Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 25 maja 2025 08:37
  • Data zakończenia: 25 maja 2025 08:56

Egzamin niezdany

Wynik: 19/40 punktów (47,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Jak można zmierzyć moc pobieraną przez urządzenie zasilane napięciem 24 V DC?

A. mostkiem Wheatstone'a
B. woltomierzem i amperomierzem
C. mostkiem Thompsona
D. watomierzem w układzie Arona
Pomiar mocy pobieranej przez urządzenie zasilane napięciem 24 V DC można zrealizować poprzez zastosowanie woltomierza oraz amperomierza. Woltomierz umożliwia zmierzenie napięcia w obwodzie, natomiast amperomierz mierzy natężenie prądu. Moc (P) można obliczyć korzystając z równania P = U * I, gdzie U to napięcie, a I to natężenie prądu. Przykładowo, jeśli woltomierz wskazuje 24 V, a amperomierz 2 A, moc wynosi 48 W. Takie podejście jest zgodne z najlepszymi praktykami pomiarowymi, gdzie dokładność pomiarów jest kluczowa. Używanie woltomierza i amperomierza jest standardową metodą w wielu zastosowaniach, w tym w inżynierii elektrycznej i automatyce przemysłowej, co zapewnia wiarygodne i precyzyjne wyniki. Warto również pamiętać o prawidłowej kalibracji urządzeń pomiarowych, co wpływa na jakość wyników.

Pytanie 2

Jakie urządzenie powinno być zastosowane do zasilania silnika indukcyjnego klatkowego w układzie trójfazowym, aby umożliwić ustawienie maksymalnych wartości prądu rozruchowego oraz płynne dostosowanie prędkości obrotowej silnika?

A. Przemiennika częstotliwości
B. Softstartu
C. Prostownika sterowanego trójpulsowego
D. Przełącznika gwiazda-trójkąt
Wykorzystanie przełącznika gwiazda-trójkąt jest podejściem stosowanym głównie w przypadku silników o dużej mocy przy uruchamianiu. Jego celem jest zmniejszenie prądu rozruchowego poprzez przejście z połączenia w gwiazdę (gdzie silnik przy uruchamianiu pracuje z obniżoną mocą) do połączenia w trójkąt, co umożliwia pełne obciążenie. Jednakże, ta metoda nie pozwala na regulację prędkości obrotowej silnika, co czyni ją nieodpowiednią w kontekście wymagań przedstawionego pytania. Z kolei softstart to urządzenie, które także reguluje prąd rozruchowy, ale jego funkcjonalność kończy się po uruchomieniu silnika, co oznacza, że nie zapewnia on dalszej regulacji prędkości obrotowej. Dodatkowo, prostownik sterowany trójpulsowy jest komponentem używanym do prostowania prądu przemiennego, ale nie dostarcza funkcji regulacji prędkości obrotowej ani nie pozwala na kontrolowanie prądu rozruchowego w sposób wymagany do optymalizacji pracy silnika. Wybór nieodpowiednich urządzeń do zasilania silników może prowadzić do niewłaściwego ich działania, a także do zwiększenia zużycia energii, co jest niezgodne z nowoczesnymi standardami efektywności energetycznej, takimi jak ISO 50001. Dlatego znajomość i umiejętność prawidłowego doboru urządzeń jest kluczowa w inżynierii elektrycznej.

Pytanie 3

Którą z poniższych czynności należy regularnie przeprowadzać podczas serwisowania układu pneumatycznego?

A. Wymieniać szybkozłączki
B. Usuwać kondensat
C. Dostosowywać ciśnienie powietrza
D. Zastępować przewody pneumatyczne
Usuwanie kondensatu z układu pneumatycznego jest kluczowym elementem konserwacji, ponieważ nadmiar wilgoci może prowadzić do wielu problemów, w tym korozji, uszkodzenia komponentów oraz obniżenia wydajności systemu. Kondensat jest efektem skraplania się pary wodnej zawartej w powietrzu sprężonym, a jego obecność w układzie może mieć negatywny wpływ na działanie zarówno zaworów, jak i siłowników pneumatycznych. Regularne usuwanie kondensatu, na przykład poprzez stosowanie separatorów kondensatu lub automatycznych zaworów odpływowych, jest zgodne z dobrymi praktykami w branży pneumatycznej. Przykładem zastosowania jest przemysł motoryzacyjny, gdzie układy pneumatyczne są powszechnie wykorzystywane w narzędziach i maszynach. W takim przypadku niewłaściwe zarządzanie kondensatem może prowadzić do zacięć narzędzi oraz nieefektywnego działania linii produkcyjnej. Właściwa konserwacja nie tylko wydłuża żywotność układu, ale także zapewnia bezpieczeństwo i efektywność pracy.

Pytanie 4

Przed przystąpieniem do wymiany zaworu elektropneumatycznego, który jest sterowany przez PLC, należy zająć się zasilaniem pneumatycznym.

A. wyłączyć dopływ sprężonego powietrza, odłączyć siłownik oraz wyłączyć PLC
B. dezaktywować zasilanie pneumatyczne, odłączyć przewody od cewki elektrozaworu i przewody
C. odłączyć przewody zasilające sterownik oraz przewody pneumatyczne od elektrozaworu
D. wprowadzić sterownik PLC w tryb STOP, odłączyć zasilanie elektryczne oraz pneumatyczne układu
Wszystkie zaproponowane odpowiedzi pomijają kluczowe aspekty bezpieczeństwa związane z wymianą zaworu elektropneumatycznego. Kluczowym elementem każdej procedury konserwacji jest zapewnienie, że system jest całkowicie wyłączony i nie może być przypadkowo uruchomiony. Odpowiedzi, które sugerują odłączenie przewodów zasilających lub pneumatycznych bez wcześniejszego wprowadzenia PLC w tryb STOP oraz wyłączenia zasilania, są niebezpieczne. Przykładowo, odłączenie przewodów zasilających bez wcześniejszego zablokowania programu sterującego może prowadzić do sytuacji, gdzie system się uruchomi, co stwarza ryzyko dla operatora. Ponadto, wiele z tych podejść nie uwzględnia konieczności całkowitego odcięcia zasilania pneumatycznego, co może prowadzić do niekontrolowanego wypływu sprężonego powietrza. Tego rodzaju pominięcia są typowe dla osób, które nie zaznajomiły się z obowiązującymi standardami bezpieczeństwa w automatyce przemysłowej, takimi jak normy ISO czy ANSI Z535, które mają na celu zapewnienie bezpiecznego środowiska pracy. Bezpośrednie podejście do serwisowania komponentów pneumatycznych powinno zatem zawsze zaczynać się od wyłączenia systemu i odpowiedniego zabezpieczenia przed jego przypadkowym włączeniem, co jest fundamentalne dla zachowania bezpieczeństwa w miejscu pracy.

Pytanie 5

Jakie jest przesunięcie fazowe sygnału wyjściowego w odniesieniu do sygnału wejściowego sinusoidalnego w regulatorze typu PD?

A. -90°
B. 0°
C. 90°
D. 45°
Odpowiedź 90° jest prawidłowa w kontekście regulatorów typu PD (proporcjonalno-derywacyjne). W takim regulatorze sygnał wyjściowy jest opóźniony w stosunku do sygnału wejściowego o 90°. Oznacza to, że reakcja na zmiany sygnału wejściowego jest natychmiastowa, jednakże nie uwzględnia wartości sygnału, co prowadzi do przesunięcia fazowego. Praktycznie, w zastosowaniach inżynieryjnych, takich jak automatyka przemysłowa, regulator PD jest często stosowany do zwiększenia dynamiki systemu. Na przykład, w systemach kontroli temperatury, zastosowanie regulatora PD może poprawić odpowiedź systemu na zmiany obciążenia, umożliwiając szybsze osiągnięcie zadanej temperatury. Warto również zauważyć, że w praktyce dobór odpowiednich parametrów regulatora PD, tj. wzmocnienia proporcjonalnego i współczynnika pochodnej, ma kluczowe znaczenie dla zachowania stabilności i jakości regulacji. Właściwe zaprojektowanie systemu z wykorzystaniem regulatora PD zwiększa jego wydajność, co jest zgodne z najlepszymi praktykami w dziedzinie automatyki.

Pytanie 6

Ciągłe sensory oraz wzmacniacze operacyjne stanowią standardowe komponenty systemu sterowania?

A. cyfrowego
B. binarnego
C. programowalnego
D. analogowego
Wybór odpowiedzi związanej z układami cyfrowymi nie jest najlepszy. Układy cyfrowe działają na dyskretnych wartościach, a nie na ciągłych sygnałach. Sensory i wzmacniacze analogowe muszą być najpierw odpowiednio przetworzone, na przykład przez konwersję analogowo-cyfrową, zanim będą mogły współpracować z systemami cyfrowymi. Odpowiedzi związane z układami programowalnymi czy binarnymi również nie mają sensu, bo nie odnoszą się do kluczowych cech analogowych sygnałów. Układy programowalne, jak PLC, łączą zarówno analogowe, jak i cyfrowe komponenty, ale same działają na zupełnie innych zasadach. Trzeba zrozumieć, że układy binarne nie mogą współpracować bezpośrednio z elementami działającymi w trybie ciągłym, ponieważ wymaga to zastosowania konwerterów. Kluczowe jest, żeby znać podstawy przetwarzania sygnałów, co pomoże lepiej zrozumieć różnice między tymi układami.

Pytanie 7

Aby zobrazować funkcjonowanie systemu mechatronicznego na panelu HMI, należy zainstalować oprogramowanie typu

A. SCADA
B. CAD
C. CAE
D. CAM
Odpowiedź SCADA (Supervisory Control and Data Acquisition) jest poprawna, ponieważ oprogramowanie to jest kluczowe dla wizualizacji i monitorowania systemów mechatronicznych w czasie rzeczywistym. SCADA umożliwia integrację różnych urządzeń i czujników, co pozwala na efektywne zbieranie danych oraz ich analizę. Dzięki graficznym interfejsom użytkownika (HMI), operatorzy mogą w prosty sposób przeglądać dane, reagować na alarmy oraz zarządzać procesami. Przykładem zastosowania SCADA może być kontrola procesów produkcyjnych w fabrykach, gdzie system zbiera informacje o stanie maszyn i automatycznie podejmuje działania w celu utrzymania wydajności produkcji. W branży przemysłowej SCADA jest standardem, który wspiera automatyzację oraz poprawia efektywność operacyjną, wpisując się w najlepsze praktyki zarządzania procesami. Dodatkowo, wiele systemów SCADA jest zgodnych z międzynarodowymi standardami, co zapewnia ich interoperacyjność i umożliwia integrację z innymi systemami zarządzania.

Pytanie 8

Potrojenie natężenia prądu przepływającego przez rezystor o niezmiennej rezystancji spowoduje, że ilość ciepła wydzielającego się w nim wzrośnie

A. trzykrotnie
B. dwukrotnie
C. sześciokrotnie
D. dziewięciokrotnie
Wybór odpowiedzi, która zakłada trzykrotny, sześciokrotny lub dwukrotny wzrost wydzielającego się ciepła w wyniku trzykrotnego zwiększenia natężenia prądu, opiera się na błędnym zrozumieniu zależności między mocą, natężeniem prądu a rezystancją. Warto pamiętać, że zgodnie z prawem Joule'a, moc wydzielająca się w rezystorze jest proporcjonalna do kwadratu natężenia prądu. Jeśli ktoś uważa, że moc wzrasta tylko trzykrotnie, myli się, ponieważ moc nie jest liniowo związana z natężeniem prądu. Dla natężenia prądu wynoszącego "I", moc wynosi P = I²R, a dla natężenia "3I", moc wynosi P' = (3I)²R = 9I²R. To oznacza, że moc wzrasta dziewięciokrotnie, a nie trzykrotnie, jak sugeruje błędne odpowiedzi. W praktyce, takie nieporozumienia mogą prowadzić do niewłaściwego projektowania obwodów elektrycznych, co z kolei może prowadzić do przegrzewania się komponentów i ich uszkodzeń. Zrozumienie tych kluczowych zasad jest niezbędne dla inżynierów i techników pracujących z urządzeniami elektrycznymi. Warto podkreślić, że ignorowanie takich relacji między parametrami obwodów może skutkować niebezpiecznymi sytuacjami oraz zwiększeniem kosztów eksploatacji związanych z koniecznością naprawy lub wymiany uszkodzonych elementów.

Pytanie 9

Falownik to urządzenie przetwarzające moc, które konwertuje prąd

A. zmienny o częstotliwości 50 Hz na prąd stały
B. zmienny o regulowanej częstotliwości na prąd zmienny 50 Hz
C. trój fazowy na prąd jednofazowy
D. stały na prąd zmienny o regulowanej częstotliwości
Wszystkie podane niepoprawne odpowiedzi zawierają nieporozumienia dotyczące funkcji falownika. Falownik nie przekształca prądu zmiennego o częstotliwości 50 Hz na prąd stały, ponieważ jego podstawowym zadaniem jest konwersja prądu stałego na prąd zmienny. Wskazanie, że falownik zamienia prąd trójfazowy na jednofazowy, również jest błędne, ponieważ falownik nie zmienia liczby faz, a raczej generuje prąd zmienny z dostępnego prądu stałego. Co więcej, sugestia, że falownik przekształca zmienny prąd o regulowanej częstotliwości na prąd zmienny 50 Hz, jest myląca – falownik działa w odwrotnym kierunku, regulując częstotliwość wyjściowego prądu zmiennego. Zrozumienie funkcji falownika wymaga znajomości jego roli w kontekście systemów zasilania oraz zastosowań w automatyzacji. Dodatkowo, często popełnianym błędem jest mylenie różnych rodzajów przetworników, takich jak prostowniki, które zamieniają prąd zmienny na stały. W praktyce, aby uniknąć takich nieporozumień, ważne jest zapoznanie się z właściwościami technicznymi falowników oraz ich zastosowaniem w różnych sektorach przemysłowych, co pozwala na skuteczniejsze projektowanie i wdrażanie systemów zasilania.

Pytanie 10

Jakie urządzenie jest wykorzystywane do pomiaru kąta?

A. tachometr
B. termoelement
C. resolver
D. sensor ultradźwiękowy
Termoelementy, tachometry oraz sensory ultradźwiękowe to technologie projektowane z myślą o innych zastosowaniach, co może wprowadzać w błąd. Termoelementy są wykorzystywane głównie do pomiaru temperatury, bazując na zjawisku termoelektrycznym, które nie ma zastosowania w pomiarze kątów. Wybór termoelementu do pomiaru kąta obrotu opiera się na niewłaściwym zrozumieniu funkcji tego urządzenia. Tachometry są urządzeniami służącymi do pomiaru prędkości obrotowej, a więc ich zastosowanie do pomiaru położenia kątowego jest również nietrafione, gdyż nie dostarczają informacji o konkretnym kącie, a jedynie o szybkości zmian. Sensory ultradźwiękowe, z kolei, są używane głównie do pomiarów odległości i detekcji obiektów w przestrzeni, co nie ma związku z precyzyjnym pomiarem kątów. Wybierając niewłaściwą technologię do danego zadania, można napotkać wiele problemów związanych z dokładnością i niezawodnością pomiarów, co jest niezgodne z zasadami dobrych praktyk inżynieryjnych, które zalecają stosowanie odpowiednich urządzeń w zgodzie z ich przeznaczeniem.

Pytanie 11

Aby zmierzyć napięcie na cewce elektrozaworu o nominalnym Un = 24 V, zastosowano analogowy woltomierz z 75 podziałami na skali, ustawiony na zakres 30 V. Ile podziałów wskaże ten woltomierz, jeśli napięcie na cewce elektrozaworu jest poprawne?

A. 60
B. 30
C. 75
D. 24
Odpowiedzi, które wskazują na 24, 75 lub 30 działek, oparte są na błędnych założeniach dotyczących sposobu pomiaru napięcia. W przypadku odpowiedzi 24 działki, może występować mylne przekonanie, że każda działka odpowiada napięciu 1 V - jednak w rzeczywistości, z uwagi na zakres 30 V i 75 działek, wartość, która przypada na jedną działkę, to 0,4 V. Natomiast odpowiedź 75 działek sugeruje, że woltomierz mógłby wskazać maksymalną wartość zakresu, co nie jest możliwe, gdyż mierzymy napięcie 24 V, a nie jego maksymalne dozwolone napięcie. Z kolei 30 działek odnosi się do błędnego założenia, że napięcie 24 V odpowiada 30% zakresu 30 V, co jest nieprawidłowe, ponieważ stanowiłoby to wartość mniejszą od rzeczywistego odczytu. W praktyce istotne jest zrozumienie, że pomiar napięcia wymaga nie tylko wiedzy na temat używanego narzędzia, ale także o jego właściwościach i układzie skali. Typowe błędy myślowe, które prowadzą do tych niepoprawnych odpowiedzi, to brak zrozumienia mechanizmu działania woltomierzy, co może skutkować nieprawidłową interpretacją danych pomiarowych. Prawidłowe zrozumienie skali oraz wartości mierzonych jest kluczowe, aby uniknąć nieporozumień i zapewnić dokładność pomiarów, co jest niezwykle ważne w inżynierii elektrotechnicznej.

Pytanie 12

Która z magistrali komunikacyjnych nie wymaga instalacji rezystorów terminacyjnych na końcach?

A. PROFINET
B. RS 485
C. CAN
D. SmartWire-DT
Wybór RS 485 jako odpowiedzi jest błędny z powodu jego specyfiki projektowej. RS 485 jest standardem szeregowej komunikacji, który wymaga terminowania linii na obu końcach magistrali, aby zminimalizować odbicia sygnału i zapewnić integralność danych. Użytkownicy często mylą RS 485 z innymi protokołami, nie zdając sobie sprawy z wpływu terminacji na jakość sygnału. Z kolei CAN, czyli Controller Area Network, również wymaga rezystorów terminujących, co jest kluczowe dla jego działania w kontekście komunikacji w czasie rzeczywistym, zwłaszcza w aplikacjach motoryzacyjnych i przemysłowych. SmartWire-DT jest systemem komunikacyjnym, który również wymaga terminacji. Warto zauważyć, że nie wszyscy użytkownicy mają pełne zrozumienie zasad działania różnych magistrali, co prowadzi do błędnych odpowiedzi. W przypadku komunikacji w automatyce przemysłowej istotne jest, aby projektanci systemów dokładnie rozumieli parametry techniczne wykorzystywanych protokołów, aby unikać problemów z transmisją danych, które mogą prowadzić do awarii lub spadku wydajności systemów. Kluczowe jest przestrzeganie standardów branżowych oraz dobrej praktyki projektowej, co zapewnia stabilność i efektywność całego systemu komunikacyjnego.

Pytanie 13

Woltomierz działający w trybie AC pokazuje wartość napięcia elektrycznego

A. maksymalną
B. chwilową
C. średnią
D. skuteczną
Woltomierz w trybie pracy AC wskazuje wartość skuteczną napięcia elektrycznego, co oznacza, że mierzy on efektywną wartość napięcia, która generuje taką samą moc w obciążeniu rezystancyjnym, jak napięcie stałe. Wartość skuteczna, oznaczana jako Ueff, jest istotna w obliczeniach związanych z systemami zasilania i elektrycznymi układami energetycznymi, ponieważ pozwala na realne oszacowanie ilości energii dostarczanej do urządzenia. Na przykład, w domowych instalacjach elektrycznych napięcie zmienne (AC) o wartości skutecznej 230 V odpowiada napięciu stałemu 230 V pod względem generowanej mocy. Praktyczne zastosowanie tej wiedzy można zobaczyć w projektowaniu układów zasilania oraz w obliczeniach związanych z mocą czynna i bierną. Zgodnie z normami IEC 61010, pomiar wartości skutecznej jest kluczowy dla zapewnienia bezpieczeństwa i efektywności układów elektrycznych. Warto również dodać, że woltomierze cyfrowe często korzystają z układów pomiarowych, które są w stanie precyzyjnie obliczyć wartość skuteczną, nawet w obecności zniekształceń harmonicznych.

Pytanie 14

Wielkością charakterystyczną układu elektrycznego, mierzona w watach, jest jaka?

A. moc bierna
B. moc czynna
C. energia elektryczna
D. moc pozorna
Moc bierna, energia elektryczna i moc pozorna to terminy, które sporo osób myli z mocą czynną. Słuchaj, moc bierna ma związek z elementami, które są indukcyjne i pojemnościowe w układzie elektrycznym i nie generują żadnej realnej pracy, tylko tak sobie 'krążą' w systemie. Więc moc bierna, mierzona w warach, nie przyczynia się do wykonywania pracy i przez to jest jakoś mniej istotna, jeśli chodzi o wydajność urządzeń. Z drugiej strony, energia elektryczna to całkowita ilość energii, którą zużywają urządzenia w określonym czasie, a mierzymy to w kilowatogodzinach (kWh). To też jest coś innego niż moc, która to jest miarą chwilową. Co do mocy pozornej, ona jest określona jako iloczyn napięcia i natężenia prądu bez brania pod uwagę kąta fazowego. To jest taka całkowita miara, ale nie pokazuje nam rzeczywistej wydajności systemu, bo nie bierze pod uwagę strat związanych z mocą bierną. Często ludzie mylą te pojęcia i to prowadzi do błędnych wniosków o efektywności i kosztach eksploatacji instalacji elektrycznych. W konsekwencji, ignorowanie tych różnic może skutkować nieodpowiednim projektowaniem instalacji i wyższymi opłatami za energię, ponieważ moc bierna może obciążać dostawców energii.

Pytanie 15

Interfejs komunikacyjny umożliwia połączenie

A. siłownika z programatorem
B. modułu rozszerzającego z grupą siłowników
C. pompy hydraulicznej z silnikiem
D. sterownika z programatorem
Wybór odpowiedzi dotyczących połączenia siłownika z programatorem, pompy hydraulicznej z silnikiem lub modułu rozszerzającego z grupą siłowników wskazuje na niepełne zrozumienie roli interfejsów komunikacyjnych. Siłowniki, jako elementy wykonawcze, są zazwyczaj kontrolowane przez sterowniki, które wydają im polecenia na podstawie danych wejściowych. W związku z tym, połączenie siłownika z programatorem nie jest bezpośrednim zastosowaniem interfejsu komunikacyjnego, ponieważ programator służy głównie do programowania i monitorowania, a nie do bezpośredniej interakcji z siłownikami. Podobnie, pompy hydrauliczne, chociaż mogą być kontrolowane przez systemy automatyki, nie łączą się bezpośrednio z programatorem; ich działanie kontrolowane jest przez sterownik, który interpretuje dane i podejmuje decyzje na podstawie wymagań systemu. Moduły rozszerzające są zazwyczaj używane do zwiększenia liczby wejść/wyjść w systemie, a ich interakcja z grupą siłowników także odbywa się za pośrednictwem sterownika, który koordynuje działania. Typowy błąd polegający na myleniu różnych poziomów hierarchii systemu automatyki prowadzi do nieprecyzyjnych wniosków. Zrozumienie, że interfejsy komunikacyjne są narzędziem łączącym elementy zarządzające (sterowniki) z narzędziami programowania, jest kluczowe dla prawidłowej interpretacji funkcji i zastosowania tych technologii w automatyce przemysłowej.

Pytanie 16

Jakiego typu oprogramowanie powinno być zastosowane do monitorowania przebiegu procesów w przemyśle?

A. CAE
B. CAD
C. SCADA
D. CAM
Odpowiedzi CAM (Computer-Aided Manufacturing), CAD (Computer-Aided Design) oraz CAE (Computer-Aided Engineering) odnoszą się do różnych aspektów procesów inżynieryjnych, które nie są przeznaczone do nadzorowania procesów przemysłowych. CAM skupia się na automatyzacji procesów produkcyjnych, umożliwiając konwersję projektów CAD na instrukcje maszynowe, co jest kluczowe w produkcji, ale nie w samym monitorowaniu. CAD zajmuje się projektowaniem, dostarczając narzędzia do tworzenia precyzyjnych rysunków i modeli 3D, co również nie obejmuje funkcji nadzoru. CAE koncentruje się na analizach inżynieryjnych, wspierając procesy projektowania przez symulacje i analizy wydajności, jednak nie ma na celu monitorowania rzeczywistych procesów w czasie rzeczywistym. Wybór tych opcji może wynikać z mylnego przekonania, że wszystkie te technologie obejmują aspekty zarządzania procesami, co jest nieprawidłowe. Kluczowym błędem jest nieodróżnianie funkcji projektowania i produkcji od nadzoru i kontroli. Zrozumienie różnic między tymi systemami jest kluczowe, aby skutecznie je stosować w odpowiednich kontekstach przemysłowych, i pomoże uniknąć nieefektywnego wykorzystania narzędzi inżynieryjnych w procesach, które wymagają monitorowania i kontroli.

Pytanie 17

Wskaż urządzenie, które można wykorzystać do pomiaru ciśnienia wywieranego przez ciecz na ścianki zbiornika?

A. Żyroskop
B. Pirometr
C. Tensometr
D. Tachometr
Zrozumienie, które urządzenie może być użyte do pomiaru ciśnienia cieczy, wymaga wiedzy o charakterystyce i zastosowaniach różnych czujników. Tachometr, na przykład, jest narzędziem służącym do pomiaru prędkości obrotowej wirujących elementów, a jego zastosowanie jest ograniczone do systemów monitorowania i sterowania prędkości. Użycie tachometru do pomiaru ciśnienia cieczy jest błędne, ponieważ nie jest on w stanie zmierzyć sił działających na ścianki zbiornika ani odkształceń materiału. Żyroskop, z kolei, jest urządzeniem wykorzystywanym do pomiaru kątowych prędkości obrotowych i orientacji, co czyni go nieodpowiednim w kontekście pomiarów ciśnienia. W zastosowaniach, gdzie ciśnienie cieczy ma kluczowe znaczenie, jego wykorzystanie może prowadzić do poważnych błędów w diagnozowaniu i kontrolowaniu procesów. Pirometr, natomiast, służy do pomiaru temperatury na podstawie promieniowania podczerwonego i nie ma zastosowania w kontekście ciśnienia cieczy. Użytkownicy często mylą funkcje tych urządzeń, co prowadzi do niewłaściwych wniosków. Kluczem do prawidłowego wyboru czujnika jest zrozumienie ich specyficznych zastosowań oraz mechanizmów działania, co pozwala na efektywne wykorzystanie technologii w różnych dziedzinach przemysłu.

Pytanie 18

Na podstawie fragmentu instrukcji serwisowej sprężarki tłokowej wskaż, która z wymienionych czynności konserwacyjnych powinna być wykonywana najczęściej.

CzynnośćCykle
Filtr ssącykontrolowanieco tydzień
czyszczenieco 60 godzin eksploatacji
wymianazależnie od potrzeb (co najmniej raz w roku)
Kontrola stanu olejucodziennie przed uruchomieniem
Wymiana olejupierwsza wymianapo 40 godzinach eksploatacji
kolejna wymianaraz w roku
Spust kondensatuco najmniej raz w tygodniu
Czyszczenie zaworu zwrotnegoco najmniej raz w roku
Pasek klinowykontrola naprężeniaco tydzień
wymianaw przypadku zużycia

A. Wymiana paska klinowego.
B. Czyszczenie zaworu zwrotnego.
C. Kontrola stanu oleju.
D. Wymiana filtra ssącego.
Kontrola stanu oleju jest kluczowym elementem konserwacji sprężarek tłokowych. Regularne sprawdzanie poziomu i jakości oleju zapewnia prawidłowe smarowanie wszystkich ruchomych części, co wpływa na ich trwałość oraz efektywność energetyczną urządzenia. Niekontrolowanie stanu oleju może prowadzić do zwiększonego tarcia, a w konsekwencji do poważnych uszkodzeń silnika. Zgodnie z zaleceniami producentów, kontrola oleju powinna odbywać się codziennie przed rozpoczęciem pracy sprężarki. Dodatkowo, w przypadku wykrycia zanieczyszczeń oleju, jego wymiana powinna być przeprowadzona natychmiastowo, aby zapobiec dalszym uszkodzeniom. Przykładowo, w warunkach przemysłowych, gdzie sprężarki pracują non-stop, regularna kontrola oleju staje się kluczowym elementem strategii utrzymania ruchu, co przyczynia się do mniejszych kosztów eksploatacji oraz dłuższej żywotności maszyn.

Pytanie 19

Elementy, które umożliwiają przepływ medium wyłącznie w jednym kierunku, to zawory

A. dławiące
B. rozdzielające
C. zwrotne
D. regulacyjne
Zawory zwrotne, znane również jako zawory jednostronne, pełnią kluczową rolę w systemach hydraulicznych i pneumatycznych, zapewniając przepływ czynnika roboczego tylko w jednym kierunku. Ich podstawowym zadaniem jest zapobieganie cofaniu się cieczy lub gazu, co może prowadzić do poważnych uszkodzeń urządzeń oraz obiegów. W praktyce, zawory zwrotne są często stosowane w instalacjach wodociągowych, systemach odwadniających, a także w układach pneumatycznych, gdzie ich skuteczność jest niezbędna dla prawidłowego funkcjonowania całego systemu. Standardy branżowe, takie jak ISO 9001, podkreślają znaczenie stosowania odpowiednich komponentów, w tym zaworów zwrotnych, aby zapewnić niezawodność i bezpieczeństwo działania instalacji. Warto również zaznaczyć, że w przypadku ich zastosowania w budownictwie, zawory zwrotne chronią przed powstawaniem podciśnienia, co może prowadzić do niepożądanych skutków, takich jak uszkodzenia instalacji lub zmniejszenie efektywności energetycznej urządzeń. Z tego względu, znajomość i umiejętność doboru zaworów zwrotnych w odpowiednich aplikacjach jest niezwykle istotna dla inżynierów i techników.

Pytanie 20

Poziom przezroczystej, nieprzewodzącej cieczy w zbiorniku można zmierzyć za pomocą czujnika

A. indukcyjnego
B. piezoelektrycznego
C. ultradźwiękowego
D. refleksyjnego
Czujniki ultradźwiękowe to naprawdę fajne narzędzia do mierzenia poziomu cieczy, zwłaszcza w sytuacjach, gdy mamy do czynienia z przezroczystymi i nieprzewodzącymi rzeczami. Działają na takiej zasadzie, że wysyłają fale ultradźwiękowe, które zbijają się od powierzchni cieczy i wracają do czujnika. Dzięki temu, że możemy zmierzyć czas, jaki potrzebuje sygnał na powrót, możemy dokładnie określić, jak wysoki jest poziom cieczy. Na przykład, wykorzystuje się je w zbiornikach z wodą pitną czy różnymi cieczyami w przemyśle. Warto też zauważyć, że standardy jak ISO 9001 mówią o precyzyjnych pomiarach w produkcji, a te czujniki właśnie to potrafią. Mają też kilka zalet w porównaniu do innych technologii, jak brak kontaktu z cieczą, co zmniejsza ryzyko zanieczyszczenia czy korozji, a ponadto mogą działać w trudnych warunkach, co jest na pewno plusem.

Pytanie 21

Do jakiej kategorii pomiarów można zakwalifikować pomiar długości gwintowanego fragmentu śruby przy użyciu przymiaru kreskowego?

A. Bezpośrednich
B. Uwikłanych
C. Pośrednich
D. Złożonych
Pomiar długości nagwintowanego odcinka śruby z wykorzystaniem przymiaru kreskowego klasyfikowany jest jako pomiar bezpośredni, ponieważ zachodzi bezpośrednie porównanie wymiaru obiektu z jednostką miary, jaką jest przymiar. W praktyce oznacza to, że długość mierzona jest bezpośrednio z wykorzystaniem narzędzia, a nie poprzez obliczenia lub pomiary pośrednie. Przykładem zastosowania pomiaru bezpośredniego jest pomiar długości wałków, rur czy elementów konstrukcji, gdzie można zastosować przymiar lub suwmiarkę. W branży inżynieryjnej stosowanie pomiarów bezpośrednich jest kluczowe dla zapewnienia dokładności wymiarowej w procesie produkcji oraz w kontroli jakości. Zgodnie z normami ISO, pomiary bezpośrednie są preferowane w przypadkach, gdzie wymagana jest wysoka precyzja, co podkreśla znaczenie tych metod w codziennych zastosowaniach inżynieryjnych.

Pytanie 22

Podczas funkcjonowania urządzenia zaobserwowano nasilenie hałasu, spowodowane przez łożysko toczne. Odpowiednią metodą naprawy maszyny może być

A. zmniejszenie nadmiaru smaru w łożysku
B. wymiana całego łożyska
C. zmniejszenie luzów łożyska
D. wymiana osłony łożyska
Wymiana całego łożyska jest odpowiednim rozwiązaniem w przypadku stwierdzenia zwiększonego hałasu, gdyż najczęściej oznacza to, że łożysko uległo uszkodzeniu lub zużyciu. W praktyce, łożyska toczne są zaprojektowane do pracy z minimalnym luzem i w odpowiednio smarowanych warunkach. Gdy zauważamy hałas, to zazwyczaj jest skutkiem odkształceń materiałowych lub uszkodzenia elementów tocznych, co może prowadzić do dalszych uszkodzeń mechanicznych w obrębie układu napędowego. W takim przypadku wymiana całego łożyska eliminuje ryzyko wystąpienia kolejnych awarii w przyszłości. Dobrą praktyką w branży jest również przeprowadzanie analizy przyczyn źródłowych usterki, co pozwala na zrozumienie, dlaczego łożysko uległo uszkodzeniu, co może być związane z niewłaściwym smarowaniem, luzami, czy też eksploatacją w warunkach przekraczających specyfikacje producenta. Wymiana łożyska powinna być przeprowadzana zgodnie z obowiązującymi standardami, takimi jak ISO 281, które określają metodologię doboru i oceny łożysk, co zwiększa niezawodność całego urządzenia.

Pytanie 23

Przy obróbce metalu z użyciem pilników, jakie środki ochrony osobistej są wymagane?

A. rękawicach i okularach ochronnych
B. obuwiu z gumową podeszwą oraz fartuchu ochronnym
C. rękawicach skórzanych i fartuchu skórzanym
D. kasku ochronnym i rękawicach elektroizolacyjnych
Obrabianie metalu wymaga stosowania odpowiednich środków ochrony osobistej, a rękawice i okulary ochronne są kluczowe dla zapewnienia bezpieczeństwa podczas tego procesu. Rękawice chronią dłonie przed ostrymi krawędziami oraz szkodliwymi substancjami, które mogą wystąpić w wyniku obróbki. Okulary ochronne są niezbędne, aby zabezpieczyć oczy przed odłamkami metalu oraz pyłem, który może być generowany podczas obróbki. W praktyce, np. podczas używania pilników, niewłaściwe zabezpieczenie może prowadzić do poważnych urazów, dlatego stosowanie rękawic i okularów jest zgodne z normami BHP oraz zasadami dobrych praktyk przemysłowych. Dodatkowo, warto zwrócić uwagę na jakość stosowanych środków ochrony; rękawice powinny być wykonane z materiałów odpornych na przekłucia i ścieranie, a okulary muszą spełniać normy EN 166, które określają ich właściwości ochronne. Przestrzeganie tych zasad nie tylko minimalizuje ryzyko urazów, ale także przyczynia się do poprawy komfortu pracy.

Pytanie 24

Jakie rozszerzenie nazwy pliku w systemie Windows wskazuje na pliki wykonywalne?

A. sys
B. exe
C. ini
D. bmp
Rozszerzenie .exe w Windows to pliki, które pozwalają na uruchamianie programów i aplikacji. Zawierają one kod, który system operacyjny potrafi odczytać i wykonać. Przykładowo, gdy uruchamiasz Worda lub jakąkolwiek grę, to właśnie plik .exe działa w tle. Często pliki te są używane jako instalatory, co sprawia, że instalacja nowego oprogramowania jest naprawdę łatwa. Ale trzeba uważać, bo pliki .exe mogą być też niebezpieczne – czasem mogą zawierać wirusy. Dlatego zawsze warto ściągać je tylko z miejsc, które znamy i którym ufamy. I dobrze jest przeskanować te pliki przed uruchomieniem, żeby zminimalizować ryzyko infekcji. Poza tym, Windows ma różne narzędzia, dzięki którym możemy kontrolować, jakie pliki .exe się uruchamiają, co na pewno zwiększa bezpieczeństwo systemu.

Pytanie 25

Filtr o charakterystyce pasmowo-zaporowej

A. tłumi sygnały o częstotliwościach w obrębie określonego pasma częstotliwości.
B. przepuszcza sygnały o niskich częstotliwościach.
C. tłumi sygnały o niskich częstotliwościach.
D. przepuszcza sygnały w zakresie określonego pasma częstotliwości.
W przypadku filtrów pasmowo-zaporowych istnieje wiele nieporozumień dotyczących ich funkcji i zastosowań. Odpowiedzi, które sugerują, że filtr ten przepuszcza sygnały o częstotliwościach wewnątrz wyznaczonego pasma częstotliwości, są zasadniczo mylne. Takie określenie odnosiłoby się raczej do filtrów pasmowych, które mają za zadanie przepuszczać sygnały w określonym zakresie częstotliwości, a nie ich tłumienie. Również te odpowiedzi, które wskazują na tłumienie sygnałów o małej częstotliwości, są błędne, ponieważ filtry pasmowo-zaporowe nie koncentrują się jedynie na niskich częstotliwościach, ale na eliminowaniu określonego zakresu częstotliwości, niezależnie od tego, czy są one niskie, średnie, czy wysokie. Typowe błędy myślowe prowadzące do tych błędnych wniosków często wynikają z nieporozumienia dotyczącego terminologii związanej z filtracją sygnałów. Zrozumienie, że filtry pasmowo-zaporowe aktywnie eliminują sygnały w określonym paśmie, a nie je przepuszczają, jest kluczowe dla poprawnego zastosowania tej teorii w praktyce inżynieryjnej. Dlatego ważne jest, aby przed przystąpieniem do projektowania lub analizy systemów wykorzystujących filtrację sygnałów, dokładnie zrozumieć działanie i właściwości różnych typów filtrów oraz ich zastosowanie w praktyce.

Pytanie 26

Wśród silników elektrycznych prądu stałego największy moment startowy wykazują silniki

A. szeregowe
B. obcowzbudne
C. bocznikowe
D. synchroniczne
Silniki prądu stałego szeregowe charakteryzują się tym, że uzwojenie wzbudzenia jest połączone szeregowo z uzwojeniem wirnika. Taki układ oznacza, że prąd płynący przez wirnik jest również tym samym prądem, który zasila uzwojenie wzbudzenia. W rezultacie, przy rozruchu silnika szeregowego, w momencie zerowej prędkości obrotowej, prąd osiąga wartość maksymalną, co generuje bardzo duży moment obrotowy. Jest to szczególnie istotne w zastosowaniach, gdzie wymagany jest wysoki moment startowy, na przykład w napędzie dźwigów, taśmociągów czy wózków widłowych. W kontekście standardów przemysłowych, silniki te często stosowane są w aplikacjach, gdzie wymagane jest szybkie pokonywanie oporów, co czyni je niezastąpionymi w wielu dziedzinach przemysłu. Dodatkowo, ich prosta konstrukcja oraz stosunkowo niskie koszty produkcji sprawiają, że są popularnym wyborem w wielu zastosowaniach.

Pytanie 27

Aby zmierzyć nierówności osiowe (bicie) obracającej się tarczy, należy użyć

A. mikrometru
B. średnicówki mikrometrycznej
C. suwmiarki
D. czujnika zegarowego
Suwmiarka, choć jest narzędziem pomiarowym, nie jest odpowiednia do precyzyjnego pomiaru bicia wirującej tarczy. Jej głównym przeznaczeniem jest pomiar długości, szerokości i wysokości z dokładnością do dwóch miejsc po przecinku. W przypadku pomiarów dynamicznych, takich jak bicie, suwmiarka ma zbyt niską czułość. Mikrometr jest narzędziem o jeszcze wyższej dokładności, jednak jego zastosowanie ogranicza się głównie do pomiarów liniowych i nie jest przystosowany do rejestrowania dynamicznych zmian, takich jak te, które występują podczas obrotu tarczy. Średnicówka mikrometryczna, podobnie jak mikrometr, służy do pomiarów średnic, co również nie sprawdza się w kontekście pomiaru bicia. Narzędzia te mogą prowadzić do pomyłek, ponieważ ich konstrukcja nie pozwala na uchwycenie dynamiki ruchu i nie są przystosowane do pomiarów w czasie rzeczywistym. Dlatego stosowanie ich do pomiaru nierówności osiowej może wprowadzać w błąd i prowadzić do nieprawidłowych wyników, co jest sprzeczne z zasadami dobrej praktyki inżynieryjnej. W kontekście precyzyjnych pomiarów mechanicznych, zawsze należy wybierać narzędzia zaprojektowane specjalnie do danego celu, co pozwoli uniknąć niepotrzebnych błędów i zapewnić wysoką jakość pracy.

Pytanie 28

Typowym elementem konstrukcji siłownika, przygotowanego do współpracy z bezdotykowymi czujnikami położenia krańcowego, jest

A. membrana
B. zawór dławiący
C. magnes stały
D. tłumik
Wybór innych opcji, takich jak zawór dławiący, membrana czy tłumik, nie jest adekwatny do kontekstu bezdotykowych sensorów położeń krańcowych w siłownikach. Zawór dławiący ma na celu regulację przepływu cieczy w układach hydraulicznych, co związane jest z kontrolą prędkości ruchu, ale nie ma zastosowania w pomiarze pozycji. Membrana, często używana w siłownikach pneumatycznych, odpowiada za separację mediów i nie jest elementem, który mógłby współpracować z sensorami położeń. Tłumik natomiast służy do zmniejszania drgań i hałasu, a nie do monitorowania lokalizacji siłownika. Takie myślenie może wynikać z nieporozumienia co do funkcji poszczególnych komponentów w systemach automatyzacji. Kluczowe jest zrozumienie, że bezdotykowe sensory opierają się na interakcji z polem magnetycznym, co czyni magnesy stałe niezbędnymi dla ich działania. Użycie niewłaściwych elementów prowadzi do błędów w projekcie systemów automatyki, co może skutkować obniżoną efektywnością i zwiększonym ryzykiem awarii. W kontekście projektowania systemów warto kierować się zasadami inżynieryjnymi oraz najlepszymi praktykami, które stawiają na efektywność, niezawodność i łatwość w utrzymaniu.

Pytanie 29

W urządzeniu zmierzchowym fotorezystor pełni rolę

A. czujnika poziomu światła
B. ochrony prądowej systemu
C. wskaźnika działania systemu
D. przełącznika instalacyjnego systemu
Kiedy analizujemy inne odpowiedzi, łatwo zauważyć, dlaczego są one mylne. Na przykład, określenie fotorezystora jako sygnalizatora pracy układu jest nieprecyzyjne. Fotorezystor nie sygnalizuje stanu pracy układu, lecz reaguje na poziom światła. Takie myślenie może prowadzić do błędnej koncepcji działania wyłączników zmierzchowych, które mają na celu automatyzację oświetlenia na podstawie warunków świetlnych, a nie stanu operacyjnego układu. Ponadto, twierdzenie, że fotorezystor działa jako włącznik instalacyjny, jest również błędne. Włącznik instalacyjny to urządzenie, które manualnie kontroluje przepływ energii do urządzenia, a fotorezystor automatycznie dostosowuje działanie w zależności od otoczenia. W tym kontekście, pomylenie tych funkcji może skutkować niezrozumieniem procesu automatyzacji oświetlenia. Również koncepcja, że fotorezystor pełni rolę zabezpieczenia prądowego, jest nieprawidłowa, ponieważ zabezpieczenia prądowe mają na celu ochronę obwodów przed przeciążeniem lub zwarciem, co jest całkowicie odrębne od funkcji detekcji światła. Wszelkie nieporozumienia w tych kwestiach mogą prowadzić do nieefektywnego projektowania systemów oświetleniowych, a także zwiększać ryzyko awarii sprzętu lub nieprawidłowego działania instalacji. Ważne jest, aby dobrze rozumieć różnice między tymi rolami, aby móc prawidłowo zaprojektować i zastosować systemy automatyzacji w praktyce.

Pytanie 30

Aby zmierzyć temperaturę, należy podłączyć do wejścia sterownika PLC

A. prądnicę tachometryczną
B. czujnik rezystancyjny
C. czujnik indukcyjny
D. przekaźnik elektromagnetyczny
Podłączenie innych komponentów, takich jak prądnica tachometryczna, czujnik indukcyjny czy przekaźnik elektromagnetyczny, do pomiaru temperatury nie jest odpowiednie. Prądnica tachometryczna jest wykorzystywana do pomiaru prędkości obrotowej w silnikach i nie ma zastosowania w kontekście temperatury. Czujnik indukcyjny, z kolei, wykrywa obecność obiektów metalowych i również nie nadaje się do pomiaru temperatury. Przekaźnik elektromagnetyczny jest elementem wykonawczym, który służy do załączania lub wyłączania obwodów elektrycznych, a więc nie jest narzędziem pomiarowym. Typowym błędem myślowym jest mylenie funkcji różnych elementów w systemie automatyki. Często przy wyborze czujnika do pomiaru temperatury nie uwzględnia się specyfiki ich działania oraz przeznaczenia. W przypadku pomiaru temperatury, kluczowe jest, aby zastosować czujniki, które są przystosowane do tej funkcji, co znacznie zwiększa dokładność i niezawodność całego systemu. Wybór odpowiednich komponentów w systemie automatyki powinien być oparty na zrozumieniu ich przeznaczenia oraz właściwości, co jest zgodne z dobrymi praktykami projektowania systemów automatyki.

Pytanie 31

Jakie rozwiązanie pozwala na zwiększenie prędkości ruchu tłoka w siłowniku pneumatycznym?

A. zawór podwójnego sygnału
B. zawór szybkiego spustu
C. przełącznik obiegu
D. zawór zwrotny
Zawór szybkiego spustu to naprawdę ważny element w systemach pneumatycznych. Jego główną rolą jest szybkie obniżenie ciśnienia w siłownikach. Dzięki temu tłok porusza się znacznie szybciej. Działa to tak, że sprężone powietrze ma szybki ujście, co pozwala na błyskawiczne zwolnienie siłownika. W praktyce, takie zawory są super przydatne, na przykład w przemyśle motoryzacyjnym czy automatyzacji produkcji, gdzie czas reakcji jest mega istotny. Zgodnie z normami ISO 4414, odpowiednio zainstalowany zawór szybkiego spustu powinien być standardem w każdej instalacji pneumatycznej, żeby zwiększyć wydajność i bezpieczeństwo. Jeżeli system jest dobrze zaprojektowany i wykorzystuje te zawory, to może to znacznie poprawić efektywność produkcji, a przy okazji obniżyć zużycie energii i skrócić czas cyklu procesów.

Pytanie 32

Jaką rezystancję ma świecąca żarówka, której napięcie nominalne wynosi 230 V, a moc to 100 W?

A. 460 ?
B. 23 k?
C. 2,3 ?
D. 529 ?
Odpowiedź 529 Ω jest całkiem trafna. Użyliśmy wzoru Ohma, by połączyć moc (P), napięcie (U) i rezystancję (R). Jak to się zapisuje? Łatwo, P = U²/R i stąd mamy R = U²/P. Dla napięcia 230 V i mocy 100 W, jak to obliczyłeś, wychodzi nam 529 Ω. To mówi nam, że żarówka przy takim napięciu ma opór 529 Ω, co jest istotne przy układaniu obwodów elektrycznych. Z mojego doświadczenia, wiedza o rezystancji żarówek pozwala lepiej zaplanować cały obwód, zwłaszcza kiedy chodzi o dobór przewodów i zabezpieczeń. W oświetleniu ważne, żeby przewody były odpowiednio dostosowane do obciążenia, a te obliczenia są kluczowe dla bezpieczeństwa i efektywności energetycznej w instalacjach elektrycznych. W sumie, te standardy, jak IEC 60598, przypominają, jak ważne są te rzeczy w praktyce.

Pytanie 33

Co należy zrobić w pierwszej kolejności, gdy poszkodowany w wypadku jest nieprzytomny i nie wykazuje oznak oddychania?

A. wezwać pomoc i przeprowadzić sztuczne oddychanie
B. wezwać pomoc i zapewnić drożność dróg oddechowych poszkodowanego
C. pozostawić poszkodowanego w aktualnej pozycji i zatelefonować po pomoc
D. przeprowadzić reanimację poszkodowanego i wezwać pomoc
Dobrze, że wybrałeś odpowiedź, która mówi o wezwaniu pomocy i udrożnieniu dróg oddechowych. Wiesz, że w sytuacji, gdy ktoś jest nieprzytomny i nie oddycha, to właśnie drożność dróg oddechowych jest kluczowa? Zgodnie z wytycznymi ERC, najpierw powinniśmy upewnić się, że drogi oddechowe są drożne, co można zrobić na przykład metodą 'tilt-chin' albo 'jaw-thrust'. Jak już upewnimy się, że wszystko jest ok, wtedy dzwonimy po pomoc i kontynuujemy resuscytację. Przykład? Wyobraź sobie wypadek samochodowy – pierwsze co, to musimy zadbać, by poszkodowany mógł oddychać, inaczej może dojść do niedotlenienia mózgu. I pamiętaj, według aktualnych wytycznych, nie należy robić sztucznego oddychania, zanim nie udrożnimy dróg, bo inaczej powietrze nie dotrze do płuc i tylko pogorszy sytuację.

Pytanie 34

Jakiego rodzaju kinematykę posiada manipulator, jeśli jego przestrzeń robocza przypomina prostopadłościan?

A. TTT - trzy osie prostoliniowe
B. RTT - jedną oś obrotową i dwie osie prostoliniowe
C. RRR - trzy osie obrotowe
D. RRT - dwie osie obrotowe i jedną oś prostoliniową
Wybrałeś odpowiedź TTT, czyli trzy osie prostoliniowe, i to jest całkiem dobre! Manipulator, który ma prostopadłościanową przestrzeń roboczą, naprawdę daje radę poruszać się w trzech osiach: X, Y i Z. To ważne, bo w przemyśle, gdzie trzeba robić różne rzeczy, jak automatyzacja produkcji czy montaż, precyzyjne ruchy są kluczowe. Manipulatory z trzema osiami prostoliniowymi są mocno wykorzystywane w robotyce, na przykład do pakowania, paletowania, czy transportu materiałów. Z mojego doświadczenia, taki układ TTT daje dużą elastyczność przy układaniu przestrzeni roboczej i można go dostosować do różnych zastosowań. Wiesz, są też standardy, takie jak ISO 9283, które pokazują, jak ocenia się wydajność manipulatorów, a to wszystko podkreśla, jak ważny jest odpowiedni wybór kinematyki, żeby naprawdę osiągnąć dobre rezultaty.

Pytanie 35

Negatywny wpływ intensywnych fal elektromagnetycznych emitowanych przez działające urządzenie mechatroniczne można zredukować, stosując osłonę w postaci obudowy

A. polwinitowej
B. z żywicy epoksydowej
C. metalowej
D. drewnianej
Ekranowanie urządzeń mechatronicznych to istotny aspekt zapewnienia ich sprawnego działania w obliczu zagrożeń elektromagnetycznych. Wybór materiału do ekranowania jest kluczowy, ponieważ różne materiały posiadają różne właściwości w zakresie ochrony przed falami elektromagnetycznymi. Obudowy drewniane, choć mogą być estetyczne, nie oferują praktycznie żadnej ochrony przed falami elektromagnetycznymi. Drewno jest materiałem dielektrycznym, co oznacza, że nie ma właściwości odbijających ani pochłaniających fale elektromagnetyczne w sposób efektywny. W przypadku obudowy polwinitowej, choć materiał ten ma pewne właściwości izolacyjne, to jednak nie zapewnia wystarczającego ekranowania. Polwinit, podobnie jak drewno, nie jest w stanie skutecznie eliminować fal elektromagnetycznych. Obudowy z żywicy epoksydowej również mają swoje ograniczenia, ponieważ nie są w stanie odbijać fal elektromagnetycznych, a ich działanie ogranicza się głównie do izolacji. Wybierając materiał do ekranowania, należy kierować się wiedzą na temat właściwości materiałów oraz ich zdolności do redukcji zakłóceń elektromagnetycznych. W praktyce oznacza to, że nieprawidłowy wybór materiału ekranowania, jak drewno czy polwinit, prowadzi do poważnych problemów z funkcjonowaniem urządzeń, co może skutkować ich awarią lub nieprawidłowym działaniem w środowisku o dużych zakłóceniach elektromagnetycznych. Dlatego kluczowe znaczenie ma znajomość standardów branżowych i dobrych praktyk w zakresie wyboru materiałów do ekranowania.

Pytanie 36

Podczas działania napędu zwrotnego z użyciem silnika prądu stałego zaobserwowano, że prędkość obrotowa silnika jest różna w obu kierunkach oraz że iskrzenie szczotek przy obrocie w jedną stronę jest znacznie większe niż przy obrocie w kierunku przeciwnym. Jakie kroki należy podjąć w celu naprawy silnika?

A. Zamienić łożyska
B. Znormalizować nacisk szczotek
C. Ustawić szczotki w strefie neutralnej
D. Obtoczyć oraz przeszlifować komutator
Ustawić szczotki w strefie neutralnej jest kluczowym działaniem w przypadku silników prądu stałego, które doświadczają nierówności prędkości obrotowej oraz nadmiernego iskrzenia szczotek. Strefa neutralna to obszar w komutatorze, w którym nie występuje pole magnetyczne, co minimalizuje zjawisko iskrzenia. Ustawienie szczotek w tej strefie pozwala na równomierne rozłożenie nacisku na komutator i zmniejszenie zużycia materiału szczotek. W praktyce, aby to osiągnąć, należy dokładnie wyregulować położenie szczotek względem komutatora, co wymaga precyzyjnych narzędzi pomiarowych. Przykładem zastosowania tej metody jest konserwacja silników w przemyśle, gdzie regularne kontrole i ustawienia szczotek wpływają na wydajność silnika oraz jego żywotność. Ponadto, poprawne ustawienie szczotek ma znaczenie w kontekście efektywności energetycznej silnika, co jest zgodne z aktualnymi standardami branżowymi dotyczącymi eksploatacji urządzeń elektrycznych.

Pytanie 37

Aby ustalić wznios silnika indukcyjnego, należy wykonać pomiar

A. średnicy stojana
B. wysokości silnika
C. odległości między osią wału a podstawą uchwytów silnika
D. szerokości silnika oraz średnicy wirnika
Wysokość silnika, średnica stojana i szerokość silnika z wirnikiem to takie parametry, które są związane z konstrukcją silnika, ale nie mają nic wspólnego z pomiarem wzniosu. Jasne, że wysokość silnika jest ważna, kiedy chodzi o to, gdzie ten silnik jest wbudowany, ale nie pokazuje, jaka jest właściwa odległość między osią wału a podstawą łap. Średnica stojana dotyczy wymiarów wewnętrznych silnika i ma znaczenie dla jego działania, ale nie ma wpływu na wznios. Szerokość silnika oraz średnica wirnika to też ważne wymiary, ale nie mówią nam, jak silnik jest zamontowany, a to jest kluczowe dla jego prawidłowego działania. Często zdarza się, że ludzie mylą wznios z parametrami konstrukcyjnymi silnika, zamiast skupić się na tej rzeczywistej odległości, która może mieć duży wpływ na wydajność i współpracę z innymi elementami. Zrozumienie, jak te różne parametry się powiązane, może pomóc uniknąć problemów w eksploatacji i dobrze dobrać silnik do konkretnego zastosowania.

Pytanie 38

Weryfikacja połączeń nitowanych, realizowana poprzez uderzanie młotkiem w nit, ma na celu wykrycie nieprawidłowości

A. luźnego osadzenia nitu
B. nieprawidłowego kształtu zakuwki
C. odkształcenia nitu
D. pęknięcia powierzchni łba i zakuwki nitu
Skrzywienie nitu, pęknięcia powierzchni łba oraz zakuwki nitu oraz nieprawidłowe ukształtowanie zakuwki to zagadnienia, które w kontekście kontroli połączeń nitowanych mogą być mylące. Skrzywienie nitu, na przykład, może być problematyczne, ale nie jest bezpośrednio wykrywane poprzez ostukiwanie, ponieważ ta metoda nie pozwala na pełną analizę geometrii nitu. Pęknięcia na łbie lub zakuwce, mimo że są istotne, także wymagają zaawansowanych metod diagnostycznych, takich jak ultradźwięki, które są bardziej skuteczne w wykrywaniu wewnętrznych wad materiałowych. Nieprawidłowe ukształtowanie zakuwki to inny problem, który często wynika z błędów produkcyjnych, a nie z samego procesu nitowania, co może prowadzić do mylnego wniosku, że kontrola opiera się na luźnym osadzeniu. Często błędne interpretacje wynikają z braku zrozumienia mechanizmów działania nitu oraz jego interakcji z materiałem, w którym jest osadzony. Właściwe szkolenie z zakresu technik nitowania i diagnostyki jest niezbędne, aby uniknąć takich nieporozumień i skutecznie oceniać jakość połączeń nitowanych.

Pytanie 39

W układzie do przygotowania sprężonego powietrza, reduktor ciśnienia

A. łączy sprężone powietrze z mgłą olejową
B. zmniejsza ilość zanieczyszczeń w sprężonym powietrzu
C. generuje mgłę olejową
D. zapewnia stałe ciśnienie robocze
Reduktor ciśnienia w zespole przygotowania sprężonego powietrza pełni kluczową rolę w utrzymaniu stałego ciśnienia roboczego, co jest niezbędne do prawidłowego funkcjonowania urządzeń pneumatycznych. Dzięki zastosowaniu reduktora, można dostosować ciśnienie powietrza do wymagań konkretnego procesu technologicznego, co przekłada się na poprawę efektywności energetycznej i wydajności systemu. Przykładem zastosowania reduktorów ciśnienia może być linia produkcyjna, gdzie różne maszyny wymagają różnych poziomów ciśnienia, a reduktor umożliwia ich optymalne zasilanie. W standardach branżowych, takich jak ISO 8573, podkreśla się znaczenie kontrolowania parametrów sprężonego powietrza, a właściwe ustawienie i konserwacja reduktorów ciśnienia są kluczowe dla zminimalizowania ryzyka awarii oraz zapewnienia jakości wykorzystywanego medium. Dodatkowo, stałe ciśnienie robocze pozwala na przewidywalność działania systemów, co jest istotne w kontekście bezpieczeństwa operacji przemysłowych.

Pytanie 40

Obniżenie temperatury czynnika w sprężarkach skutkuje

A. wzrostem ciśnienia sprężonego powietrza
B. skraplaniem pary wodnej oraz osuszaniem powietrza
C. powiększaniem objętości sprężonego powietrza
D. osadzaniem zanieczyszczeń na dnie zbiornika
Zwiększenie objętości sprężonego powietrza, które jest sugerowane w jednej z odpowiedzi, jest błędnym założeniem. W rzeczywistości, schładzanie czynnika roboczego w sprężarkach nie skutkuje zwiększeniem objętości, ponieważ objętość gazu w zamkniętym układzie nie zmienia się w sposób znaczący podczas tego procesu. Z kolei wzrost ciśnienia sprężonego powietrza to efekt spadku temperatury, który prowadzi do kompaktowania cząsteczek gazu. Osuszanie powietrza poprzez skraplanie pary wodnej jest również związane z innymi mechanizmami, takimi jak stosowanie separatorów czy filtrów, a nie bezpośrednio ze schładzaniem czynnika. Osadzanie zanieczyszczeń na dnie zbiornika jest również mylone z procesem schładzania, jednakże dotyczy ono głównie aspektów związanych z niewłaściwą filtracją oraz z przegrzewaniem powietrza. Takie nieporozumienia mogą wynikać z braku zrozumienia podstawowych zasad termodynamiki oraz procesów fizycznych zachodzących w sprężarkach. Ważne jest, aby zgłębić temat właściwego działania sprężarek oraz ich wpływu na jakość sprężonego powietrza, co jest kluczowe w przemyśle oraz w zastosowaniach technologicznych.