Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.05 - Eksploatacja urządzeń elektronicznych
  • Data rozpoczęcia: 22 maja 2025 13:16
  • Data zakończenia: 22 maja 2025 13:31

Egzamin zdany!

Wynik: 30/40 punktów (75,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Długość adresu IPv4 wynosi ile bitów?

A. 16 bitów
B. 8 bitów
C. 4 bity
D. 32 bity
Odpowiedzi wskazujące długości takie jak 8, 4 czy 16 bitów są niepoprawne, ponieważ nie odzwierciedlają rzeczywistej architektury adresów IPv4. Adres 8-bitowy mógłby teoretycznie reprezentować jedynie 256 unikalnych adresów, co byłoby niewystarczające dla współczesnych sieci, w których tysiące urządzeń wymagają indywidualnych adresów IP. Z kolei 4 bity, które mogą reprezentować tylko 16 adresów, są skrajnie niewystarczające, co czyni tę odpowiedź niepraktyczną. Podobnie, 16-bitowy adres IP mógłby oferować 65 536 unikalnych adresów, co również nie odpowiada potrzebom globalnej sieci. W praktyce, błędne odpowiedzi mogą wynikać z nieporozumień dotyczących struktury i wielkości protokołów sieciowych oraz ich zastosowania. Wiele osób może mylnie sądzić, że adresy IP są krótsze, co prowadzi do nieprawidłowej oceny realnych potrzeb adresacji w sieciach. Warto zwrócić uwagę na rozwój IPv6, gdzie długość adresu wynosi 128 bitów, co pozwala na znacznie większą liczbę unikalnych adresów, odpowiadając na rosnące zapotrzebowanie w erze Internetu rzeczy i powszechnej cyfryzacji.

Pytanie 2

Jakie urządzenie należy zastosować do pomiaru indukcyjności cewki?

A. mostka RLC
B. analizatora
C. watomierza
D. omomierza
Odpowiedź 'mostek RLC' jest prawidłowa, ponieważ mostek RLC jest dedykowanym narzędziem do pomiaru indukcyjności, pojemności oraz rezystancji. Działa na zasadzie porównywania nieznanej wartości z wartościami referencyjnymi, co pozwala na uzyskanie dokładnych wyników. W praktyce, mostki RLC są często wykorzystywane w laboratoriach oraz w przemyśle elektronicznym do testowania komponentów, gdzie precyzyjne pomiary indukcyjności są kluczowe, np. w projektowaniu filtrów, transformatorów czy cewek. Standardy branżowe, takie jak normy IEC, podkreślają znaczenie stosowania odpowiednich narzędzi do pomiarów w celu zapewnienia jakości oraz bezpieczeństwa urządzeń elektronicznych. Dodatkowo, mostek RLC pozwala na przeprowadzenie analizy rezonansowej, co ma istotne znaczenie w zastosowaniach RF (radiofrekwencyjnych), gdzie zachowanie indukcyjności w określonych warunkach częstotliwościowych jest kluczowe dla prawidłowego funkcjonowania obwodów.

Pytanie 3

Jeśli skuteczna wartość napięcia przemiennego wynosi 230 V, to jaka jest jego wartość szczytowa?

A. 380 V
B. 325 V
C. 400 V
D. 245 V
Wartość szczytowa napięcia przemiennego (czyli Umax) jest powiązana z wartością skuteczną (Urms) za pomocą prostego wzoru: Umax = Urms * √2. Dla napięcia 230 V, obliczamy to tak: Umax = 230 V * √2, co daje nam około 325 V. Dlaczego to jest ważne? Bo przy projektowaniu sprzętu elektrycznego musimy brać pod uwagę te wartości szczytowe, żeby nasze urządzenia działały jak należy w różnych warunkach. Normy IEC 60038 i IEC 61000-3-2 regulują wartości napięć, co zwiększa bezpieczeństwo i niezawodność naszych systemów zasilania. Z mojego doświadczenia, znajomość wartości szczytowych jest super istotna dla inżynierów zajmujących się zasilaniem, żeby unikać sytuacji, gdzie napięcia skaczą i mogą uszkodzić sprzęt.

Pytanie 4

Przy wymianie uszkodzonego kondensatora, co należy zrobić?

A. wprowadzić kondensator o pojemności identycznej z tą odczytaną z urządzenia pomiarowego po zbadaniu uszkodzonego kondensatora
B. wprowadzić kondensator o pojemności zgodnej z wartością znamionową uzyskaną z schematu urządzenia
C. wprowadzić kondensator o pojemności o 30% większej niż znamionowa
D. wprowadzić kondensator o tych samych wymiarach
Wstawienie kondensatora o pojemności odpowiadającej pojemności znamionowej odczytanej ze schematu urządzenia jest kluczowe dla zapewnienia prawidłowego działania układów elektronicznych. Kondensatory są komponentami, które pełnią istotne funkcje w obwodach, takie jak filtracja, przechowywanie energii czy stabilizacja napięcia. Użycie kondensatora o właściwej pojemności zapewnia, że układ pracuje zgodnie z założeniami projektowymi. Na przykład, w aplikacjach audio, niewłaściwa pojemność może prowadzić do zniekształceń dźwięku, a w obwodach zasilania, do niestabilności napięcia. Praktyczne podejście do wymiany kondensatorów obejmuje także przestrzeganie norm, takich jak IEC 60384, które regulują klasyfikację, parametry i metody testowania kondensatorów. Zachowanie tych standardów zapewnia bezpieczeństwo i niezawodność urządzenia. Ponadto, w przypadku wymiany kondensatora, warto również zwrócić uwagę na jego napięcie pracy oraz typ (elektrolityczny, ceramiczny, mylarowy itp.), co jest zgodne z dobrą praktyką serwisową.

Pytanie 5

Jak wygląda poziom sygnału w.cz. po przejściu przez tłumik o tłumieniu -20 dB, jeżeli poziom sygnału na wejściu wynosi 40 dBmV?

A. 20 dBmV
B. 70 dBmV
C. 60 dB
D. 20 dB
W przypadku odpowiedzi 60 dBmV występuje podstawowy błąd w interpretacji tłumienia sygnału. Tłumik nie wzmacnia sygnału, a wręcz przeciwnie, osłabia jego poziom. Przyjęcie, że po zastosowaniu tłumika poziom sygnału zwiększa się, jest fundamentalnym nieporozumieniem. Dodatkowo, wybór 20 dB jako odpowiedzi opiera się na mylnym założeniu, że dB można traktować jako jednostkę absolutną, podczas gdy w rzeczywistości jest to jednostka logarytmiczna odnosząca się do stosunku mocy. Rezygnacja z przeliczenia jednostek i właściwego zrozumienia, że dB nie jest bezpośrednio porównywalne do dBmV, prowadzi do dalszych nieprawidłowości w ocenie poziomu sygnału. Odpowiedź 60 dB również jest błędna, ponieważ nie odnosi się do zmierzonego poziomu sygnału, lecz do jednostki tłumienia. Kluczowe jest rozróżnienie między różnymi jednostkami miary oraz ich kontekstem w telekomunikacji. Podstawowym błędem myślowym jest zatem brak uwzględnienia fundamentalnych zasad dotyczących tłumienia sygnału, co może mieć poważne konsekwencje w praktycznych zastosowaniach, takich jak projektowanie systemów transmisji czy określanie parametrów sygnału w sieciach telekomunikacyjnych.

Pytanie 6

Na rysunku pokazano schemat ideowy zasilacza stabilizowanego, w którym uszkodzeniu uległ stabilizator napięcia zaznaczony symbolem X. Ze względu na uszkodzenie obudowy stabilizatora nie jest możliwa identyfikacja jego oznaczeń. Zgodnie z instrukcją serwisową zasilacza wartości zaznaczonych na rysunku napięć i prądów są następujące: U1 = 20 V, U2= 15 V, I = 1,8 A. W tabeli wymieniono listę dostępnych zamienników stabilizatora wraz z wartościami wybranych parametrów elektrycznych. Jako zamiennik należy użyć stabilizatora oznaczonego symbolem

SymbolMaks. napięcie wejścioweNapięcie wyjścioweMaks. prąd wyjściowyTyp obudowy
LM78M1535 V15 V500 mATO-220
LM78S1535 V15 V2 ATO-220
LM780535 V5 V1 ATO-220
LM79L15-35 V-15 V100 mATO-92

Ilustracja do pytania
A. LM78M15
B. LM78S15
C. LM79L15
D. LM7805
Wybór innych stabilizatorów, takich jak LM78M15, LM7805 czy LM79L15, nie jest odpowiedni ze względu na ich parametry elektryczne, które w konkretnym przypadku nie spełniają wymagań schematu. Stabilizator LM78M15 oferuje napięcie wyjściowe 15 V, co teoretycznie pasuje do jednego z wymogów, lecz jego maksymalny prąd wynoszący 1 A jest niewystarczający dla aplikacji wymagającej 1,8 A. Niska wydolność prądowa może prowadzić do przegrzania i uszkodzenia stabilizatora. Z kolei LM7805, z napięciem wyjściowym 5 V, nie jest w stanie zrealizować wymaganego napięcia 15 V, co automatycznie wyklucza go z możliwości zastosowania w tej sytuacji. Stabilizator LM79L15, chociaż również dostarcza napięcie 15 V, jest stabilizatorem napięcia ujemnego, co czyni go całkowicie nieodpowiednim w kontekście zasilacza, który wymaga dodatniego napięcia. Kluczowym błędem w rozumowaniu może być brak zrozumienia różnicy między napięciem dodatnim a ujemnym, a także nieznajomość specyfikacji dotyczących maksymalnego prądu wyjściowego. W praktyce należy zawsze dokładnie analizować dane techniczne stabilizatorów, aby zapewnić ich odpowiedni dobór do planowanej aplikacji, co jest podstawą efektywnego projektowania układów elektronicznych.

Pytanie 7

Jakie rodzaje pamięci tracą zawartość po ustaniu zasilania?

A. EPROM
B. EEPROM
C. PROM
D. RAM
Wybór pamięci PROM (Programmable Read-Only Memory) sugeruje nieporozumienie dotyczące jej właściwości. PROM jest pamięcią stałą, co oznacza, że dane zapisane w niej są trwałe i nie znikają po wyłączeniu zasilania. Ta pamięć jest programowalna raz, co sprawia, że jest wykorzystywana głównie do przechowywania oprogramowania, które po zapisaniu nie wymaga modyfikacji. W przypadku EEPROM (Electrically Erasable Programmable Read-Only Memory), dane również pozostają zachowane, nawet po zaniku napięcia, a pamięć ta umożliwia wielokrotne kasowanie i zapisywanie danych przy użyciu prądu elektrycznego. Wreszcie, EPROM (Erasable Programmable Read-Only Memory) jest pamięcią, którą można kasować poprzez naświetlanie jej ultrafioletem, co również potwierdza jej charakter jako pamięci trwałej. Pamięć RAM jest kluczowym elementem nowoczesnych systemów komputerowych, a jej ulotność jest cechą, która odróżnia ją od innych typów pamięci, takich jak PROM, EEPROM i EPROM. Zrozumienie tych różnic jest kluczowe dla poprawnego doboru pamięci w zależności od zastosowania oraz wymagań projektowych.

Pytanie 8

W systemie z wzmacniaczem oraz głośnikiem kluczowe jest z perspektywy efektywności układu, aby impedancja głośnika

A. była jak najmniejsza
B. była równa impedancji wyjściowej wzmacniacza
C. przekraczała impedancję wyjściową wzmacniacza
D. była jak największa
Poprawną odpowiedzią jest "równa impedancji wyjściowej wzmacniacza", gdyż zasadniczym celem w projektowaniu systemów audio jest osiągnięcie maksymalnej efektywności energetycznej. Zasada dopasowania impedancji wskazuje, że impedancja głośnika powinna być zgodna z impedancją wyjściową wzmacniacza, co minimalizuje straty energii. W praktyce, jeśli impedancja głośnika jest na poziomie 8 Ohm, a wzmacniacz ma impedancję wyjściową również 8 Ohm, to cała moc wyjściowa wzmacniacza zostanie przekazana do głośnika, co zapewnia optymalne wykorzystanie energii i jakość dźwięku. Niedopasowanie impedancji prowadzi do strat mocy, co skutkuje niższą głośnością oraz zniekształceniami dźwięku. Dlatego ważne jest, aby przy wyborze głośników do wzmacniaczy, uwzględniać parametry techniczne, takie jak impedancja, zgodnie z zaleceniami producentów sprzętu audio. Warto również pamiętać, że standardy branżowe, takie jak AES (Audio Engineering Society), promują stosowanie dopasowania impedancji dla poprawy jakości dźwięku w systemach audio.

Pytanie 9

Która z technologii stosuje światło podczerwone do przesyłania danych?

A. IRDA
B. BLUETOOTH
C. ZIGBEE
D. WIMAX
IRDA, czyli Infrared Data Association, to taki fajny standard do komunikacji bezprzewodowej. Działa na zasadzie światła podczerwonego i jest wykorzystywany do przesyłania danych na krótkich dystansach. Sporo urządzeń korzysta z tej technologii, jak telefony, laptopy czy różne drukarki i skanery. Działa to tak, że urządzenia muszą być blisko siebie, zazwyczaj w odległości maksymalnie 1 metra, a nawet można przesyłać dane z prędkością do 4 Mbps. Przykładowo, można łatwo przesłać kontakty między telefonami, nawet bez kabli. IRDA jest też oszczędna pod względem energii, co czyni ją idealną dla urządzeń na baterie. Dzięki temu standardowi różne urządzenia od różnych producentów mogą ze sobą współpracować, co jest naprawdę ważne w dzisiejszym świecie komunikacji bezprzewodowej.

Pytanie 10

Jeżeli wartość rezystancji potencjometru suwakowego pomiędzy zaciskiem krańcowym a zaciskiem ślizgacza zmienia się proporcjonalnie do położenia ślizgacza, to charakterystyka takiego potencjometru stanowi funkcję

A. hiperboliczną
B. liniową
C. wykładniczą
D. logarytmiczną
Potencjometr suwakowy działa na zasadzie zmiany rezystancji w zależności od położenia ślizgacza. Kiedy mówimy, że wartość rezystancji zmienia się wprost proporcjonalnie do położenia ślizgacza, oznacza to, że zmiana wartości rezystancji jest liniowa w odniesieniu do ruchu ślizgacza. Przykładowo, w przypadku potencjometru suwakowego o całkowitej rezystancji 10 kΩ, jeśli ślizgacz znajduje się w połowie drogi, wartość rezystancji między skrajnym zaciskiem a ślizgaczem wyniesie 5 kΩ. Taki charakterystyka jest niezwykle przydatna w aplikacjach audio, gdzie potencjometry linowe są wykorzystywane do regulacji głośności. W standardach branżowych, takich jak IEC, zaleca się użycie potencjometrów liniowych w sytuacjach, gdzie oczekuje się precyzyjnej i proporcjonalnej regulacji. Zrozumienie tej zasady pozwala na lepsze projektowanie obwodów elektronicznych oraz zrozumienie dynamiki działania różnych komponentów. Praca z potencjometrami liniowymi daje inżynierom szeroki wachlarz możliwości dostosowywania i optymalizacji systemów elektronicznych.

Pytanie 11

Do detektorów gazów nie wlicza się detektor

A. gaz ziemny
B. gazów usypiających
C. tlenku węgla
D. dymu i ciepła
Wybór odpowiedzi, która odnosi się do czujek innych niż gazów, może wynikać z nieporozumienia dotyczącego funkcji i zastosowania różnych typów czujek. Czujki tlenku węgla, gazów usypiających oraz gazu ziemnego są specjalistycznie zaprojektowane do detekcji konkretnych substancji chemicznych, które w sytuacjach awaryjnych mogą zagrażać życiu i zdrowiu użytkowników. Tlenek węgla, jako bezwonny i bezbarwny gaz, jest szczególnie niebezpieczny, gdyż może prowadzić do zatrucia, a jego wykrycie wymaga specjalnych czujek, które nie mają nic wspólnego z dymem czy ciepłem. Gazy usypiające, takie jak dwutlenek węgla, również wymagają wyspecjalizowanych technologii detekcji, aby zmniejszyć ryzyko utraty przytomności w wyniku ich niekontrolowanej koncentracji w powietrzu. Stąd wybór czujek gazów powinien być zgodny z ich przeznaczeniem, a nie mylony z urządzeniami do wykrywania dymu czy ognia. W praktyce, wiele osób popełnia błąd, sądząc, że czujki dymu mogą także wykrywać obecność gazów. To zrozumienie jest kluczowe dla zapewnienia skutecznej ochrony w domach i miejscach pracy. Dlatego istotne jest, aby być świadomym funkcji i zastosowania każdego rodzaju czujki, co jest zgodne z zaleceniami organizacji zajmujących się bezpieczeństwem, takich jak National Fire Protection Association (NFPA) oraz Europejska Organizacja Normalizacyjna (CEN), które promują stosowanie odpowiednich urządzeń w odpowiednich kontekstach.

Pytanie 12

Dioda LED w zakresie długości fali 940 nm generuje promieniowanie elektromagnetyczne

A. żółte
B. zielone
C. ultrafioletowe
D. podczerwone
Dioda LED emitująca promieniowanie elektromagnetyczne o długości fali 940 nm należy do zakresu promieniowania podczerwonego. Promieniowanie to jest niewidoczne dla ludzkiego oka, ale ma szerokie zastosowanie w technologii, w tym w telekomunikacji, czujnikach ruchu oraz w urządzeniach zdalnego sterowania. Na przykład, diody LED emitujące podczerwień są często wykorzystywane w pilotach do telewizorów oraz w systemach monitoringu, gdzie przesyłają dane bezprzewodowo. Warto zaznaczyć, że zakres podczerwieni rozciąga się od 700 nm do 1 mm, co czyni długość fali 940 nm idealnym kandydatem do zastosowań w technologii IR. Zrozumienie tego rodzaju promieniowania jest istotne dla projektowania systemów optycznych oraz elektronicznych, które wykorzystują detekcję na podczerwień, co ma kluczowe znaczenie w nowoczesnych rozwiązaniach technologicznych.

Pytanie 13

Jakie narzędzie powinno zostać użyte do podłączenia czujnika (zasilanie +12 V oraz masa, styki alarmowe i sabotażowe w konfiguracji NC) do centrali alarmowej?

A. Zaciskarka
B. Odsysacz
C. Wkrętak
D. Lutownica
Wkrętak jest narzędziem niezbędnym do podłączenia czujki do centrali alarmowej, szczególnie gdy chodzi o zapewnienie solidnego i stabilnego połączenia elektrycznego. W przypadku czujek, zasilanie oraz styki alarmowe są często zabezpieczone śrubami, które należy odkręcić lub dokręcić. Użycie wkrętaka pozwala na precyzyjne manipulowanie tymi elementami, co jest kluczowe dla prawidłowego działania systemu alarmowego. Zastosowanie wkrętaka w tym kontekście jest zgodne z najlepszymi praktykami branżowymi, które zalecają nie tylko dbałość o poprawność połączeń, ale także ich bezpieczeństwo. Warto również podkreślić, że prawidłowe połączenie czujki z centralą alarmową ma kluczowe znaczenie dla jej funkcjonowania. Nieprawidłowe połączenia mogą prowadzić do fałszywych alarmów bądź całkowitego braku reakcji systemu na zdarzenia. Dlatego wybór odpowiednich narzędzi, takich jak wkrętak, jest fundamentalny w pracy z systemami zabezpieczeń, w których niezawodność i dokładność są kluczowe. Dobrze przeprowadzone połączenia są podstawą dla stabilności i wydajności całego systemu alarmowego.

Pytanie 14

Kto głównie korzysta z instrukcji serwisowych?

A. osoby naprawiające uszkodzony sprzęt
B. osoby użytkujące sprzęt
C. osoby dostarczające sprzęt do klienta
D. osoby sprzedające sprzęt
Instrukcje serwisowe są kluczowym narzędziem dla osób zajmujących się naprawą uszkodzonego sprzętu. Zawierają one szczegółowe informacje dotyczące diagnozowania problemów, kroków do ich rozwiązania oraz specyfikacji technicznych, które są niezbędne do prawidłowej naprawy. Na przykład, w przypadku awarii sprzętu elektronicznego, technik korzysta z instrukcji serwisowych, aby zlokalizować usterkę, zrozumieć, jakie części należy wymienić oraz jakie narzędzia są potrzebne do przeprowadzenia naprawy. W branży zamiennej istnieje szereg standardów, jak ISO 9001, które promują dokumentację procedur serwisowych. Dobre praktyki w zakresie serwisowania sprzętu obejmują także regularne aktualizowanie instrukcji zgodnie z najnowszymi rozwiązaniami technicznymi oraz zapewnienie ich dostępności dla wszystkich techników. Posiadanie dobrze opracowanych instrukcji serwisowych wpływa na efektywność pracy, redukuje błędy oraz przyspiesza czas reakcji na awarie, co jest kluczowe w zachowaniu wysokiej jakości usług serwisowych.

Pytanie 15

Jaką wartość prądu z akumulatora o napięciu 6 V zużywa przetwornica napięcia 6 VDC / 12 VDC przy założonym teoretycznie 100% współczynniku sprawności energetycznej, podczas zasilania czterech zewnętrznych kamer systemu monitoringu napięciem 12 V, z których każda wymaga prądu rzędu około 50 mA?

A. 0,3 A
B. 0,4 A
C. 0,1 A
D. 0,2 A
Wybór niepoprawnej wartości natężenia prądu często wynika z błędnego zrozumienia zasad działania przetwornic napięcia oraz nieprawidłowego sumowania prądów pobieranych przez urządzenia. Odpowiedzi takie jak 0,1 A, 0,2 A lub 0,3 A mogą wydawać się atrakcyjne ze względu na to, że łączny prąd pobierany przez cztery kamery wynosi 200 mA, jednak nie uwzględniają one kluczowego aspektu, jakim jest sprawność przetwornicy oraz różnica napięć. Przetwornica przekształcająca napięcie z 6 V na 12 V musi pobrać więcej prądu z akumulatora, aby dostarczyć odpowiednią moc na wyjściu. Prawo Ohma oraz zasada zachowania energii mówiąc, że moc musi być zachowana, w szczególności w systemie idealnym, prowadzi do wniosku, że natężenie prądu pobieranego z akumulatora będzie większe niż natężenie prądu na wyjściu przetwornicy. W przypadku 100% sprawności przetwornicy, która jest w praktyce nieosiągalna, ale przyjmowana do uproszczenia obliczeń, dla 0,2 A na wyjściu 12 V musimy uwzględnić podwójne natężenie dla 6 V, co prowadzi do wartości 0,4 A. Ignorowanie tej zasady prowadzi do nieprawidłowych obliczeń i błędnych wniosków. W rzeczywistości, w projektowaniu systemów zasilania, dobrym zwyczajem jest zawsze przewidywać straty energii i obliczać wymaganą moc na podstawie rzeczywistych danych technicznych urządzeń oraz specyfikacji przetwornic.

Pytanie 16

Ile wejść adresowych posiada multiplekser 8-wejściowy?

A. 5 wejść adresowych
B. 2 wejścia adresowe
C. 4 wejścia adresowe
D. 3 wejścia adresowe
Multiplekser 8-wejściowy wymaga 3 wejść adresowych, aby skutecznie zidentyfikować jeden z ośmiu dostępnych sygnałów wejściowych. Każde wejście adresowe może przyjąć wartość binarną 0 lub 1, co oznacza, że 3 bity adresowe mogą reprezentować 2^3 = 8 kombinacji, co idealnie odpowiada liczbie sygnałów wejściowych w tym przypadku. Przykładem zastosowania multipleksera 8-wejściowego jest w systemach cyfrowych, gdzie może on być używany do wyboru jednego z wielu sygnałów w systemach telekomunikacyjnych lub w obwodach logicznych. Standardy takie jak IEEE 802.3 dla Ethernetu wykorzystują podobne mechanizmy do zarządzania ruchem danych. Dobre praktyki w projektowaniu systemów cyfrowych sugerują stosowanie multiplekserów w celu uproszczenia architektury i minimalizacji ilości wymaganych połączeń, co zapewnia większą elastyczność i łatwiejsze zarządzanie komponentami systemu.

Pytanie 17

Na podstawie danych technicznych zawartych w tabeli określ rodzaj czujki opisanej przez te parametry.

Typ czujkiNC
Maksymalne napięcie przełączalne kontaktronu20 V
Maksymalny prąd przełączalny20 mA
Oporność przejściowa150 mΩ
Minimalna liczba przełączeń przy obciążeniu 20 V, 20 mA360 000
Materiał stykowyRu (Ruten)
Odległość zamknięcia styków kontaktronu18 mm
Odległość otwarcia styków kontaktronu28 mm
Masa10 g

A. Magnetyczna.
B. Akustyczna.
C. Ruchu.
D. Wibracyjna.
Czujka magnetyczna, która została opisana w tabeli, charakteryzuje się specyfiką, która czyni ją idealnym rozwiązaniem dla wielu zastosowań przemysłowych i zabezpieczeń. Niewielkie rozmiary oraz masa czujki są istotnymi czynnikami, które wpływają na jej wszechstronność. Czujki magnetyczne są często wykorzystywane w systemach alarmowych, do detekcji otwarcia drzwi i okien, a także w różnych aplikacjach automatyki budynkowej. Ich wysoka trwałość, wynikająca z minimalnej liczby przełączeń przy obciążeniu 20 V, 20 mA, wskazuje na mocne parametry elektryczne, które są niezbędne w środowiskach, gdzie niezawodność jest kluczowa. Materiał stykowy, jakim jest Ruten (Ru), zapewnia doskonałą przewodność oraz odporność na korozję, co jest typowe dla wysokiej jakości czujników. Zastosowanie czujników magnetycznych zgodnie z dobrymi praktykami i normami branżowymi, takimi jak standardy IEC, zapewnia ich efektywność i długowieczność w trudnych warunkach operacyjnych.

Pytanie 18

Jakie jest znaczenie tzw. krosowania przewodu skrętki, który jest zakończony dwoma wtykami RJ-45, podczas łączenia różnych urządzeń w sieci LAN?

A. Na uziemieniu ekranu skrętki
B. Na odpowiedniej zamianie kolejności ułożenia żył skrętki w jednym wtyku RJ-45 w stosunku do drugiego wtyku
C. Na zapewnieniu takiej samej sekwencji ułożenia żył skrętki w obu wtykach RJ-45
D. Na zastosowaniu oddzielnych ekranów dla poszczególnych żył skrętki
Krosowanie przewodu skrętki polega na zamianie kolejności żył w jednym wtyku RJ-45 w porównaniu do drugiego. Tego rodzaju połączenie jest niezbędne w przypadku łączenia dwóch urządzeń, które obydwa pełnią funkcję urządzeń końcowych, na przykład dwóch komputerów. Standard T568A oraz T568B definiuje, jak powinny być ułożone żyły w wtykach RJ-45, a krosowanie polega na tym, że w jednym wtyku żyły są ułożone zgodnie z jednym standardem, a w drugim zgodnie z drugim standardem, co pozwala na poprawne przesyłanie sygnałów. Przykładem zastosowania krosowania jest połączenie dwóch komputerów bezpośrednio za pomocą kabla, co pozwala na utworzenie lokalnej sieci bez użycia switcha. W praktyce krosowanie przewodów jest istotną umiejętnością dla techników sieciowych, gdyż umożliwia elastyczne konfigurowanie sieci lokalnych w zależności od potrzeb, zgodnie z zasadami wydajności i niskich opóźnień w komunikacji."

Pytanie 19

Zawarta w programie sekwencja powoduje zmianę stanu diody LED co

A. 0,01 s
B. 1 s
C. 10 s
D. 0,1 s
Wybór odpowiedzi sugerującej dłuższe interwały czasowe, takie jak 10 s, 0,1 s czy 0,01 s, nie uwzględnia kluczowych zasad związanych z percepcją użytkownika oraz funkcjonalnością diody LED w praktycznych zastosowaniach. Przy zmianie stanu co 10 s, użytkownik może nie zauważyć zmiany, co czyni tę odpowiedź nieefektywną w kontekście sygnalizacji. Typowo w projektach elektronicznych diody LED są wykorzystywane jako wskaźniki, które muszą być wystarczająco widoczne, aby użytkownicy mogli na bieżąco kontrolować stan urządzenia. W przypadku zbyt szybkich interwałów, jak 0,1 s czy 0,01 s, dioda LED może migać z taką częstotliwością, że ludzkie oko nie jest w stanie zarejestrować zmian. Efekt ten prowadzi do nieczytelności sygnalizacji, co może wprowadzać użytkownika w błąd i skutkować błędnymi interpretacjami stanu urządzenia. Dokładne oszacowanie czasu, w którym dioda LED zmienia stan, powinno brać pod uwagę ergonomię i komfort użytkowania. W praktyce, czas zmiany stanu powinien być zaprojektowany tak, aby nie tylko spełniał funkcję informacyjną, ale także był zgodny z zasadami efektywności energetycznej urządzeń elektronicznych. Dlatego kluczowe jest, aby dobierać czasy w sposób przemyślany, stosując się do standardów branżowych oraz dobrych praktyk inżynieryjnych w projektowaniu systemów sygnalizacyjnych.

Pytanie 20

Po włożeniu płyty DVD do odtwarzacza, szuflada napędu najpierw się wsuwa, a następnie od razu wysuwa. Jaka może być najprawdopodobniejsza przyczyna tego problemu?

A. Uszkodzony silnik przesuwu tacki
B. Luźny pasek zamykający szufladę lub styk krańcowy
C. Uszkodzony silnik odtwarzacza płyty
D. Uszkodzony laser
Luźny pasek zamykania szuflady lub styk krańcowy to najczęstsze przyczyny problemów z tacką napędu DVD. W przypadku, gdy pasek zamykania jest luźny, mechanizm nie może prawidłowo zamknąć tacki, co prowadzi do jej natychmiastowego wysunięcia. Dobrą praktyką jest regularne sprawdzanie stanu pasków w urządzeniach mechanicznych oraz ich wymiana, gdy zauważymy oznaki zużycia. Ponadto, styki krańcowe pełnią kluczową rolę w sygnalizowaniu, czy tacka jest w prawidłowej pozycji. Jeśli styk nie działa poprawnie, system może odbierać błędne informacje i niepotrzebnie aktywować mechanizm wysuwania. W takich przypadkach warto zapoznać się z dokumentacją techniczną producenta, aby zrozumieć zasady działania mechanizmu oraz procedury diagnostyczne. Rozumienie tego mechanizmu jest szczególnie istotne dla techników zajmujących się naprawą sprzętu audio-wideo oraz dla użytkowników, którzy chcą samodzielnie rozwiązywać problemy z urządzeniami.

Pytanie 21

Dodatnie sprzężenie zwrotne polega na tym, że część sygnału

A. wejściowego jest przekazywana na wyjście w fazie z sygnałem wyjściowym
B. wyjściowego trafia na wejście w przeciwfazie do sygnału wyjściowego
C. wyjściowego zostaje przekazywana na wejście w fazie z sygnałem wejściowym
D. wejściowego kierowana jest na wyjście w przeciwfazie z sygnałem wyjściowym
Odpowiedź, że dodatnie sprzężenie zwrotne polega na przekazywaniu sygnału wyjściowego na wejście w fazie z sygnałem wejściowym, jest poprawna, ponieważ dodatnie sprzężenie zwrotne rzeczywiście polega na wzmocnieniu sygnału. W praktyce oznacza to, że sygnał wyjściowy jest dodawany do sygnału wejściowego, co prowadzi do zwiększenia wartości sygnału w systemie. Takie podejście jest powszechnie stosowane w różnych systemach, takich jak wzmacniacze audio, gdzie dążymy do uzyskania intensyfikacji dźwięku. Dodatnie sprzężenie zwrotne znajduje zastosowanie także w systemach stabilizacji, takich jak kontrola temperatury, gdzie zwiększenie sygnału może prowadzić do szybszego osiągnięcia pożądanej wartości. Standardowe praktyki inżynieryjne zalecają ostrożne stosowanie dodatniego sprzężenia zwrotnego, ponieważ może ono prowadzić do niestabilności systemu i oscylacji, jeśli nie jest odpowiednio zaprojektowane. Kluczowe jest zrozumienie, że dodatnie sprzężenie zwrotne wzmacnia sygnał, co może przynieść zarówno korzyści, jak i ryzyko, dlatego wymaga odpowiedniej analizy i projektowania.

Pytanie 22

Diody LED w kolorze niebieskim z wartością katalogową napięcia przewodzenia UD= 2 V oraz maksymalnym prądem przewodzenia ID= 15 mA powinny być podłączone do zasilacza o napięciu stałym Uz = 24 V. Jakie wartości powinien mieć dodatkowy rezystor Rz, który będzie współpracował z diodą w układzie szeregowym, aby nie przekroczyć dopuszczalnej wartości prądu diody oraz maksymalnej mocy P, wydzielającej się na rezystorze Rz?

A. Rz=1,5 kΩ, P=0,5 W
B. Rz=1,5 kΩ, P=0,25 W
C. Rz=150 Ω, P=1W
D. Rz=150 Ω, P=1W
Wybór wartości rezystora Rz na poziomie 1,5 kΩ oraz mocy 0,5 W jest poprawny, ponieważ zapewnia on odpowiednie warunki do pracy diody LED. Przy napięciu zasilania Uz = 24 V oraz napięciu przewodzenia diody UD = 2 V, różnica napięcia, która musi być wydana na rezystorze wynosi 24 V - 2 V = 22 V. Korzystając z prawa Ohma, możemy obliczyć wartość prądu I przez diodę, przyjmując maksymalną wartość prądu przewodzenia diody I_D = 15 mA. Zatem rezystor Rz obliczamy z wzoru: Rz = U/R = 22 V / 0,015 A = 1466,67 Ω, co zaokrąglamy do standardowej wartości 1,5 kΩ. Ponadto, moc wydzielająca się na rezystorze Rz można obliczyć jako P = I² * Rz = (0,015 A)² * 1500 Ω = 0,3375 W, co jest poniżej 0,5 W, co oznacza, że zastosowany rezystor o mocy 0,5 W wystarczy. Takie podejście pozwala na bezpieczne działanie diody LED oraz rezystora, co jest zgodne z dobrą praktyką projektowania obwodów elektronicznych, gdzie zawsze powinno się uwzględniać marginesy bezpieczeństwa.

Pytanie 23

W jakim typie pamięci przechowywane są indywidualne preferencje użytkownika podczas programowania cyfrowego odbiornika satelitarnego z opcją nagrywania wybranego kanału telewizyjnego?

A. EPROM
B. EEPROM
C. ROM
D. RAM
Odpowiedź o wyborze EEPROM ( Electrically Erasable Programmable Read-Only Memory) jest prawidłowa, ponieważ ten typ pamięci jest idealny do przechowywania indywidualnych ustawień użytkownika w urządzeniach takich jak cyfrowe tunery satelitarne. EEPROM pozwala na elektroniczne kasowanie i ponowne programowanie danych, co czyni go doskonałym rozwiązaniem do zapisywania ustawień użytkownika, które mogą być zmieniane i aktualizowane bez potrzeby wymiany układu pamięci. W kontekście tunera satelitarnego, użytkownik może zapisać preferencje dotyczące kanałów, harmonogramy nagrywania, czy inne szczegóły, które muszą być zachowane nawet po wyłączeniu urządzenia. Przykładem zastosowania EEPROM jest przechowywanie kodów dostępu oraz danych konfiguracyjnych, co jest zgodne z najlepszymi praktykami w projektowaniu urządzeń elektronicznych, gdzie elastyczność i możliwość aktualizacji oprogramowania są kluczowe. Standardy branżowe zalecają użycie EEPROM do takich celów z uwagi na jego trwałość i niezawodność w przechowywaniu danych, co czyni go preferowanym wyborem w wielu nowoczesnych urządzeniach.

Pytanie 24

Włókno jednomodowe przenosi w swoim rdzeniu osiowo

A. cztery fale świetlne
B. dwie fale świetlne
C. jedną falę świetlną
D. trzy fale świetlne
Włókno jednomodowe, ze względu na swoją konstrukcję, przenosi jedną falę świetlną w osiowym rdzeniu. Ta cecha jest kluczowa dla jego zastosowania w telekomunikacji i systemach transmisji danych, gdzie wysoka jakość sygnału i minimalne straty są niezwykle istotne. Włókna jednomodowe mają bardzo małą średnicę rdzenia, zazwyczaj wynoszącą około 8–10 mikrometrów, co umożliwia propagację tylko jednej modełki świetlnej. Dzięki temu, włókna te charakteryzują się niskim współczynnikiem tłumienia, co pozwala na przesyłanie sygnałów na dużych odległościach bez znacznych strat. Przykładem zastosowania włókien jednomodowych są systemy światłowodowe w infrastrukturze telekomunikacyjnej, gdzie stosuje się je do łączenia stacji bazowych z centralami. Właściwe zastosowanie włókien jednomodowych, zgodnie z normami ITU-T G.652, pozwala na efektywne i niezawodne przesyłanie danych.

Pytanie 25

Jaką rolę pełni program debugger?

A. Umożliwia uruchomienie programu i identyfikację błędów w nim
B. Przekształca funkcję logiczną w układ funkcjonalny
C. Generuje kod maszynowy na podstawie kodu źródłowego
D. Konwertuje kod napisany w jednym języku na odpowiednik w innym języku
Debugger to narzędzie, które odgrywa kluczową rolę w procesie tworzenia oprogramowania, umożliwiając programistom uruchamianie ich kodu w kontrolowanych warunkach oraz wykrywanie błędów. Główne funkcje debuggera obejmują możliwość zatrzymywania wykonania programu w określonych punktach (tzw. breakpointy), co pozwala na analizę stanu zmiennych oraz śledzenie przepływu wykonywania programu. Dzięki temu programiści mogą zidentyfikować, dlaczego dany fragment kodu nie działa zgodnie z oczekiwaniami. Na przykład, jeśli program nie zwraca oczekiwanego wyniku, debugger umożliwia analizę wartości zmiennych w momencie przerywania działania program, co jest nieocenionym wsparciem w diagnozowaniu problemów. W praktyce, używanie debuggera jest zgodne z najlepszymi praktykami inżynierii oprogramowania, które zalecają testowanie oraz poprawianie kodu w iteracyjnym cyklu życia projektu. Dodatkowo, nowoczesne IDE (Integrated Development Environment) często integrują funkcje debugowania, co ułatwia programistom efektywne usuwanie błędów na wczesnych etapach rozwoju oprogramowania.

Pytanie 26

Tabela przedstawia ustawienia zworek czujki ruchu. W jakim położeniu należy ustawić zworki w celu włączenia wysokiej ochrony, diody LED i detekcji ruchu pojedynczym sygnałem?

J1
Opcja Digital Shield (ochrony przed zakłóceniami)
Wył = wysoka ochrona
Wł. = niska ochrona
J2
Ustawienia LED
Wył = wyłączony
Wł. = włączony
J3
Pojedyncze lub podwójne sygnały detekcji
Wył = podwójne
Wł. = pojedyncze

A. J1-włączona, J2-wyłączona, J3-wyłączona.
B. J1-wyłączona, J2-wyłączona, J3-wyłączona.
C. J1-wyłączona, J2-wyłączona, J3-włączona.
D. J1-wyłączona, J2-włączona, J3-włączona.
Aby włączyć wysoką ochronę, diodę LED i detekcję ruchu pojedynczym sygnałem, zworki muszą być ustawione zgodnie z określonymi wymaganiami. Zworka J1 musi być wyłączona, co oznacza, że czujka będzie działać w trybie wysokiej ochrony. W kontekście standardów ochrony, tryb wysoki zapewnia większą czułość detekcji, co jest kluczowe w środowiskach o podwyższonej konieczności zabezpieczeń. Zworka J2 powinna być włączona, co aktywuje diodę LED, informując użytkownika o stanie czujki. Zworka J3, również włączona, umożliwia detekcję ruchu na pojedynczym sygnale, co jest istotne w systemach alarmowych, gdzie szybka reagowanie na incydent jest kluczowe. Ustawienia te są zgodne z najlepszymi praktykami w zakresie instalacji systemów zabezpieczeń i zapewniają optymalną funkcjonalność urządzenia. Należy pamiętać, że niewłaściwe ustawienie zworek może skutkować obniżeniem efektywności detekcji, co w kontekście ochrony mienia może prowadzić do poważnych konsekwencji.

Pytanie 27

Ostatnie dwa stopnie wzmacniacza trójstopniowego mają takie samo wzmocnienie napięciowe wynoszące 20 dB. Jakie powinno być wzmocnienie napięciowe pierwszego stopnia, aby całkowite wzmocnienie napięciowe wynosiło KU = 60 dB?

A. 10 V/V
B. 2 V/V
C. 5 V/V
D. 1 V/V
Błędy w rozumieniu wzmacniaczy często wynikają z nieprawidłowego przeliczania wartości dB na współczynniki napięciowe. Na przykład, przy wzmocnieniu 60 dB, wiele osób może myśleć, że wystarczy dodać 60 wzmocnień 1 V/V, co jest błędnym podejściem. Wzmacniacze pracują w sposób logarytmiczny, a nie liniowy, co oznacza, że małe zmiany w dB prowadzą do dużych różnic w rzeczywistych wartościach napięcia. W przypadku opcji 2 V/V, ktoś mógłby błędnie założyć, że te wzmocnienie może być wystarczające, jednak przeliczenie na dB pokazuje, że to zaledwie 6 dB, co w kontekście wymaganego 60 dB jest znacznie niewystarczające. Podobnie, wzmocnienia 1 V/V i 5 V/V także są niewłaściwe ze względu na zbyt niskie wartości, które odpowiadają jeszcze mniejszym wzmocnieniom dB. Użytkownicy często zapominają, że sumowanie wzmocnień w dB wymaga dodawania wartości logarytmicznych, a nie liniowych, co prowadzi do błędnych wniosków o wymaganym wzmocnieniu pierwszego stopnia. Kluczowe jest zrozumienie, że każdy stopień wzmacniacza powinien być projektowany z myślą o całkowitym wzmocnieniu w systemie, a nie tylko o pojedynczych wartościach.

Pytanie 28

Podczas podłączania czujki akustycznej typu NC do centrali alarmowej w układzie EOL, trzeba szeregowo z kontaktem alarmowym tej czujki podłączyć

A. rezystor
B. termistor
C. diodę
D. kondensator
Podłączenie rezystora szeregowo ze stykiem alarmowym czujki akustycznej typu NC (Normalnie Zamknięty) w konfiguracji EOL (End of Line) jest kluczowe dla zapewnienia właściwego działania systemu alarmowego. Rezystor pełni rolę elementu zabezpieczającego oraz sygnalizującego stan linii. W konfiguracji EOL, rezystor jest umieszczony na końcu obwodu, co pozwala na monitorowanie wartości rezystancji. W przypadku zwarcia, rezystancja liniowa spadnie, co aktywuje alarm. Natomiast w przypadku otwarcia linii, rezystancja wzrośnie, również inicjując sygnał alarmowy. Zastosowanie rezystora zgodnie z normami, takimi jak EN 50131, zapewnia większą niezawodność systemu alarmowego, a także minimalizuje ryzyko fałszywych alarmów. Przykładowo, w instalacjach monitorujących systemy zabezpieczeń, takich jak ochrona obiektów, poprawne użycie rezystora EOL jest standardem branżowym, który zwiększa efektywność i bezpieczeństwo systemu.

Pytanie 29

Jaką moc generuje rezystor o rezystancji 10 Ω, przez który przepływa prąd o natężeniu 100 mA?

A. 10 W
B. 0,01 W
C. 0,1 W
D. 1 W
Wszystkie pozostałe odpowiedzi są wynikiem błędnych obliczeń lub niezrozumienia podstawowych zasad dotyczących obwodów elektrycznych. Zastosowanie wzoru P = U * I wymaga znajomości napięcia na rezystorze, które można obliczyć poprzez prawo Ohma. Często popełnianym błędem jest nieprawidłowe przekształcenie jednostek, co prowadzi do niedoszacowania lub przeszacowania mocy. Na przykład, odpowiedzi 0,01 W i 1 W mogą wynikać z mylnego zastosowania jednostek lub pominięcia jednego z kroków obliczeniowych. Odpowiedź 10 W sugeruje, że moc byłaby znacznie wyższa, co nie jest możliwe przy zadanych wartościach, a także wskazuje na błędne zrozumienie skali rezystancji i natężenia prądu. Ważne jest, aby w obliczeniach dokładnie śledzić wszystkie jednostki i zmienne, aby uniknąć takich nieprawidłowości. Kluczowym krokiem w rozwiązywaniu problemów elektrycznych jest zrozumienie, jak różne parametry obwodu wpływają na siebie nawzajem. W praktyce, zaleca się również prowadzenie przemyślanej dokumentacji oraz dbanie o przestrzeganie norm dotyczących bezpiecznej pracy z urządzeniami elektrycznymi, aby uniknąć błędów prowadzących do niebezpiecznych sytuacji.

Pytanie 30

Sprzęt DVR w technologii 960H pozwala na rejestrację obrazu o maksymalnej rozdzielczości

A. 720 x 480 px
B. 960 x 582 px
C. 360 x 240 px
D. 1280 x 720 px
To prawda, że DVR w technologii 960H pozwala na zapis obrazu w rozdzielczości 960 x 582 px. Jak wiesz, to dzięki szerszemu formatowi obrazu, który jest uznawany za standard w monitoringu. Technologia 960H to coś więcej niż klasyczny D1, co oznacza lepszą jakość obrazu, bo zwiększa liczbę pikseli. Wyobraź sobie, że gdy używasz kamer o wyższej rozdzielczości, jak 960H, to możesz zobaczyć więcej szczegółów, a to jest naprawdę ważne, gdy musisz rozpoznać kogoś lub zobaczyć detale. W praktyce, te urządzenia są słynne w systemach zabezpieczeń, bo jakość nagrania ma ogromne znaczenie, prawda? Dodatkowo, branżowe organizacje, które zajmują się bezpieczeństwem, polecają stosowanie 960H, co świadczy o jego skuteczności.

Pytanie 31

Jaka jest przybliżona wartość pasożytniczej częstotliwości lustrzanej (Fl) w zakresie AM dla sygnału radiowego o częstotliwości nośnej fs = 1 450 kHz oraz częstotliwości pośredniej odbiornika fp = 465 kHz (fl=f<Sub>s+2fp)?

A. 930 kHz
B. 2,38 MHz
C. 1915 kHz
D. 1,45 MHz
Wartość pasożytniczej częstotliwości lustrzanej (Fl) dla sygnału stacji radiowej oblicza się, wykorzystując wzór Fl = fs + 2fp. W naszym przypadku mamy częstotliwość nośną fs wynoszącą 1 450 kHz oraz częstotliwość pośrednią fp równą 465 kHz. Po podstawieniu wartości do wzoru otrzymujemy Fl = 1 450 kHz + 2 * 465 kHz = 1 450 kHz + 930 kHz = 2 380 kHz, co po zaokrągleniu daje 2,38 MHz. Zrozumienie tego zagadnienia jest kluczowe w kontekście projektowania odbiorników radiowych, gdzie pasożytnicze częstotliwości mogą prowadzić do zakłóceń w odbiorze sygnału. Na przykład, w tuningu odbiorników AM istotne jest, aby unikać częstotliwości lustrzanych, które mogą wpłynąć na jakość odbioru. Dobrą praktyką jest takie projektowanie, które minimalizuje wpływ takich efektów, poprzez odpowiednie filtrowanie i stosowanie technik demodulacji, które są zgodne ze standardami branżowymi.

Pytanie 32

Którą klasę warunków środowiskowych powinno spełniać urządzenie przeznaczone do pracy na zewnątrz w miejscu nienarażonym na oddziaływanie warunków atmosferycznych w temperaturze od -25°C do 50°C?

Obowiązujące klasy środowiskowe:
  • Klasa środowiskowa I (wewnętrzna): stabilna praca w temperaturze z zakresu od 5 do 40 °C i maksymalnej wilgotności powietrza do 75%. Urządzenia do zastosowania wewnętrznego.
  • Klasa środowiskowa II (zewnętrzna, ogólna): dopuszczalna temperatura otoczenia w zakresie od -10 do +40 °C, przy wilgotności powietrza do 75%. Urządzenia instalowane w pomieszczeniach, w których występują wahania temperatury.
  • Klasa środowiskowa III (zewnętrzna osłonięta): dopuszczalna temperatura pracy od -25 do +50 °C, przy wilgotności powietrza z zakresu od 85% do 95%. Urządzenia instalowane w warunkach zewnętrznych, w miejscach nie narażonych na bezpośrednie oddziaływanie warunków atmosferycznych (np. deszczu, wiatru, śniegu, słońca).
  • Klasa środowiskowa IV (zewnętrzna, ogólna): dedykowana dla urządzeń przeznaczonych do pracy w ekstremalnych warunkach pogodowych. Bezawaryjna i stabilna praca przy temperaturach z zakresu od -25 do +60 °C i maksymalnej wilgotności do 95%.

A. I
B. IV
C. II
D. III
Odpowiedź III jest poprawna, ponieważ klasa środowiskowa III obejmuje urządzenia zaprojektowane do pracy w warunkach zewnętrznych, które są osłonięte przed bezpośrednim działaniem warunków atmosferycznych. Urządzenia tej klasy mogą funkcjonować w temperaturach od -25°C do +50°C oraz w warunkach wysokiej wilgotności powietrza wynoszącej od 85% do 95%. W praktyce oznacza to, że urządzenia te mogą być wykorzystywane w różnych zastosowaniach, takich jak stacje meteorologiczne, czujniki monitorujące środowisko czy różnorodne systemy automatyki budynkowej. Ważne jest, aby w takich urządzeniach uwzględniać nie tylko zakres temperatury, ale także odporność na działanie wilgoci, co jest kluczowe dla ich długotrwałej pracy i niezawodności w zmieniających się warunkach atmosferycznych. Standardy dotyczące klas środowiskowych, takie jak IEC 60721-3-4, precyzują te wymagania, co pozwala na tworzenie bardziej odpornych i efektywnych technologii, które mogą być wykorzystywane na zewnątrz w różnorodnych aplikacjach.

Pytanie 33

W przypadku wzmacniaczy prądu stałego nie wykorzystuje się sprzężenia pojemnościowego pomiędzy poszczególnymi stopniami, ponieważ kondensator

A. prowadzi do przerwy dla sygnału o wysokiej częstotliwości
B. tak jak dioda, umożliwia przepływ sygnału tylko w jednym kierunku
C. nie przekazuje składowej stałej sygnału
D. działa jak zwarcie dla sygnału stałego
Kondensator w obwodach elektrycznych pełni kluczową rolę w separacji sygnałów stałych i zmiennych. Działając jako element filtrujący, blokuje składową stałą sygnału, co jest niezwykle istotne w aplikacjach wzmacniaczy prądu stałego. Wzmacniacze te muszą przenosić sygnały o składowej stałej, aby zapewnić stabilność i precyzję działania. Sprzężenie pojemnościowe, wykorzystujące kondensatory, nie tylko blokuje składową stałą, ale także może wprowadzać niepożądane zniekształcenia w sygnale, co może wpłynąć na wydajność całego obwodu. W praktyce oznacza to, że w przypadku wzmacniaczy prądu stałego, ich projektanci muszą unikać układów, które mogą wpływać na integralność sygnału, a tym samym stosować inne metody sprzężenia, które nie zakłócają składowej stałej. Ponadto, zgodnie z zasadami projektowania układów elektronicznych, bliskie związki między elementami w obwodach prądu stałego są kluczowe dla ich prawidłowego działania.

Pytanie 34

Która z podanych cech nie charakteryzuje się właściwościami idealnego wzmacniacza operacyjnego?

A. Nieskończenie wielkie różnicowe wzmocnienie napięciowe
B. Nieskończenie wielka rezystancja wyjściowa
C. Nieskończenie wielka rezystancja wejściowa
D. Nieskończenie szeroki zakres przenoszenia
Nieskończona duża rezystancja wyjściowa jest cechą, która nie opisuje idealnego wzmacniacza operacyjnego. W idealnym wzmacniaczu operacyjnym zakłada się, że rezystancja wyjściowa powinna być nieskończenie mała, co pozwala na uzyskanie maksymalnej mocy wyjściowej i minimalizację strat sygnału przy obciążeniu. W praktyce oznacza to, że wzmacniacz operacyjny powinien być w stanie dostarczyć sygnał do obciążenia bez zauważalnej zmiany napięcia wyjściowego. Na przykład, w zastosowaniach audio, niską rezystancję wyjściową wzmacniacza operacyjnego zapewnia, że poziom sygnału nie ulega degradacji, co przekłada się na lepszą jakość dźwięku. Takie podejście jest zgodne ze standardami branżowymi, gdzie oczekuje się, że wzmacniacze operacyjne będą miały zdolność do pracy w różnych warunkach obciążenia. Rezystancja wyjściowa na poziomie zbliżonym do zera pomaga również w stabilizacji sygnału podczas pracy w pętli sprzężenia zwrotnego, co jest kluczowe w wielu aplikacjach analogowych oraz cyfrowych.

Pytanie 35

Który z regulatorów, spośród wymienionych, wyróżnia się zerowym uchybem ustalonym?

A. Regulator trójstawny
B. Regulator dwustawny
C. PD
D. PI
Regulator PI, czyli ten proporcjonalno-całkujący, to naprawdę świetne rozwiązanie w automatyce. Działa tak, że po osiągnięciu stanu ustalonego różnica między wartością zadaną a rzeczywistą wynosi zero. Fajną cechą regulatora PI jest to, że potrafi wyeliminować uchyb w czasie, a to dzięki członowi całkującemu. W praktyce wykorzystuje się go w różnych systemach, na przykład w regulacji temperatury w piecach przemysłowych, co jest kluczowe, żeby wszystko działało jak należy. Dobrze jest stosować te regulatory tam, gdzie stabilność i małe oscylacje są na wagę złota. Z tego co wiem, zgodnie z normami ISA (International Society for Automation), używanie regulatorów PI w przemyśle pomaga poprawić jakość procesów i efektywność energetyczną. Co do jego skuteczności, można ją jeszcze podkręcić przez dobór odpowiednich parametrów, takich jak wzmocnienie proporcjonalne i czas całkowania. Dzięki temu dostosowujemy regulator do konkretnych potrzeb systemu.

Pytanie 36

Parametry techniczne podane w tabeli określają czujkę PIR

Parametry techniczne:
• Metoda detekcji: PIR
• Zasięg detekcji: 24 m (po 12 m na każdą stronę)
• Ilość wiązek: 4 (po 2 na każdą stronę)
• Zasilanie: 10 ÷ 28 V
• Pobór prądu: 38 mA (maks.)
• Temperatura pracy [st. C]: -20 do +50
• Stopień ochrony obudowy: IP55
• Wysokość montażu: 0,8 ÷1,2 m
• Masa: 400 g

A. tylko wewnętrzna o napięciu zasilania 12 V
B. tylko wewnętrzna o wysokości montażu 0,8-1,2 m
C. zewnętrzna o poborze prądu 50 mA
D. zewnętrzna o wysokości montażu 0,8-1,2 m
Analizując niepoprawne odpowiedzi, można zauważyć, że w pierwszej z nich podano, że czujka jest "tylko wewnętrzna o napięciu zasilania 12 V". To podejście jest mylące, ponieważ czujki PIR przeznaczone do użytku zewnętrznego często posiadają specyficzne cechy, takie jak wysoka odporność na warunki atmosferyczne, co nie jest zgodne z opisem. Oprócz tego, sama informacja o napięciu zasilania nie wystarcza do określenia miejsca montażu. W drugiej odpowiedzi zwrócono uwagę na pobór prądu 50 mA, co także nie jest wystarczające dla identyfikacji czujki jako zewnętrznej. Wartości te mogą dotyczyć zarówno modeli wewnętrznych, jak i zewnętrznych, a więc nie są kluczowe w kontekście montażu. Ostatnia niepoprawna odpowiedź wskazuje na "tylko wewnętrzną o wysokości montażu 0,8-1,2 m", co jest sprzeczne z podanymi parametrami technicznymi. Czujka PIR powinna być montowana w określonym zakresie wysokości, ale fakt, że jest to czujka wewnętrzna, nie ma zastosowania w kontekście tego pytania, ponieważ przytoczone parametry wyraźnie sugerują, że urządzenie jest przeznaczone do użytku zewnętrznego. Warto pamiętać, że przy wyborze czujki PIR kluczowe jest zrozumienie jej specyfikacji oraz przeznaczenia, co pozwala uniknąć typowych błędów myślowych związanych z jej zastosowaniem.

Pytanie 37

Jakie narzędzie należy zastosować do przykręcenia kabli w czujniku dymu i ciepła?

A. przecinak
B. klucz nasadowy
C. wkrętak
D. szczypce boczne
Wybór wkrętaka jako narzędzia do przykręcania przewodów w czujce dymu i ciepła jest słuszny, ponieważ wkrętak jest specjalistycznym narzędziem, które zostało zaprojektowane do pracy z wkrętami i śrubami. W przypadku instalacji czujników dymu i ciepła, które są kluczowe dla bezpieczeństwa pożarowego, odpowiednie mocowanie przewodów jest niezbędne. Wkrętak pozwala na precyzyjne i pewne dokręcenie elementów, co eliminuje ryzyko luźnych połączeń, które mogłyby prowadzić do awarii urządzenia. Użycie wkrętaka zgodnie z zaleceniami producenta oraz normami branżowymi, takimi jak normy IEC 60335 dotyczące urządzeń elektrycznych, jest praktyką, która zapewnia bezpieczeństwo i niezawodność działania systemów alarmowych. Ponadto, wkrętaki są dostępne w różnych rozmiarach i typach (np. płaskie, krzyżakowe), co pozwala na ich zastosowanie w wielu różnych konfiguracjach instalacyjnych, co czyni je uniwersalnym narzędziem dla techników i instalatorów.

Pytanie 38

Uchyb regulacji wynoszący 0 umożliwia działanie regulatora typu

A. ciągłym typu PI
B. ciągłym typu PD
C. nieciągłym, dwupołożeniowym
D. nieciągłym, trójpołożeniowym
Odpowiedź "ciągłym typu PI" jest prawidłowa, ponieważ regulator PI (proporcjonalno-całkujący) jest idealnym rozwiązaniem dla systemów, w których uchyb regulacji (czyli różnica między wartością zadaną a wartością rzeczywistą) równy 0 wskazuje na stabilność układu. Regulator PI działa poprzez wykorzystanie składowej proporcjonalnej oraz całkującej, co pozwala na efektywne eliminowanie uchybu ustalonego w systemach zamkniętej pętli. Przykładem zastosowania regulatorów PI może być kontrola temperatury w piecach przemysłowych, gdzie precyzyjne utrzymywanie zadanej temperatury jest kluczowe dla jakości produkcji. Regulatory PI są stosowane w branżach takich jak automatyka przemysłowa, procesy chemiczne oraz w systemach HVAC. Dzięki swojej prostocie i efektywności, są szeroko stosowane w praktyce inżynieryjnej, zgodnie z najlepszymi praktykami branżowymi, w tym normami IEC 61131 dla systemów automatyki. Warto również zauważyć, że regulacja PI jest często preferowana w układach o małej dynamice, gdzie szybkość reakcji nie jest kluczowym czynnikiem.

Pytanie 39

Zamontowanie na jednym końcu toru transmisyjnego źródła sygnału o stałej i znanej mocy oraz na przeciwnym końcu miernika mocy optycznej pozwala bezpośrednio ustalić

A. całkowite tłumienie toru optycznego
B. długość światłowodu
C. tłumienie złączy
D. miejsce spawu lub zgięcia światłowodu
Podłączenie źródła sygnału o stałej i znanej mocy do toru transmisyjnego oraz miernika mocy optycznej po drugiej stronie pozwala na bezpośrednie określenie całkowitego tłumienia toru optycznego. Całkowite tłumienie to suma wszystkich strat sygnału, które mogą wystąpić w torze transmisyjnym, w tym strat spowodowanych przez złącza, spawy oraz straty wewnętrzne samego włókna. Miernik mocy optycznej, po zmierzeniu mocy sygnału na wyjściu, umożliwia obliczenie różnicy między mocą wprowadzaną a mocą mierzona, co daje wartość całkowitego tłumienia. Zrozumienie i pomiar całkowitego tłumienia jest kluczowe w projektowaniu i utrzymaniu systemów światłowodowych, ponieważ wpływa na jakość sygnału oraz zasięg transmisji. W praktyce, technicy często wykorzystują te pomiary do diagnostyki i optymalizacji sieci, a także do monitorowania stanu infrastruktury zgodnie z normami takich organizacji jak IEC czy ITU.

Pytanie 40

Jakie elementy zawiera oznaczenie typu tranzystora?

A. tylko cyfry
B. cyfry i małe litery
C. cyfry oraz wielkie litery
D. tylko litery
Oznaczenie typu tranzystora rzeczywiście składa się z cyfr oraz wielkich liter, co jest zgodne z przyjętymi standardami w branży półprzewodników. Przykładem może być tranzystor typu BC547, gdzie 'BC' to oznaczenie serii, a '547' to numer katalogowy, który jest cyfrą. Takie oznaczenie ułatwia inżynierom oraz technikom identyfikację i dobór odpowiednich komponentów do projektów elektronicznych. Ponadto, zgodnie z normami międzynarodowymi, jak IEC 60747, oznaczenia tranzystorów powinny być jednoznaczne i pozwalać na szybkie zrozumienie specyfikacji, takich jak maksymalne napięcie, prąd czy zastosowanie. Używanie cyfr i wielkich liter pozwala na tworzenie bardziej zróżnicowanych i precyzyjnych oznaczeń, co jest kluczowe w kontekście profesjonalnych aplikacji elektronicznych oraz w dokumentacji technicznej, gdzie jasność i zrozumiałość oznaczeń mają ogromne znaczenie dla efektywności pracy zespołów inżynieryjnych. Te praktyki pomagają także w dostosowywaniu komponentów do różnych norm i standardów obowiązujących na rynkach międzynarodowych.