Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 24 maja 2025 21:15
  • Data zakończenia: 24 maja 2025 21:49

Egzamin zdany!

Wynik: 27/40 punktów (67,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Do filtracji osadów drobnokrystalicznych wykorzystuje się filtry

A. elastyczne, o najmniejszych porach
B. elastyczne, o największych porach
C. sztywne, o najmniejszych porach
D. sztywne, o największych porach
Sączki twarde o najmniejszych porach są optymalnym wyborem do sączenia osadów drobnokrystalicznych, ponieważ ich struktura zapewnia skuteczne oddzielanie cząstek stałych od cieczy. Twardość materiału sączka pozwala na zachowanie stabilności mechanicznej podczas procesu filtracji, co jest kluczowe w wielu zastosowaniach laboratoryjnych i przemysłowych. Przykładowo, w laboratoriach chemicznych, gdzie często stosowane są różne metody analityczne, takie jak chromatografia czy spektroskopia, twarde sączki umożliwiają precyzyjne oczyszczanie próbek, eliminując drobne zanieczyszczenia, co wpływa na dokładność uzyskiwanych wyników. Dodatkowo, stosowanie sączków o najmniejszych porach jest zgodne z normami filtracji, które wymagają wykorzystania materiałów o odpowiednich właściwościach mechanicznych i chemicznych, aby zapewnić wysoką efektywność procesu oczyszczania i minimalizację straty substancji. W praktyce, sączki te są wykorzystywane w różnych branżach, w tym w farmacji, biotechnologii oraz przemysłach spożywczym, gdzie czystość produktu finalnego jest absolutnie kluczowa.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Osady kłaczkowe, które powstają w wyniku prostego koagulowania, określa się mianem osadów

A. grubokrystalicznymi
B. liofobowymi
C. liofilowymi
D. drobnokrystalicznymi
Osady kłaczkowate, które powstają w wyniku łatwego koagulowania, określane są mianem osadów liofobowych. Termin ten odnosi się do systemów, w których cząstki stałe są zawieszone w cieczy, a ich tendencja do agregacji jest zmniejszona przez siły odpychające, wynikające z ich liofobowości. W praktyce, osady liofobowe są istotne w wielu procesach technologicznych, takich jak oczyszczanie ścieków czy wytwarzanie emulsji i zawiesin. Na przykład, w przemyśle chemicznym, kontrola koagulacji i flokulacji jest kluczowa do uzyskania wysokiej jakości produktów. Wykorzystanie koagulantów, które sprzyjają tworzeniu osadów liofobowych, pozwala na efektywne separowanie ciał stałych od cieczy, co jest zgodne z najlepszymi praktykami w zakresie zarządzania odpadami. Dodatkowo, znajomość właściwości fizykochemicznych systemów liofobowych jest istotna dla inżynierów chemicznych, którzy projektują procesy produkcyjne wymagające precyzyjnych kontroli nad zachowaniem cząstek w zawiesinach.

Pytanie 4

Naczynia miarowe kalibrowane "na wlew" mają oznaczenie w postaci symbolu

A. A
B. B
C. In
D. Ex
Naczynia miarowe kalibrowane "na wlew" oznaczone symbolem "In" są przeznaczone do pomiaru objętości cieczy, które pozostają w naczyniu po ich napełnieniu. Oznaczenie to wskazuje, że naczynie powinno być uzupełnione do wyznaczonego poziomu, a dokładność pomiaru zależy od właściwego zastosowania naczynia. W praktyce, naczynia te są używane w laboratoriach do precyzyjnego odmierzania reagentów, gdzie ważne jest, aby cała objętość została wykorzystana w procesie chemicznym. Warto zauważyć, że zgodnie z normami ISO oraz wymaganiami dotyczącymi jakości w laboratoriach, stosowanie naczyń miarowych kalibrowanych „na wlew” pozwala na uzyskanie wiarygodnych wyników pomiarów. Używając naczyń oznaczonych symbolem „In”, laboranci mogą zminimalizować błędy związane z pozostałością cieczy, co jest istotne w kontekście analizy danych i powtarzalności badań.

Pytanie 5

W trakcie reakcji estryfikacji opisanej równaniem CH3COOH + C2H5OH ↔ CH3COOC2H5 + H2O użyto molowego stosunku alkoholu do kwasu wynoszącego 1:10. W rezultacie tego

A. alkohol uległ całkowitej reakcji
B. równowaga reakcji została silnie przesunięta w lewo
C. uzyskano ester o 100% wydajności
D. równowaga reakcji została silnie przesunięta w prawo
W przypadku reakcji estryfikacji, zastosowanie molowego stosunku alkoholu do kwasu acetylenowego wynoszącego 1:10 powoduje, że ilość dostępnego alkoholu jest znacznie większa w porównaniu do kwasu. Zgodnie z zasadą Le Chateliera, zwiększenie ilości reagentu (w tym przypadku alkoholu) prowadzi do przesunięcia równowagi reakcji w stronę produktów. W tym konkretnym przypadku oznacza to, że równowaga reakcji przesunie się w prawo, co skutkuje większą produkcją estru (CH3COOC2H5) oraz wody (H2O). Praktycznie, taki stosunek reagentów jest często stosowany w przemyśle chemicznym, aby zwiększyć wydajność produkcji estrów, co jest szczególnie istotne w syntezach organicznych i w produkcji aromatów. Warto zauważyć, że aby uzyskać optymalne wyniki, ważne jest monitorowanie warunków reakcji, takich jak temperatura oraz obecność katalizatorów, co może również wpływać na szybkość i wydajność reakcji.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Zgodnie z instrukcją dotyczącą pobierania próbek nawozów (na podstawie normy PN-EN 12579:2001), liczbę punktów pobierania próbek pierwotnych ustala się według wzoru nsp = 0,5·√V, gdzie V oznacza objętość jednostki badanej w m3. Wartość nsp zaokrągla się do liczby całkowitej, a dodatkowo nie może być mniejsza niż 12 ani większa niż 30.
Dlatego dla objętości V = 4900 m3, nsp wynosi

A. 12
B. 35
C. 70
D. 30
Odpowiedź 30 jest poprawna, ponieważ zgodnie z normą PN-EN 12579:2001, liczba miejsc pobierania próbek pierwotnych oblicza się według wzoru nsp = 0,5·√V, gdzie V to objętość jednostki badanej wyrażona w m3. Dla objętości V = 4900 m3, obliczamy: nsp = 0,5·√4900 = 0,5·70 = 35. Jednakże wartość nsp musi być zaokrąglona do liczby całkowitej oraz mieścić się w granicach 12 i 30. W związku z tym, mimo że obliczona wartość to 35, ze względu na górny limit, ostateczna wartość nsp wynosi 30. Takie podejście zapewnia odpowiednią reprezentatywność próbek, co jest kluczowe w analizach laboratoryjnych. W praktyce, stosowanie właściwej liczby próbek pozwala na dokładniejszą ocenę jakości nawozów oraz ich wpływu na glebę. Utrzymanie standardów w procesie pobierania próbek jest niezbędne do uzyskania wiarygodnych wyników, co jest szczególnie istotne w kontekście zrównoważonego rolnictwa i ochrony środowiska.

Pytanie 8

W trakcie określania miana roztworu NaOH, do zmiareczkowania 25,0 cm3 tego roztworu, użyto 30,0 cm3 roztworu HCl o stężeniu 0,1000 mol/dm3. Jakie miało miano zasady?

A. 0,1200 mol/dm3
B. 0,1500 mol/dm3
C. 0,2000 mol/dm3
D. 0,1000 mol/dm3
Miano zasady NaOH oblicza się na podstawie reakcji zobojętnienia z kwasem HCl, w której stosunek molowy NaOH do HCl wynosi 1:1. Ustalając miano roztworu NaOH, wykorzystujemy wzór na miano: c(NaOH) = (c(HCl) * V(HCl)) / V(NaOH), gdzie c oznacza stężenie, a V objętość. W naszym przypadku mamy c(HCl) = 0,1000 mol/dm³ oraz V(HCl) = 30,0 cm³ (0,030 dm³) i V(NaOH) = 25,0 cm³ (0,025 dm³). Podstawiając wartości do wzoru, uzyskujemy: c(NaOH) = (0,1000 mol/dm³ * 0,030 dm³) / 0,025 dm³ = 0,1200 mol/dm³. Przykład ten ilustruje, jak ważne jest odpowiednie wyważenie ilości reagentów w reakcjach chemicznych, co jest kluczowe w laboratoriach chemicznych i przemyśle, gdzie precyzyjne stężenia roztworów mają istotne znaczenie dla efektywności procesów chemicznych oraz jakości końcowego produktu. Standardy analityczne podkreślają konieczność dokładności w pomiarach, co ma wpływ na wiarygodność uzyskanych wyników.

Pytanie 9

Reakcja miedzi metalicznej z stężonym kwasem azotowym(V) prowadzi do powstania azotanu(V) miedzi(II) oraz jakiego związku?

A. tlenek azotu(IV) oraz woda
B. tlenek azotu(II) oraz wodór
C. tlenek azotu(II) oraz woda
D. tlenek azotu(V) oraz wodór
Reakcje chemiczne, które prowadzą do powstania produktów takich jak tlenek azotu(II) lub tlenek azotu(V), są mylące, ponieważ nie odpowiadają rzeczywistym procesom zachodzącym w reakcji miedzi z kwasem azotowym. Tlenek azotu(II) (NO) jest produktem ubocznym reakcji redukcji, co jest nieprawidłowe w kontekście tej reakcji, ponieważ metale, takie jak miedź, wchodzą w reakcję z silniejszymi utleniaczami, co skutkuje powstawaniem tlenków o wyższych wartościach utlenienia. Podobnie, tlenek azotu(V) (N2O5) nie może być produktem reakcji, ponieważ wymaga innej reakcji chemicznej, w której występują inne materiały wyjściowe. Nieprawidłowe odpowiedzi często wynikają z mylenia różnych tlenków azotu oraz ich stanów utlenienia, co jest typowym błędem w nauce chemii. Kluczowe jest zrozumienie, że w reakcji kwasu azotowego z metalem powstają głównie tlenki o niższym stanie utlenienia, co jest zgodne z zasadami reakcji redoks. Dodatkowo, błędne odpowiedzi mogą prowadzić do nieporozumień w praktycznych zastosowaniach chemicznych, zwłaszcza w kontekście syntez organicznych oraz reakcji ekologicznych, co podkreśla znaczenie posiadania solidnej wiedzy na temat chemii nieorganicznej oraz jej mechanizmów.

Pytanie 10

Który z wymienionych roztworów NaOH, o określonych stężeniach, nie jest roztworem mianowanym?

A. 0,100 mol/dm3
B. 0,200 mol/dm3
C. ściśle 0,2 mol/dm3
D. około 0,2 mol/dm3
Odpowiedź 'około 0,2 mol/dm3' jest prawidłowa, ponieważ nie spełnia kryteriów roztworu mianowanego. Roztwory mianowane charakteryzują się ściśle zdefiniowanym stężeniem, co oznacza, że ich stężenie powinno być określone z maksymalną precyzją. Roztwór mianowany NaOH o stężeniu dokładnie 0,200 mol/dm3 czy ściśle 0,2 mol/dm3 to przykłady roztworów, które są dokładnie przygotowane i spełniają standardy laboratoryjne. Roztwory te są kluczowe w analizach chemicznych, gdzie precyzyjne pomiary stężenia są niezbędne do uzyskania wiarygodnych wyników. W praktyce, na przykład w titracji, gdzie oblicza się ilość substancji reagującej, zastosowanie roztworu mianowanego pozwala na dokładne obliczenie stężenia substancji analizowanej, co jest podstawą wielu procedur analitycznych. Warto zatem zwracać uwagę na precyzję w przygotowywaniu roztworów, aby zapewnić ich wiarygodność i powtarzalność wyników.

Pytanie 11

Skuteczny środek do osuszania

A. powinien działać wolno.
B. powinien być rozpuszczalny w cieczy, która jest suszona.
C. powinien wchodzić w reakcję z substancją suszoną i nie prowadzić do jej utlenienia.
D. nie powinien przyspieszać rozkładu suszonej substancji.
Dobry środek suszący nie powinien katalizować rozkładu substancji suszonej, ponieważ jego główną funkcją jest usunięcie wody bez wpływania negatywnego na właściwości chemiczne suszonego materiału. Katalizatory mogą przyspieszać reakcje chemiczne, co w przypadku substancji wrażliwych na utlenienie czy degradację prowadziłoby do obniżenia ich jakości oraz zmiany ich właściwości. Na przykład, w przemyśle farmaceutycznym, gdzie utrzymanie stabilności substancji czynnych jest kluczowe, stosowanie środków, które nie katalizują rozkładów jest absolutnie niezbędne. Dobre praktyki sugerują, aby wybierać środki suszące zgodne z wymaganiami danej substancji, unikając jednocześnie substancji, które mogłyby przyczynić się do degradacji. Dlatego kluczowe jest dobieranie odpowiednich metod suszenia, takich jak suszenie w próżni czy użycie substancji adsorpcyjnych, które nie mają wpływu na chemiczne właściwości suszonego materiału, co jest zgodne z normami jakościowymi takimi jak ISO 9001.

Pytanie 12

Metodą, która nie umożliwia przeniesienia składników próbki do roztworu, jest

A. stapianie
B. mineralizacja
C. roztwarzanie
D. liofilizacja
Mineralizacja, stapianie i roztwarzanie to metody, które można użyć do przygotowania próbek do analizy chemicznej. Mineralizacja przekształca składniki organiczne w rozpuszczalne formy, co jest kluczowe, bo eliminujemy interferencje, które mogą wpłynąć na wyniki. Stapianie to inna metoda, która zmienia próbki w jednorodną masę - przydaje się, gdy mamy do czynienia z twardymi materiałami, które trzeba przerobić. Roztwarzanie to po prostu dodanie próbki do rozpuszczalnika, co daje nam roztwór, i to jest najczęstsza metoda w laboratoriach. Wszystkie te metody służą do analizy chemicznej, a liofilizacja akurat nie daje roztworu, więc nie jest odpowiednia. Czasem ludzie mylą liofilizację z innymi metodami i przez to się mylą w wyborze sposobu przygotowania próbek. Laboratoria powinny korzystać z ustalonych standardów i najlepszych praktyk, by metody były skuteczne i odpowiednie do danej analizy.

Pytanie 13

Jaką objętość powinna mieć kolba miarowa, aby przygotować mianowany roztwór NaOH o stężeniu 0,050 M z analitycznej odważki, która zawiera 0,1 mola NaOH?

A. 2 dm3
B. 1 dm3
C. 200 cm3
D. 100 cm3
Aby przygotować mianowany roztwór NaOH o stężeniu 0,050 M z odważki analitycznej, musimy obliczyć odpowiednią objętość roztworu. Stężenie molowe (M) wyraża liczbę moli substancji w litrze roztworu. W tym przypadku, aby uzyskać roztwór o stężeniu 0,050 M, musimy użyć 0,050 mola NaOH w 1 litrze roztworu. Mając 0,1 mola NaOH, możemy przygotować 0,1 / 0,050 = 2 litry roztworu. W związku z tym, kolba miarowa powinna mieć pojemność 2 dm3, aby pomieścić przygotowany roztwór. Tego rodzaju obliczenia są kluczowe w laboratoriach chemicznych, gdzie precyzyjne przygotowanie roztworów ma istotne znaczenie dla uzyskania wiarygodnych wyników eksperymentalnych. Przestrzeganie standardów przygotowania roztworów zapewnia ich jednorodność i dokładność, co jest niezbędne w badaniach analitycznych, a także w różnorodnych aplikacjach przemysłowych.

Pytanie 14

Masa molowa kwasu azotowego(V) wynosi 63,0 g/mol. Jakie jest stężenie molowe 20% roztworu tego kwasu o gęstości 1,1 g/cm3?

A. 6,30 mol/dm3
B. 5,30 mol/dm3
C. 3,60 mol/dm3
D. 3,49 mol/dm3
Aby obliczyć stężenie molowe kwasu azotowego(V) w 20% roztworze, należy zastosować wzór na stężenie molowe, który określa ilość moli substancji chemicznej w jednostce objętości roztworu. W pierwszej kolejności obliczamy masę kwasu azotowego w 100 g roztworu: 20% oznacza, że w 100 g roztworu znajduje się 20 g kwasu azotowego. Następnie przeliczymy tę masę na mole, korzystając z masy molowej kwasu azotowego(V), która wynosi 63,0 g/mol. Dzieląc masę kwasu przez jego masę molową, uzyskujemy liczbę moli: 20 g / 63,0 g/mol = 0,317 mol. Teraz musimy obliczyć objętość roztworu. Gęstość roztworu wynosi 1,1 g/cm³, co oznacza, że 100 g roztworu ma objętość 100 g / 1,1 g/cm³ = 90,91 cm³, czyli 0,09091 dm³. Wreszcie, stężenie molowe obliczamy dzieląc liczbę moli przez objętość roztworu: 0,317 mol / 0,09091 dm³ ≈ 3,49 mol/dm³. Takie obliczenia są istotne w chemii analitycznej i laboratoryjnej, gdzie precyzyjne przygotowanie roztworów ma kluczowe znaczenie dla uzyskania wiarygodnych wyników analiz chemicznych.

Pytanie 15

Aby otrzymać roztwór AgNO3 (masa molowa AgNO3 to 169,8 g/mol) o stężeniu 0,1 mol/dm3, należy

A. odważyć 16,98 g AgNO3, przenieść do kolby miarowej o pojemności 100 cm3, rozpuścić w wodzie destylowanej i uzupełnić kolbę wodą destylowaną do kreski
B. odważyć 169,80 g AgNO3, przenieść do kolby miarowej o pojemności 1000 cm3, rozpuścić w wodzie destylowanej i uzupełnić kolbę wodą destylowaną do kreski
C. odważyć 1,698 g AgNO3, przenieść do kolby miarowej o pojemności 1000 cm3, rozpuścić w wodzie destylowanej i uzupełnić kolbę wodą destylowaną do kreski
D. odważyć 1,698 g AgNO3, przenieść do kolby miarowej o pojemności 100 cm3, rozpuścić w wodzie destylowanej i uzupełnić kolbę wodą destylowaną do kreski
Odpowiedzi, które wskazują na odważenie zbyt dużej ilości AgNO3 lub niewłaściwą pojemność kolby miarowej, opierają się na błędnych założeniach dotyczących przygotowania roztworów. Po pierwsze, podanie niewłaściwej masy do odważenia prowadzi do uzyskania nieprawidłowego stężenia roztworu. Na przykład, jeśli ktoś odważy 16,98 g zamiast 1,698 g, otrzymany roztwór będzie miał stężenie 1 mol/dm3, a nie 0,1 mol/dm3, co wpływa na dokładność dalszych analiz. Po drugie, wybór pojemności kolby miarowej jest także istotny – użycie kolby o pojemności 1000 cm3 przy przygotowaniu 100 cm3 roztworu jest nieefektywne i może prowadzić do nieprecyzyjnego pomiaru. Standardowa praktyka laboratoryjna wymaga, aby zawsze stosować kolby o pojemności dostosowanej do objętości roboczej, co zwiększa precyzję pomiarów. Ponadto, błędne stężenie roztworu może prowadzić do problemów w kolejnych etapach eksperymentów, w tym nieprawidłowych reakcji chemicznych. Ostatecznie, te pomyłki mogą wprowadzać chaos w badaniach i podważać wiarygodność wyników, co jest sprzeczne z zasadami dobrej praktyki laboratoryjnej.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Aby przygotować 0,5 dm3 roztworu HCl o stężeniu 0,2 mol/dm3, jaką kolbę miarową o pojemności należy wykorzystać?

A. 500 cm3 oraz fiksanal zawierający 0,2 mol HCl
B. 0,5 dm3 oraz dwa fiksanale zawierające po 0,2 mola HCl
C. 1000 cm3 oraz dwa fiksanale zawierające po 0,1 mola HCl
D. 500 cm 3 oraz fiksanal zawierający 0,1 mola HCl
Odpowiedź jest poprawna, ponieważ przygotowanie 0,5 dm3 roztworu HCl o stężeniu 0,2 mol/dm3 wymaga zastosowania odpowiednich zasad obliczeń chemicznych. W tym przypadku, aby otrzymać roztwór o pożądanej objętości i stężeniu, musimy najpierw obliczyć liczbę moli kwasu chlorowodorowego potrzebnych do przygotowania takiego roztworu. Liczba moli obliczana jest ze wzoru: n = C × V, gdzie n to liczba moli, C to stężenie, a V to objętość. Dla tego zadania: n = 0,2 mol/dm3 × 0,5 dm3 = 0,1 mola. Zastosowanie kolby miarowej o pojemności 500 cm3, równoważnej 0,5 dm3, jest zatem odpowiednie, ponieważ po rozmieszaniu fiksanalu, który zawiera dokładnie 0,1 mola HCl, uzyskamy wymagane stężenie. Takie przygotowania są zgodne z dobrą praktyką laboratoryjną, zapewniając dokładność oraz powtarzalność wyników, co jest kluczowe w chemii analitycznej.

Pytanie 18

Wskaź sprzęt konieczny do przeprowadzenia miareczkowania?

A. Biureta, kolba stożkowa, kolba miarowa, statyw
B. Biureta, kolba stożkowa, lejek do biurety, statyw
C. Pipeta, kolba stożkowa, lejek, statyw
D. Biureta, kolba miarowa, lejek do biurety, statyw
Wybrana odpowiedź jest poprawna, ponieważ miareczkowanie to technika analityczna, która wymaga precyzyjnego pomiaru objętości roztworu reagentu. Biureta jest kluczowym narzędziem, które pozwala na dokładne dozowanie cieczy, co jest niezbędne do uzyskania precyzyjnych wyników. Kolba stożkowa, w której zazwyczaj odbywa się miareczkowanie, umożliwia łatwe mieszanie roztworów oraz ich obserwację. Lejek do biurety jest istotny, ponieważ umożliwia bezpieczne i precyzyjne napełnianie biurety bez ryzyka rozlania reagentu. Statyw natomiast stabilizuje biuretę, co jest ważne dla bezpieczeństwa i dokładności pomiarów. W praktyce, aby miareczkowanie było skuteczne, należy stosować również odpowiednie techniki pipetowania i mieszania, aby zapewnić jednolite stężenie roztworu oraz uzyskać wiarygodne wyniki analizy. Te komponenty są zgodne z dobrymi praktykami laboratoryjnymi, które podkreślają znaczenie precyzji i poprawności technik analitycznych.

Pytanie 19

Jakie substancje wykorzystuje się do wykrywania obecności jonów chlorkowych w wodzie mineralnej?

A. roztwór azotanu srebra
B. roztwór chlorku baru
C. roztwór szczawianu potasu
D. uniwersalny papierek wskaźnikowy
Roztwór azotanu srebra (AgNO3) jest kluczowym odczynnikiem w analizie chemicznej do wykrywania jonów chlorkowych (Cl-) w wodzie mineralnej. Po dodaniu azotanu srebra do próby zawierającej jony chlorkowe, zachodzi reakcja, w wyniku której powstaje biały osad chlorku srebra (AgCl). Reakcja ta jest równaniem: AgNO3 + NaCl → AgCl + NaNO3. Osad chlorku srebra jest nierozpuszczalny w wodzie, co czyni tę metodę bardzo efektywną w jakościowym wykrywaniu anionów chlorkowych. Praktyczne zastosowanie tej metody można zaobserwować w laboratoriach analitycznych, gdzie monitoruje się jakość wód mineralnych, aby spełniały one normy zdrowotne. Ponadto, metoda ta jest zgodna z wytycznymi organizacji takich jak ISO, co podkreśla jej wiarygodność i powszechne uznanie w branży analitycznej.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Fragment procedury analitycznej
(...) Przenieś badany roztwór całkowicie do rozdzielacza gruszkowego o pojemności od 50 do 100 cm3, dodaj 5 cm3 roztworu tiocyjanianu potasu oraz 10 cm3 alkoholu izopentylowego, a następnie wstrząsaj zawartością przez 30 sekund.
Po rozdzieleniu faz przenieś roztwór wodny do drugiego rozdzielacza, natomiast fazę organiczną do suchej kolbki miarowej o pojemności 50 cm3(...) Który rodzaj ekstrakcji jest opisany w powyższym fragmencie?

A. Okresowej ciecz – ciecz
B. Ciągłej ciało stałe – ciecz
C. Ciągłej ciecz – ciecz
D. Okresowej ciało stałe – ciecz
Fragment procedury analitycznej opisuje proces ekstrakcji okresowej ciecz – ciecz, co oznacza, że rozdzielanie składników następuje w wyniku wielokrotnego kontaktu dwóch cieczy o różnej polarności. W przedstawionej procedurze, badany roztwór jest mieszany z roztworem tiocyjanianu potasu i alkoholem izopentylowym, co prowadzi do rozdzielenia faz. Ekstrakcja okresowa jest szczególnie efektywna w przypadku związków organicznych, które można oddzielić od roztworów wodnych. Praktyczne zastosowanie tego typu ekstrakcji występuje w analitycznej chemii, np. w izolowaniu związków organicznych z wodnych roztworów, co jest istotne w laboratoriach zajmujących się analizą chemiczną żywności, środowiska czy farmaceutyków. Dobrym przykładem może być ekstrakcja substancji czynnych z roztworów, co pozwala na ich dalszą analizę i identyfikację. Warto zwrócić uwagę, że stosowanie odpowiednich proporcji reagentów oraz optymalnych warunków mieszania jest kluczowe dla efektywności tego procesu.

Pytanie 22

Chemikalia, dla których upłynął okres przydatności,

A. można wykorzystać do końca opakowania
B. można je stosować, pod warunkiem że substancja pozostaje czysta
C. należy zutylizować z odpadami chemicznymi
D. powinny być przechowywane w magazynie
To, że odczynniki chemiczne po terminie ważności trzeba zutylizować jak odpady chemiczne, to bardzo dobra odpowiedź. Te substancje mogą być naprawdę niebezpieczne, zarówno dla zdrowia, jak i dla środowiska. Z tego, co wiem, każdy, kto korzysta z chemikaliów, powinien się z tym liczyć i robić to z głową. Na przykład, kwas siarkowy, jeśli nie zostanie właściwie usunięty, może zaszkodzić ziemi i wodom gruntowym. Utylizacja takich rzeczy według lokalnych przepisów, które zazwyczaj obejmują programy zbierania niebezpiecznych odpadów, jest kluczowa. Dbanie o to, żeby wszystko robić zgodnie z zasadami, zmniejsza ryzyko wypadków i kontaminacji. Warto też pamiętać, że trzymanie się przepisów dotyczących bezpieczeństwa chemicznego jest ważne dla reputacji firm i ich odpowiedzialności społecznej.

Pytanie 23

Sączenie osadów kłaczkowatych odbywa się przy użyciu sączków

A. rzadkie
B. średnio gęste
C. twarde
D. bardzo gęste
Wybór gęstych lub średnio gęstych sączków do filtracji osadów kłaczkowatych jest nieprawidłowy, ponieważ te materiały nie są przystosowane do skutecznego oddzielania tego rodzaju zanieczyszczeń. Gęste sączki, posiadające bardzo małe pory, mogą prowadzić do zatykania się, co spowoduje zwiększenie ciśnienia i zmniejszenie efektywności procesu filtracji. Użytkownicy mogą błędnie zakładać, że gęstsze materiały będą bardziej efektywne w usuwaniu osadów, co jest mylące, ponieważ nie uwzględniają, że osady kłaczkowate mogą mieć różne rozmiary oraz kształty, które mogą nie przechodzić przez małe pory, a tym samym zablokować filtr. Ponadto, twarde sączki również nie będą właściwie pełnić swojej roli, ponieważ ich struktura nie pozwala na odpowiednią elastyczność niezbędną do dobrze uformowanej filtracji. Również sączki rzadkie są preferowane w kontekście analitycznym, gdzie wymagane jest szybkie usunięcie osadów bez pociągania za sobą ryzyka kontaminacji próbki. Zastosowanie nieodpowiednich sączków może prowadzić do błędnych wyników analitycznych, co jest niezgodne z praktykami laboratoriami, które dążą do zapewnienia wysokiej jakości wyników zgodnych z regulacjami i standardami branżowymi, takimi jak GLP (Dobre Praktyki Laboratoryjne) i ISO 17025.

Pytanie 24

Mianowanie roztworu KMnO4 następuje według poniższej procedury:
Około 0,2 g szczawianu sodu, ważonego z dokładnością ±0,1 mg, przenosi się do kolby stożkowej, rozpuszcza w około 100 cm3 wody destylowanej, następnie dodaje się 10 cm3 roztworu kwasu siarkowego(VI) i podgrzewa do temperatury około 70 °C. Miareczkowanie przeprowadza się roztworem KMnO4 do momentu uzyskania trwałego, jasnoróżowego koloru.
Powyższa procedura odnosi się do miareczkowania

A. kompleksometrycznego
B. potencjometrycznego
C. redoksymetrycznego
D. alkacymetrycznego
Miareczkowanie alkacymetryczne, potencjometryczne oraz kompleksometryczne to trzy różne techniki analizy chemicznej, które różnią się zasadami działania oraz rodzajem reakcji, które są stosowane. Miareczkowanie alkacymetryczne koncentruje się na zmianach pH roztworu oraz zastosowaniu wskaźników kwasowo-zasadowych, co jest nieodpowiednie w przypadku reakcji redoks, jak ta z manganianem(VII) potasu, gdzie zmiany kolorystyczne są spowodowane reakcjami utleniania i redukcji, a nie zmianą pH. Potencjometryczne metody pomiaru polegają na stosowaniu elektrody do pomiaru potencjału elektrochemicznego, co również nie pasuje do opisanego przypadku, ponieważ nie wykorzystuje się elektrochemicznych pomiarów do oceny końcowego punktu miareczkowania. Z kolei miareczkowanie kompleksometryczne opiera się na tworzeniu kompleksów między metalami a ligandami, co jest również nieadekwatne do działania manganianu(VII), który działa jako utleniacz. Właściwe zrozumienie tych technik jest kluczowe, aby uniknąć zamieszania i oszczędzić czas w laboratoriach, gdzie precyzyjne pomiary są niezbędne do uzyskania wiarygodnych wyników analitycznych. Często błędne rozumienie różnic między tymi metodami może prowadzić do niewłaściwej interpretacji wyników oraz nieprawidłowego doboru odczynników, co może mieć poważne konsekwencje w badaniach chemicznych.

Pytanie 25

Wykorzystując pipetę gazową, pobrano próbkę azotu (Mn2 = 28 g/mol) o objętości 250 cm3 w standardowych warunkach. Jaką masę ma zmierzony azot?

A. 3,1250 g
B. 0,1563 g
C. 0,3125 g
D. 1,5635 g
Odpowiedź 0,3125 g jest prawidłowa, ponieważ można ją obliczyć za pomocą wzoru na masę gazu w warunkach normalnych. W warunkach normalnych (0°C i 1 atm) 1 mol gazu zajmuje objętość 22,4 litra (22400 cm³). Mając objętość 250 cm³, możemy obliczyć ilość moli azotu: n = V / V_m, gdzie V_m to objętość molowa gazu. Zatem n = 250 cm³ / 22400 cm³/mol = 0,01116 mol. Następnie, wykorzystując masę molową azotu (28 g/mol), obliczamy masę: m = n * M, co daje m = 0,01116 mol * 28 g/mol = 0,3125 g. W laboratoriach chemicznych, dokładne pomiary masy gazów są kluczowe, szczególnie w reakcjach, które wymagają precyzyjnych ilości reagentów. Zastosowanie pipet gazowych oraz znajomość zależności między objętością, ilością moli a masą jest fundamentalne w analityce chemicznej oraz w syntezach chemicznych, gdzie precyzja wpływa na wyniki eksperymentów oraz ich powtarzalność.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Próbka laboratoryjna posiadająca cechy higroskopijne powinna być pakowana

A. w torby papierowe
B. w szczelne opakowania
C. w torby jutowe
D. w skrzynie drewniane
Odpowiedź "w hermetyczne opakowania" jest prawidłowa, ponieważ próbki laboratoryjne o właściwościach higroskopijnych wykazują silną tendencję do absorbcji wilgoci z otoczenia, co może prowadzić do ich degradacji lub zmian w składzie chemicznym. Hermetyczne opakowania zapewniają skuteczną barierę przed wilgocią, co jest kluczowe dla zachowania integralności takich próbek. Przykładem zastosowania hermetycznych opakowań są próbki soli, które muszą być przechowywane w suchym środowisku, aby uniknąć ich aglomeracji lub rozpuszczenia. Zgodnie z wytycznymi ISO 17025 dotyczącymi akredytacji laboratoriów, zaleca się stosowanie hermetycznych pojemników jako standardowej praktyki w celu zapewnienia, że wyniki analizy są wiarygodne i powtarzalne. Ponadto, hermetyczne opakowania mogą być również stosowane w transporcie próbek, co zmniejsza ryzyko ich kontaminacji i utraty właściwości.

Pytanie 29

Jakie urządzenie jest wykorzystywane do procesu ekstrakcji?

A. kolba ssawkowa
B. aparat Soxhleta
C. pompa próżniowa
D. aparat Kippa
Aparat Soxhleta jest specjalistycznym urządzeniem wykorzystywanym w procesach ekstrakcji, szczególnie w laboratoriach chemicznych i analitycznych. Działa na zasadzie ciągłej ekstrakcji substancji rozpuszczalnych z materiałów stałych, co umożliwia uzyskanie wysokiej wydajności ekstrakcji. Ekstrakcja w aparacie Soxhleta polega na cyklicznym podgrzewaniu rozpuszczalnika, który paruje, a następnie skrapla się w kondensatorze, opadając z powrotem na próbkę. Taki proces pozwala na efektywne wydobycie substancji, takich jak oleje, tłuszcze czy inne składniki aktywne z roślin. Zastosowanie tego aparatu jest powszechne w przemyśle farmaceutycznym, kosmetycznym oraz przy badaniach jakości surowców naturalnych. Standardy branżowe, takie jak ISO, zalecają korzystanie z metod ekstrakcji, które zapewniają powtarzalność i dokładność wyników, co czyni aparat Soxhleta doskonałym narzędziem w tej dziedzinie.

Pytanie 30

Etykiety chemikaliów zawierają zwroty H, które informują o rodzaju zagrożenia. Cyfra "3" pojawiająca się po literze "H" w oznaczeniu, definiuje rodzaj zagrożenia?

A. fizyczne
B. chemiczne
C. dla człowieka
D. dla środowiska
Odpowiedzi wskazujące na zagrożenie fizyczne, chemiczne lub dla środowiska są błędne, ponieważ nie odnoszą się bezpośrednio do zagrożeń, jakie substancje chemiczne mogą stwarzać dla zdrowia ludzi. Zrozumienie różnicy między tymi zagrożeniami jest kluczowe w kontekście bezpieczeństwa chemicznego. Zagrożenia fizyczne dotyczą cech substancji, takich jak łatwopalność, wybuchowość lub reakcje z innymi chemikaliami, które mogą prowadzić do niebezpiecznych sytuacji w warunkach pracy. Z kolei zagrożenia chemiczne odnoszą się do właściwości substancji, które wpływają na jej stabilność i reakcje chemiczne, co może prowadzić do uwolnienia toksycznych gazów bądź tworzenia niebezpiecznych odpadów. Natomiast zagrożenie dla środowiska dotyczy wpływu substancji na ekosystemy, takie jak zanieczyszczenie wód czy gleby. W praktyce, skupienie się na tych aspektach, zamiast na zagrożeniach dla zdrowia ludzkiego, może prowadzić do niewłaściwego stosowania środków ochrony osobistej, co zwiększa ryzyko wypadków w miejscu pracy. Używanie etykiet i zwrotów H jest bardzo istotne, aby zapewnić odpowiednią informację o potencjalnym zagrożeniu zdrowotnym dla pracowników oraz ułatwić przestrzeganie norm BHP.

Pytanie 31

Który z wskaźników nie jest używany w alkacymetrii?

A. Skrobia
B. Fenoloftaleina
C. Błękit tymolowy
D. Oranż metylowy
Skrobia jest polisacharydem, który nie pełni funkcji wskaźnika pH w reakcjach alkacymetrycznych. W alkacymetrii, kluczowe jest monitorowanie zmian pH roztworu, co pozwala na określenie punktu równoważności. W tym kontekście, wskaźniki takie jak oranż metylowy, fenoloftaleina oraz błękit tymolowy są stosowane ze względu na ich zdolność do zmiany koloru w określonym zakresie pH. Oranż metylowy zmienia kolor w pH od 3,1 do 4,4, co czyni go użytecznym w reakcjach kwasowo-zasadowych w środowisku kwasowym. Fenoloftaleina natomiast zmienia kolor z bezbarwnego na różowy w pH od 8,2 do 10,0, co jest istotne w alkacymetrii zasadowej. Błękit tymolowy działa w zakresie pH 6,0 - 7,6, co pozwala na wykrywanie przejścia z kwasowego do obojętnego. W przeciwieństwie do tych wskaźników, skrobia nie jest używana w alkacymetrii, a jej zastosowanie koncentruje się głównie w analizie jakościowej, jako reagent do wykrywania jodu.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Jak przebiega procedura unieszkodliwiania rozlanego kwasu siarkowego(VI)?

A. zbieraniu kwasu tlenkiem wapnia w celu późniejszej utylizacji
B. dokładnym spłukaniu miejsc z kwasem roztworem wodorotlenku sodu
C. dokładnym spłukaniu miejsc z kwasem roztworem węglanu sodu
D. spłukaniu miejsc z kwasem gorącą wodą
Odpowiedź wskazująca na zebranie kwasu tlenkiem wapnia jest prawidłowa, ponieważ tlenek wapnia (CaO) reaguje z kwasem siarkowym(VI) (H2SO4) w procesie neutralizacji, tworząc siarczan wapnia (CaSO4), który jest niegroźnym osadem. Taka metoda unieszkodliwiania kwasu jest zgodna z zasadami ochrony środowiska i bhp, ponieważ minimalizuje ryzyko dalszego uszkodzenia przez kwas oraz pozwala na bezpieczne usunięcie odpadów. Przykład praktycznego zastosowania tej metody można zaobserwować w laboratoriach chemicznych oraz zakładach przemysłowych, gdzie niezbędne jest zarządzanie substancjami niebezpiecznymi. Zgodnie z normami, takimi jak ISO 14001, odpowiednie procedury zarządzania substancjami chemicznymi powinny obejmować metody neutralizacji, a zastosowanie tlenku wapnia to jedna z najskuteczniejszych technik w tym zakresie. Warto również pamiętać, że po neutralizacji, powstały siarczan wapnia powinien być poddany odpowiedniej utylizacji zgodnie z obowiązującymi przepisami, co zabezpiecza przed zanieczyszczeniem środowiska.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

Zbiór próbek pierwotnych tworzy próbkę

A. laboratoryjną
B. ogólną
C. jednostkową
D. analityczną
Wybór odpowiedzi analitycznej, laboratoryjnej lub jednostkowej wynika z niepełnego zrozumienia podstawowego pojęcia próbki ogólnej. Próbka analityczna odnosi się do próbki, która jest poddawana szczegółowej analizie w laboratorium, jednak nie jest to tożsame z próbą ogólną, jako że próbka analityczna może być wybrana w sposób subiektywny, co potrafi prowadzić do zniekształcenia wyników. Z kolei próbka laboratoryjna odnosi się do dowolnego materiału, który jest badany w laboratorium; może ona być fragmentem próbki ogólnej, ale nie definiuje całości. Typowe błędne podejście to założenie, że próbka jednostkowa, pobierana z pojedynczego źródła, wystarczająco reprezentuje całość populacji; jednak jest to mylące, gdyż próbka jednostkowa może nie oddać zmienności w szerszym kontekście. Niezrozumienie roli próbek ogólnych w badaniach statystycznych i jakościowych prowadzi do nieefektywnych praktyk. Aby skutecznie ocenić jakość, należy stosować procedury zgodne z wytycznymi branżowymi, które podkreślają znaczenie reprezentatywności próbek. Kluczowym błędem jest także ignorowanie zasady losowości w pobieraniu próbek, co może istotnie wpłynąć na wyniki badań i ich interpretację.

Pytanie 38

Naważkę NaOH o masie 0,0400 g rozpuścić w małej ilości wody, a następnie przelać ten roztwór do kolby miarowej o pojemności 500 cm3 i uzupełnić kolbę miarową wodą do tzw. kreski. Masa molowa NaOH wynosi 40,0 g/mol. Jakie jest stężenie molowe przygotowanego roztworu?

A. 2,000 mol/dm3
B. 0,002 mol/dm3
C. 0,200 mol/dm3
D. 0,020 mol/dm3
Aby obliczyć stężenie molowe sporządzonego roztworu wodorotlenku sodu (NaOH), należy najpierw obliczyć liczbę moli substancji. Masa wodorotlenku sodu wynosi 0,0400 g, a jego masa molowa to 40,0 g/mol. Liczba moli NaOH wynosi zatem: n = m/M = 0,0400 g / 40,0 g/mol = 0,001 mol. Roztwór został rozcieńczony do objętości 500 cm³, co odpowiada 0,500 dm³. Stężenie molowe (C) obliczamy ze wzoru: C = n/V, gdzie n to liczba moli, a V to objętość roztworu w dm³. Wstawiając wartości, otrzymujemy: C = 0,001 mol / 0,500 dm³ = 0,002 mol/dm³. Takie obliczenia są fundamentalne w chemii analitycznej i stosowane są w laboratoriach do przygotowywania roztworów o znanym stężeniu. Znajomość stężeń molowych jest kluczowa w reakcjach chemicznych, szczególnie w kontekście analizy ilościowej oraz w procesach przemysłowych, gdzie precyzyjne dawkowanie reagentów ma kluczowe znaczenie dla jakości produktów końcowych.

Pytanie 39

Wskaż metodę rozdzielenia układu, w którym fazą rozproszoną jest ciało stałe, a fazą rozpraszającą gaz.

faza rozproszonafaza rozpraszająca
gazcieczciało stałe
gaz-pianapiana stała
cieczaerozol ciekłyemulsjaemulsja stała
ciało stałeaerozol stałyzolzol stały

A. Filtracja.
B. Destylacja.
C. Dekantacja.
D. Sedymentacja.
Sedymentacja, destylacja i dekantacja to techniki rozdzielania, które nie są odpowiednie dla układów, w których fazą rozproszoną jest ciało stałe, a fazą rozpraszającą gaz. Sedymentacja polega na opadaniu cząstek stałych na dno cieczy pod wpływem siły grawitacji, co sprawia, że jest efektywna w przypadku układów stały-ciecz, ale nie sprawdza się w sytuacjach, gdy jedna z faz jest gazem. Destylacja, z kolei, jest procesem polegającym na odparowaniu cieczy i jej skropleniu, co jest efektywną metodą rozdzielania cieczy na podstawie różnicy temperatur wrzenia, jednak nie ma zastosowania w układach stały-gaz. Dekantacja to technika, która polega na oddzielaniu cieczy od osadu, ale również odnosi się głównie do układów ciecz-ciecz lub ciecz-stała. Przy wyborze metody rozdzielania, ważne jest zrozumienie, że każda technika ma swoje specyficzne zastosowania i ograniczenia. Typowe błędy myślowe mogą prowadzić do nieprawidłowych wniosków, takie jak błędne założenie, że każda technika rozdzielania jest uniwersalna i stosowana w każdej sytuacji. Kluczowe jest, aby dostosować metodę do charakterystyki faz, które są rozdzielane, co ma istotne znaczenie w praktykach laboratoryjnych i przemysłowych.

Pytanie 40

Do 300 g wody o temperaturze 30oC dodano 120 g substancji, co zaowocowało powstaniem roztworu nasyconego. Jaką ma rozpuszczalność ta substancja w temperaturze 30oC?

A. 30 g
B. 20 g
C. 50 g
D. 40 g
Odpowiedź 40 g jest poprawna, ponieważ oznacza to, że w 300 g wody w temperaturze 30°C maksymalna ilość substancji, która może się w niej rozpuścić, wynosi właśnie 40 g. Rozpuszczalność jest charakterystyczną właściwością substancji i jest określona dla danej temperatury. W praktyce oznacza to, że w celu uzyskania roztworu nasyconego należy dodać substancję do wody, aż osiągnie się stan, w którym wszelka dodatkowa substancja nie rozpuści się, co jest praktycznym krokiem przy przygotowywaniu roztworów w laboratoriach chemicznych. Wartości rozpuszczalności są kluczowe w różnych zastosowaniach, na przykład w przemyśle farmaceutycznym, gdzie odpowiednia rozpuszczalność substancji aktywnej wpływa na efektywność leku. Zrozumienie tego parametru pozwala na precyzyjne formułowanie roztworów o odpowiednich stężeniach, co jest niezbędne w procesach produkcyjnych. Dodatkowo, wiedza o rozpuszczalności substancji jest istotna w analizach chemicznych oraz w ocenie wpływu czynników fizykochemicznych na procesy rozpuszczania.