego styku ochronnego do urządzenia elektrycznego klasy I ochronności spowoduje

A. zagrożenie porażeniem prądem elektrycznym
B. przeciążenie systemu elektrycznego
C. zwarcie w systemie elektrycznym
D. uszkodzenie urządzenia elektrycznego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zgłoszona odpowiedź, dotycząca zagrożenia porażeniem prądem elektrycznym, jest absolutnie trafna. Gniazdo wtyczkowe bez styku ochronnego nie zapewnia odpowiedniego zabezpieczenia dla urządzeń elektrycznych, szczególnie tych klasy I, które wymagają ochrony przeciwporażeniowej poprzez uziemienie. Urządzenia klasy I korzystają z obudowy przewodzącej, która powinna być podłączona do uziemienia, aby w przypadku uszkodzenia izolacji prąd mógł być odprowadzony do ziemi, a nie przez użytkownika. W sytuacji, gdy takie urządzenie zostanie podłączone do gniazda bez styku ochronnego, istnieje wysokie ryzyko, że w przypadku awarii, prąd będzie mógł przepływać przez obudowę, co może prowadzić do porażenia prądem. Dlatego kluczowe jest przestrzeganie norm, takich jak PN-IEC 60364, które regulują zasady instalacji elektrycznych i określają, że gniazda powinny być projektowane z myślą o bezpieczeństwie użytkowników. W codziennym użytkowaniu, zapewnienie odpowiednich gniazd z uziemieniem jest podstawą bezpieczeństwa w każdym obiekcie.

Pytanie 23

Który z wymienionych elementów nie ma wpływu na konieczną częstotliwość przeprowadzania przeglądów okresowych instalacji elektrycznej?

A. Warunki atmosferyczne, którym podlega instalacja
B. Liczba odbiorników zasilanych z instalacji
C. Typ instalacji
D. Funkcja budynku

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Liczba odbiorników zasilanych z instalacji elektrycznej nie ma bezpośredniego wpływu na wymagania dotyczące częstotliwości sprawdzeń okresowych instalacji. Częstotliwość tych sprawdzeń jest przede wszystkim zależna od warunków zewnętrznych, w jakich funkcjonuje instalacja, przeznaczenia budynku oraz rodzaju instalacji. Na przykład, instalacje znajdujące się w warunkach trudnych, takich jak wysokie wilgotności czy narażenie na agresywne substancje chemiczne, wymagają częstszych przeglądów niż te w standardowych warunkach. Praktyka pokazuje, że zarówno w budynkach mieszkalnych, jak i przemysłowych, kluczowe jest, aby dostosować harmonogram kontrolowania stanu technicznego do specyfiki obiektów. Zgodnie z normami IEC 60364 oraz PN-EN 50110-1, kategorie ryzyka i warunki pracy powinny być brane pod uwagę przy ustalaniu częstotliwości przeglądów. Na przykład, w obiektach użyteczności publicznej i przemysłowych, gdzie występuje wyższe ryzyko uszkodzenia sprzętu elektrycznego, sprawdzenia powinny być przeprowadzane regularnie, nawet niezależnie od liczby odbiorników.

Pytanie 24

Oprawy oświetleniowe opatrzone symbolem przedstawionym na ilustracji

Ilustracja do pytania
A. muszą być zasilane wyłącznie przez transformator separacyjny.
B. mają wzmocnioną izolację.
C. muszą być zasilane wyłącznie z sieci PELV.
D. wymagają uziemienia obudowy.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Oprawy oświetleniowe oznaczone symbolem podwójnej izolacji, który widnieje na ilustracji, posiadają wzmocnioną izolację, co jest kluczowe dla ich bezpiecznego użytkowania. Tego typu oprawy są projektowane w taki sposób, aby zminimalizować ryzyko porażenia prądem elektrycznym, korzystając z dwóch niezależnych warstw izolacyjnych zamiast tradycyjnego uziemienia. W praktyce oznacza to, że mogą być stosowane w miejscach, gdzie uziemienie jest trudne do zrealizowania, na przykład w pomieszczeniach wilgotnych. Zastosowanie podwójnej izolacji jest zgodne z normą IEC 61140, która określa wymagania dotyczące ochrony osób przed porażeniem elektrycznym. Wzmocniona izolacja sprawia, że są one odpowiednie do użytku w domach, biurach oraz innych obiektach, gdzie bezpieczeństwo użytkowników jest priorytetem. Warto również zauważyć, że wiele nowoczesnych opraw LED posiada ten symbol, co podkreśla ich innowacyjność oraz zgodność z aktualnymi standardami bezpieczeństwa.

Pytanie 25

Jakie są minimalne wartości napięć znamionowych, jakie powinien posiadać przewód użyty do instalacji jednofazowej w sieci 230/400 V, prowadzonej w otworach prefabrykowanych budynków?

A. 450/750 V
B. 600/1000 V
C. 300/300 V
D. 300/500 V

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 450/750 V jest na pewno dobra. Przewody w instalacjach jednofazowych przy 230/400 V muszą mieć odpowiednie napięcie, żeby wszystko działało bezpiecznie. Jak chodzi o przewody w budynkach, zwłaszcza te, co prowadzą przez gotowe elementy budowlane, ważne, żeby ich izolacja była przystosowana do wyższych napięć. To zmniejsza szanse na jakieś uszkodzenia. Przewody 450/750 V są zgodne z normą PN-EN 60228, która określa wymagania dla takich przewodów. Użycie przewodów o wyższym napięciu daje większą ochronę przed przebiciami i innymi problemami elektrycznymi. W praktyce są one często wykorzystywane zarówno w budownictwie mieszkalnym, jak i przemysłowym, więc można powiedzieć, że to dość uniwersalne i bezpieczne rozwiązanie.

Pytanie 26

Warunkiem automatycznego odłączenia zasilania w systemach typu TN jest relacja (UO - napięcie nominalne w V; Ia - wartość prądu w A, zapewniająca natychmiastowe, automatyczne zadziałanie urządzenia ochronnego; Zs - impedancja pętli zwarciowej w Ω)

A. UO < Zs ∙ 2Ia
B. UO > Zs ∙ 2Ia
C. UO > Zs ∙ Ia
D. UO < Zs ∙ Ia

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź UO > Zs ∙ Ia jest poprawna, ponieważ zgodnie z zasadami ochrony urządzeń elektrycznych, napięcie znamionowe (UO) powinno być większe od iloczynu impedancji pętli zwarciowej (Zs) i wartości prądu, który zapewnia bezzwłoczne zadziałanie urządzenia ochronnego (Ia). To oznacza, że w przypadku zwarcia, napięcie musi być wystarczające, aby zainicjować odpowiednią reakcję urządzenia ochronnego, co zapewnia bezpieczeństwo użytkowników oraz integralność systemu. Zgodnie z normami takimi jak PN-EN 60947-2, które określają wymagania dotyczące zabezpieczeń elektrycznych, ta zasada jest kluczowa w projektowaniu i eksploatacji instalacji elektrycznych. Przykładem zastosowania tej zasady może być proces doboru wyłączników nadprądowych, które muszą odpowiednio reagować na zwarcia, aby zminimalizować ryzyko pożaru lub uszkodzeń urządzeń. Odpowiednie obliczenia impedancji pętli zwarciowej oraz prądu zadziałania są niezbędne w analizie ochrony instalacji, co podkreśla praktyczny aspekt tej wiedzy w codziennej pracy inżynierów elektryków.

Pytanie 27

Która z poniższych działań ocenia efektywność ochrony podstawowej przed porażeniem prądem elektrycznym?

A. Pomiar rezystancji izolacji przewodów
B. Weryfikacja stanu izolacji podłóg
C. Pomiar impedancji w pętli zwarciowej
D. Sprawdzanie wyłącznika różnicowoprądowego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomiar rezystancji izolacji przewodów jest kluczowym elementem oceny skuteczności ochrony przed porażeniem prądem elektrycznym. Działanie to polega na sprawdzeniu, czy izolacja przewodów jest wystarczająco skuteczna, aby zapobiec niezamierzonym przepływom prądu do ziemi lub na obudowy urządzeń. Wysoka rezystancja izolacji oznacza, że przewody są dobrze izolowane i minimalizują ryzyko porażenia. W praktyce, w budynkach mieszkalnych oraz przemysłowych, pomiar ten powinien być przeprowadzany regularnie, zwłaszcza w przypadku instalacji, które są narażone na uszkodzenia mechaniczne lub działanie czynników zewnętrznych. Zgodnie z normami PN-IEC 60364, przynajmniej raz na pięć lat należy przeprowadzać taki pomiar. Uzyskane wyniki powinny być porównywane z wartościami odniesienia, które zależą od rodzaju instalacji. Odpowiednie procedury zapewniają, że nie tylko urządzenia, ale i całe instalacje elektryczne są bezpieczne dla użytkowników, co jest fundamentalne dla ochrony życia i zdrowia człowieka. Dbanie o odpowiednią rezystancję izolacji to kluczowy krok w zarządzaniu ryzykiem związanym z porażeniem prądem elektrycznym.

Pytanie 28

Który z wymienionych przełączników instalacyjnych służy do kontrolowania dwóch sekcji źródeł światła w żyrandolu?

A. Świecznikowy
B. Schodowy
C. Dwubiegunowy
D. Krzyżowy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 'Świecznikowy' jest poprawna, ponieważ łącznik świecznikowy jest dedykowany do sterowania różnymi sekcjami źródeł światła w żyrandolach. Dzięki niemu można niezależnie włączać i wyłączać poszczególne źródła światła, co pozwala na regulację natężenia oświetlenia w pomieszczeniu oraz na tworzenie różnorodnych efektów świetlnych. Przykładem zastosowania łącznika świecznikowego może być sytuacja, gdy w jednym pomieszczeniu zainstalowany jest żyrandol z dwoma sekcjami, na przykład w salonie, gdzie można włączyć tylko jedną część żyrandola na wieczorny relaks, a drugą podczas spotkań rodzinnych. Stosowanie łączników świecznikowych jest zgodne z normami instalacji elektrycznych, co zapewnia bezpieczeństwo i komfort użytkowania. Dobre praktyki sugerują ich wykorzystanie w pomieszczeniach, gdzie różne źródła światła pełnią istotną rolę w aranżacji przestrzeni oraz atmosferze wnętrza.

Pytanie 29

Kontrolę przeciwpożarową wyłącznika prądu powinno się przeprowadzać w terminach określonych przez producenta, jednak nie rzadziej niż raz na

A. pięć lat
B. trzy lata
C. dwa lata
D. rok

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Regularne przeglądy przeciwpożarowe wyłączników prądu są kluczowe dla zapewnienia bezpieczeństwa instalacji elektrycznych. Zgodnie z przepisami i zaleceniami producentów, przegląd powinien być przeprowadzany nie rzadziej niż raz do roku, co pozwala na wykrycie i naprawę ewentualnych usterek, które mogą prowadzić do poważnych zagrożeń. Przykładowo, niewłaściwe działanie wyłącznika może skutkować brakiem ochrony przed przeciążeniem lub zwarciem, co w skrajnych przypadkach prowadzi do pożaru. Warto również pamiętać, że w obiektach o wysokim ryzyku pożarowym, takich jak zakłady przemysłowe czy magazyny, częstotliwość przeglądów może być jeszcze wyższa, aby zapewnić maksymalne bezpieczeństwo. Współczesne normy i standardy branżowe, takie jak norma PN-EN 61439, podkreślają znaczenie regularnych inspekcji i konserwacji urządzeń elektrycznych w kontekście ochrony przeciwpożarowej. Praktyka ta nie tylko chroni mienie, ale również życie ludzi, co czyni ją niezbędnym elementem zarządzania bezpieczeństwem w każdym przedsiębiorstwie.

Pytanie 30

Który z podanych silników elektrycznych ma najbardziej sztywną charakterystykę mechaniczną n = f(M) w trybie pracy stabilnej?

A. Szeregowy prądu stałego
B. Obcowzbudny prądu stałego
C. Asynchroniczny klatkowy
D. Synchroniczny

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Silnik synchroniczny charakteryzuje się najbardziej sztywną charakterystyką mechaniczną n = f(M) w zakresie pracy stabilnej, co oznacza, że jego prędkość obrotowa jest ściśle związana z częstotliwością zasilania. W praktyce oznacza to, że silniki synchroniczne są idealnym rozwiązaniem w aplikacjach, gdzie wymagana jest precyzyjna kontrola prędkości oraz stabilność obrotów, na przykład w systemach napędowych w dużych maszynach przemysłowych, turbinach wiatrowych, czy w energetyce odnawialnej. Dzięki swojej konstrukcji, silniki te mogą pracować w warunkach, gdzie inne typy silników, jak np. silniki asynchroniczne, mogą wykazywać większe wahania prędkości. W zastosowaniach, gdzie ważne są parametry jakości energii, silniki synchroniczne mogą też przyczynić się do poprawy współczynnika mocy, co jest zgodne z aktualnymi standardami efektywności energetycznej, jak IEC 60034. Ponadto, zastosowanie technologii takich jak falowniki do sterowania silnikami synchronicznymi umożliwia osiąganie jeszcze większej wydajności i elastyczności w działaniu.

Pytanie 31

W jakim z podanych układów sieciowych pojawia się przewód PEN?

A. IT
B. TN-S
C. TT
D. TN-C

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź TN-C jest poprawna, ponieważ w tym układzie sieciowym przewód PEN (przewód ochronny-neutralny) pełni podwójną funkcję, łącząc funkcję uziemiającą z funkcją neutralną. Oznacza to, że jeden przewód jest odpowiedzialny zarówno za ochronę przed porażeniem elektrycznym, jak i za przewodzenie prądu neutralnego. Układ TN-C jest często stosowany w nowoczesnych instalacjach elektrycznych w budynkach mieszkalnych oraz przemysłowych, gdzie zapewnia wysoki poziom bezpieczeństwa oraz efektywności energetycznej. Zgodnie z normami PN-IEC 60364, stosowanie przewodu PEN w układzie TN-C umożliwia uproszczenie instalacji poprzez redukcję liczby przewodów oraz zmniejszenie ryzyka błędów podłączeniowych. Przykładem zastosowania układu TN-C mogą być instalacje w dużych budynkach biurowych, gdzie przewód PEN efektywnie łączy punkt neutralny transformatora z systemem uziemiającym budynku, co zwiększa bezpieczeństwo i stabilność zasilania elektrycznego.

Pytanie 32

Jaką klasę mają oprawy stosowane do oświetlenia miejscowego?

A. II
B. III
C. IV
D. I

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź I jest poprawna, ponieważ oświetlenie miejscowe, które ma na celu dostarczenie światła do określonego obszaru, często stosuje oprawy klasy I. Oprawy te są zaprojektowane w taki sposób, aby zapewniały odpowiednią izolację i ochronę przed porażeniem prądem, co jest kluczowe w kontekście ich użycia w miejscach pracy i w przestrzeni publicznej. Klasa I oznacza, że urządzenia te muszą być uziemione, co znacząco zwiększa bezpieczeństwo ich użytkowania. Przykładowo, w biurach czy warsztatach, gdzie oświetlenie miejscowe jest niezbędne do precyzyjnego wykonania zadań, oprawy klasy I zapewniają, że pracownicy są chronieni przed ryzykiem porażenia prądem. W praktyce, oświetlenie miejscowe może być realizowane poprzez lampy biurkowe, które często mają dodatkowe funkcje regulacji intensywności światła. Stosowanie opraw klasy I w takich sytuacjach jest zgodne z normami bezpieczeństwa, co podkreśla znaczenie tego typu oświetlenia w przestrzeniach użytkowych.

Pytanie 33

Jakiego rodzaju przewód powinno się użyć do instalacji elektrycznej umieszczonej w drewnianych ścianach?

A. OMYp
B. YDYt
C. HDGs
D. SMYp

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór przewodów typu HDGs do instalacji elektrycznej w drewnianych ścianach jest zasadny z kilku powodów. Przewody te charakteryzują się wysoką odpornością na uszkodzenia mechaniczne oraz działanie wysokich temperatur, co jest szczególnie istotne w kontekście drewnianych konstrukcji, które mogą być bardziej narażone na ryzyko pożaru. Przewody HDGs są wykonane z miedzi, co zapewnia doskonałą przewodność elektryczną oraz odporność na korozję. Instalacje elektryczne w drewnie powinny być przeprowadzane zgodnie z normami, takimi jak PN-IEC 60083, które uwzględniają wymagania dotyczące bezpieczeństwa i ochrony przed porażeniem prądem. W praktyce, użycie przewodów HDGs w takich instalacjach zapewnia zarówno bezpieczeństwo, jak i trwałość. Przykłady zastosowania to wszelkiego rodzaju oświetlenie i gniazda elektryczne zamontowane w drewnianych ścianach domów jednorodzinnych oraz budynków użyteczności publicznej, gdzie odpowiednie zabezpieczenia są kluczowe dla zapewnienia długotrwałej eksploatacji.

Pytanie 34

Przedstawiony na rysunku przełącznik funkcji przyrządu do pomiaru parametrów instalacji elektrycznych ustawiono na pomiar

Ilustracja do pytania
A. impedancji pętli zwarcia.
B. rezystancji izolacji.
C. ciągłości przewodów.
D. rezystancji uziemienia.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Prawidłowa odpowiedź to rezystancja uziemienia, co zostało wskazane przez ustawienie przełącznika na pozycję "RE". Pomiar rezystancji uziemienia jest kluczowy dla zapewnienia bezpieczeństwa instalacji elektrycznych. Uziemienie chroni użytkowników przed skutkami przepięć oraz zapewnia stabilność układu elektrycznego. W praktyce, pomiar rezystancji uziemienia pozwala na ocenę skuteczności systemu uziemiającego, co jest szczególnie istotne w obiektach przemysłowych, gdzie bezpieczeństwo jest kluczowe. Niskie wartości rezystancji uziemienia, zalecane w normach takich jak PN-IEC 60364-5-54, powinny wynosić poniżej 10 ohmów. Regularne pomiary są niezbędne do weryfikacji, czy system uziemiający spełnia te normy, a ich stosowanie w praktyce zapobiega zagrożeniom związanym z przepięciami i może ochronić przed pożarami czy porażeniem prądem.

Pytanie 35

Pomiar rezystancji uzwojenia silnika elektrycznego przy użyciu omomierza wykazał wartość ∞ Ω. Co oznacza ten wynik dla uzwojenia silnika?

A. występuje zwarcie między zwojami.
B. jest uszkodzone.
C. działa prawidłowo.
D. izolacja jest uszkodzona.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Rezystancja uzwojenia silnika elektrycznego, której pomiar wskazuje wartość nieskończoną (∞ Ω), jednoznacznie sugeruje, że obwód uzwojenia jest przerwany. Przerwanie uzwojenia może wynikać z różnych przyczyn, takich jak zużycie mechaniczne, przegrzanie czy uszkodzenie mechaniczne. Przykładowo, w silnikach asynchronicznych, przerwanie uzwojenia może prowadzić do całkowitej utraty funkcji silnika. W praktyce, jeśli podczas pomiaru omomierzem uzyskamy wartość nieskończoności, konieczne jest dalsze diagnozowanie silnika, w tym wizualna inspekcja uzwojenia oraz sprawdzenie innych elementów, takich jak łożyska czy wirnik. W kontekście standardów branżowych, zgodnie z normą IEC 60034-1, regularne sprawdzanie stanu uzwojeń silników elektrycznych jest kluczowe dla zapewnienia niezawodności i wydajności operacyjnej urządzeń. Dlatego, aby uniknąć kosztownych awarii, zaleca się przeprowadzanie systematycznych testów rezystancji i monitorowanie stanu technicznego silników w cyklu regularnych przeglądów.

Pytanie 36

Jakiego zestawu narzędzi potrzebujesz do złożenia aparatury oraz wykonania połączeń elektrycznych w rozdzielnicy w mieszkaniu?

A. Szczypce monterskie uniwersalne, nóż monterski, przymiar taśmowy, przyrząd do ściągania izolacji, wkrętarka
B. Szczypce do zaciskania końcówek, przyrząd do ściągania powłoki, nóż monterski, zestaw wkrętaków
C. Szczypce monterskie uniwersalne, młotek, przyrząd do ściągania powłoki, przyrząd do ściągania izolacji
D. Szczypce do cięcia przewodów, przyrząd do ściągania powłoki, przyrząd do ściągania izolacji, zestaw wkrętaków

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zestaw narzędzi, który wymieniłeś, jest naprawdę ważny przy montażu aparatury elektrycznej. Szczypce do cięcia przewodów są super przydatne, bo dzięki nim możesz łatwo obciąć przewody na odpowiednią długość – to ważne, żeby wszystko wyglądało schludnie. Przyrząd do ściągania powłoki to też niezła sprawa, bo pozwala na ściągnięcie zewnętrznej izolacji, co jest niezbędne, żeby dostać się do przewodów. No i przyrząd do ściągania izolacji - bez niego trudno by było zrobić dobre i trwałe połączenia. Co do zestawu wkrętaków, to jasne, że musisz mieć zarówno płaskie, jak i krzyżowe, żeby wszystko dobrze zamocować. Pamiętaj, że poprawne korzystanie z tych narzędzi to także kwestia bezpieczeństwa, więc dobrze jest się trzymać zasad BHP. To wszystko naprawdę wpływa na bezpieczeństwo i trwałość całej instalacji.

Pytanie 37

Które urządzenie stosowane w instalacjach elektrycznych przedstawiono na rysunku?

Ilustracja do pytania
A. Rozłącznik bezpiecznikowy.
B. Wyłącznik nadmiarowoprądowy.
C. Odłącznik bezpiecznikowy.
D. Wyłącznik przepięciowy.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Rozłącznik bezpiecznikowy to kluczowe urządzenie w instalacjach elektrycznych, które pełni rolę zabezpieczającą i kontrolującą. Na przedstawionym rysunku widać charakterystyczne elementy, takie jak miejsca na wkładki bezpiecznikowe, które pozwalają na szybką wymianę zabezpieczeń w przypadku ich przepalenia. Rozłącznik bezpiecznikowy nie tylko chroni obwody elektryczne przed skutkami przeciążenia, ale także umożliwia bezpieczne odłączenie obwodu od źródła zasilania, co jest istotne w przypadku prac konserwacyjnych i naprawczych. W praktyce, zastosowanie rozłącznika bezpiecznikowego jest niezwykle istotne w budynkach mieszkalnych, przemysłowych oraz w infrastrukturze krytycznej, gdzie ciągłość zasilania i bezpieczeństwo użytkowników są priorytetem. Zgodnie z normami PN-EN 60947-3, rozłączniki te muszą spełniać określone wymagania dotyczące odporności na zwarcia, co zapewnia ich niezawodność i efektywność w ochronie instalacji.

Pytanie 38

Jaką proporcję strumienia świetlnego kieruje się w dół w oprawie oświetleniowej klasy V?

A. 0 ÷ 10%
B. 60 ÷ 90%
C. 90 ÷ 100%
D. 40 ÷ 60%

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 0 ÷ 10% jest prawidłowa, ponieważ oprawy oświetleniowe V klasy charakteryzują się bardzo niskim poziomem strumienia świetlnego, który jest kierowany w dół. Klasa ta jest przeznaczona do aplikacji, gdzie istotne jest, aby minimalizować oświetlenie w kierunku podłogi, co ma zastosowanie w wielu miejscach, takich jak korytarze, schody czy przestrzenie publiczne, gdzie wysoka intensywność światła w dół może być niepożądana. Przykładem zastosowania są oprawy LED w przestrzeniach biurowych, które mają za zadanie tworzyć strefy z odpowiednim rozproszeniem światła, a nie silnym, bezpośrednim oświetleniem. W praktyce zastosowanie tej klasy opraw pozwala na oszczędność energii oraz zmniejszenie olśnienia, co jest zgodne z normami energetycznymi i ekologicznymi, takimi jak dyrektywy UE dotyczące efektywności energetycznej. Wiedza na temat rozkładu strumienia świetlnego w zależności od klasy oprawy jest kluczowa dla projektantów oświetlenia, którzy mają na celu optymalizację warunków świetlnych w różnych typach przestrzeni.

Pytanie 39

W jakiej z poniższych sytuacji poślizg silnika indukcyjnego będzie najmniejszy?

A. Silnik będzie zasilany prądem w kierunku przeciwnym
B. Silnik działa w nominalnych warunkach zasilania oraz obciążenia
C. Podczas zasilania silnika jego wirnik będzie stał
D. Silnik będzie pracować na biegu jałowym

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Silnik pozostający na biegu jałowym charakteryzuje się minimalnym poślizgiem, ponieważ nie jest obciążony zewnętrznie, co sprawia, że jego wirnik obraca się blisko prędkości synchronicznej. W praktyce oznacza to, że nie ma znacznego oporu mechanicznego, który mógłby wpłynąć na różnicę między prędkością wirnika a polem magnetycznym statora. W takich warunkach obroty wirnika są prawie zgodne z obrotami pola magnetycznego. W zastosowaniach przemysłowych, takich jak wentylatory czy pompy, silniki indukcyjne często pracują w trybie jałowym, co minimalizuje straty energii. Dobrą praktyką jest monitorowanie poślizgu silników w celu optymalizacji ich wydajności i zużycia energii. Zmniejszenie poślizgu wpływa na obniżenie kosztów eksploatacji, co jest kluczowe w kontekście zarządzania energią w zakładach produkcyjnych.

Pytanie 40

Który element stosowany w instalacjach sterowania oświetleniem przedstawiono na ilustracji?

Ilustracja do pytania
A. Czujnik ruchu.
B. Ściemniacz oświetlenia.
C. Automat zmierzchowy.
D. Przekaźnik bistabilny.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Automat zmierzchowy to urządzenie, które automatycznie zarządza oświetleniem, dostosowując je do zmieniających się warunków świetlnych w otoczeniu. Na ilustracji przedstawiono model AZH-S, który jest typowym przykładem automatu zmierzchowego. Działa on na zasadzie pomiaru natężenia światła, co pozwala na włączenie oświetlenia po zachodzie słońca, a wyłączenie go w ciągu dnia. To rozwiązanie jest szczególnie przydatne w miejscach, gdzie oświetlenie jest potrzebne tylko w nocy, takich jak ogrody, podjazdy czy parkingi. Dzięki zastosowaniu automatu zmierzchowego można znacząco zmniejszyć zużycie energii, co jest zgodne z zasadami zrównoważonego rozwoju i oszczędności energii. W praktyce, urządzenia te są łatwe do zainstalowania i oferują wiele możliwości konfiguracji, co pozwala na ich dostosowanie do indywidualnych potrzeb użytkowników. Warto również zaznaczyć, że automaty zmierzchowe są zgodne z normami EN 60598-2-1, które dotyczą bezpieczeństwa i wydajności oświetlenia.