Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik urządzeń i systemów energetyki odnawialnej
  • Kwalifikacja: ELE.10 - Montaż i uruchamianie urządzeń i systemów energetyki odnawialnej
  • Data rozpoczęcia: 24 kwietnia 2025 11:17
  • Data zakończenia: 24 kwietnia 2025 11:18

Egzamin niezdany

Wynik: 1/40 punktów (2,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Do kotła, który spala zrębki, jednorazowo można włożyć 0,5 m3 paliwa. W ciągu jednej doby kocioł powinien być załadowany 3 razy. Jaki będzie koszt paliwa na tydzień, jeśli średnia cena jednostkowa wynosi 50,00 zł za 1 m3?

A. 525,00 zł
B. 150,00 zł
C. 50,00 zł
D. 25,00 zł
Aby obliczyć tygodniowy koszt paliwa dla kotła spalającego zrębki, należy zrozumieć, jak oblicza się jego zużycie w dłuższym okresie. Kocioł, który można załadować 0,5 m³ paliwa i wymaga trzykrotnego załadunku dziennie, zużywa codziennie 1,5 m³. Przemnażając tę wartość przez liczbę dni w tygodniu, otrzymujemy tygodniowe zużycie wynoszące 10,5 m³. Znając cenę jednostkową paliwa, która wynosi 50,00 zł za 1 m³, możemy obliczyć całkowity koszt tygodniowy, mnożąc 10,5 m³ przez 50,00 zł. Całkowity koszt wynosi zatem 525,00 zł. Te obliczenia są istotne w praktyce, gdyż pozwalają na efektywne zarządzanie kosztami ogrzewania, a także umożliwiają planowanie budżetu na paliwo. Przykładowo, w przypadku zakupu paliwa na dłuższy okres, wiedza o jego kosztach pozwala na negocjowanie lepszych cen z dostawcami, co wpływa na efektywność ekonomiczną przedsiębiorstw. W kontekście norm i dobrych praktyk, takie obliczenia są kluczowe w przemyśle energetycznym i budowlanym, gdzie kontrola kosztów paliwa jest niezbędna do utrzymania płynności finansowej.

Pytanie 2

Do pełnego systemu fotowoltaicznego, który produkuje energię elektryczną z wykorzystaniem energii słonecznej, zaliczają się:

A. panele fotowoltaiczne, inwerter sieciowy, konstrukcja montażowa na dach, konektor
B. powietrzna pompa, elektroniczny mikroprocesorowy system sterujący, elektroniczna pompa wody, zestaw montażowy zawierający kable, rury, zawiesia
C. kolektor płaski, zasobnik dwuwężownicowy, grupa hydrauliczna, naczynie przeponowe
D. panele fotowoltaiczne, falownik, konstrukcja montażowa na dach, konektor, przewód solarny, naczynie przeponowe

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź zawiera kluczowe komponenty systemu fotowoltaicznego, który jest niezbędny do efektywnej konwersji promieniowania słonecznego na energię elektryczną. Panele fotowoltaiczne są sercem systemu, ponieważ to w nich zachodzi proces fotowoltaiczny, w wyniku którego energia słoneczna jest przekształcana w prąd stały. Inwerter sieciowy, z kolei, jest odpowiedzialny za konwersję prądu stałego na prąd zmienny, który jest kompatybilny z siecią energetyczną. Konstrukcja montażowa na dach zapewnia stabilność i odpowiednie ustawienie paneli, co maksymalizuje ich wydajność. Konektory służą do bezpiecznego połączenia wszystkich elementów systemu, zapewniając jednocześnie odpowiednią ochronę przed warunkami atmosferycznymi. Ważne jest, aby każdy z tych elementów był zgodny z obowiązującymi standardami branżowymi, co wpływa na trwałość i efektywność całego systemu. Na przykład stosowanie wysokiej jakości materiałów do montażu i komponentów zwiększa niezawodność i żywotność instalacji. Dobrze zaprojektowany system fotowoltaiczny nie tylko przyczynia się do oszczędności energii, ale również zmniejsza emisję CO2, wspierając działania na rzecz zrównoważonego rozwoju.

Pytanie 3

Jaką wartość ma współczynnik efektywności energetycznej COP pompy ciepła, która w listopadzie dostarczyła do systemu grzewczego budynku 2 592 kWh ciepła, pobierając przy tym 648 kWh energii elektrycznej?

A. 3,0
B. 2,0
C. 5,0
D. 4,0

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Współczynnik efektywności energetycznej (COP) pompy ciepła wynoszący 4,0 oznacza, że na każdą jednostkę energii elektrycznej pobranej (648 kWh) pompa oddaje cztery jednostki energii cieplnej (2592 kWh). Taki wynik wskazuje na wysoką efektywność systemu grzewczego. W praktyce oznacza to, że system pompy ciepła jest w stanie zaspokoić znaczną część zapotrzebowania na ciepło budynku, co przekłada się na oszczędności w kosztach energii. Stosowanie pomp ciepła zgodnie z zasadami efektywności energetycznej jest zalecane przez wiele standardów budowlanych i ekologicznych, takich jak normy ISO 50001 dotyczące zarządzania energią. Dzięki wysokiemu współczynnikowi COP, pompy ciepła stają się coraz bardziej popularne w kontekście zrównoważonego rozwoju oraz działań proekologicznych, co przyczynia się do zmniejszenia emisji CO2 oraz większej niezależności energetycznej budynków.

Pytanie 4

W celu uniknięcia niewłaściwego działania systemu solarnego do glikolu wprowadza się inhibitory. Ich zadaniem jest

A. podniesienie ciśnienia w układzie
B. obniżenie ciśnienia w układzie
C. ochrona układu przed wyciekami
D. spowolnienie procesu korozji komponentów instalacji

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Inhibitory dodawane do płynów glikolu w instalacjach solarnych pełnią kluczową rolę w ochronie elementów systemu przed korozją. Korozja w instalacjach solarnych może powodować poważne uszkodzenia, co prowadzi do obniżenia wydajności oraz skrócenia żywotności systemu. Inhibitory działają poprzez tworzenie ochronnej warstwy na powierzchniach metalowych, co ogranicza kontakt z agresywnymi czynnikami chemicznymi, takimi jak tlen czy kwasy. W praktyce stosowanie inhibitorów jest zgodne z najlepszymi praktykami branżowymi, które zalecają regularne monitorowanie jakości płynów oraz ich odpowiednią konserwację. Dodatkowo, w instalacjach, gdzie temperatura może być zmienna, inhibitory pomagają w stabilizacji właściwości chemicznych glikolu, co jest istotne dla zachowania optymalnej efektywności energetycznej systemu. Właściwy dobór inhibitorów i ich regularne stosowanie to kluczowe aspekty zapewnienia niezawodności i długowieczności instalacji solarnych.

Pytanie 5

Przetwornica napięcia to urządzenie stosowane w systemach fotowoltaicznych do

A. ochrony akumulatora przed przeładowaniem
B. zapewnienia stabilnego napięcia w akumulatorze
C. przemiany napięcia stałego w napięcie zmienne
D. przemiany napięcia zmiennego w napięcie stałe

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przetwornica napięcia odgrywa kluczową rolę w instalacjach fotowoltaicznych, gdzie napięcie stałe (DC) generowane przez panele słoneczne musi być przekształcone na napięcie zmienne (AC), aby mogło być efektywnie wykorzystywane w domowych systemach elektrycznych i integrowane z siecią energetyczną. Ta konwersja jest niezbędna, ponieważ większość urządzeń domowych, takich jak lodówki, telewizory czy oświetlenie, działa na napięciu zmiennym. Przykłady zastosowania przetwornic obejmują systemy off-grid, gdzie energia słoneczna jest przechowywana w akumulatorach i wykorzystywana w sposób ciągły. Zgodnie z najlepszymi praktykami, przetwornice powinny być odpowiednio dobrane do mocy generowanej przez panele oraz wymaganej mocy obciążenia, aby zapewnić efektywność energetyczną i długowieczność systemu. Standardy międzynarodowe, takie jak IEC 62109, regulują bezpieczeństwo i wydajność przetwornic, co jest istotne dla zapewnienia niezawodności systemów OZE.

Pytanie 6

Ciśnienie ustawione na zaworze zabezpieczającym w systemie grzewczym z zastosowaniem pompy ciepła powinno wynosić

A. 6 barów
B. 2 bary
C. 9 barów
D. 1 bar

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Nastawa zaworu bezpieczeństwa w instalacji grzewczej z pompą ciepła powinna wynosić 6 barów, co odpowiada standardom dla tego typu systemów. Pompy ciepła są projektowane do pracy w określonym zakresie ciśnienia, a 6 barów stanowi odpowiednią wartość zabezpieczającą przed nadmiernym wzrostem ciśnienia, co może prowadzić do uszkodzenia instalacji. W praktyce, zawór bezpieczeństwa powinien otworzyć się, gdy ciśnienie wewnętrzne przekroczy ustaloną wartość, a 6 barów jest powszechnie przyjętą normą dla większości systemów grzewczych. Przykład zastosowania to instalacje ogrzewania podłogowego, gdzie nadmiar ciśnienia może zniszczyć rury. Wybór odpowiedniej nastawy zaworu bezpieczeństwa jest kluczowy dla zapewnienia bezpieczeństwa i niezawodności systemu. Zgodnie z normami PN-EN 12828 oraz PN-EN 12831, należy regularnie kontrolować i konserwować te urządzenia, aby zapewnić ich prawidłowe działanie, co przekłada się na efektywność energetyczną oraz długowieczność instalacji grzewczej.

Pytanie 7

Dwuosobowa ekipa monterów wykonała instalację solarną w czasie 8 godzin. Stawka za jedną godzinę pracy wynosi 25 zł. Do kosztów robocizny doliczono wydatki pośrednie równe 50% kosztów robocizny. Dodatkowo, obliczono zysk w wysokości 10% od całkowitej sumy robocizny oraz wydatków pośrednich. Jaka jest wartość prac?

A. 550 zł
B. 560 zł
C. 600 zł
D. 660 zł

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby obliczyć wartość robót związanych z instalacją solarną, należy najpierw określić całkowity koszt robocizny. Dwóch monterów pracowało przez 8 godzin, co daje łącznie 16 roboczogodzin (2 monterów x 8 godzin). Przy stawce 25 zł za roboczogodzinę, całkowity koszt robocizny wynosi 16 roboczogodzin x 25 zł = 400 zł. Następnie należy uwzględnić koszty pośrednie, które wynoszą 50% robocizny, co daje dodatkowe 200 zł (50% z 400 zł). Łączne koszty robocizny oraz koszty pośrednie wynoszą więc 400 zł + 200 zł = 600 zł. Na końcu doliczamy zysk, który wynosi 10% od tej sumy. 10% z 600 zł to 60 zł, co daje całkowitą wartość robót równą 600 zł + 60 zł = 660 zł. Takie podejście do kalkulacji kosztów jest zgodne z zasadami rachunkowości budowlanej oraz dobrymi praktykami w zakresie wyceny robót budowlanych, gdzie uwzględnia się wszystkie aspekty kosztowe, aby osiągnąć realistyczną i dokładną wycenę projektu.

Pytanie 8

Warunkiem, który nie wpływa na ważność gwarancji na system solarny, jest

A. dokumentacja fotograficzna instalacji
B. złożony protokół uruchomienia
C. właściwie uzupełniona karta gwarancyjna
D. rachunek za zrealizowaną instalację

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Dokumentacja fotograficzna instalacji nie jest warunkiem obowiązywania gwarancji na instalację solarną, ponieważ nie stanowi formalnego dowodu wykonania usługi ani nie potwierdza spełnienia wymogów technicznych. W przypadku gwarancji kluczowe jest posiadanie prawidłowo wypełnionej karty gwarancyjnej, która zawiera informacje o wykonawcy oraz szczegóły dotyczące samej instalacji. Ponadto, wypełniony protokół uruchomienia dokumentuje, że system został poprawnie uruchomiony i działa zgodnie z zaleceniami producenta. Faktura za wykonaną instalację jest niezbędnym dowodem zakupu, który potwierdza wykonanie usługi i stanowi podstawę do roszczeń gwarancyjnych. Przykładowo, brak odpowiedniej dokumentacji może prowadzić do odrzucenia reklamacji, dlatego tak ważne jest, aby inwestorzy byli świadomi wymogów dotyczących gwarancji i dokładnie przestrzegali standardów branżowych.

Pytanie 9

Wyznacz wartość promieniowania bezpośredniego, mając na uwadze, że promieniowanie rozproszone wynosi 300 W/m², a promieniowanie całkowite 1000 W/m²?

A. 700 W/m²
B. 1000 W/m²
C. 1300 W/m²
D. 800 W/m²

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 700 W/m² jest poprawna, ponieważ obliczamy wartość promieniowania bezpośredniego, odejmując promieniowanie rozproszone od promieniowania całkowitego. W tym przypadku, promieniowanie całkowite wynosi 1000 W/m², a promieniowanie rozproszone to 300 W/m². Proces ten jest kluczowy w dziedzinie inżynierii energetycznej oraz architektury, gdzie właściwe zrozumienie składników promieniowania słonecznego jest istotne dla efektywności energetycznej budynków. W praktyce, znajomość tych wartości pozwala na optymalizację projektów systemów fotowoltaicznych oraz oceny wpływu zacienienia na wydajność instalacji. Zgodnie z dobrą praktyką branżową, przy planowaniu systemów odnawialnych źródeł energii, inżynierowie często korzystają z narzędzi symulacyjnych, które uwzględniają zarówno promieniowanie bezpośrednie, jak i rozproszone. Pozwala to na dokładniejsze prognozowanie wydajności systemów i efektywności wykorzystania energii słonecznej w określonych lokalizacjach.

Pytanie 10

Dla budynku jednorodzinnego zalecana instalacja powinna mieć około 3 kW zainstalowanej mocy (12 paneli fotowoltaicznych o mocy 250 W). Materiały niezbędne do realizacji instalacji PV sieciowej o mocy 1 kW kosztują 8 000 zł. Montaż systemu na dachu wymaga pracy dwóch pracowników przez 12 godzin każdy według stawki 20 zł za 1 roboczogodzinę. Firma wykonawcza dolicza marżę w wysokości 25% kosztów materiałów. Jaki jest całkowity koszt montażu instalacji PV sieciowej?

A. 30 480 zł
B. 8 240 zł
C. 10 240 zł
D. 30 300 zł

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
No więc, dobra robota z wyborem odpowiedzi! 30 480 zł to całkiem konkretna kwota i dobrze to obliczyłeś. Jak to się ma do kosztów montażu instalacji fotowoltaicznej, to mamy tu sporo szczegółów. Koszt materiałów na 1 kW to 8 000 zł, to takie podstawowe dane. Pamiętaj też, że trzeba doliczyć robociznę - dwóch pracowników, każdy pracuje 12 godzin za 20 zł na godzinę, co daję nam 480 zł. Nie zapomnij, że firma też dorzuca swoją marżę, a tu jest 25% od materiałów, co daje dodatkowe 2 000 zł. Jak to wszystko zsumujesz, to wychodzi właśnie te 30 480 zł. To świetny przykład na to, jak ważna jest wiedza o kosztach przy planowaniu takich projektów. Zrozumienie tego wszystkiego pomaga w lepszej organizacji budżetu. No, a to, że to wszystko uwzględniłeś, to naprawdę dobrze o Tobie świadczy.

Pytanie 11

Kogenerator w trakcie spalania np. biogazu wytwarza energię

A. jedynie mechaniczną
B. wyłącznie energię cieplną
C. elektryczną i cieplną
D. tylko energię elektryczną

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kogenerator, znany również jako jednostka skojarzonej produkcji energii (CHP), jest urządzeniem, które jednocześnie produkuje energię elektryczną oraz cieplną podczas procesu spalania paliw, takich jak biogaz. Biogaz, będący odnawialnym źródłem energii, jest wykorzystywany w kogeneratorach ze względu na swoją niską emisję szkodliwych substancji oraz możliwość efektywnego przetwarzania odpadów organicznych. Kogeneratory działają na zasadzie wykorzystania ciepła odpadowego, które normalnie byłoby tracone w tradycyjnych systemach produkcji energii. Dzięki temu, uzyskują one wyższą efektywność energetyczną, często przekraczającą 80%. Przykładem zastosowania kogeneratorów jest wykorzystanie w zakładach przemysłowych, które potrzebują zarówno prądu, jak i ciepła do procesów produkcyjnych. Tego rodzaju systemy przyczyniają się do obniżenia kosztów energetycznych oraz zmniejszenia śladu węglowego, co jest zgodne z trendami zrównoważonego rozwoju i najlepszymi praktykami w zarządzaniu energią.

Pytanie 12

Oznaczenie PE-HD na rurze w systemie instalacyjnym wskazuje, że rurę wyprodukowano z

A. polietylenu o wysokiej gęstości
B. homopolimeru polietylenu
C. polietylenu o średniej gęstości
D. polietylenu o niskiej gęstości

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Oznaczenie PE-HD odnosi się do polietylenu wysokiej gęstości, materiału powszechnie stosowanego w różnych dziedzinach przemysłu, w tym w budownictwie i infrastrukturze. Polietylen wysokiej gęstości charakteryzuje się dużą wytrzymałością, odpornością na działanie chemikaliów oraz niską absorpcją wody, co czyni go idealnym materiałem do produkcji rur do transportu wody, gazu oraz w instalacjach kanalizacyjnych. Dodatkowo, PE-HD jest materiałem ekologicznym, ponieważ można go poddawać recyklingowi, co jest zgodne z globalnymi trendami w kierunku zrównoważonego rozwoju. Rury wykonane z polietylenu wysokiej gęstości są często stosowane w systemach nawadniania, wodociągach oraz w systemach odprowadzania ścieków. Zgodnie z normami, takimi jak PN-EN 12201, rury PE-HD muszą spełniać określone wymagania dotyczące jakości, co zapewnia ich trwałość i niezawodność w użytkowaniu.

Pytanie 13

Na aksonometrycznym widoku instalacji ogrzewczej w skali 1:100 miedziany pion ma długość 20 cm. Jaką ilość przewodów miedzianych trzeba nabyć do montażu tego pionu?

A. 2 m
B. 200 m
C. 0,2 m
D. 20 m

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 20 m jest poprawna, ponieważ w rzucie aksonometrycznym przy skali 1:100 każdy 1 cm na rysunku odpowiada 100 cm w rzeczywistości. Zatem, jeśli długość miedzianego pionu na rzucie wynosi 20 cm, to w rzeczywistości jego długość wynosi 20 cm x 100 = 2000 cm, co przekłada się na 20 m. W praktyce, przy montażu instalacji grzewczej, ważne jest, aby dokładnie obliczyć długości potrzebnych przewodów, aby uniknąć niedoborów materiałów i zapewnić sprawny proces instalacji. Dobre praktyki w branży zalecają także uwzględnienie dodatkowych długości na zakręty, połączenia oraz ewentualne błędy pomiarowe, co jest istotne w kontekście precyzyjnych obliczeń. Zrozumienie skali i przeliczeń jest kluczowe dla efektywnego planowania oraz realizacji instalacji, co może wpłynąć na jej efektywność energetyczną oraz koszty eksploatacji.

Pytanie 14

Jakie rury powinny być chronione przed wpływem promieniowania słonecznego?

A. Ze stali ocynkowanej
B. Z żeliwa
C. Z cienkościennej stali
D. Z miedzi

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "Żeliwne" jest prawidłowa, ponieważ rury żeliwne są szczególnie wrażliwe na działanie promieni słonecznych, co może prowadzić do ich degradacji w wyniku ekspozycji na wysokie temperatury oraz promieniowanie UV. W przypadku rur żeliwnych, ich struktura może ulegać osłabieniu, co zwiększa ryzyko pęknięć i uszkodzeń. W praktyce, aby chronić rury żeliwne, zaleca się stosowanie osłon przeciwsłonecznych lub malowanie ich specjalnymi farbami odpornymi na UV. Standardy branżowe, takie jak ISO 1461 dotyczące ocynku, podkreślają znaczenie ochrony materiałów przed szkodliwymi warunkami atmosferycznymi. W zastosowaniach przemysłowych i budowlanych, zabezpieczenie rur żeliwnych przed słońcem jest kluczowe dla zapewnienia ich długowieczności oraz efektywności systemów, w których są zainstalowane. Regularne kontrole stanu rur oraz ich konserwacja są również istotnymi elementami, które wpływają na ich trwałość.

Pytanie 15

Aby osiągnąć maksymalną wydajność przez cały rok w instalacji solarnej do podgrzewania wody użytkowej w Polsce, konieczne jest ustawienie kolektorów w odpowiednim kierunku pod kątem w stosunku do poziomu:

A. 70°
B. 20°
C. 45°
D. 90°

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Ustawienie kolektorów słonecznych pod kątem 45° jest kluczowe dla maksymalnej efektywności systemu podgrzewania wody w Polsce. Taki kąt nachylenia jest optymalny ze względu na średnią szerokość geograficzną kraju, która wynosi 52°N. Zgodnie z praktykami branżowymi, kąt ten powinien być o 10-15 stopni mniejszy od szerokości geograficznej, co sprawia, że 45° to idealny wybór. Przy takim nachyleniu, kolektory mogą efektywnie zbierać promieniowanie słoneczne przez cały rok, co jest szczególnie istotne w kontekście sezonowych zmian nasłonecznienia. Przykładowo, zimą, gdy słońce znajduje się nisko nad horyzontem, kąt 45° pozwala na maksymalizację absorpcji promieni słonecznych, co przekłada się na lepsze wyniki w konwersji energii słonecznej na ciepło w systemie grzewczym. Warto także pamiętać, że powiązane z tego standardy, takie jak PN-EN 12975, określają wymagania dotyczące wydajności kolektorów słonecznych, które wzmacniają praktykę ustawienia ich pod odpowiednim kątem. Takie podejście nie tylko zwiększa efektywność energetyczną, ale również przyczynia się do obniżenia kosztów eksploatacyjnych systemu.

Pytanie 16

W trakcie dorocznego przeglądu systemu grzewczego wykorzystującego energię słoneczną, na początku należy

A. zrealizować dezynfekcję instalacji
B. przeprowadzić odpowietrzenie instalacji
C. wykonać regulację położenia kolektorów
D. sprawdzić stan jakości płynu solarnego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Sprawdzenie stanu jakości płynu solarnego jest kluczowym krokiem w corocznej konserwacji instalacji grzewczej. Płyn solarny, który pełni rolę nośnika energii cieplnej, podlega różnym procesom chemicznym oraz fizycznym w trakcie eksploatacji. Regularne monitorowanie jego stanu pozwala uniknąć problemów, takich jak korozja elementów instalacji czy obniżenie efektywności energetycznej. Zgodnie z normami branżowymi, takim jak norma EN 12975, jakość płynu musi spełniać określone parametry, aby zapewnić prawidłowe funkcjonowanie systemu. Praktyczne przykłady obejmują analizę pH, zawartości inhibitorów korozji oraz innych dodatków chemicznych, które mogą wpływać na funkcjonalność instalacji. W przypadku stwierdzenia nieprawidłowości, zaleca się wymianę płynu, co zwiększy żywotność instalacji i poprawi jej efektywność energetyczną.

Pytanie 17

Gdzie należy zamontować zewnętrzną jednostkę powietrznej pompy ciepła?

A. w odległości co najmniej 0,5 m od zewnętrznej ściany z wyrzutnią powietrza skierowaną w stronę ściany
B. bezpośrednio przy zewnętrznej ścianie budynku z czerpnią powietrza zwróconą w stronę ściany
C. bezpośrednio przy zewnętrznej ścianie budynku z wyrzutnią powietrza kierującą się w stronę ściany
D. w odległości co najmniej 0,5 m od zewnętrznej ściany z wyrzutnią powietrza skierowaną poza ścianę

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybierając tę odpowiedź, dobrze trafiłeś. Montaż zewnętrznego zespołu powietrznej pompy ciepła przynajmniej 0,5 m od ściany z wyrzutnią powietrza skierowaną na zewnątrz jest naprawdę dobrym rozwiązaniem. Dzięki temu powietrze swobodnie krąży i nie ma ryzyka zastoju, co jest kluczowe dla efektywnego działania urządzenia. Z mojego doświadczenia, jeśli zachowasz odpowiednią odległość, to ciepłe powietrze łatwiej się rozprasza i nie wraca znów do wlotu, co mogłoby obniżyć wydajność. Dobrze jest też unikać miejsc z przeszkodami, bo to może zablokować przepływ powietrza. Pamiętaj też, aby mieć na uwadze, jak blisko są inne obiekty – hałas generowany przez pompę może być ważny, szczególnie w otoczeniu mieszkalnym. Trzymanie się tych zasad pomoże wydłużyć żywotność urządzenia i zyskać lepszą efektywność energetyczną.

Pytanie 18

Jaki materiał jest najczęściej używany do wytwarzania ogniw fotowoltaicznych?

A. Stal
B. Aluminium
C. Miedź
D. Krzem

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Krzem jest najczęściej wykorzystywanym materiałem do produkcji fotoogniw, co wynika z jego unikalnych właściwości półprzewodnikowych. W procesie fotowoltaicznym krzem absorbuje energię świetlną i przekształca ją w energię elektryczną dzięki zjawisku fotowoltaicznemu. Krzem krystaliczny, a także amorficzny, są powszechnie stosowane w ogniwach solarnych. W przypadku krzemu krystalicznego, jego struktura krystaliczna zapewnia wysoką wydajność konwersji energii, co czyni go preferowanym wyborem dla paneli solarnych stosowanych w instalacjach domowych oraz przemysłowych. Ponadto, produkcja ogniw krzemowych jest dobrze rozwinięta, co obniża koszty produkcji i umożliwia masową produkcję. W branży stosowane są standardy, takie jak IEC 61215 i IEC 61730, które dotyczą wydajności oraz bezpieczeństwa fotoogniw. Właściwości krzemu, takie jak łatwość w obróbce oraz stabilność chemiczna, sprawiają, że cały czas pozostaje on kluczowym materiałem w rozwijającym się sektorze energii odnawialnej.

Pytanie 19

Jakiego rodzaju zgrzewarki używa się do łączenia rur z PP-R w systemach ciepłej wody użytkowej?

A. Elektrooporowej
B. Doczołowej
C. Polifuzyjnej
D. Trzpieniowej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zgrzewarka polifuzyjna jest kluczowym narzędziem do łączenia rur z PP-R w instalacjach ciepłej wody użytkowej. Proces zgrzewania polifuzyjnego polega na podgrzewaniu końcówek rur oraz złączek, co umożliwia ich połączenie w sposób trwały i odporny na wysokie temperatury. Metoda ta zapewnia nie tylko wysoką jakość połączeń, ale również ich szczelność, co jest szczególnie istotne w kontekście instalacji wodociągowych. Przykładowo, w budownictwie mieszkalnym zgrzewanie polifuzyjne jest często stosowane do instalacji systemów grzewczych oraz ciepłej wody użytkowej, gdzie wymagane są połączenia odporne na ciśnienie i temperaturę. Ponadto, zgodnie z normami PN-EN 1555 oraz PN-EN ISO 15874, zgrzewanie polifuzyjne jest uznawane za metodę preferowaną do łączenia rur wykonanych z polipropylenu. Dzięki odpowiedniemu doborowi temperatury i czasu zgrzewania, można uzyskać połączenia, które są nie tylko mocne, ale także odporne na korozję, co przekłada się na długotrwałą eksploatację systemów wodociągowych.

Pytanie 20

Aby zobrazować za pomocą symboli graficznych ogólny przebieg oraz wyposażenie instalacji grzewczej podczas jej funkcjonowania, należy skorzystać z rysunku

A. aksonometrycznego
B. schematycznego
C. zasadniczego
D. szczegółowego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź schematycznego rysunku jest poprawna, ponieważ takie rysunki są powszechnie stosowane do przedstawiania ogólnych przebiegów oraz wyposażenia instalacji grzewczych. Rysunki schematyczne umożliwiają zrozumienie ogólnej struktury systemu bez wchodzenia w szczegóły poszczególnych komponentów. Za pomocą symboli graficznych i uproszczonych przedstawień, schematy te ułatwiają identyfikację kluczowych elementów instalacji, takich jak kotły, pompy, grzejniki oraz ich wzajemne połączenia. Zastosowanie rysunków schematycznych jest zgodne z normami branżowymi, takimi jak PN-EN 13306, które podkreślają znaczenie jednolitych symboli i oznaczeń w dokumentacji technicznej. Dzięki nim zarówno inżynierowie, jak i technicy mają możliwość szybkiej analizy oraz komunikacji dotyczącej systemów grzewczych. Przykładem zastosowania takiego rysunku mogą być projekty instalacji w budynkach mieszkalnych, gdzie schematy pomagają w planowaniu i późniejszym serwisowaniu systemu grzewczego.

Pytanie 21

Jak często należy przeprowadzać pomiar rezystancji poszczególnych ogniw w akumulatorach?

A. co 6 miesięcy
B. raz w roku
C. raz w miesiącu
D. codziennie

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomiar rezystancji ogniw w bateriach akumulatorów co 6 miesięcy stanowi najlepszą praktykę w zakresie monitorowania stanu technicznego akumulatorów. Takie podejście pozwala na wczesne wykrywanie potencjalnych problemów, takich jak degradacja ogniw czy nieprawidłowe połączenia. Regularne pomiary umożliwiają również ocenę efektywności procesów ładowania oraz rozładowania akumulatorów. Wiele norm branżowych, takich jak IEC 62485, podkreśla znaczenie systematycznego monitorowania parametrów elektrycznych akumulatorów, co przyczynia się do poprawy ich żywotności oraz bezpieczeństwa eksploatacji. Przykładowo, w aplikacjach takich jak zasilanie awaryjne lub systemy energii odnawialnej, regularne sprawdzanie rezystancji ogniw może zapobiec nieprzewidzianym awariom i zapewnia ciągłość działania systemów zasilających. Systematyczne pomiary są również istotne dla oceny stanu cyklu życia akumulatorów, co ma kluczowe znaczenie w kontekście przywracania ich do pełnej funkcjonalności.

Pytanie 22

W skład odnawialnych źródeł energii wchodzą

A. energia wiatru, energia wody, ropa naftowa
B. węgiel kamienny, węgiel brunatny, gaz ziemny
C. energia geotermalna, energia słoneczna, węgiel
D. energia geotermalna, energia biomasy, biogaz

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź wskazująca na energię geotermalną, energię biomasy oraz biogaz jako odnawialne źródła energii jest prawidłowa, ponieważ wszystkie te źródła są zdolne do regeneracji w krótkim czasie i nie prowadzą do wyczerpywania zasobów naturalnych. Energia geotermalna wykorzystuje ciepło z wnętrza Ziemi, co sprawia, że jest to jeden z najbardziej stabilnych i niezawodnych źródeł energii. Można ją wykorzystać do ogrzewania budynków oraz do produkcji energii elektrycznej. Energia biomasy, z kolei, jest pozyskiwana z materiałów organicznych, takich jak odpady rolnicze czy drewno, co pozwala na zamianę odpadów w wartościowe źródło energii, przyczyniając się jednocześnie do zrównoważonego rozwoju. Biogaz, wytwarzany z fermentacji organicznych odpadów, może być wykorzystywany jako paliwo do silników czy do produkcji energii elektrycznej. Dobre praktyki branżowe promują rozwój technologii związanych z tymi źródłami, aby zwiększyć efektywność i zmniejszyć emisję gazów cieplarnianych. Te odnawialne źródła energii mają ogromny potencjał w ramach strategii zrównoważonego rozwoju i walki ze zmianami klimatycznymi.

Pytanie 23

Pompę obiegową należy zainstalować na rurze

A. zimnej wody użytkowej
B. ciepłej wody użytkowej
C. bypassowej
D. cyrkulacyjnej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pompę obiegową montuje się na przewodzie cyrkulacyjnym, ponieważ jej głównym zadaniem jest zapewnienie ciągłego przepływu wody w systemach grzewczych oraz ciepłej wody użytkowej. Dzięki temu woda jest równomiernie rozprowadzana, co zwiększa efektywność systemu grzewczego i minimalizuje straty energii. Przykładem zastosowania pompy cyrkulacyjnej może być instalacja centralnego ogrzewania w budynkach mieszkalnych, gdzie pompa ta umożliwia szybkie i równomierne ogrzewanie pomieszczeń. Zgodnie z normami branżowymi, oto kilka dobrych praktyk: pompa powinna być umieszczona w najniższym punkcie instalacji, aby uniknąć problemów z powietrzem w systemie, a także powinna być dobrana odpowiednio do parametrów instalacji, takich jak średnica rur czy wymagany przepływ. To zapewnia optymalną wydajność oraz długą żywotność urządzenia.

Pytanie 24

Jaką wartość ma 1 roboczogodzina przy montażu 1 szt. kolektora słonecznego, jeśli koszt robocizny za zamontowanie 10 kolektorów słonecznych wynosi 5 000,00 zł, a ustalona stawka za roboczogodzinę to 25,00 zł?

A. 20 r-g/szt.
B. 1000 r-g/szt.
C. 100 r-g/szt.
D. 500 r-g/szt.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
To jest 20 roboczogodzin na montaż jednego kolektora słonecznego. Żeby to obliczyć, musimy na początku ustalić, ile czasu zajmie nam montaż 10 kolektorów. Mamy koszt robocizny na poziomie 5000 zł, a stawka za roboczogodzinę to 25 zł. Jak podzielimy te 5000 zł przez 25 zł za godzinę, dostajemy 200 roboczogodzin. Potem dzielimy te 200 roboczogodzin przez 10 kolektorów, co daje nam 20 roboczogodzin na jeden kolektor. Ważne, żeby zrozumieć, jak to działa, bo w zarządzaniu projektami budowlanymi i tworzeniu kosztorysów precyzyjne obliczenia naprawdę mają znaczenie. Dzięki nim lepiej planujemy zasoby i harmonogramy pracy, co jest naprawdę istotne w tej branży.

Pytanie 25

Przechowując rury preizolowane na otwartej przestrzeni w różnych warunkach pogodowych, nie ma potrzeby chronienia ich przed

A. ekstremalnymi temperaturami
B. promieniowaniem UV
C. wiatrem
D. wilgocią

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór opcji 'wiatrem' jako odpowiedzi prawidłowej opiera się na zasadach dotyczących składowania rur preizolowanych. Rury te, ze względu na swoje właściwości izolacyjne oraz konstrukcyjne, nie są wrażliwe na działanie wiatru, ponieważ ich mechaniczne właściwości nie ulegają osłabieniu pod wpływem siły wiatru. W praktyce, rury preizolowane mogą być składowane na zewnątrz w różnych warunkach atmosferycznych, a ich struktura nie wymaga specjalnych zabezpieczeń przed wiatrem. Zgodnie z normą PN-EN 253, która dotyczy rur preizolowanych, kluczowe jest jedynie zabezpieczenie przed czynnikami, które mogą wpływać na ich izolacyjność, jak wilgoć, ekstremalne temperatury oraz promieniowanie UV. W przypadku wilgoci, niewłaściwe składowanie może prowadzić do kondensacji, co z kolei wpływa na właściwości izolacyjne, a ekstremalne temperatury mogą powodować odkształcenia materiałów. Rury powinny być również chronione przed promieniowaniem UV, które może degradacja materiału polimerowego. Dlatego odpowiednie środki zabezpieczające powinny być stosowane w odniesieniu do wilgoci, ekstremalnych temperatur oraz promieniowania UV, a nie w odniesieniu do wiatru.

Pytanie 26

Czynnik przenoszący ciepło z dolnego źródła do pompy oraz z pompy do instalacji o oznaczeniu A/A dotyczy pomp ciepła, w których dolnym źródłem ciepła jest

A. powietrze wywiewane, natomiast górnym powietrze wewnętrzne; czynnikiem pośredniczącym jest czynnik roboczy pompy ciepła
B. grunt, a górnym powietrze wewnętrzne lub woda grzewcza; w instalacji dolnego źródła krąży solanka, natomiast w instalacji grzewczej krąży woda
C. woda powierzchniowa lub głębinowa, a górnym powietrze wewnętrzne lub woda grzewcza; czynnikiem pośredniczącym jest woda
D. grunt, a górnym powietrze wewnętrzne; czynnikiem pośredniczącym między dolnym źródłem ciepła a pompą ciepła jest roztwór glikolu, natomiast między pompą ciepła a górnym źródłem ciepła powietrze

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź wskazująca, że dolnym źródłem ciepła jest powietrze wywiewane, a górnym powietrze wewnętrzne, jest prawidłowa, ponieważ opisuje pracę pompy ciepła typu A/A. W takim systemie pompa ciepła wykorzystuje powietrze wywiewane z budynku jako źródło ciepła, co jest szczególnie efektywne w kontekście wentylacji mechanicznej. W praktyce, energia cieplna z powietrza wywiewanego jest przekazywana do czynnika roboczego pompy ciepła, który następnie przetwarza tę energię, aby ogrzewać powietrze wewnętrzne lub wodę grzewczą. Stosowanie tego typu rozwiązań jest zgodne z najnowszymi standardami efektywności energetycznej, takie jak normy EN 14511, które definiują testy i parametry dla pomp ciepła. Efektywność tego systemu podnosi również zastosowanie zaawansowanych filtrów, które poprawiają jakość powietrza wewnętrznego, co jest kluczowe w kontekście zdrowia użytkowników. Warto również zaznaczyć, że systemy te są coraz częściej wykorzystywane w budynkach pasywnych i niskoenergetycznych, gdzie efektywność energetyczna jest kluczowym czynnikiem. Zastosowanie takich rozwiązań przyczynia się do zmniejszenia kosztów eksploatacji oraz obniżenia emisji CO2.

Pytanie 27

Kiedy powinien być przeprowadzany przegląd techniczny kotła na biomasę?

A. co dwa lata
B. raz w roku, najlepiej przed rozpoczęciem sezonu grzewczego
C. jeden raz w roku, najlepiej po zakończeniu sezonu grzewczego
D. przynajmniej dwa razy w roku

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kiedy mówimy o przeglądzie technicznym kotła na biomasę, to warto pamiętać, że najlepiej robić to raz w roku. Najlepszy moment to przed sezonem grzewczym, bo wtedy można znaleźć jakieś potencjalne usterki na czas. Takie przeglądy to nie tylko kwestia bezpieczeństwa, ale też efektywności kotła. Regularne sprawdzanie stanu technicznego kotła pomaga uniknąć problemów i wydatków w przyszłości. Przykładowo, ważne jest, żeby sprawdzić palnik, wymiennik ciepła czy systemy bezpieczeństwa. Jak wiadomo, normy, takie jak PN-EN 303-5, mówią, że te kontrole są ważne dla ochrony środowiska i bezpieczeństwa użytkowników. Nie bez znaczenia jest, żeby przeglądów dokonywali fachowcy, bo tylko oni będą w stanie zauważyć wszelkie nieprawidłowości i zasugerować, co należy poprawić.

Pytanie 28

Pomiar prędkości wiatru dla turbiny wiatrowej realizowany jest dzięki urządzeniu umieszczonemu w systemie instalacyjnym?

A. oscyloskop
B. stereometr
C. anemostat
D. anemometr

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Anemometr to mega ważne urządzenie, które pomaga mierzyć prędkość wiatru, a to jest kluczowe, szczególnie przy turbinach wiatrowych. Działa tak, że nic z wiatru, co wieje, powoduje ruch wirujących części, najczęściej są to albo kulki, albo łopatki. No i generalnie, prędkość wiatru to jeden z tych parametrów, które są na czołowej liście, jeśli chodzi o wydajność systemów energii wiatrowej. Zauważ, że w farmach wiatrowych anemometry stawia się na różnych wysokościach, żeby uzyskać dokładny profil wiatru, co pomaga w odpowiednim ulokowaniu turbin. Jak to mówią, według norm IEC 61400-12, pomiary wiatru powinny trwać przynajmniej 12 miesięcy, żeby dać reprezentatywne dane, a to jest niezbędne do sensownego planowania instalacji. Osobiście uważam, że zastosowanie anemometrów to świetny sposób na analizę efektywności energetycznej oraz prognozowanie, ile energii można by wyprodukować.

Pytanie 29

Podczas wyboru miejsca należy brać pod uwagę wytwarzanie infradźwięków (w zakresie od 1 do 20 Hz, poniżej progu słyszalności)

A. elektrowni wiatrowej
B. biogazowni
C. pompy ciepła
D. turbiny wodnej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wytwarzanie infradźwięków, które występuje w zakresie poniżej 20 Hz, jest szczególnie istotnym zagadnieniem przy wyborze lokalizacji dla elektrowni wiatrowych. Elektrownie wiatrowe generują hałas w postaci infradźwięków, który może wpływać na otoczenie, w tym na zdrowie ludzi i zwierząt. Właściwe zaplanowanie lokalizacji elektrowni wiatrowej powinno uwzględniać nie tylko aspekty techniczne, takie jak dostępność wiatru, ale również potencjalny wpływ na środowisko. Przykładowo, w wielu krajach, takich jak Niemcy czy Dania, wprowadzono wytyczne dotyczące minimalnych odległości elektrowni wiatrowych od siedzib ludzkich, aby zminimalizować negatywne skutki akustyczne. Ponadto, stosowanie technologii redukcji hałasu oraz odpowiedni dobór lokalizacji, z daleka od gęsto zaludnionych obszarów, pozwala na zachowanie standardów ochrony środowiska, takich jak normy ISO 9613 dotyczące akustyki. Dlatego odpowiedni dobór lokalizacji jest kluczowy dla zminimalizowania wpływu infradźwięków na otoczenie.

Pytanie 30

Na podstawie cech przewodnictwa cieplnego, wybierz materiał szeroko wykorzystywany do ociepleń budynków?

A. Pustak ceramiczny.
B. Styropian.
C. Cement.
D. Miedź.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Styropian, znany także jako polistyren ekspandowany (EPS), jest jednym z najczęściej stosowanych materiałów izolacyjnych w budownictwie, zwłaszcza do dociepleń budynków. Jego niska przewodność cieplna, wynosząca około 0,035-0,040 W/mK, sprawia, że jest on bardzo skuteczny w ograniczaniu strat ciepła. Styropian jest lekki, odporny na wilgoć, a także charakteryzuje się dobrą odpornością na działanie chemikaliów. Dla przykładu, powszechnie stosuje się go w systemach ociepleń ścian zewnętrznych (ETICS), gdzie przyklejany jest do powierzchni budynku, a następnie pokrywany tynkiem. W zgodzie z normami budowlanymi, takimi jak PN-EN 13163, styropian spełnia wymagania dotyczące trwałości i efektywności energetycznej, co czyni go podstawowym materiałem w praktykach budowlanych dotyczących izolacji termicznej. Dodatkowo, jego zdolność do recyklingu przyczynia się do zrównoważonego rozwoju w budownictwie.

Pytanie 31

Jakie jest zadanie krat wlotowych w hydroelektrowni?

A. kontrola strumienia wody wpływającego do turbiny
B. zabezpieczenie turbiny przed zanieczyszczeniami
C. zatrzymanie przepływu wody do turbiny
D. obniżenie poziomu wody w turbinie

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kraty wlotowe w elektrowni wodnej pełnią kluczową rolę w ochronie turbiny przed zanieczyszczeniami, które mogą wpływać na jej wydajność i trwałość. Te urządzenia filtracyjne zatrzymują różnego rodzaju zanieczyszczenia, takie jak piasek, liście czy inne obiekty, które mogłyby uszkodzić wirnik turbiny lub obniżyć jej efektywność. Ochrona turbiny przed zanieczyszczeniami jest zgodna z najlepszymi praktykami w branży hydroenergetycznej, gdzie dbałość o komponenty systemów energetycznych ma kluczowe znaczenie dla ich długowieczności. W praktyce, skuteczna filtracja wlotowa pozwala na minimalizację kosztów konserwacji oraz zwiększenie niezawodności operacyjnej elektrowni. Warto zauważyć, że stosowanie krat wlotowych jest standardem w projektowaniu elektrowni, co jest podkreślone w dokumentach technicznych i normach branżowych, takich jak normy ISO dotyczące efektywności energetycznej oraz ochrony środowiska. Dzięki odpowiednim kratkom wlotowym, elektrownie są w stanie działać z maksymalną wydajnością, co przekłada się na wyższą produkcję energii oraz mniejsze straty eksploatacyjne.

Pytanie 32

Jaka jest najwyższa dopuszczalna wysokość składowania kręgów rur polietylenowych przeznaczonych do budowy kolektora gruntowego?

A. 1,5 m
B. 1,8 m
C. 2,0 m
D. 2,2 m

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Maksymalna wysokość składowania kręgów rur polietylenowych do budowy kolektora gruntowego wynosi 1,5 m, co jest zgodne z zaleceniami producentów oraz obowiązującymi normami bezpieczeństwa. Utrzymywanie tej wysokości jest kluczowe, aby zapobiec deformacji materiału oraz zagwarantować stabilność składowanych kręgów. W praktyce, składowanie rur w nadmiarze może prowadzić do ich uszkodzeń, a także zwiększa ryzyko wypadków związanych z ich przewracaniem. Warto również zauważyć, że odpowiednie składowanie rur polietylenowych powinno obejmować stosowanie podkładek lub palet, które pomogą w równomiernym rozłożeniu ciężaru. Dodatkowo, przestrzeganie tej normy jest istotne dla zapewnienia efektywności operacyjnej podczas transportu i montażu systemu kolektorów gruntowych, co z kolei wpływa na jakość całej instalacji. Przestrzeganie maksymalnej wysokości składowania jest także zgodne z dobrymi praktykami branżowymi, co potwierdzają liczne dokumenty normatywne.

Pytanie 33

Ośmiu paneli fotowoltaicznych o maksymalnej mocy P=250 Wp i napięciu U=12 V zostało połączonych równolegle. Instalacja ta cechuje się następującymi parametrami

A. P=250 Wp, U=12 V
B. P=2 000 Wp, U=12 V
C. P=2 000 Wp, U=96 V
D. P=250 Wp, U=96 V

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź P=2 000 Wp, U=12 V jest poprawna, ponieważ w układzie równoległym moc paneli fotowoltaicznych sumuje się, natomiast napięcie pozostaje stałe. W przypadku ośmiu paneli o mocy 250 Wp każdy, całkowita moc instalacji wynosi 8 x 250 Wp = 2000 Wp, co jest zgodne z pierwszą odpowiedzią. Napięcie w układzie równoległym pozostaje na poziomie 12 V, co również potwierdza prawidłowość tej odpowiedzi. Takie połączenie jest powszechnie stosowane w systemach fotowoltaicznych, gdzie stabilne napięcie jest kluczowe dla zasilania urządzeń o różnych wymaganiach energetycznych. W praktyce, takie układy są wykorzystywane w instalacjach domowych, gdzie zapewniają odpowiednią moc przy zachowaniu niskiego napięcia, co zwiększa bezpieczeństwo użytkowania. Zgodnie z normami IEC 61215 i IEC 61730, instalacje fotowoltaiczne powinny być projektowane tak, aby zapewnić maksymalną efektywność energetyczną oraz bezpieczeństwo, co również znajduje potwierdzenie w tej odpowiedzi.

Pytanie 34

Powstawanie zapowietrzenia w instalacji solarnej może być wynikiem

A. wykorzystania zbyt dużych średnic rur w instalacji
B. użycia pompy obiegowej o niedostosowanej mocy
C. nieprawidłowym ciśnieniem wstępnym w zbiorniku przeponowym
D. niewłaściwie wolnym wypełnianiem systemu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Niewłaściwe ciśnienie wstępne w naczyniu wzbiorczym jest kluczowym czynnikiem wpływającym na prawidłowe funkcjonowanie instalacji solarnej. Naczynie wzbiorcze, które pełni rolę bufora, powinno być odpowiednio dobrane do systemu. Jeśli ciśnienie wstępne jest zbyt niskie, może to prowadzić do powstawania pęcherzyków powietrza w instalacji, co z kolei skutkuje obniżeniem efektywności systemu i możliwości jego pracy. Przykładowo, w systemach solarnych często rekomenduje się ciśnienie wstępne w zakresie 1-2 bar, co zapewnia odpowiednie warunki do obiegu cieczy. W praktyce, regularne kontrole ciśnienia oraz jego kalibracja w oparciu o specyfikacje producenta naczynia wzbiorczego są kluczowe dla utrzymania efektywności instalacji. Ponadto, zgodnie z normami branżowymi, takich jak PN-EN 12976, odpowiednie ciśnienie wstępne przyczynia się do stabilności całego systemu, eliminując ryzyko awarii związanych z zapowietrzeniem.

Pytanie 35

Jaką funkcję pełni inwerter w systemach fotowoltaicznych?

A. ochrony systemu przed przetężeniem
B. ochrony akumulatorów przed całkowitym wyładowaniem
C. przekształcania prądu stałego na prąd przemienny
D. kontrolowania procesu ładowania akumulatorów

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Inwerter w instalacjach fotowoltaicznych odgrywa kluczową rolę w konwersji prądu stałego (DC) generowanego przez panele słoneczne na prąd przemienny (AC), który jest standardem w sieciach energetycznych. Bez inwertera, energia produkowana przez system PV nie mogłaby być używana w typowych urządzeniach domowych ani wprowadzana do sieci energetycznej. Wysokiej jakości inwertery są projektowane z myślą o maksymalnej wydajności, co pozwala na optymalne wykorzystanie energii słonecznej. Na przykład, inwertery typu string są najczęściej stosowane w domowych instalacjach PV, gdzie łączą kilka paneli w jeden ciąg, zapewniając efektywną konwersję energii. Z kolei inwertery mikro, montowane bezpośrednio na panelach, mogą zwiększyć wydajność w przypadku zacienienia pojedynczych modułów. Zgodnie z normami IEC, inwertery muszą spełniać określone kryteria dotyczące wydajności i bezpieczeństwa, co zapewnia ich niezawodność w długoterminowej eksploatacji.

Pytanie 36

Jakie jest uboczne wytwarzanie podczas produkcji biodiesla?

A. metanol
B. gliceryna
C. glikol
D. etanol

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Gliceryna jest produktem ubocznym procesu transestryfikacji, który jest kluczowym etapem w wytwarzaniu biodiesla. W tym procesie oleje roślinne lub tłuszcze zwierzęce reagują z alkoholem, najczęściej metanolem lub etanolem, w wyniku czego powstają estry kwasów tłuszczowych, czyli biodiesel, oraz gliceryna. Gliceryna jest cennym surowcem, który może być wykorzystywany w różnych gałęziach przemysłu, takich jak kosmetyki, farmaceutyki czy jako składnik w produkcji żywności. Przykładem praktycznego zastosowania gliceryny jest jej rola jako substancji nawilżającej w produktach pielęgnacyjnych, a także jako środek słodzący w żywności. W przemyśle biodieselowym, odzyskiwanie gliceryny z procesu produkcji biodiesla zgodnie z normami i najlepszymi praktykami pozwala na zwiększenie efektywności ekonomicznej całego procesu, co stanowi istotny element zrównoważonego rozwoju. Warto zaznaczyć, że odpowiednie zarządzanie produktem ubocznym, takim jak gliceryna, wpisuje się w strategie minimalizacji odpadów oraz maksymalizacji wartości surowców, co jest kluczowe w nowoczesnym przemyśle ekologicznym.

Pytanie 37

Jakie jest maksymalne dopuszczalne obciążenie śniegiem dla kolektorów słonecznych?

A. 10,0-15,0 kN/m2
B. 2,0-3,8 kN/m2
C. 4,0-5,8 kN/m2
D. 8,0-9,8 kN/m2

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Maksymalne dopuszczalne obciążenie śniegiem dla kolektorów słonecznych wynoszące 2,0-3,8 kN/m2 jest zgodne z zaleceniami i normami branżowymi w zakresie projektowania instalacji fotowoltaicznych. Wartości te odzwierciedlają rzeczywiste warunki atmosferyczne, które mogą występować w różnych regionach, biorąc pod uwagę lokalne opady śniegu. Przy projektowaniu systemów kolektorów słonecznych ważne jest, aby uwzględnić te obciążenia, aby zagwarantować ich długotrwałą funkcjonalność i bezpieczeństwo. W praktyce, zastosowanie się do tych wartości pozwala na zminimalizowanie ryzyka uszkodzeń mechanicznych wynikających z nadmiernego obciążenia śniegiem, co z kolei wpływa na żywotność systemu. Na przykład, w rejonach górskich, gdzie opady śniegu mogą być znaczne, projektanci powinni uwzględnić dodatkowe wzmocnienia konstrukcyjne, aby sprostać tym obciążeniom. Kluczowe jest, aby przed rozpoczęciem budowy przeprowadzić odpowiednie analizy klimatyczne oraz skonsultować się z lokalnymi normami budowlanymi, co pomoże w określeniu właściwego podejścia do projektowania.

Pytanie 38

Zasobnik w kotle na biomasę ma pojemność 250 kg peletów. Kocioł uzupełniany jest co 3 dni. Jaki jest całkowity koszt paliwa zużywanego w ciągu 30 dni, jeśli cena 1 kg peletu wynosi 1,10 zł?

A. 8 250 zł
B. 275 zł
C. 2 750 zł
D. 825 zł

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby obliczyć koszt paliwa zużywanego w ciągu 30 dni, należy najpierw określić, ile razy kocioł zostanie napełniony w tym czasie. Zasobnik kotła na biomasę ma pojemność 250 kg peletu, a kocioł napełniany jest co 3 dni. W ciągu 30 dni kocioł będzie napełniany 10 razy (30 dni / 3 dni = 10 napełnień). Ponieważ każde napełnienie wymaga 250 kg peletu, łączna ilość peletów zużytych w ciągu 30 dni wynosi 250 kg x 10 = 2500 kg. Koszt 1 kg peletu wynosi 1,10 zł, więc całkowity koszt paliwa wyniesie 2500 kg x 1,10 zł = 2750 zł. Takie obliczenia są standardem w zarządzaniu kosztami energii w systemach ogrzewania, szczególnie przy stosowaniu biomasy jako odnawialnego źródła energii. Zrozumienie tego procesu pozwala na efektywne planowanie wydatków oraz optymalizację zużycia paliwa w instalacjach grzewczych, co jest kluczowe dla zrównoważonego rozwoju i ograniczenia emisji CO2.

Pytanie 39

Oblicz objętość pomieszczenia o wymiarach 4 x 3 m oraz wysokości 3 m?

A. 48 m3
B. 24 m3
C. 36 m3
D. 15 m3

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby obliczyć kubaturę pomieszczenia, należy zastosować wzór: V = długość x szerokość x wysokość. W przypadku podanych wymiarów, mamy długość 4 m, szerokość 3 m oraz wysokość 3 m. Po podstawieniu wartości do wzoru otrzymujemy V = 4 m x 3 m x 3 m = 36 m³. Ta obliczona kubatura jest kluczowa w wielu zastosowaniach, takich jak określenie objętości powietrza w pomieszczeniu, co wpływa na systemy wentylacyjne i klimatyzacyjne. W praktyce, znajomość kubatury pomieszczeń jest również istotna podczas planowania ogrzewania, ponieważ obliczenia te mogą pomóc w określeniu mocy grzewczej potrzebnej do utrzymania komfortowej temperatury. Dodatkowo, w budownictwie, odpowiednie obliczenie kubatury ma znaczenie dla uzyskania niezbędnych pozwoleń oraz spełnienia norm budowlanych, co jest istotne dla bezpieczeństwa i efektywności energetycznej budynku.

Pytanie 40

Pod jakim kątem powinny być ustawione na stałe kolektory słoneczne, aby zapewnić im optymalne nasłonecznienie przez cały rok?

A. 30 - 40 stopni
B. 45 - 50 stopni
C. 60 - 70 stopni
D. 75 - 80 stopni

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Ustawienie kolektorów słonecznych pod kątem 45-50 stopni jest uznawane za optymalne dla ich efektywności w ciągu całego roku. Taki kąt zapewnia najlepszą ekspozycję na promieniowanie słoneczne, zarówno w okresie letnim, gdy słońce jest wyżej na niebie, jak i w zimie, kiedy znajduje się niżej. Poziom naświetlenia kolektorów jest kluczowy dla ich wydajności - odpowiedni kąt pozwala na maksymalne wykorzystanie energii słonecznej, co przekłada się na większą produkcję energii. W praktyce, wiele instalacji systemów solarnych na terenie Polski i innych krajów o podobnym klimacie stosuje właśnie ten kąt, aby zminimalizować straty związane z nieodpowiednim ustawieniem. Ponadto, zalecenia te są zgodne z wytycznymi branżowymi, które uwzględniają różne lokalizacje geograficzne oraz zmiany kątów padania promieni słonecznych w ciągu roku. Dobór odpowiedniego kąta nachylenia jest zatem kluczowym elementem projektowania systemów solarnych, wpływającym na ich efektywność i rentowność.