Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 15 maja 2025 13:22
  • Data zakończenia: 15 maja 2025 13:36

Egzamin zdany!

Wynik: 24/40 punktów (60,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakie komponenty powinny być wykorzystane do stworzenia półsterowanego mostka prostowniczego?

A. Diody i tyrystory
B. Triaki oraz diaki
C. Diody
D. Triaki
Odpowiedzi zawierające triaki, diaki, czy też wyłącznie diody, nie są poprawne w kontekście budowy półsterowanego mostka prostowniczego. Triaki to elementy, które mogą być używane w układach kontrolujących prąd, jednak nie są one odpowiednie do zastosowania w prostownikach, które wymagają diod dla efektywnej konwersji energii z AC na DC. Użycie diaków w tym kontekście również jest mylące, ponieważ diaki są stosowane głównie do wykrywania i wygaszania napięcia w obwodach, a nie do prostowania prądu. Ponadto, wybór jedynie diod jako odpowiedzi wskazuje na pominięcie kluczowego elementu, jakim są tyrystory, które są niezbędne do regulacji i kontroli energii w półsterowanych mostkach prostowniczych. Często zdarza się, że osoby uczące się o elektronice mogą mylić funkcje tych elementów, co prowadzi do błędnych założeń na temat ich zastosowania. W praktyce, aby prawidłowo wykonać półsterowany mostek prostowniczy, konieczne jest zrozumienie zarówno roli diod, jak i tyrystorów, jako że tylko ich synergiczne działanie pozwala na uzyskanie wydajnego i efektywnego układu. Kluczowe jest, aby projektanci układów zasilania byli świadomi różnic między tymi komponentami oraz ich zastosowania w praktycznych aplikacjach elektrycznych.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Jaki rodzaj czujnika, montowanego na metalowym cylindrze siłownika pneumatycznego, powinno się wykorzystać do monitorowania położenia tłoka?

A. Czujnik optyczny
B. Czujnik indukcyjny
C. Czujnik tensometryczny
D. Czujnik magnetyczny
Czujnik magnetyczny jest idealnym rozwiązaniem do kontroli położenia tłoka w siłownikach pneumatycznych, w szczególności tych wykonanych z metalu. Działa na zasadzie detekcji pola magnetycznego generowanego przez magnes zamontowany na tłoku. Dzięki temu czujnik może precyzyjnie określić położenie tłoka, co jest kluczowe w aplikacjach wymagających dokładności i powtarzalności. Przykłady zastosowań czujników magnetycznych to automatyka przemysłowa, linie montażowe oraz systemy robotyczne, gdzie precyzyjne pozycjonowanie jest niezbędne. W standardach branżowych, takich jak ISO 6431 czy IEC 60947, czujniki magnetyczne są rekomendowane do monitorowania ruchu w siłownikach, co potwierdza ich trwałość i niezawodność w trudnych warunkach przemysłowych. Ich bezdotykowa natura sprawia, że nie ma ryzyka zużycia mechanicznego, co dodatkowo zwiększa ich żywotność.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

Która metoda regulacji prędkości obrotowej silnika obcowzbudnego prądu stałego umożliwi efektywną regulację w szerokim zakresie od 0 do nn?

A. Napięciem przyłożonym do obwodu wzbudzenia
B. Rezystancją w obwodzie twornika
C. Rezystancją w obwodzie wzbudzenia
D. Napięciem przyłożonym do obwodu twornika
Napięcie przyłożone do obwodu twornika silnika obcowzbudnego prądu stałego jest kluczowym parametrem wpływającym na prędkość obrotową silnika. Zwiększenie napięcia powoduje wzrost prędkości obrotowej, podczas gdy obniżenie napięcia prowadzi do jej zmniejszenia. Taka regulacja jest szczególnie efektywna, gdyż pozwala na uzyskanie szerokiego zakresu prędkości od 0 do nn bez istotnych strat mocy oraz przy zachowaniu wysokiej sprawności energetycznej. W praktyce, ta metoda jest stosowana w aplikacjach takich jak napędy wózków widłowych czy w systemach automatyki, gdzie precyzyjne sterowanie prędkością jest kluczowe. Ponadto, zgodnie z zasadami dobrych praktyk w inżynierii, ta metoda regulacji jest preferowana ze względu na prostotę obsługi i łatwość implementacji w obwodach elektronicznych. Warto zaznaczyć, że stosowanie odpowiednich układów elektronicznych, jak np. falowniki DC, może znacznie ułatwić to zadanie, oferując dodatkowe funkcje, takie jak zabezpieczenia przed przeciążeniami.

Pytanie 6

Jakie obwody elektroniczne gwarantują utrzymanie stałego napięcia na wyjściu, niezależnie od zmian obciążenia oraz fluktuacji napięcia zasilającego?

A. Stabilizatory.
B. Generatory.
C. Prostowniki.
D. Flip-flopy.
Stabilizatory to układy elektroniczne, które mają na celu zapewnienie stałej wartości napięcia na wyjściu, niezależnie od zmian w obciążeniu oraz fluktuacji napięcia zasilającego. Działają one na zasadzie automatycznego dostosowywania się, aby utrzymać wyjściowe napięcie w pożądanym zakresie. Przykładem są stabilizatory liniowe, które wykorzystują elementy regulacyjne, takie jak tranzystory, do kontrolowania napięcia. Zastosowania stabilizatorów można znaleźć w zasilaczach do urządzeń elektronicznych, gdzie stabilne napięcie jest kluczowe dla prawidłowego funkcjonowania komponentów, takich jak procesory i układy cyfrowe. W praktyce, stabilizatory są również stosowane w systemach zasilania krytycznych aplikacji, takich jak sprzęt medyczny czy telekomunikacyjny, gdzie wahania napięcia mogłyby prowadzić do awarii systemów. W branży przestrzega się standardów takich jak IEC 62368, które regulują bezpieczeństwo i wydajność układów zasilających, w tym stabilizatorów.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Podczas działania silnika prądu stałego zauważono intensywne iskrzenie na komutatorze spowodowane nagromadzeniem pyłu ze szczotek. Aby naprawić tę awarię, należy wyłączyć silnik, a następnie

A. umyć komutator wodą
B. wykonać szlifowanie komutatora
C. posmarować olejem szczotki
D. przetrzeć komutator olejem
Przetrwanie komutatora olejem, umycie go wodą lub smarowanie szczotek olejem to podejścia, które nie adresują podstawowego problemu, jakim jest iskrzenie spowodowane zanieczyszczeniami. Przetarcie komutatora olejem może chwilowo zmniejszyć tarcie, jednak nie eliminuje zanieczyszczeń, a wręcz może prowadzić do ich utrwalenia, co pogarsza sytuację. Woda, choć skutecznie usunie brud, nie jest odpowiednia do czyszczenia komutatorów silników elektrycznych, ponieważ może spowodować korozję oraz uszkodzić izolację. Dodatkowo, wprowadzenie wilgoci do wnętrza silnika może prowadzić do poważnych uszkodzeń. Smarowanie szczotek olejem również nie jest właściwym rozwiązaniem, ponieważ olej może osadzać się na komutatorze, co z kolei zwiększa ryzyko iskrzenia. To podejście pomija fundamentalny problem, jakim jest niewłaściwe działanie komutatora. Istotne jest zrozumienie, że każdy z wymienionych sposobów nie eliminuje problemu z iskrzeniem, a jedynie maskuje objawy, co może prowadzić do dalszego zużycia i uszkodzeń. Kluczowe w konserwacji silników prądu stałego jest regularne sprawdzanie stanu komutatora oraz jego szlifowanie, co jest uznawane za najlepszą praktykę w branży.

Pytanie 9

Podczas naprawy pieca indukcyjnego pracownik doznał poparzenia ramienia. Jaką pomoc powinien otrzymać w pierwszej kolejności?

A. miejsca oparzone polewać zimną wodą, a następnie na ranę oparzeniową założyć jałowy opatrunek
B. zdjąć odzież i bieliznę z oparzonych miejsc, a następnie na ranę oparzeniową nałożyć okład z 3% roztworu sody oczyszczonej
C. miejsca oparzone posmarować tłustym kremem, a następnie na ranę oparzeniową zastosować okład z 1% kwasu octowego
D. zdjąć odzież i bieliznę z oparzonych miejsc, a następnie miejsca oparzone polewać wodą utlenioną
W przypadku pierwszej z niepoprawnych odpowiedzi, usuwanie odzieży z oparzonych miejsc to działanie, które należy podejmować ostrożnie. Nadmierne szarpanie lub usuwanie odzieży, która przylega do rany, może pogorszyć uszkodzenie skóry. Zamiast tego skupiamy się na schłodzeniu oparzenia wodą. Pomysł zastosowania okładu z 3% roztworu sody oczyszczonej jest również błędny, ponieważ nie tylko nie ma dowodów na skuteczność tego rozwiązania w kontekście oparzeń, ale może także prowadzić do podrażnienia i dalszego uszkodzenia skóry. Kolejna odpowiedź sugeruje stosowanie zimnej wody, co jest właściwe, jednak zamiast jałowego opatrunku pojawia się pomysł użycia tłustego kremu i 1% kwasu octowego. Kremy mogą tworzyć barierę, która uniemożliwia skórze oddychanie i sprzyja infekcjom. Ponadto, stosowanie kwasu octowego na oparzenie jest absolutnie niewłaściwe, ponieważ substancje kwasowe mogą wywołać dodatkowe chemiczne podrażnienia. W ostatniej odpowiedzi, polewanie miejsc oparzonych wodą utlenioną jest również błędne, ponieważ woda utleniona może uszkodzić komórki skóry i spowolnić proces gojenia. W pierwszej pomocy kluczowe jest, by dążyć do minimalizacji dalszych uszkodzeń tkanek oraz zabezpieczenia ich przed zanieczyszczeniami, co można osiągnąć wyłącznie poprzez odpowiednie nawilżenie i zastosowanie jałowego opatrunku."

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Jakie narzędzie jest wykorzystywane do zaciskania końcówek na przewodach elektrycznych?

A. ucinaczki boczne
B. pincety
C. praski ręcznej
D. kombinerki
Praska ręczna to narzędzie zaprojektowane specjalnie do zaciskania końcówek przewodów elektrycznych, co zapewnia solidne i trwałe połączenia. Dzięki mechanizmowi dźwigniowemu, praska umożliwia uzyskanie odpowiedniej siły zacisku, co jest kluczowe dla uniknięcia luzów w połączeniach oraz ich późniejszych awarii. Praski ręczne są dostosowane do różnych typów końcówek, takich jak złącza typu ring, fork czy blade, co czyni je uniwersalnym narzędziem w instalacjach elektrycznych. W praktyce, zaciskanie końcówek przy pomocy praski zapewnia nie tylko bezpieczeństwo, ale także efektywność pracy, ponieważ właściwie wykonane połączenia ograniczają straty energii oraz ryzyko przegrzewania się przewodów. Ponadto, stosując praski, można łatwo dostosować siłę zacisku do specyfiki zastosowania, co jest zgodne z najlepszymi praktykami branżowymi wynikającymi z norm IEC oraz PN-EN. Warto również zaznaczyć, że użycie praski jest zalecane w przypadku pracy z przewodami o różnych przekrojach, co zwiększa wszechstronność tego narzędzia.

Pytanie 12

Z informacji o parametrach wynika, że cewka elektrozaworu jest przeznaczona do pracy z napięciem przemiennym o wartości 230 V. Jaką wartość ona reprezentuje?

A. maksymalna napięcia podzielona przez √2
B. średnia napięcia wyznaczona dla okresu
C. średnia napięcia wyznaczona dla półokresu
D. maksymalna napięcia podzielona przez √3
Wartości napięcia przemiennego mogą być mylone z różnymi parametrami, co prowadzi do nieprawidłowych konkluzji. Pierwszą z takich koncepcji jest pomylenie średniej wartości napięcia wyznaczonej dla półokresu z wartością skuteczną. Średnia wartość napięcia dla półokresu sinusoidalnego nie odpowiada wartością, która jest używana w praktycznych zastosowaniach elektrycznych, ponieważ nie może odzwierciedlić energii, jaką dostarcza prąd. Dodatkowo, średnia wartość napięcia dla okresu nie jest stosowana w kontekście napięcia przemiennego, ponieważ dla sinusoidy obie wartości powracają do zera, co nie jest użyteczne w inżynierii elektrycznej. Kolejnymi błędami są próby odniesienia maksymalnej wartości napięcia do √3, co w ogóle nie znajduje zastosowania w kontekście typowych obwodów zasilających w zakresie napięcia przemiennego. Zastosowanie √3 odnosi się do napięcia w systemach trójfazowych, a nie jednofazowych, co prowadzi do błędnych obliczeń i niesprawności urządzeń. W praktyce, nieznajomość różnicy między wartościami napięcia skutecznego, maksymalnego i średniego prowadzi do nieprawidłowego doboru urządzeń oraz zagrożeń w instalacjach elektrycznych. Aby uniknąć takich pomyłek, kluczowe jest zrozumienie podstawowych zasad dotyczących parametrów napięcia oraz ich zastosowania w projektowaniu i użytkowaniu systemów elektrycznych.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Jakie narzędzie powinno się zastosować do przygotowania przewodu LgY 0,75 mm2 przed jego montażem w listwie zaciskowej?

A. Klucz płaski
B. Zaciskarkę konektorów
C. Zaciskarkę tulejek
D. Klucz dynamometryczny
Zaciskarka tulejek jest narzędziem przeznaczonym do trwałego łączenia przewodów z różnymi typami konektorów, co jest kluczowe w procesie przygotowania przewodu LgY 0,75 mm² do montażu w listwie zaciskowej. Użycie zaciskarki pozwala na uzyskanie solidnego i niezawodnego połączenia, które jest zgodne z normami bezpieczeństwa oraz standardami branżowymi, takimi jak PN-EN 60352. Przykładem zastosowania zaciskarki tulejek jest łączenie przewodów w instalacjach elektrycznych, gdzie wymagane jest zapewnienie wysokiej jakości połączeń elektrycznych, zwłaszcza w sytuacjach, gdy przewody są narażone na wibracje lub zmiany temperatury. Przeprowadzenie prawidłowego zaciskania pozwala na uzyskanie niskiej rezystancji połączenia, co jest kluczowe dla efektywności energetycznej oraz bezpieczeństwa użytkowania instalacji. Korzystając z dobrej jakości zaciskarki, można również uniknąć problemów związanych z luźnymi połączeniami, które mogą prowadzić do przegrzewania się przewodów i potencjalnych zagrożeń pożarowych.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Który element powinien zostać wymieniony w podnośniku hydraulicznym, jeśli tłoczysko siłownika unosi się, a następnie samoistnie opada?

A. Zawór bezpieczeństwa
B. Sprężynę zaworu zwrotnego
C. Tłokowy pierścień uszczelniający
D. Filtr oleju
Wymiana innych komponentów podnośnika hydraulicznego, takich jak filtr oleju, sprężyna zaworu zwrotnego czy zawór bezpieczeństwa, nie rozwiązuje problemu opadania tłoczyska. Filtr oleju ma na celu jedynie oczyszczanie oleju hydraulicznego z zanieczyszczeń, co jest istotne dla długotrwałego funkcjonowania systemu, ale nie wpływa bezpośrednio na utrzymywanie ciśnienia w siłowniku. Z kolei sprężyna zaworu zwrotnego ma za zadanie zapewnić odpowiednie ciśnienie w systemie oraz regulować przepływ oleju, jednak jej uszkodzenie nie powoduje opadania tłoka, lecz może prowadzić do problemów z jego podnoszeniem. Zawór bezpieczeństwa, który zapobiega nadmiernemu ciśnieniu w układzie, również nie ma wpływu na obniżanie się tłoka po jego podniesieniu. W rzeczywistości, niepoprawne zrozumienie funkcji tych elementów może prowadzić do niepotrzebnych kosztów w wymianie podzespołów i zaburzeń w pracy maszyny. Kluczowe jest zrozumienie, że problem opadania tłoka wynika z nieszczelności w układzie hydrauliki, a nie z niewłaściwego działania innych komponentów. Dlatego zamiast wymieniać części, które nie są przyczyną problemu, należy skupić się na diagnostyce i wymianie kluczowego elementu, jakim jest tłokowy pierścień uszczelniający, aby przywrócić prawidłową funkcjonalność podnośnika.

Pytanie 24

Pasek zębaty przenosi moc pomiędzy kołami pasowymi. W trakcie rutynowej inspekcji paska należy ocenić jego poziom zużycia oraz

A. bicie osiowe.
B. temperaturę.
C. nawilżenie.
D. stan napięcia.
Sprawdzanie stanu napięcia paska zębatego jest kluczowym etapem w jego konserwacji, ponieważ niewłaściwe napięcie może prowadzić do przedwczesnego zużycia lub uszkodzeń zarówno paska, jak i kół pasowych. Odpowiednie napięcie zapewnia właściwe przenoszenie napędu, co jest niezbędne dla efektywnego działania całego systemu. Przykładem dobrych praktyk jest stosowanie narzędzi do pomiaru napięcia, które mogą pomóc w ocenie, czy pasek jest odpowiednio napięty, zgodnie z zaleceniami producenta. Niedostateczne napięcie może skutkować ślizganiem się paska, natomiast zbyt duże napięcie może prowadzić do uszkodzenia łożysk lub nadmiernego zużycia paska. W przemyśle stosuje się także standardy, takie jak normy ISO, które definiują procesy konserwacji i inspekcji elementów napędowych, w tym pasków zębatych, aby zapewnić ich niezawodność i długotrwałe użytkowanie. Regularne inspekcje i dostosowywanie napięcia to kluczowe działania, które mogą znacząco wpłynąć na wydajność maszyny oraz zredukować ryzyko awarii.

Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

Przedstawiony na rysunku element pneumatyczny to

Ilustracja do pytania
A. zawór zwrotno-dławiący.
B. rozdzielacz czterodrogowy.
C. zawór z popychaczem.
D. przełącznik obiegu.
Wybór odpowiedzi innej niż zawór z popychaczem może wynikać z nieporozumienia dotyczącego funkcji i wyglądu różnych elementów pneumatycznych. Przełącznik obiegu jest elementem, który służy do kierowania przepływu powietrza, ale nie ma popychacza i działa na innych zasadach. Z kolei rozdzielacz czterodrogowy to bardziej skomplikowane urządzenie, które pozwala na kontrolę kierunku przepływu powietrza w czterech różnych kierunkach, również nie posiada typowego popychacza. Zawór zwrotno-dławiący, z drugiej strony, jest przeznaczony do regulacji przepływu i zapobiega cofaniu się medium, ale również nie jest odpowiedni w kontekście opisanego elementu. Typowym błędem jest mylenie funkcji różnych zaworów i elementów pneumatycznych oraz niedostateczne zwrócenie uwagi na ich specyfikę. W branży pneumatycznej kluczowe jest odpowiednie dobranie elementów do konkretnego zastosowania, co wymaga znajomości ich właściwości i zastosowań. W związku z tym, dokładne zrozumienie każdego z wymienionych elementów oraz ich różnic jest niezbędne, aby uniknąć nieporozumień i błędów w projektowaniu systemów pneumatycznych.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Jakie środki ochrony osobistej, oprócz kasku ochronnego, powinien założyć pracownik wykonujący konserwację wyłączonego z eksploatacji urządzenia mechatronicznego w hali produkcyjnej?

A. Rękawice ochronne
B. Okulary ochronne
C. Buty ochronne
D. Odzież ochronna
Rękawice ochronne są kluczowym środkiem ochrony indywidualnej, który powinien być noszony przez pracowników zajmujących się konserwacją urządzeń mechatronicznych. Działania konserwacyjne często wiążą się z ryzykiem wystąpienia urazów mechanicznych, takich jak przecięcia, otarcia czy uderzenia. Rękawice ochronne zapewniają barierę między skórą a potencjalnymi źródłami urazów, co znacząco zmniejsza ryzyko kontuzji. Przykładem mogą być rękawice wykonane z materiałów odpornych na przebicia, które są standardem w branżach zajmujących się pracami w trudnych warunkach. Ponadto, w sytuacjach, gdzie używane są chemikalia lub substancje szkodliwe, odpowiednie rękawice chemiczne będą niezbędne do ochrony przed ich działaniem. Zgodnie z normą PN-EN 420:2004, rękawice ochronne powinny być dostosowane do rodzaju pracy i zagrożeń występujących w danym środowisku, dlatego ich wybór powinien być uzależniony od specyfiki wykonywanych zadań. Właściwe użycie rękawic ochronnych w połączeniu z innymi środkami, takimi jak kask czy odzież ochronna, tworzy kompleksowy system bezpieczeństwa.

Pytanie 29

Jaki aparat elektryczny jest wykorzystywany do ochrony silnika indukcyjnego przed przeciążeniem?

A. Wyłącznik różnicowoprądowy
B. Wyłącznik nadmiarowy
C. Przekaźnik termobimetalowy
D. Stycznik elektromagnetyczny
Wyłącznik nadmiarowy, stycznik elektromagnetyczny oraz wyłącznik różnicowoprądowy to urządzenia, które pełnią różne funkcje w systemach elektrycznych, ale nie są odpowiednie do zabezpieczenia silnika indukcyjnego przed przeciążeniem. Wyłącznik nadmiarowy, mimo że jest używany do ochrony przed przeciążeniem, działa na zasadzie automatycznego wyłączania obwodu przy przekroczeniu określonego prądu. Jednak nie jest on dostosowany do specyficznych warunków pracy silników indukcyjnych, gdzie ważne jest szybkie reagowanie na zmiany obciążenia. Stycznik elektromagnetyczny, z drugiej strony, służy do załączania i wyłączania obwodów elektrycznych, a jego zadanie polega na kontrolowaniu przepływu energii elektrycznej, a nie na monitorowaniu stanu przeciążenia. Wyłącznik różnicowoprądowy jest przeznaczony głównie do ochrony ludzi przed porażeniem prądem elektrycznym, a jego działanie opiera się na wykrywaniu różnicy prądu między przewodami zasilającymi, co nie ma związku z przeciążeniem silnika. Wybór niewłaściwego urządzenia do ochrony silnika może prowadzić do uszkodzenia sprzętu, a także do niebezpieczeństwa dla użytkowników. Dlatego ważne jest, aby w odpowiedni sposób dobierać komponenty zabezpieczające zgodnie z ich funkcjami oraz zaleceniami producentów i normami branżowymi.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

System napędowy, który składa się z silnika prądu przemiennego zasilanego przez falownik, działa poprawnie, gdy wzrost częstotliwości napięcia zasilającego prowadzi do

A. obniżenia wartości napięcia zasilania
B. spadku obrotów silnika
C. zmniejszenia reaktancji uzwojeń silnika
D. wzrostu obrotów silnika
Wzrost obrotów silnika w układzie napędowym z silnikiem prądu przemiennego zasilanym z falownika jest zgodny z zasadą, że zmiana częstotliwości napięcia zasilającego wpływa na prędkość obrotową silnika. Zgodnie z równaniem: n = (120 × f) / p, gdzie n to prędkość obrotowa w obrotach na minutę (RPM), f to częstotliwość zasilania, a p to liczba par biegunów silnika, możemy zauważyć, że zgodnie z tym równaniem, zwiększenie częstotliwości f prowadzi do proporcjonalnego wzrostu prędkości obrotowej n. Przykładowo, w zastosowaniach przemysłowych, takich jak napęd wentylatorów, pomp, czy taśmociągów, wykorzystuje się falowniki do precyzyjnego sterowania prędkością obrotową, co pozwala na oszczędność energii oraz zwiększenie efektywności procesów technologicznych. Warto także zwrócić uwagę na standardy takie jak IEC 60034, które definiują normy dla maszyn elektrycznych, w tym dla silników elektrycznych, co jest istotne dla zapewnienia ich prawidłowej pracy i bezpieczeństwa użytkowania. Zrozumienie tej zasady jest kluczowe dla inżynierów automatyków oraz techników zajmujących się systemami napędowymi.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Jakie urządzenie stosowane do zasilania silnika indukcyjnego potrafi regulować częstotliwość wyjściową?

A. Chopper
B. Falownik
C. Prostownik
D. Stycznik
Prostownik, jako urządzenie, konwertuje napięcie przemienne na napięcie stałe, co czyni go idealnym do aplikacji wymagających stabilizacji napięcia. Jednak prostownik nie ma zdolności regulacji częstotliwości, co czyni go nieodpowiednim wyborem do zasilania silników indukcyjnych, które wymagają zmiennej częstotliwości do płynnej regulacji prędkości obrotowej. Stycznik, z drugiej strony, jest elementem elektromechanicznym, który służy do załączania lub wyłączania obwodów elektrycznych, ale nie ma możliwości zmiany parametrów napięcia czy częstotliwości, co ogranicza jego zastosowanie w kontekście regulacji silników. Chopper, będący urządzeniem do regulacji napięcia w aplikacjach zasilania, również nie oferuje możliwości modyfikacji częstotliwości wyjściowej. Typowe błędy myślowe, które mogą prowadzić do tych niepoprawnych wniosków, obejmują mylenie funkcji prostowników i falowników, a także niedocenianie znaczenia regulacji częstotliwości w kontekście wydajności silników elektrycznych. W rzeczywistości, aby efektywnie sterować silnikami indukcyjnymi, kluczowe jest zastosowanie falowników, które są zaprojektowane z myślą o tej konkretnej funkcji.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

Jaką wartość można zarejestrować korzystając z enkodera absolutnego jednoobrotowego?

A. Przyspieszenie
B. Moment obrotowy
C. Ciśnienie
D. Przesunięcie kątowe
Przyspieszenie, moment obrotowy oraz ciśnienie to wielkości, które nie są bezpośrednio mierzone przez enkodery absolutne jednoobrotowe, co może prowadzić do nieporozumień w kontekście ich zastosowań. Przyspieszenie odnosi się do zmiany prędkości obiektu w czasie i jest mierzonym parametrem, który można określić przy użyciu akcelerometrów, a nie enkoderów. Chociaż enkodery mogą być używane w systemach, które również mierzą przyspieszenie, same w sobie nie są w stanie tego dokonać. Moment obrotowy jest wielkością, która opisuje siłę działającą na obiekt w celu jego obrotu. Enkodery mogą dostarczać informacji o położeniu, ale ich funkcja nie obejmuje bezpośredniego pomiaru momentu obrotowego, który wymaga pomiaru siły oraz promienia działania. Z kolei ciśnienie jest parametrem fizycznym, mierzonym za pomocą czujników ciśnienia, a nie enkoderów. Typowe błędy myślowe w tym kontekście obejmują mylenie funkcji pomiarowych różnych urządzeń oraz niewłaściwe przypisanie ich do różnych zastosowań w automatyce. Kluczowym zrozumieniem jest to, że enkodery absolutne jednoobrotowe są projektowane z myślą o pomiarze kąta, a nie innych wielkości fizycznych, co jest fundamentalnym aspektem ich technologii i zastosowania.

Pytanie 40

Jakie urządzenie służy do pomiaru prędkości obrotowej wirnika silnika?

A. resolver.
B. galwanometr.
C. tensometr.
D. prądnica tachometryczna.
Prądnica tachometryczna jest urządzeniem stosowanym do pomiaru prędkości obrotowej wirnika silnika, które działa na zasadzie generowania napięcia proporcjonalnego do prędkości obrotowej wału. Jest to szczególnie przydatne w aplikacjach, gdzie precyzyjny pomiar prędkości jest kluczowy, takich jak w silnikach elektrycznych, systemach automatyki czy pojazdach. Prądnice tachometryczne są często wykorzystywane w systemach regulacji, gdzie dokładne informacje o prędkości obrotowej są niezbędne do uzyskania stabilności i efektywności działania układu. W praktyce, prądnice te znajdują zastosowanie w napędach, robotyce oraz w różnych maszynach przemysłowych. Dobrą praktyką jest regularne kalibrowanie prądnic tachometrycznych, aby zapewnić ich dokładność oraz niezawodność. Znajomość działania prądnic tachometrycznych oraz ich zastosowań pozwala inżynierom na efektywniejsze projektowanie systemów automatyki i zwiększa efektywność produkcji.