Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik technologii chemicznej
  • Kwalifikacja: CHM.02 - Eksploatacja maszyn i urządzeń przemysłu chemicznego
  • Data rozpoczęcia: 19 kwietnia 2025 09:31
  • Data zakończenia: 19 kwietnia 2025 09:41

Egzamin zdany!

Wynik: 33/40 punktów (82,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jedną z operacji technologicznych realizowanych na etapie wstępnego przetwarzania rud miedzi jest

A. rafinacja
B. flotacja
C. ekstrakcja
D. wypalanie
Flotacja to naprawdę ważny etap w przygotowywaniu rud miedzi. To, co się dzieje, to mieszanie drobno zmielonej rudy z wodą i różnymi chemikaliami, dzięki czemu minerały zawierające miedź oddzielają się od reszty. Wiesz, w przemyśle miedziowym to jest kluczowa metoda, bo pozwala uzyskać naprawdę dobre koncentraty miedzi, które potem można dalej przerabiać. Co ciekawe, flotacja jest uniwersalna i można ją dostosować do różnych rodzajów rud - to jest jej ogromny atut. W branży to jest standard, więc jakby co, zawsze można znaleźć więcej informacji na ten temat w różnych dokumentach o technologii surowców. Myślę, że dobrze rozumiesz, że flotacja jest nieodzowna w tym wszystkim, co dotyczy wydobycia i przetwarzania miedzi.

Pytanie 2

Jakie dodatki stosowane w stalach podnoszą ich odporność na działanie pary wodnej, roztworów soli oraz węglowodorów?

A. Nikiel, glin, miedź
B. Mangan, miedź, arsen
C. Chrom, molibden, tytan
D. Fosfor, krzem, nikiel
Chrom, molibden i tytan to dodatki, które znacząco zwiększają odporność stali na działanie pary wodnej, roztworów soli oraz węglowodorów. Chrom, jako kluczowy składnik stali nierdzewnej, działa poprzez tworzenie cienkowarstwowej powłoki pasywnej, która chroni stal przed korozją. W połączeniu z molibdenem, jego właściwości antykorozyjne są znacznie wzmacniane, ponieważ molibden poprawia stabilność struktury w wysokich temperaturach i zwiększa odporność na pitting, czyli miejscową korozję. Tytan z kolei zwiększa wytrzymałość mechaniczna stali oraz jej odporność na działanie wysokich temperatur. W praktyce, stali z tymi dodatkami używa się w przemyśle chemicznym, na przykład w produkcji zbiorników i rur, które są narażone na działanie agresywnych mediów. Zastosowanie stali nierdzewnej w środowiskach o wysokiej wilgotności, jak np. przemysł spożywczy, potwierdza korzyści płynące z używania chromu, molibdenu i tytanu, co wpisuje się w normy jakościowe, takie jak ISO 9327, które regulują produkcję materiałów odpornych na korozję.

Pytanie 3

Skraplanie par generowanych w wyparce zazwyczaj zachodzi przy zastosowaniu zasady

A. regeneracji materiałów
B. przeciwprądu materiałowego
C. odzyskiwania ciepła
D. przeciwprądu cieplnego
Odpowiedź 'przeciwprądu cieplnego' jest poprawna, ponieważ jest to technika, która umożliwia efektywne skraplanie oparów poprzez wykorzystanie różnicy temperatur między medium chłodzącym a oparami. W procesie skraplania, opary oddają ciepło do medium chłodzącego, które przepływa w przeciwnym kierunku. Taka konfiguracja pozwala na maksymalne wykorzystanie energii zawartej w oparach, co przyczynia się do zwiększenia efektywności procesów przemysłowych, takich jak destylacja czy kondensacja. Przykładem zastosowania tej zasady jest system chłodzenia w chłodniach przemysłowych, gdzie skraplanie gazów chłodniczych odbywa się w wymiennikach ciepła, w których chłodziwo przepływa w przeciwnym kierunku do gazów. Zastosowanie przeciwprądu cieplnego zwiększa wydajność energetyczną, co jest zgodne z najlepszymi praktykami w sektorze inżynierii chemicznej i energetycznej, zmniejszając jednocześnie koszty operacyjne. Warto także zauważyć, że technologia ta jest często stosowana w nowoczesnych instalacjach, które dążą do zminimalizowania strat energii oraz emisji gazów cieplarnianych, co jest kluczowe w kontekście zrównoważonego rozwoju przemysłu.

Pytanie 4

Szczęki w urządzeniu do łamania szczęk wytwarza się ze stali

A. manganowej
B. wanadowej
C. niklowo-molibdenowej
D. chromowo-niklowej
Szczęki łamacza szczękowego wykonuje się ze stali manganowej, ponieważ charakteryzuje się ona wyjątkową odpornością na ścieranie i wysoką wytrzymałością. Stal manganowa, szczególnie w formie stali o podwyższonej zawartości manganu, ma zdolność do zwiększania twardości w obszarze poddawanym deformacji, co czyni ją idealnym materiałem do zastosowań w narzędziach skrawających i łamaczach. Przykładem praktycznym zastosowania stali manganowej jest użycie w przemyśle wydobywczym, gdzie narzędzia muszą wytrzymać ekstremalne warunki pracy. Stal ta jest również stosowana w produkcji elementów maszyn, które wymagają wysokiej odporności na uderzenia i zniszczenie. Dobre praktyki branżowe wskazują, że wybór odpowiednich materiałów, takich jak stal manganowa, jest kluczowy dla zapewnienia długotrwałej żywotności narzędzi i minimalizacji kosztów eksploatacyjnych.

Pytanie 5

Rozcieńczanie kwasu siarkowego (do 65%) należy wykonywać w zbiorniku wykonanym z blachy

A. z ołowiu
B. z magnezu
C. ze stali nierdzewnej
D. ze stali węglowej
Odpowiedź 'z ołowiu' jest prawidłowa, ponieważ ołów charakteryzuje się wysoką odpornością na działanie kwasów, w tym kwasu siarkowego. W zastosowaniach przemysłowych, gdzie kwas siarkowy o stężeniu do 65% jest używany, istotne jest, aby materiał zbiornika był odporny na korozję chemiczną. Ołów, ze względu na swoje właściwości, jest często wykorzystywany w konstrukcji zbiorników do przechowywania i transportu substancji chemicznych. W praktyce, zbiorniki ołowiane znajdują zastosowanie w laboratoriach chemicznych oraz w zakładach przemysłowych zajmujących się produkcją chemikaliów. Warto również zauważyć, że stosowanie ołowiu w takich aplikacjach jest zgodne z normami przemysłowymi, które określają wymagania dotyczące materiałów stosowanych w kontakcie z substancjami agresywnymi. Przy projektowaniu instalacji chemicznych należy zawsze uwzględnić zalecenia dotyczące wybierania odpowiednich materiałów, aby zapewnić bezpieczeństwo i niezawodność operacji.

Pytanie 6

W kolumnie próżniowej w procesie destylacji rurowo-wieżowej zyskuje się frakcje olejowe o temperaturach wrzenia 220÷380 °C. Co pół godziny powinno się zanotować w dzienniku monitoringu?

A. objętości zebranych frakcji
B. ciśnienia i temperatury
C. tylko temperatury
D. tylko ciśnienia
Prawidłowa odpowiedź to wpisywanie zarówno ciśnienia, jak i temperatury, ponieważ obie te wartości są kluczowe w procesie monitorowania destylacji rurowo-wieżowej. Wartości te pozwalają na ocenę efektywności procesu separacji frakcji olejowych. Ciśnienie wpływa na temperaturę wrzenia substancji, a zmiany w zarówno ciśnieniu, jak i temperaturze mogą wskazywać na odchylenia od normy. Przykładowo, w procesie destylacji, zwiększenie ciśnienia może prowadzić do podwyższenia temperatury wrzenia, co może zmodyfikować charakterystykę odbieranych frakcji. W praktyce, monitorowanie tych parametrów jest zgodne z zasadami dobrej praktyki inżynieryjnej, a regularne zapisywanie ich wartości co pół godziny pozwala na szybką reakcję w przypadku wystąpienia anomalii, co jest kluczowe dla zapewnienia bezpieczeństwa i efektywności produkcji. W przypadku systemów automatycznego monitorowania, dane te mogą być również wykorzystywane do analizy wydajności procesu oraz optymalizacji warunków operacyjnych.

Pytanie 7

Możliwość przeprowadzenia jednorazowej analizy stężenia tlenku węgla w gazach spalinowych uzyskuje się dzięki

A. aparatu Orsata
B. refraktometrowi Abbego
C. urządzeniu Marcussona
D. kalorymetrowi Junkersa
Aparat Orsata jest urządzeniem używanym do pomiaru zawartości tlenku węgla (CO) w gazach spalinowych, co jest kluczowe w analizie emisji oraz w ocenie efektywności procesów spalania. Zasada działania aparatu opiera się na reakcji chemicznej, w której tlenek węgla reaguje z reagentem, co skutkuje powstaniem zmiany barwy, umożliwiającej ilościowe określenie stężenia CO. W praktyce, aparat Orsata znajduje zastosowanie w branży energetycznej, motoryzacyjnej oraz w przemysłowych instalacjach grzewczych, gdzie regularne monitorowanie emisji gazów jest wymagane przez przepisy ochrony środowiska. Stosowanie tego urządzenia pozwala na szybką i precyzyjną analizę, co jest niezbędne dla oceny wpływu na jakość powietrza oraz dla zapewnienia zgodności z normami emisji. W przypadku wykrycia wysokiego stężenia tlenku węgla, operatorzy mogą podjąć odpowiednie działania korygujące, co przekłada się na zmniejszenie negatywnego wpływu na zdrowie ludzi i środowisko.

Pytanie 8

Z kwiatów jaśminu uzyskuje się olejek eteryczny za pomocą lotnego rozpuszczalnika organicznego. Najczęściej w celu oddzielenia olejku eterycznego z ekstraktu wykorzystuje się proces destylacji. Odzyskany w ten sposób rozpuszczalnik organiczny

A. jest utylizowany i usuwany do środowiska
B. odparowuje do atmosfery
C. wraca do procesu
D. jest usuwany do ścieków
Odpowiedź "zawraca się do procesu" jest poprawna, ponieważ odzyskany rozpuszczalnik organiczny po destylacji olejku eterycznego może być ponownie wykorzystany w tym samym procesie ekstrakcji. Taki sposób postępowania jest zgodny z zasadami zrównoważonego rozwoju i efektywności energetycznej, które są kluczowe w przemyśle chemicznym. Zawracanie rozpuszczalnika do procesu pozwala na oszczędność materiałów, redukcję kosztów oraz minimalizowanie negatywnego wpływu na środowisko. W praktyce, systemy zamknięte obiegów rozpuszczalników są powszechnie stosowane w laboratoriach oraz zakładach przemysłowych, co przyczynia się do zwiększenia efektywności procesów produkcyjnych. Dobrą praktyką jest także regularne monitorowanie jakości odzyskanego rozpuszczalnika, aby zapewnić jego odpowiednią czystość przed ponownym użyciem. Dodatkowo, stosowanie nowoczesnych technologii, takich jak destylacja próżniowa, może zwiększyć wydajność procesu ekstrakcji oraz poprawić jakość końcowego produktu.

Pytanie 9

W magnetycie zawartość żelaza wynosi 70% masy. Jaką ilość żelaza teoretycznie można uzyskać z 500 kg rudy magnetytowej, która zawiera magnetyt oraz 20% masowych zanieczyszczeń?

A. 280 kg
B. 100 kg
C. 350 kg
D. 400 kg
Czasami jak wybierasz inną odpowiedź, to może wynikać z tego, że nie do końca rozumiesz, jak liczyć masę surowca i co z tymi zanieczyszczeniami. Przykładowo, jak ktoś zaznacza 100 kg żelaza, to pewnie myśli, że trzeba brać całą masę rudy, a nie liczyć zanieczyszczenia. A to jest duży błąd, bo trzeba najpierw odjąć te zanieczyszczenia. Często też ludzie zapominają, że 70% dotyczy tylko czystego magnetytu, a nie całej rudy, co prowadzi do błędnych wyników. Zrozumienie, że liczymy żelazo tylko z czystej masy magnetytu, jest bardzo istotne, by dobrze podejść do takich zadań. To pokazuje, jak ważne jest precyzyjne rozumieć proporcje w obliczeniach inżynieryjnych i ich zastosowania w praktyce. Wydobycie surowców naturalnych i ich przetwarzanie wymaga znajomości i umiejętności liczenia zanieczyszczeń, bo to pomaga przy optymalizacji produkcji i zwiększa efektywność. Dlatego znajomość podstaw matematyki stosowanej w przemyśle może pomóc unikać typowych błędów w obliczeniach i poprawić wyniki w branży metalurgicznej.

Pytanie 10

Podczas wprowadzania siarki do pieca cyklonowego należy

A. kontrolować zawartość czystej siarki w rudzie
B. cyklicznie zmieniać temperaturę siarki w zakresie od 95°C do 150°C
C. nadzorować rozdrobnienie oraz wilgotność surowca
D. utrzymywać stałą temperaturę siarki na poziomie około 120°C
Utrzymywanie stałej temperatury siarki na poziomie około 120°C jest kluczowym aspektem w procesie podawania siarki do pieca cyklonowego. W tej temperaturze siarka osiąga optymalny stan płynny, co zapewnia jej efektywne przetwarzanie oraz minimalizuje ryzyko niepożądanych reakcji chemicznych. W praktyce, stała temperatura sprzyja stabilności procesu, co przekłada się na lepszą jakość końcowego produktu. W zastosowaniach przemysłowych, takich jak produkcja kwasu siarkowego, ważne jest, aby proces podawania siarki był kontrolowany, aby uniknąć nadmiernych strat materiałowych i osiągnąć zamierzony poziom wydajności. Przykładem dobrych praktyk branżowych jest zastosowanie systemów automatycznej kontroli temperatury, które pozwalają na precyzyjne dostosowanie warunków pracy pieca w odpowiedzi na zmieniające się parametry surowca, co prowadzi do zwiększenia efektywności produkcji i zmniejszenia ryzyka awarii. Zgodność z normami bezpieczeństwa również wymaga utrzymania optymalnej temperatury, aby zminimalizować ryzyko wybuchów lub innych niebezpiecznych zdarzeń."

Pytanie 11

Mieszanina nitrująca składa się z HNO3 w stężeniu oraz H2SO4 w stężeniu. Waga kwasu azotowego(V) w tej mieszance wynosi 46%. Jakie ilości tych kwasów trzeba zmieszać, aby uzyskać 200 kg tej mieszanki?

A. 92 kg HNO3 i 108 kg H2SO4
B. 95 kg HNO3 i 105 kg H2SO4
C. 108 kg HNO3 i 92 kg H2SO4
D. 105 kg HNO3 i 95 kg H2SO4
Odpowiedź 92 kg HNO3 i 108 kg H2SO4 jest prawidłowa, ponieważ dokładnie spełnia wymagania dotyczące składu mieszaniny nitrującej. Mieszanina ta powinna zawierać 46% kwasu azotowego(V), co oznacza, że w 200 kg mieszaniny musi być 92 kg HNO3 (46% z 200 kg). Pozostała masa, czyli 108 kg, stanowi kwas siarkowy(VI). Takie proporcje są zgodne z praktycznymi zastosowaniami w przemyśle chemicznym, gdzie precyzyjne określenie składników jest kluczowe dla jakości procesu. Dodatkowo, mieszanie tych kwasów zgodnie z tymi zasadami jest istotne, ponieważ pozwala na uzyskanie odpowiednich właściwości reaktantów, które są wykorzystywane w syntezach chemicznych, w tym produkcji azotanów. Zgodność z tymi wartościami jest również zgodna z dobrymi praktykami laboratoryjnymi, które wymagają dokładności w przygotowywaniu reagentów chemicznych.

Pytanie 12

Podczas przeprowadzania konserwacji okresowej wirówki filtracyjnej konieczne jest między innymi

A. zweryfikować położenie noża zgarniającego osad
B. wymienić siatkę lub materiał filtracyjny
C. wyczyścić przewody odprowadzające ciecze rozdzielone
D. dostosować ustawienie talerzy separacyjnych
Wymiana siatki lub tkaniny filtracyjnej jest kluczowym elementem konserwacji okresowej wirówki filtracyjnej, ponieważ te komponenty mają fundamentalne znaczenie dla efektywności procesu filtracji. Siatki i tkaniny filtracyjne są narażone na zatykanie się cząstkami stałymi oraz ich degradację z upływem czasu, co może prowadzić do obniżenia wydajności i jakości procesu separacji. Regularna wymiana tych materiałów nie tylko zapewnia optymalne działanie wirówki, ale również jest zgodna z najlepszymi praktykami w branży, które zalecają monitorowanie stanu filtrów w regularnych odstępach czasowych. Przykładowo, w przypadku zastosowania wirówek w przemyśle chemicznym, zaniedbanie wymiany tkaniny filtracyjnej może prowadzić do poważnych problemów, takich jak kontaminacja produktów końcowych czy zwiększone zużycie energii. Dlatego też, w celu zapewnienia ciągłości procesów produkcyjnych oraz zgodności z normami jakości, zaleca się stosowanie harmonogramu konserwacji, który uwzględnia regularne kontrole oraz wymiany materiałów filtracyjnych.

Pytanie 13

Jakie jest stężenie roztworu uzyskanego przez zmieszanie 1250 kg NaCl z 3750 kg wody?

A. 12,5 % (m/m)
B. 25,0 % (m/m)
C. 75,0 % (m/m)
D. 50,5 % (m/m)
Odpowiedź 25,0 % (m/m) jest jak najbardziej w porządku. Żeby obliczyć stężenie masowe roztworu, trzeba podzielić masę substancji rozpuszczonej przez całkowitą masę roztworu, a potem pomnożyć przez 100%. W tym przypadku mamy 1250 kg NaCl i 3750 kg wody, więc łączna masa roztworu to 5000 kg. Jak to policzymy? (1250 kg / 5000 kg) * 100% = 25,0 %. To ważne, bo stężenie masowe jest kluczowe w chemii – używa się go na przykład w laboratoriach czy podczas analiz chemicznych. Dlatego warto zawsze dobrze liczyć stężenie, żeby przygotowanie roztworów było trafne i zgodne z normami, jak chociażby ISO 8655.

Pytanie 14

Ilość nasyconego roztworu NaNO3 przepływającego przez urządzenie krystalizacyjne wynosi 250 kg/h. Z 1000 kg roztworu można uzyskać 250 kg NaNO3. Jaką ilość stałego NaNO3 otrzymamy po 8 godzinach pracy krystalizatora?

A. 500 kg
B. 2000 kg
C. 1000 kg
D. 250 kg
Liczmy razem, żeby dowiedzieć się, ile NaNO3 możemy zdobyć w ciągu 8 godzin pracy krystalizatora. Wiemy, że z 1000 kg roztworu wychodzi 250 kg NaNO3, więc z jednego kilograma roztworu uzyskujemy 0,25 kg NaNO3. Teraz obliczamy, ile roztworu przepłynie przez krystalizator w 8 godzin, mając natężenie przepływu 250 kg na godzinę. Wychodzi na to, że przez te 8 godzin przepłynie 2000 kg roztworu (250 kg/h * 8 h). Następnie, mnożymy tę ilość przez naszą wydajność – czyli 0,25 kg NaNO3 na kg roztworu. Daje nam to 500 kg NaNO3 (2000 kg * 0,25 kg/kg). Te obliczenia są ważne nie tylko w kontekście krystalizacji, ale też w całym przemyśle, bo precyzyjne wyliczenia wpływają na koszty i efektywność produkcji.

Pytanie 15

Jaką maksymalną ilość surowca można jednorazowo umieścić w młynie kulowym o pojemności 6 m3, jeśli jego wskaźnik załadunku wynosi 0,3?

A. 4,0 m3
B. 2,0 m3
C. 1,8 m3
D. 4,2 m3
Odpowiedź 1,8 m3 jest poprawna, ponieważ maksymalna ilość surowca, którą można załadować do młyna kulowego, jest określona przez jego objętość oraz współczynnik załadowania. W tym przypadku objętość młyna wynosi 6 m3, a współczynnik załadowania wynosi 0,3. Aby obliczyć maksymalną ilość surowca, należy pomnożyć objętość młyna przez współczynnik załadowania: 6 m3 * 0,3 = 1,8 m3. W praktyce, stosowanie odpowiednich współczynników załadowania jest kluczowe dla optymalizacji procesów przemysłowych, ponieważ zbyt niskie załadowanie może prowadzić do nieefektywności, a zbyt wysokie do zatorów i uszkodzenia sprzętu. W branży materiałów sypkich standardy takie jak ISO 9001 zalecają ścisłe przestrzeganie takich obliczeń, aby zapewnić efektywność i bezpieczeństwo operacji. Zrozumienie i prawidłowe stosowanie współczynników załadowania wspiera nie tylko efektywność produkcji, ale również wpływa na jakość przetwarzanego materiału.

Pytanie 16

Jaką ilość czerni eriochromowej należy odważyć, aby uzyskać 50,25 g jej mieszanki z NaCl, przy przygotowywaniu alkoholowego roztworu czerni eriochromowej, który powstaje z połączenia czerni eriochromowej z chlorkiem sodu w proporcji 1 g czerni na 200 g NaCl oraz odpowiednią ilością etanolu?

A. 50,0 g
B. 50,20 g
C. 0,05 g
D. 0,25 g
Aby otrzymać 50,25 g mieszaniny czerni eriochromowej z chlorkiem sodu w proporcji 1 g czerni na 200 g NaCl, należy obliczyć, ile czerni eriochromowej jest potrzebne. W tej proporcji oznacza to, że na 200 g NaCl przypada 1 g czerni. Całkowita masa mieszaniny wynosi 50,25 g, zatem masa NaCl będzie wynosić 50,25 g - masa czerni. Stosując proporcję, możemy ustalić, że 200 g NaCl odpowiada 1 g czerni, co prowadzi do równania 50,25 g = 200 g NaCl + 0,25 g czerni. Z tego wynika, że masa czerni eriochromowej wynosi 0,25 g. Taki sposób obliczeń jest ważny w praktyce laboratoryjnej, gdzie precyzyjne przygotowanie roztworów ma kluczowe znaczenie dla uzyskiwania rzetelnych i powtarzalnych wyników analitycznych. Dobre praktyki w laboratoriach analitycznych obejmują dokładne odważanie reagentów oraz stosowanie odpowiednich proporcji, co jest niezbędne w analizach chemicznych oraz w przygotowywaniu wskaźników, takich jak czerń eriochromowa, wykorzystywana w titracji.

Pytanie 17

W reaktorze zachodzi reakcja syntezy amoniaku opisana równaniem:
N2 + 3H2 → 2 NH3 Jaką ilość wodoru powinno się wprowadzić do reaktora (mieszaninę wodoru z azotem podaje się do reaktora w proporcji stechiometrycznej), zakładając, że 300 m3 azotu ulegnie całkowitemu przereagowaniu?

A. 500 m3
B. 300 m3
C. 900 m3
D. 100 m3
Reakcja syntezy amoniaku opisana równaniem N2 + 3H2 → 2 NH3 wskazuje na stosunek molowy reagentów. Z równania wynika, że do jednego mola azotu N2 potrzeba trzech moli wodoru H2. W sytuacji, gdy w reaktorze ma przereagować 300 m3 azotu, należy przeliczyć tę objętość na odpowiadającą jej ilość wodoru. Zgodnie z zasadą zachowania materii, dla 300 m3 azotu potrzebujemy: 300 m3 N2 * 3 m3 H2 / 1 m3 N2 = 900 m3 H2. Takie podejście jest zgodne z zasadami stechiometrii, które są kluczowe w chemii procesowej i inżynierii chemicznej. Praktycznym zastosowaniem tej wiedzy jest optymalizacja procesów produkcji amoniaku, co ma zastosowanie w przemyśle nawozowym, gdzie amoniak jest podstawowym surowcem. Wydajne zarządzanie proporcjami reagentów może prowadzić do zmniejszenia kosztów produkcji oraz minimalizacji odpadów.

Pytanie 18

Energia uwalniająca się w wyniku reakcji chemicznych jest zazwyczaj stosowana do wstępnego podgrzewania surowców wprowadzanych do reaktorów lub do wytwarzania pary wodnej w dedykowanych kotłach utylizacyjnych. Jaką zasadą technologiczną uzasadnia się takie podejście?

A. Optymalnego wykorzystania aparatury
B. Optymalnego wykorzystania różnic potencjałów
C. Optymalnego wykorzystania energii
D. Optymalnego wykorzystania surowców
Poprawna odpowiedź "Najlepszego wykorzystania energii" odnosi się do zasadności wykorzystania ciepła generowanego w procesach chemicznych do efektywnego zarządzania energią w instalacjach przemysłowych. W procesach reakcyjnych, ciepło to może być odzyskiwane i używane do wstępnego ogrzewania surowców, co zmniejsza zapotrzebowanie na dodatkowe źródła energii, takie jak paliwa kopalne. Przykładem takiego zastosowania jest przemysł petrochemiczny, gdzie ciepło z reakcji krakingu jest wykorzystywane do podgrzewania surowców przed dalszymi procesami. Wykorzystanie energii w sposób efektywny nie tylko obniża koszty operacyjne, ale również przyczynia się do zmniejszenia emisji gazów cieplarnianych, co jest zgodne z najlepszymi praktykami zrównoważonego rozwoju. Utrzymanie wysokiej efektywności energetycznej jest kluczowe w kontekście globalnych dążeń do ograniczenia zużycia energii oraz zminimalizowania wpływu na środowisko. Ponadto, standardy ISO 50001 dotyczące zarządzania energią podkreślają znaczenie monitorowania i optymalizacji procesów energetycznych, co jest zgodne z omawianą zasadą.

Pytanie 19

Osoba obsługująca nastawny termometr kontaktowy powinna między innymi

A. ustawić minimalną temperaturę na dolnej podzielni
B. ustawić maksymalną dozwoloną temperaturę na górnej podzielni, a minimalną na dolnej
C. ustawić maksymalną dozwoloną temperaturę na dolnej podzielni, a minimalną na górnej
D. ustawić oczekiwaną temperaturę na górnej podzielni
Ustawienie oczekiwanej temperatury na górnej podzielni termometru kontaktowego jest kluczowym działaniem, które zapewnia precyzyjne i efektywne monitorowanie procesów technologicznych. W praktyce oznacza to, że operator powinien dokładnie zdefiniować temperaturę, która ma być osiągnięta podczas danego procesu, co pozwala na bieżąco kontrolować i regulować parametry. Dobrą praktyką jest stosowanie się do norm, takich jak ISO 9001, które zalecają ustalanie i monitorowanie krytycznych parametrów w celu zapewnienia jakości produktu. Na przykład, w procesie produkcji chemikaliów, ustawienie oczekiwanej temperatury na górnej podzielni pozwala operatorom na szybkie wykrywanie odchyleń od normy oraz podejmowanie odpowiednich działań korygujących, co minimalizuje ryzyko awarii i poprawia efektywność operacyjną. Wiedza na temat odpowiedniego ustawienia termometrów kontaktowych jest zatem niezbędna dla każdego operatora, by zapewnić prawidłowe działanie sprzętu oraz bezpieczeństwo w miejscu pracy.

Pytanie 20

Aby usunąć zanieczyszczenia z zewnętrznych elementów maszyn i urządzeń, które są spowodowane przez kurz i pył, należy je spłukać

A. roztworem etanolu
B. mlekiem wapiennym
C. rozpuszczalnikiem
D. ciepłą wodą
Odpowiedź ciepłą wodą jest poprawna, ponieważ woda w temperaturze pokojowej lub lekko podgrzana skutecznie usuwa zanieczyszczenia, takie jak kurz i pył, z zewnętrznych części maszyn i urządzeń. Ciepła woda zwiększa aktywność molekularną, co sprzyja rozpuszczaniu zanieczyszczeń i ich łatwiejszemu usunięciu. W praktyce, wiele branż, w tym przemysł spożywczy i produkcyjny, korzysta z mycia na gorąco w celu zapewnienia czystości i higieny. Oprócz skuteczności, stosowanie wody jest zgodne z zasadami ochrony środowiska, gdyż nie wprowadza do obiegu substancji chemicznych. Do mycia można dodatkowo stosować środki zwilżające, które poprawiają efektywność czyszczenia, jednak sam proces spłukiwania ciepłą wodą pozostaje najbardziej efektywny. Warto również zwrócić uwagę na standardy, takie jak ISO 9001, które podkreślają znaczenie czystości w procesach produkcyjnych.

Pytanie 21

Ile wody trzeba odparować z 150 g roztworu KCl o stężeniu 20%, aby uzyskać roztwór o stężeniu 50%?

A. 30 g
B. 60 g
C. 50 g
D. 90 g
Żeby policzyć, ile wody trzeba odparować z roztworu KCl o stężeniu 20% (150 g), żeby uzyskać roztwór o stężeniu 50%, trzeba najpierw zobaczyć, ile KCl mamy na początku. Stężenie 20% znaczy, że w 100 g roztworu jest 20 g KCl, więc w 150 g roztworu będzie to: (150 g * 20 g) / 100 g = 30 g KCl. W nowym roztworze o stężeniu 50% ta sama ilość KCl (30 g) musi stanowić 50% całości. Czyli całkowita masa nowego roztworu wynosi: 30 g / 0,5 = 60 g. Różnica w masie, pomiędzy tym pierwotnym a nowym roztworem to: 150 g - 60 g = 90 g. Więc musimy odparować 90 g wody, żeby uzyskać potrzebne stężenie. Takie obliczenia są super ważne w chemii, zwłaszcza w laboratoriach, gdzie musimy precyzyjnie przygotować roztwory, by wyniki były wiarygodne.

Pytanie 22

Podczas pracy przenośnika taśmowego zaobserwowano, że transportowany materiał zsuwa się w stronę leja załadunkowego. Aby wyeliminować tę nieprawidłowość, należy

A. zwiększyć prędkość ruchu taśmy przenośnika
B. powiększyć odległość od urządzenia rozładunkowego
C. ograniczyć ilość materiału podawanej na taśmę
D. zmniejszyć kąt nachylenia taśmy przenośnika
Zmniejszenie ilości materiału podawanego na taśmę może wydawać się logicznym rozwiązaniem, jednak jest to nieefektywne podejście. Takie działanie może prowadzić do zwiększenia kosztów operacyjnych oraz obniżenia wydajności całego systemu transportowego. Zmniejszając ilość materiału, nie rozwiązujemy problemu zsuwania, a jedynie ograniczamy jego transport, co nie jest praktycznym podejściem. Z kolei zwiększenie prędkości przesuwu taśmy przenośnika może w rzeczywistości pogorszyć sytuację. Szybkie przesuwanie materiału może skutkować tym, że ładunek nie zdąży się ustabilizować na taśmie, co zwiększa ryzyko zsuwania się go w kierunku leja załadowczego. W tej sytuacji kluczowe jest zrozumienie, że prędkość taśmy powinna być dostosowana do charakterystyki materiału, aby uniknąć jego przesuwania. Zwiększenie odległości od urządzenia rozładowczego nie ma wpływu na stabilność ładunku na taśmie i może prowadzić do nieefektywnego wykorzystania przestrzeni oraz potencjalnych problemów z transportem. Każde z tych podejść ignoruje fundamentalne zasady mechaniki oraz dynamiki materiałów, które są kluczowe dla prawidłowego działania systemów przenośnikowych. Właściwa analiza i zastosowanie odpowiedniej metodyki w projektowaniu oraz eksploatacji przenośników ma kluczowe znaczenie dla efektywności i bezpieczeństwa procesów transportowych.

Pytanie 23

Pompa membranowa jest wykorzystywana do transportowania cieczy

A. bardzo agresywnych
B. o właściwościach smarujących
C. bardzo lotnych
D. o dużej lepkości
Pompy membranowe są specjalistycznym rodzajem urządzeń, które doskonale nadają się do przetłaczania cieczy o wysokiej agresywności chemicznej. Działają na zasadzie zmiany objętości komory pompy, co pozwala na precyzyjne dozowanie i transportowanie substancji. Dzięki zastosowaniu membrany, te pompy mogą radzić sobie z cieczami, które są korozyjne lub mają inne właściwości, które mogłyby uszkodzić tradycyjne pompy. W praktyce pompy membranowe znajdują zastosowanie w wielu branżach, na przykład w przemyśle chemicznym, gdzie transportuje się silne kwasy i zasady, a także w farmaceutyce, gdzie istotne jest zachowanie czystości i jakości substancji. Zgodnie z normami branżowymi, pompy te muszą być regularnie kontrolowane pod kątem ich stanu technicznego oraz szczelności, aby uniknąć wycieków, które mogłyby prowadzić do zanieczyszczenia środowiska lub uszkodzenia instalacji.

Pytanie 24

Jakie zbiorniki powinny być użyte do przechowywania cieczy łatwopalnych oraz wybuchowych?

A. Naziemne
B. Podziemne
C. Membranowe
D. Kriogeniczne
Zbiorniki podziemne są najczęściej wybierane do magazynowania cieczy łatwopalnych i wybuchowych z kilku powodów. Przede wszystkim, ich lokalizacja poniżej poziomu terenu minimalizuje ryzyko przypadkowego zapłonu, co jest kluczowe w przypadku substancji niebezpiecznych. Dodatkowo, zbiorniki te często są projektowane z wykorzystaniem materiałów odpornych na korozję i deformacje, co zwiększa ich bezpieczeństwo i trwałość. Przykłady zastosowania podziemnych zbiorników obejmują magazynowanie paliw w stacjach benzynowych, gdzie zbiorniki są umieszczone pod ziemią, aby zminimalizować ryzyko wybuchu i zanieczyszczenia środowiska. Standardy takie jak NFPA 30 (National Fire Protection Association) jasno określają zasady dotyczące przechowywania cieczy łatwopalnych, podkreślając znaczenie odpowiedniej lokalizacji zbiorników. Ponadto, zastosowanie technologii monitorowania i systemów zabezpieczeń w zbiornikach podziemnych znacznie zwiększa bezpieczeństwo operacji oraz chroni przed nieautoryzowanym dostępem i wyciekami.

Pytanie 25

Co należy zrobić w przypadku, gdy dojdzie do rozszczelnienia rurociągu, który przesyła medium technologiczne?
sprężone powietrze.

A. Opróżnić rurociąg z przesyłanego medium i przedmuchać gazem neutralnym
B. Zamknąć najbliższe zawory odcinające dopływ i odpływ przesyłanego medium
C. Zamknąć zawór odcinający odpływ przesyłanego medium i wtłoczyć do rurociągu
D. Przełączyć przepływ medium na rurociąg zapasowy
Zamknięcie najbliższych zaworów odcinających dopływ i odpływ transportowanego medium jest kluczowym krokiem w sytuacji rozszczelnienia rurociągu. Taki proces minimalizuje ryzyko dalszych strat medium oraz zapewnia bezpieczeństwo operacji. W praktyce, zawory odcinające są projektowane jako elementy zabezpieczające, które powinny być łatwo dostępne w sytuacjach awaryjnych. Po ich zamknięciu, możliwe jest przeprowadzenie dalszych działań, takich jak ocena uszkodzenia, naprawa rurociągu czy przetłaczanie medium do rurociągu zapasowego. Wiele standardów branżowych, w tym normy ISO i ASME, zaleca stosowanie procedur awaryjnych, które obejmują zamykanie zaworów w przypadku wykrycia rozszczelnienia. Umożliwia to skuteczną kontrolę procesu oraz ogranicza potencjalne zagrożenia dla pracowników oraz środowiska. Ponadto, regularne szkolenia dla pracowników oraz testowanie systemów odcinających są niezbędne dla zapewnienia ich prawidłowego działania.

Pytanie 26

Skład wsadu do pieców koksowniczych tworzą wymieszane w odpowiednich ilościach określone gatunki węgla, przy czym węgiel gatunku 31 stanowi 22 ÷ 27% całkowitego składu. Jaką maksymalną ilość wsadu można przygotować, mając do dyspozycji 440 kg węgla gatunku 31 oraz nieograniczoną ilość węgla innych gatunków?

A. 1500 kg
B. 2000 kg
C. 1000 kg
D. 3000 kg
Wybór nieprawidłowych odpowiedzi może wynikać z niepełnego zrozumienia zagadnienia dotyczącego proporcji węgla w wsadzie koksowniczym. W przypadku odpowiedzi, które wskazują na wartości 1500 kg, 1000 kg lub 3000 kg, kluczowym błędem jest zrozumienie udziału procentowego węgla gatunku 31 w całym składzie wsadu. Odpowiedzi te mogą być wynikiem błędnych obliczeń opartych na niepoprawnych założeniach dotyczących procentowego udziału tego gatunku węgla. Na przykład, wybierając 3000 kg, można założyć, że węgiel gatunku 31 stanowi znacząco wyższy procent całkowitego wsadu, co jest niezgodne z danymi. Tego typu błędy mogą wynikać z mylnego założenia, że węgiel ten może być w większej ilości wykorzystywany w wsadzie, co prowadzi do niezgodności z rzeczywistymi wymaganiami technologicznymi. Kluczowym aspektem w produkcji koksu jest również zapewnienie odpowiednich proporcji innych gatunków węgla, które wspierają proces koksowania i wpływają na jego wydajność oraz jakość uzyskanego koksu. Niezrozumienie tych zasad prowadzi do podejmowania błędnych decyzji w procesie przygotowania wsadu, co w konsekwencji może wpływać negatywnie na efektywność produkcji i jakość końcowego produktu.

Pytanie 27

W generatorach przeznaczonych do zgazowania węgla, gotowy produkt jest schładzany przez dielektryczną przeponę wodą. Co należy uczynić z parą wodną, która powstaje w tym procesie, zgodnie z zasadami technologicznymi?

A. Zasilać urządzenia, które potrzebują ogrzewania
B. Odprowadzić do atmosfery za pośrednictwem elektrofiltrów
C. Skroplić i odprowadzić do systemu wodociągowego
D. Skroplić i ponownie wykorzystać do chłodzenia
Odpowiedź, że parę wodną należy zasilać urządzenia wymagające ogrzewania, jest właściwa z technologicznego punktu widzenia. W procesach zgazowania węgla, para wodna generowana podczas chłodzenia jest cennym źródłem energii termicznej, która może być wykorzystana do zasilania rozmaitych urządzeń przemysłowych wymagających ciepła. Takie podejście jest zgodne z zasadami efektywności energetycznej i zrównoważonego rozwoju. Przykładem może być wykorzystanie tej pary do podgrzewania wody w systemach grzewczych lub do wspomagania procesów technologicznych, które wymagają odpowiedniej temperatury, takich jak suszenie surowców. Zastosowanie pary wodnej w ten sposób redukuje straty energetyczne oraz minimalizuje negatywne skutki dla środowiska, przyczyniając się do obiegu zamkniętego wody w przemysłowych układach technologicznych, co jest najlepszą praktyką w branży. Dodatkowo, takie wykorzystanie pary wodnej wspiera również efektywne zarządzanie zasobami, co jest kluczowe w kontekście rosnących wymagań dotyczących zrównoważonego rozwoju w przemyśle.

Pytanie 28

Jak powinno się postępować z sitami używanymi w koksowniach do przesiewania węgla po zakończeniu ich użytkowania?

A. Zabezpieczyć olejowym środkiem ochrony czasowej
B. Przetrzeć wilgotną szmatą
C. Umyć gorącą wodą z detergentem
D. Przedmuchać sprężonym powietrzem
Przedmuchiwanie sit sprężonym powietrzem jest najlepszym sposobem na usunięcie zanieczyszczeń, pyłu i resztek węgla, które mogą gromadzić się na powierzchni sit w trakcie ich eksploatacji. Dzięki temu procesowi można nie tylko przywrócić sitom ich pierwotną wydajność, ale także wydłużyć ich żywotność. Standardowe procedury konserwacyjne w zakładach koksowniczych wskazują, że stosowanie sprężonego powietrza jest preferowane, ponieważ skutecznie penetruje wszelkie zakamarki konstrukcji sit, co jest trudne do osiągnięcia przy użyciu wody lub innych środków czyszczących. Przykładowo, w przypadku sit o drobnych oczkach, czyszczenie sprężonym powietrzem minimalizuje ryzyko zatykania się otworów, co mogłoby prowadzić do obniżenia efektywności procesu przesiewania. Dodatkowo, sprężone powietrze jest metodą szybką i efektywną, co ogranicza przestoje w procesie produkcji. Warto również zaznaczyć, że zgodnie z wytycznymi BHP, przed przystąpieniem do czyszczenia sit sprężonym powietrzem, należy stosować odpowiednie środki ochrony osobistej, aby zabezpieczyć pracowników przed ewentualnym działaniem pyłów.

Pytanie 29

Podaj właściwą sekwencję działań laboratoryjnych realizowanych podczas określania zawartości azotu w związkach organicznych za pomocą metody Kjeldahla.
miareczkowanie nadmiaru kwasu.

A. Alkalizacja próbki, mineralizacja próbki na mokro, oddestylowanie amoniaku
B. Mineralizacja próbki na mokro, alkalizacja próbki, oddestylowanie amoniaku, miareczkowanie nadmiaru kwasu
C. Alkalizacja próbki, oddestylowanie amoniaku, mineralizacja próbki na mokro, miareczkowanie nadmiaru kwasu
D. Mineralizacja próbki na mokro, oddestylowanie amoniaku, alkalizacja próbki, miareczkowanie nadmiaru kwasu
Niestety, twoje inne wybory pokazują, że nie do końca zrozumiałeś, jak są ułożone etapy w metodzie Kjeldahla. Niektóre opcje sugerują, że alkalizacja powinna być przed mineralizacją, co zupełnie się nie zgadza. Mineralizacja jest kluczowa, bo musimy całkowicie rozłożyć związki organiczne, a reakcje związane z alkalizacją powinny się dziać dopiero po tym. Jeśli oddestylujesz amoniak przed alkalizacją, to nie dostaniesz dobrych wyników, bo amoniak nie wyjdzie bez wcześniejszej alkalizacji. Cała ta kolejność jest mega ważna, żeby mieć dokładne i powtarzalne wyniki. Myślenie o analizie chemicznej wymaga precyzji, a znajomość faz procesu i ich wzajemnych relacji jest niezbędna dla każdego chemika. Jeśli coś pójdzie nie tak w kolejności, to wyniki mogą być źle interpretowane, a to może mieć poważne konsekwencje w dalszych badaniach.

Pytanie 30

Aby pobrać próbkę materiału stałego, zgodnie z zasadami pobierania próbek z całej głębokości partie nieruchomych, należy zastosować

A. szpatułki
B. sondy
C. wgłębnika
D. naczynia miarowe
Wgłębnik jest narzędziem kluczowym w procesie pobierania próbek ciał stałych, szczególnie w kontekście analizy gruntów i materiałów budowlanych. Jego konstrukcja umożliwia efektywne wnikanie w głąb materiału, co jest niezbędne do uzyskania reprezentatywnej próbki z całej głębokości partii. W praktyce, wgłębnik pozwala na precyzyjne wydobycie próbek, co jest istotne dla późniejszych analiz laboratoryjnych, takich jak badania geotechniczne czy ocena jakości materiałów. Standardy pobierania próbek, takie jak np. normy PN-EN 1997-2, wskazują na znaczenie odpowiedniego narzędzia w kontekście zapewnienia reprezentatywności próbki oraz minimalizacji jej zanieczyszczenia. Zastosowanie wgłębnika, w przeciwieństwie do innych narzędzi, takich jak zlewki czy łopatki, które mogą nie dostarczyć próbek o odpowiedniej strukturze czy objętości, jest kluczowe. Dzięki wgłębnikowi można również kontrolować głębokość pobierania, co jest istotne w kontekście warstwowania w gruntach. Przykładem praktycznego zastosowania wgłębnika może być prace związane z inżynierią lądową, gdzie analiza właściwości gruntów jest fundamentalna dla projektowania fundamentów budowli.

Pytanie 31

Ruch materiałów w trybie przeciwprądowym jest najskuteczniejszy podczas suszenia gorącymi gazami, ale w sytuacji, gdy sucha substancja może ulegać rozkładowi, bezpieczniejsze jest zastosowanie ruchu współprądowego. W tym kontekście obowiązuje zasada

A. maksymalnego wykorzystania energii
B. umiarkowania technologicznego
C. maksymalnego wykorzystania sprzętu
D. maksymalnego wykorzystania surowców
Odpowiedź "umiary technologicznego" jest prawidłowa, ponieważ odnosi się do zasadności wyboru metod suszenia w kontekście zachowania jakości materiałów. W przypadku suszenia gorącymi gazami w ruchu przeciwprądowym, proces ten jest wydajny energetycznie, jednak naraża substancję na wysokie temperatury przez dłuższy czas, co może prowadzić do jej rozkładu. Umiar technologiczny wskazuje na konieczność dostosowania procesów technologicznych do specyficznych właściwości materiałów, co jest kluczowe w praktykach przemysłowych. Przykładem może być suszenie ziół, gdzie wysoka temperatura może zniszczyć cenne związki aktywne. W takich przypadkach, zastosowanie ruchu współprądowego, gdzie temperatura gazów wlotowych jest niższa, chroni surowce przed degradacją. W kontekście dobrych praktyk, umiar technologiczny przyczynia się do efektywności procesów produkcyjnych i ochrony środowiska, co znajduje odzwierciedlenie w standardach jakość takich jak ISO 9001, które promują ciągłe doskonalenie procesów.

Pytanie 32

Przed przystąpieniem do napełniania otwartego zbiornika na ciecz, należy w pierwszej kolejności zweryfikować

A. szczelność zbiornika i prawidłowe działanie zaworu bezpieczeństwa
B. poprawność instalacji elektrycznych oraz stan zabezpieczeń przeciwpożarowych
C. stan uszczelek pokrywy i poprawność działania przyrządów kontrolujących ciśnienie w zbiorniku
D. szczelność zbiornika i prawidłowe funkcjonowanie urządzenia mierzącego poziom zawartej w nim cieczy
Zbyt często koncentrujemy się na aspektach takich jak połączenia elektryczne czy stan zabezpieczeń przeciwpożarowych w kontekście napełniania zbiorników, co może prowadzić do niewłaściwych wniosków. Choć kwestie te są istotne, nie są one najważniejsze na etapie przygotowania do napełniania zbiornika. Połączenia elektryczne i zabezpieczenia przeciwpożarowe odgrywają kluczową rolę w kontekście całkowitego bezpieczeństwa operacji, ale nie dotyczą bezpośrednio fizycznego stanu zbiornika oraz kontrolowania poziomu cieczy. Ignorowanie stanu technicznego zbiornika, zwłaszcza jego szczelności, może prowadzić do poważnych konsekwencji, w tym strat finansowych i zagrożeń dla zdrowia. Niezrozumienie, że to właśnie szczelność zbiornika i prawidłowe funkcjonowanie urządzeń kontrolnych są kluczowe dla uniknięcia wycieków, może skutkować nieodpowiedzialnym podejściem do procedur operacyjnych. Właściwe zrozumienie i wdrażanie praktyk związanych z monitorowaniem poziomu cieczy oraz regularna konserwacja sprzętu to fundamenty bezpiecznego napełniania zbiorników. W kontekście zagrożeń chemicznych, istotne jest również stosowanie norm i standardów, które kładą nacisk na znaczenie tych aspektów, a lekceważenie ich może prowadzić do tragicznych rezultatów.

Pytanie 33

Ile kilogramów 98% kwasu siarkowego(VI) musi być wykorzystane, aby uzyskać 1 tonę roztworu kwasu siarkowego(VI) o stężeniu 49%, zakładając, że różnice w gęstości obu roztworów są zaniedbywalne?

A. 500 kg
B. 490 kg
C. 510 kg
D. 1000 kg
Aby uzyskać 1 tonę roztworu kwasu siarkowego(VI) o stężeniu 49%, musimy najpierw obliczyć, ile czystego kwasu siarkowego jest potrzebne w tym roztworze. 1 tona roztworu to 1000 kg, a stężenie 49% oznacza, że 49% tej masy musi być czystym kwasem siarkowym. Obliczamy to, mnożąc masę roztworu przez stężenie: 1000 kg * 0,49 = 490 kg. Teraz, aby przygotować roztwór o stężeniu 49% z 98% kwasu siarkowego(VI), musimy zrozumieć, ile kwasu 98% będzie potrzebne do uzyskania 490 kg czystego kwasu. Ponieważ 98% kwas siarkowy zawiera 98 g czystego kwasu w 100 g roztworu, możemy obliczyć wymaganą masę kwasu 98% za pomocą proporcji: 490 kg / 0,98 = 500 kg. W praktyce, takie obliczenia są kluczowe przy przygotowywaniu różnych roztworów chemicznych w laboratoriach, gdzie precyzyjne stężenia są niezbędne do uzyskania oczekiwanych wyników w reakcjach chemicznych.

Pytanie 34

Jakie urządzenie dozujące powinno być użyte w procesie technologicznym, który wymaga bardzo precyzyjnego podawania surowca w formie materiału sypkiego?

A. Podajnik wahliwy
B. Dozownik naczyniowy
C. Podajnik taśmowy
D. Dozownik wagowy
Dozownik wagowy jest najbardziej odpowiednim rozwiązaniem w sytuacji, gdy zachowanie wysokiej dokładności jest kluczowe przy podawaniu surowca w postaci materiału sypkiego. Tego rodzaju urządzenie działa na zasadzie pomiaru masy materiału, co pozwala na precyzyjne kontrolowanie jego ilości. Dozowniki wagowe są często wykorzystywane w branżach, takich jak chemiczna, spożywcza czy farmaceutyczna, gdzie istnieją rygorystyczne normy dotyczące dokładności i powtarzalności dozowania. Przykładowo, w procesach produkcji leków, gdzie każdy składnik musi być dokładnie odważony, dozownik wagowy zapewnia nie tylko precyzję, ale również możliwość monitorowania i dokumentowania procesu. Dzięki zastosowaniu nowoczesnych technologii, takich jak czujniki tensometryczne, dozowniki wagowe osiągają wysoką dokładność, co jest zgodne z normami ISO oraz innymi standardami branżowymi. Z tego powodu, wybór dozownika wagowego w kontekście dużej dokładności jest w pełni uzasadniony i zalecany.

Pytanie 35

Guma zbrojona o wysokiej odporności na zerwanie oraz dużym wskaźniku sprężystości znajduje zastosowanie w przemyśle chemicznym do produkcji

A. izolacji termicznych rurociągów
B. taśm transportowych przenośników
C. chemoodpornych powłok reaktorów
D. podłóg w pomieszczeniach technologicznych
Zbrojona guma o dużej wytrzymałości na zerwanie i wysokim współczynniku sprężystości znajduje szerokie zastosowanie w przemyśle chemicznym, w tym w produkcji taśm transportowych przenośników. Ten rodzaj materiału jest idealny do takiego zastosowania, ponieważ musi on znosić intensywne obciążenia mechaniczne oraz kontakt z substancjami chemicznymi. Taśmy transportowe są wykorzystywane do transportu różnych materiałów, od surowców po gotowe produkty, co w praktyce oznacza, że muszą być odporne na działanie chemikaliów, a także charakteryzować się elastycznością, która pozwala na ich odpowiednie dopasowanie do systemów przenośnikowych. Wybór zbrojonej gumy do tych zastosowań oparty jest na standardach branżowych, takich jak ISO 9001, które podkreślają konieczność utrzymania wysokiej jakości materiałów wykorzystywanych w procesach przemysłowych. Przykłady zastosowań obejmują przenośniki używane w zakładach chemicznych, które transportują substancje takie jak kwasy, zasady czy rozpuszczalniki. Odpowiednia trwałość i odporność na czynniki zewnętrzne są kluczowe dla zapewnienia długotrwałej eksploatacji tych systemów.

Pytanie 36

Jakie analizy należy przeprowadzić, aby przygotować dokumentację dotyczącą procesu oczyszczania gazów planowanych do syntezy amoniaku?

A. Analiza stężenia związków siarki, metanu, tlenku węgla(II) oraz tlenku węgla(IV)
B. Analiza zawartości metali nieżelaznych oraz stężenia metanu i chlorowodoru
C. Analiza obecności węglowodorów aromatycznych oraz stężenia arsenowodoru i tlenku siarki(IV)
D. Analiza stężenia związków miedzi oraz obecności metanu, propanu i ksylenu
Odpowiedzi, które wskazują na badanie stężenia związków miedzi, węglowodorów aromatycznych, metali nieżelaznych czy chlorowodoru, nie uwzględniają krytycznych aspektów związanych z oczyszczaniem gazów przed syntezą amoniaku. Związki miedzi, chociaż mogą być istotne w innych kontekstach przemysłowych, nie mają bezpośredniego wpływu na proces syntezy amoniaku i nie są typowymi zanieczyszczeniami w gazach procesowych. Badanie węglowodorów aromatycznych oraz arsenowodoru również nie jest kluczowe w kontekście tego procesu, ponieważ ich obecność nie jest typowa w gazach wejściowych do syntezy amoniaku. Co więcej, niektóre z wymienionych związków, takie jak chlorowodór, mogą występować w specyficznych przypadkach, ale ich eliminacja nie jest tak istotna jak usuwanie siarki czy tlenków węgla. W związku z tym, podejmowanie decyzji na podstawie takich badań może prowadzić do pominięcia kluczowych zanieczyszczeń, co może negatywnie wpłynąć na wydajność procesu i jakość uzyskanego amoniaku. Niezrozumienie priorytetów w zakresie analizy gazów może skutkować poważnymi problemami operacyjnymi, takimi jak obniżona wydajność produkcji, awarie katalizatorów oraz naruszenia przepisów dotyczących ochrony środowiska.

Pytanie 37

Jaką powinna mieć przybliżoną temperaturę czynnik grzewczy dostarczany do wyparki Roberta, w której zachodzi proces zatężania roztworu o temperaturze wrzenia 86°C?

A. W okolicach 75°C
B. W okolicach 88°C
C. W okolicach 120°C
D. W okolicach 140°C
Temperatura czynnika grzewczego, który leci do wyparki Roberta, powinna być w okolicach 88°C. To jest blisko temperatury wrzenia roztworu, co sprawia, że cały proces zatężania działa lepiej. Kluczowe jest, by ta temperatura była wystarczająco wysoka, bo wtedy rozpuszczalnik odparowuje, ale nie może być za wysoka, bo to może prowadzić do intensywnego wrzenia, a to z kolei powoduje różne straty. No i też zmniejsza efektywność całego procesu. Trzymanie się temperatury blisko 88°C to jakby najlepsze warunki do pracy. W przemyśle chemicznym i farmaceutycznym często widzi się takie temperatury w procesach zatężania, żeby wszystko szło gładko i produkt był dobrej jakości. Pamiętaj, że kontrola temperatury to mega ważna rzecz, zgodna z zasadami dobrych praktyk produkcyjnych (GMP), które mówią, że trzeba monitorować i regulować parametry procesu, bo to naprawdę ważne dla jakości końcowego produktu.

Pytanie 38

Zanim zatrzymasz działającą pompę wirową, powinieneś

A. zweryfikować poziom oleju smarującego
B. zamknąć zawór w rurociągu ssawnym
C. otworzyć zawór w rurociągu tłocznym
D. przeprowadzić "zalanie" pompy
Sprawdzanie stanu oleju smarującego, otwieranie zaworu na rurociągu tłocznym oraz zamykanie zaworu na rurociągu ssawnym to działania, które mogą być istotne w kontekście eksploatacji pompy, ale nie powinny być pierwszym krokiem przed jej zatrzymaniem. Sprawdzanie oleju smarującego jest ważne dla zapewnienia właściwego smarowania elementów pompy, ale nie powinno się tego dokonywać w momencie, gdy pompa jest jeszcze uruchomiona. Otwieranie zaworu na rurociągu tłocznym może prowadzić do niekontrolowanego wypływu cieczy i zwiększonego ryzyka wystąpienia wstrząsów hydraulicznych, co jest niebezpieczne zarówno dla samej pompy, jak i dla całej instalacji. Natomiast zamykanie zaworu na rurociągu ssawnym przed zatrzymaniem pompy może prowadzić do zjawiska, które skutkuje próżnią w pompie, co jest niekorzystne i może doprowadzić do jej uszkodzenia. Dlatego kluczowym błędem w myśleniu o procesie zatrzymania pompy wirowej jest niewłaściwe zrozumienie sekwencji działań, które powinny być podjęte w celu zapewnienia bezpieczeństwa i trwałości urządzenia. Właściwe podejście powinno opierać się na logice zapewnienia, że najpierw pompa jest 'zalana', co zabezpiecza ją przed uszkodzeniami, a następnie należy przeprowadzić inne czynności związane z konserwacją i kontrolą stanu technicznego pompy.

Pytanie 39

Wskaż, w którym miejscu należy odczytać temperaturę podczas kontroli działania pompy wirowej?

A. Obudowa pompy
B. Rurociąg tłoczny
C. Łożyska pompy
D. Rurociąg ssący
Odczyt temperatury w łożyskach pompy wirowej jest kluczowy dla monitorowania jej stanu operacyjnego. Łożyska są odpowiedzialne za podtrzymywanie wirnika i przenoszenie obciążeń, a ich temperatura może wskazywać na poprawność działania całego systemu. Wzrost temperatury w łożyskach często sygnalizuje nadmierne tarcie, co może prowadzić do uszkodzenia łożysk, a w konsekwencji do awarii pompy. Dobre praktyki branżowe zalecają regularne monitorowanie temperatury łożysk w celu wczesnego wykrywania anomalii. Na przykład, stosowanie czujników temperatury, takich jak termopary lub czujniki RTD, umożliwia ciągłe śledzenie temperatury, co pozwala na szybkie podejmowanie działań w celu zapobiegania poważniejszym uszkodzeniom. Zgodnie z normami ISO, monitorowanie temperatury łożysk powinno być częścią programu konserwacji prewencyjnej, co jest nie tylko praktyką zalecaną, ale także oczekiwaną w nowoczesnych zakładach przemysłowych.

Pytanie 40

Zastosowanie transportera pneumatycznego do przewozu zbrylonego, wilgotnego materiału ziarnistego może wywołać

A. zator w przewodzie oraz awarię ssawy
B. kruszenie brył materiału
C. obniżenie ciśnienia ssania
D. podwyższenie ciśnienia w przewodzie ssącym
Kiedy używamy transportera pneumatycznego do przewożenia wilgotnego, zbrylonego materiału ziarnistego, możemy napotkać różne problemy, takie jak zatykanie przewodów czy awarie ssawy. Materiał, gdy jest wilgotny, ma tendencję do sklejania się, co prowadzi do powstawania brył. Te bryły mogą zablokować transport i spowodować, że ssawa będzie działać zbyt mocno, co z kolei zwiększa ryzyko uszkodzeń. Z mojego doświadczenia, bardzo ważne jest, aby dobierać transporter odpowiednio do rodzaju materiału, który przewozimy. W przypadku wilgotnych materiałów warto pomyśleć o dodatkowych urządzeniach do rozdrabniania lub suszenia przed transportem. Dobre praktyki inżynieryjne, jak chociażby przestrzeganie norm ISO dotyczących transportu pneumatycznego, mogą uchronić nas przed poważnymi problemami. No i regularne przeglądy sprzętu też są nie do pominięcia, bo mogą naprawdę zmniejszyć ryzyko zatorów.