Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 5 maja 2025 10:03
  • Data zakończenia: 5 maja 2025 10:26

Egzamin zdany!

Wynik: 31/40 punktów (77,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Wymagana izolacja przewodów używanych w trójfazowej sieci niskiego napięcia 230/400 V powinna wynosić co najmniej

A. 450/750 V
B. 100/100 V
C. 300/500 V
D. 300/300 V
Izolacja przewodów stosowanych w sieci trójfazowej niskiego napięcia 230/400 V powinna być wykonana na poziomie co najmniej 300/500 V, co jest zgodne z obowiązującymi normami IEC 60227 oraz IEC 60502. Tego rodzaju izolacja zapewnia odpowiednią ochronę przed przebiciem i krótko-terminowymi napięciami, które mogą wystąpić w trakcie normalnej eksploatacji instalacji elektrycznej. Przykładowo, w systemach zasilania budynków komercyjnych, gdzie przewody muszą być odporne na różne warunki otoczenia, zastosowanie przewodów o klasie izolacji 300/500 V jest standardem, który zapewnia długotrwałość oraz bezpieczeństwo użytkowników. Warto również zauważyć, że wyższe klasy izolacji, takie jak 450/750 V, są stosowane w bardziej wymagających aplikacjach, jak instalacje przemysłowe, ale w przypadku typowych instalacji niskonapięciowych, klasa 300/500 V jest wystarczająca i zalecana.

Pytanie 2

Który z rodzajów kabli ma zewnętrzną osłonę wykonaną z polwinitu?

A. YADY
B. LgY
C. DYt
D. XzTKMXpw
Typ przewodu YADY jest powszechnie stosowany w instalacjach elektrycznych, a jego charakterystyczną cechą jest powłoka zewnętrzna wykonana z polwinitu (PVC). Polwinit jest materiałem o wysokiej odporności na działanie czynników atmosferycznych oraz chemicznych, dzięki czemu przewody tego typu znajdują zastosowanie zarówno w instalacjach wewnętrznych, jak i zewnętrznych. Stosuje się je w budownictwie, w infrastrukturze przemysłowej oraz w systemach automatyki. Przewody YADY charakteryzują się także elastycznością, co ułatwia ich instalację w trudnodostępnych miejscach. Zgodnie z normami PN-EN 50525, przewody te mogą być używane do zasilania urządzeń elektrycznych, a ich budowa zapewnia odpowiednią izolację oraz bezpieczeństwo użytkowania. Warto również zwrócić uwagę na specyfikację dostosowaną do różnych warunków pracy, co czyni je uniwersalnym rozwiązaniem w wielu branżach.

Pytanie 3

Przedstawione w tabeli parametry techniczne dotyczą

Parametry techniczne
  • Moc przyłączeniowa
  • Rodzaj przyłącza
  • Rodzaj uziomu
  • Typy przewodów
  • Liczba obwodów

A. instalacji elektrycznej.
B. instalacji odgromowej budynku.
C. linii napowietrznej niskiego napięcia.
D. linii kablowej zasilającej budynek.
Wybór instalacji elektrycznej jako poprawnej odpowiedzi jest zasłużony, ponieważ parametry techniczne przedstawione w tabeli, takie jak moc przyłączeniowa, rodzaj przyłącza, uziemienie oraz liczba obwodów, są kluczowe dla prawidłowego zaprojektowania i funkcjonowania instalacji elektrycznej w obiektach budowlanych. Moc przyłączeniowa wskazuje na maksymalne zapotrzebowanie na energię elektryczną, co jest istotne przy doborze odpowiednich przewodów i zabezpieczeń. Rodzaj przyłącza oraz system uziemienia są niezwykle ważne dla bezpieczeństwa użytkowników, gdyż wpływają na właściwe odprowadzenie ładunków elektrycznych i ochronę przed porażeniem prądem. Typy przewodów oraz liczba obwodów są również kluczowe dla zapewnienia stabilności i elastyczności instalacji, umożliwiając podział obciążenia oraz efektywne zarządzanie energią w budynku. Zgodność z normami PN-IEC 60364 oraz innymi standardami branżowymi jest niezbędna dla osiągnięcia wysokich standardów bezpieczeństwa oraz efektywności energetycznej.

Pytanie 4

W jakiej sytuacji poślizg silnika indukcyjnego wyniesie 100%?

A. Gdy silnik będzie zasilany, jego wirnik pozostanie w bezruchu
B. Wirnik silnika osiągnie prędkość wyższą niż prędkość synchroniczna
C. Silnik będzie zasilany prądem w przeciwnym kierunku
D. Silnik będzie funkcjonować w trybie jałowym
Poślizg silnika indukcyjnego określa różnicę między prędkością synchroniczną a rzeczywistą prędkością wirnika. Gdy wirnik jest nieruchomy, oznacza to, że nie porusza się w stosunku do pola magnetycznego wytwarzanego przez uzwojenia statora. W takiej sytuacji prędkość wirnika wynosi 0, a prędkość synchroniczna, zależna od częstotliwości zasilania i liczby par biegunów, jest znacznie wyższa. Z tego powodu poślizg wynosi 100%, co oznacza maksymalne obciążenie silnika, a jego moment obrotowy jest równy zeru, co jest warunkiem niezbędnym do rozpoczęcia pracy silnika. W praktyce taka sytuacja ma miejsce podczas uruchamiania silników, gdy są one podłączane do zasilania, ale wirnik nie ma jeszcze możliwości obrotu, na przykład w przypadku zablokowania. W przemyśle, szczególnie w aplikacjach wymagających dużego momentu rozruchowego, jak w przypadku transportu materiałów, monitoruje się poślizg, aby zapewnić optymalne działanie silników. Zrozumienie poślizgu jest kluczowe dla efektywności energetycznej i żywotności silników indukcyjnych.

Pytanie 5

Która zależność musi być spełniona podczas wymiany uszkodzonych przewodów instalacji elektrycznej i ewentualnej zmiany ich zabezpieczeń nadprądowych?

Iz – prąd obciążalności długotrwałej przewodu
Ib – prąd znamionowy zabezpieczenia przeciążeniowego
IB – prąd wynikający z przewidywanej mocy przesyłanej przewodem

A. IB ≤ IN ≤ IZ
B. IN ≤ IB ≤ IZ
C. IB ≤ IZ ≤ IN
D. IZ ≤ IN ≤ IB
Odpowiedź IB ≤ IN ≤ IZ jest prawidłowa, ponieważ odzwierciedla fundamentalne zasady projektowania instalacji elektrycznych. Prąd znamionowy obciążenia (IB) powinien być zawsze mniejszy lub równy prądowi znamionowemu zabezpieczenia przeciążeniowego (IN), aby zabezpieczenie mogło poprawnie zadziałać w przypadku nadmiernego obciążenia. Z kolei IN musi być mniejsze lub równe prądowi obciążalności długotrwałej przewodu (IZ), co zapewnia, że przewód nie ulegnie przegrzaniu ani uszkodzeniu w trakcie normalnej pracy. Takie podejście zgodne jest z normami, takimi jak PN-IEC 60364, które podkreślają znaczenie odpowiedniego doboru zabezpieczeń i przewodów. Przykładowo, w przypadku instalacji oświetleniowej, jeśli przewody mają maksymalną obciążalność 10 A (IZ), a przewidywane obciążenie to 8 A (IB), to zabezpieczenie powinno mieć wartość 10 A (IN). Taki dobór zabezpieczenia pozwala na ochronę zarówno przewodów, jak i urządzeń podłączonych do instalacji.

Pytanie 6

W układzie przedstawionym na rysunku łącznik nie powoduje wyłączenia żarówki. W celu zdiagnozowania usterki wykonano pomiary, których wyniki zapisano w tabeli.

Lp.Pomiar rezystancji między punktamiWartość
Ω
12 – 30
23 – 50
35 – 6 (łącznik w pozycji otwarty)0
45 – 6 (łącznik w pozycji zamknięty)0
54 – 70

Ilustracja do pytania
A. zwarcie międzyprzewodowe między punktami 5 – 6.
B. niepewne zamocowanie puszki rozgałęźnej do podłoża.
C. przerwa w przewodzie neutralnym.
D. uszkodzenie przewodu między punktami 2 – 3.
Odpowiedź wskazująca na zwarcie międzyprzewodowe między punktami 5 – 6 jest prawidłowa, ponieważ analiza wyników pomiarów rezystancji układu wykazała wartość 0 Ω. W normalnych warunkach, gdy łącznik jest otwarty, oczekiwalibyśmy, że rezystancja będzie nieskończona, co wskazuje na brak przepływu prądu. W przypadku stwierdzenia rezystancji równej 0 Ω, mamy do czynienia z niepożądanym połączeniem, czyli zwarciem, które prowadzi do ciągłego zasilania żarówki. Takie sytuacje mogą występować w wyniku uszkodzenia izolacji przewodów lub błędów w instalacji elektrycznej. W praktyce, aby zapobiegać takim usterkom, zaleca się regularne przeglądy i pomiary instalacji, zgodnie z normami PN-IEC 60364, które definiują wymagania dotyczące bezpieczeństwa elektrycznego. Prawidłowa diagnoza i naprawa zwarć są kluczowe dla zapewnienia bezpieczeństwa użytkowników oraz prawidłowego funkcjonowania instalacji.

Pytanie 7

Korzystając z zamieszczonego fragmentu instrukcji obsługi multimetru, wyznacz względny błąd pomiaru napięcia, jeżeli woltomierz wskazał 120 V.

Instrukcja obsługi multimetru (fragment)

Uchyb pomiaru:

0,1% w.m. ±0,05% w.z. (podzakresy 100 mV, 1 V)

0,2% w.m. ±0,05% w.z. (podzakresy 10 V, 100 V, 1000 V)

gdzie w.m. oznacza wartość zmierzoną, a w.z. wartość zakresu.

A. 0,07%
B. 0,62%
C. 0,74%
D. 6,10%
Względny błąd pomiaru napięcia wynosi 0,62%, co oznacza, że pomiar wykonany za pomocą woltomierza jest dokładny w granicach tego błędu. W celu obliczenia względnego błędu, należy dodać błąd stały urządzenia do błędu procentowego, a następnie podzielić tę sumę przez wartość zmierzoną (w tym przypadku 120 V). Takie podejście jest zgodne z profesjonalnymi standardami pomiarowymi, które wskazują, jak prawidłowo oceniać błędy pomiarowe. W praktyce, stosując woltomierz, bardzo ważne jest, aby zrozumieć i obliczyć te błędy, aby zapewnić dokładność i wiarygodność pomiarów. Na przykład, w zastosowaniach inżynieryjnych, gdzie precyzyjne parametry elektryczne są krytyczne, skuteczne zarządzanie błędami pomiarowymi pozwala na optymalizację procesów produkcyjnych, a także na zapewnienie bezpieczeństwa. W związku z tym, umiejętność obliczania względnych błędów pomiarowych jest kluczowa dla każdego specjalisty w dziedzinie elektrotechniki.

Pytanie 8

Wyłącznik różnicowoprądowy o oznaczeniu P304 63-30-AC posiada znamionowy prąd różnicowy wynoszący

A. 0,03 A i znamionowy prąd ciągły 63 A
B. 0,03 mA oraz napięcie znamionowe 63 V
C. 0,03 A oraz napięcie znamionowe 63 V
D. 0,03 mA oraz znamionowy prąd ciągły 63 mA
Wyłącznik różnicowoprądowy o oznaczeniu P304 63-30-AC ma znamionowy prąd różnicowy wynoszący 0,03 A oraz znamionowy prąd ciągły 63 A. To oznaczenie wskazuje na zdolność urządzenia do wykrywania prądów różnicowych, co jest kluczowe w zapobieganiu porażeniom prądem oraz pożarom spowodowanym uszkodzeniami izolacji. W praktyce, taki wyłącznik znajduje zastosowanie w instalacjach elektrycznych, gdzie wymagana jest wysoka ochrona przed prądami różnicowymi, na przykład w obiektach użyteczności publicznej, mieszkalnych czy przemysłowych. Zgodnie z normą IEC 61008, wyłączniki różnicowoprądowe są klasyfikowane według ich prądów różnicowych, a ich stosowanie jest zalecane w miejscach, gdzie istnieje ryzyko wystąpienia zwarcia lub uszkodzenia izolacji. Poprawne działanie tego typu urządzenia przyczynia się do zwiększenia bezpieczeństwa użytkowników oraz ochrony mienia, co czyni je nieodłącznym elementem nowoczesnych instalacji elektrycznych.

Pytanie 9

Który element instalacji elektrycznej przedstawiono na rysunku?

Ilustracja do pytania
A. Wyłącznik priorytetowy.
B. Ogranicznik przepięć.
C. Wyłącznik ciśnieniowy.
D. Ogranicznik mocy.
Odpowiedź jest trafna! Na tym rysunku widzimy urządzenie elektryczne, które ma oznaczenia związane z mocą, takie jak Pm. Ogranicznik mocy odgrywa naprawdę ważną rolę w nowoczesnych instalacjach elektrycznych. Jego zadaniem jest pilnowanie i regulowanie, ile energii zużywamy, co pomaga uniknąć przepięć i przeciążeń. W praktyce, takie urządzenia często spotykamy w obiektach komercyjnych i przemysłowych, gdzie ryzyko przekroczenia przydzielonej mocy jest spore. Dzięki temu, osoby zarządzające instalacjami mogą lepiej kontrolować zużycie prądu, co przekłada się na niższe koszty i większe bezpieczeństwo. Co więcej, ograniczniki mocy muszą być zgodne z europejskimi normami, jak na przykład EN 61000, które mówią o jakości energii elektrycznej oraz o ochronie instalacji przed napięciami, które są za wysokie.

Pytanie 10

Jaką z wymienionych czynności kontrolnych należy przeprowadzić po zainstalowaniu trójfazowego silnika elektrycznego?

A. Weryfikacja symetrii napięcia zasilającego
B. Mierzenie temperatury stojana
C. Mierzenie prędkości obrotowej
D. Sprawdzenie kierunku obrotów wału silnika
Sprawdzenie kierunku obrotów wału silnika elektrycznego jest kluczowym krokiem po jego montażu, ponieważ niewłaściwy kierunek obrotów może prowadzić do uszkodzenia silnika oraz urządzeń, z którymi jest połączony. W praktyce, wiele aplikacji wymaga, aby silnik obracał się w określonym kierunku, co jest szczególnie ważne w systemach napędowych, takich jak pompy, wentylatory czy maszyny robocze. Warto również pamiętać, że w przypadku silników trójfazowych zmiana kierunku obrotów jest możliwa poprzez zamianę miejscami dwóch dowolnych przewodów zasilających. Zgodnie z normami branżowymi, przed uruchomieniem silnika należy zawsze sprawdzić jego kierunek obrotów, aby zagwarantować prawidłowe działanie i uniknąć potencjalnych awarii. Dodatkowo, sprawdzenie kierunku obrotów może być dokumentowane w protokole uruchomieniowym, co jest zgodne z najlepszymi praktykami w zakresie zarządzania jakością oraz bezpieczeństwem w pracy. Warto także wspomnieć, że w przypadku silników używanych w automatyce przemysłowej, kierunek obrotów jest często monitowany przez systemy kontrolne, które mogą automatycznie reagować na nieprawidłowości.

Pytanie 11

Jakie z podanych powodów może wywołać nagłe rozłączenie pracującego silnika szeregowego prądu stałego?

A. Zerwanie połączenia wału silnika z maszyną napędzającą
B. Przerwa w obwodzie wzbudzenia
C. Uszkodzenie łożysk silnika
D. Zwarcie międzyzwojowe w uzwojeniu twornika
Przerwa w obwodzie wzbudzenia, zwarcie międzyzwojowe w uzwojeniu twornika oraz uszkodzenie łożysk silnika to sytuacje, które mogą powodować różne problemy w pracy silnika, jednak nie prowadzą one bezpośrednio do rozbiegu silnika szeregowego prądu stałego w taki sposób, jak zerwanie połączenia wału z maszyną napędzaną. Przerwa w obwodzie wzbudzenia powoduje, że silnik traci pole magnetyczne, co skutkuje znacznym spadkiem momentu obrotowego. W efekcie, silnik może zatrzymać się, ale nie będzie miał tendencji do rozbiegu. Zwarcie międzyzwojowe w uzwojeniu twornika również prowadzi do nieprawidłowego działania silnika. To zjawisko wpływa na rozkład prądów w uzwojeniu oraz może generować nadmierne ciepło, co w skrajnych przypadkach prowadzi do uszkodzeń, ale nie wywołuje rozbiegu. Uszkodzenie łożysk silnika, chociaż może powodować zwiększenie oporu obrotowego, również nie prowadzi do rozbiegu. Typowym błędem myślowym jest uznanie, że każdy problem z silnikiem natychmiast prowadzi do niebezpiecznych zjawisk, takich jak rozbieg. Kluczowe jest zrozumienie interakcji pomiędzy różnymi elementami systemu oraz znajomość specyfiki działania silników szeregowych, co pozwala na właściwe diagnozowanie problemów oraz podejmowanie adekwatnych działań naprawczych.

Pytanie 12

Jakie wartości krotności prądu znamionowego obejmuje obszar działania wyzwalaczy elektromagnetycznych w samoczynnych wyłącznikach instalacyjnych nadprądowych typu C?

A. (2÷3) · In
B. (3÷5) · In
C. (5÷10) · In
D. (5÷10) · In
Odpowiedź (5÷10) · In jest prawidłowa, ponieważ wyzwalacze elektromagnetyczne samoczynnych wyłączników instalacyjnych nadprądowych typu C działają w określonym zakresie krotności prądu znamionowego. Zgodnie z normą IEC 60947-2, wyzwalacze te są zaprojektowane do zadziałania przy prądzie zwarciowym równym 5 do 10 razy prąd znamionowy (In). Oznacza to, że w przypadku wystąpienia zwarcia, wyłącznik zadziała, aby chronić obwód przed uszkodzeniem, w przypadku gdy prąd przekroczy 5-krotną wartość znamionową. Przykładem praktycznym może być instalacja elektryczna w budynku komercyjnym, gdzie zastosowanie wyłączników typu C jest zalecane w obwodach z silnikami elektrycznymi, które mogą przy rozruchu generować wyższe prądy. Ich zastosowanie minimalizuje ryzyko fałszywego zadziałania wyłącznika podczas normalnego funkcjonowania obwodu, jednocześnie zapewniając odpowiednią ochronę w przypadku rzeczywistego zagrożenia.

Pytanie 13

W jakim z podanych typów źródeł światła wykorzystuje się zapłonnik?

A. Lampa sodowa
B. Lampa rtęciowa
C. Świetlówka tradycyjna
D. Żarówka halogenowa
Wybór świetlówki tradycyjnej jako źródła światła, w którym stosuje się zapłonnik, jest poprawny z kilku powodów. Świetlówki, jako rodzaj lampy fluorescencyjnej, wymagają zapłonnika, aby uruchomić proces świecenia. Zapłonnik działa na zasadzie wytwarzania iskry, która inicjuje przepływ prądu przez gaz wewnątrz lampy, co jest niezbędne do emisji światła. W praktyce, zastosowanie świetlówek tradycyjnych jest szczególnie powszechne w biurach, szkołach oraz przestrzeniach komercyjnych, gdzie efektywność energetyczna jest kluczowa. Świetlówki zużywają znacznie mniej energii niż tradycyjne żarówki, a ich żywotność jest znacznie dłuższa, co czyni je bardziej ekologicznym oraz ekonomicznym rozwiązaniem. W branży oświetleniowej powszechnie uznaje się, że stosowanie odpowiednich zapłonników w świetlówkach jest standardem, co pozwala na optymalne działanie lamp oraz minimalizuje ryzyko awarii. Warto również zauważyć, że zapłonniki mogą być różne – od elektromagnetycznych po elektroniczne, co wpływa na wydajność i czas rozruchu lampy.

Pytanie 14

W jaki sposób realizowana jest ochrona przed porażeniem elektrycznym poprzez dotyk pośredni w oprawie oświetleniowej drugiej klasy ochronności działającej w sieci TN-S?

A. Użycie napięcia zasilania o zmniejszonej wartości
B. Połączenie obudowy z przewodem ochronnym sieci
C. Zastosowanie podwójnej warstwy izolacji
D. Zasilanie z transformatora izolacyjnego
W kontekście ochrony przed dotykiem pośrednim, wiele podejść może wydawać się atrakcyjnych, jednak nie są one wystarczające do zapewnienia właściwego poziomu bezpieczeństwa. Zastosowanie napięcia zasilającego o obniżonej wartości, choć teoretycznie może zredukować ryzyko porażenia, nie eliminuje go całkowicie, ponieważ w przypadku awarii izolacji nadal może wystąpić ryzyko niebezpiecznego napięcia. Zasilanie z transformatora separacyjnego również nie stanowi pełnej odpowiedzi na problem, gdyż chociaż transformator ten ogranicza ryzyko porażenia, to nie jest to rozwiązanie wystarczające w przypadku urządzeń, które nie są dostatecznie izolowane. Połączenie obudowy z przewodem ochronnym sieci jest bardziej charakterystyczne dla urządzeń klasy I, gdzie niezbędne jest uziemienie, natomiast w oprawach klasy II, które są projektowane bez przewodu ochronnego, takie podejście jest nieadekwatne. Te nieprawidłowe koncepcje często wynikają z braku zrozumienia zasad klasyfikacji sprzętu elektrycznego oraz norm bezpieczeństwa, takich jak IEC 61140, które jasno definiują wymagania dotyczące ochrony przeciwporażeniowej. Właściwe zrozumienie i zastosowanie zasad dotyczących izolacji oraz konstrukcji sprzętu jest kluczowe dla zapewnienia bezpieczeństwa użytkowników, co jest często pomijane w praktycznych zastosowaniach.

Pytanie 15

Jakie są wartości znamionowe prądu oraz liczba biegunów wyłącznika oznaczonego symbolem S194 B3?

A. 9 A i 4 bieguny
B. 19 A i 3 bieguny
C. 3 A i 4 bieguny
D. 4 A i 3 bieguny
Podejmując decyzję o wyborze wyłącznika elektrycznego, kluczowe jest zrozumienie charakterystyki prądowej oraz liczby biegunów, co ma bezpośredni wpływ na bezpieczeństwo i funkcjonalność instalacji. Odpowiedzi wskazujące na prąd znamionowy 19 A, 4 A czy 9 A są błędne, ponieważ sugerują zastosowanie wyłączników do obciążeń, które wykraczają poza specyfikacje podane dla modelu S194 B3. Przykładowo, wyłącznik o prądzie 19 A byłby przeznaczony do bardziej intensywnych zastosowań, typowych dla dużych instalacji przemysłowych, co jest nieadekwatne w kontekście tego modelu. Natomiast prąd 4 A czy 9 A także wskazuje na zastosowania, które mogą być zbyt wysokie dla standardowego wyłącznika trójfazowego w małych instalacjach. Przy ocenie odpowiedzi warto zwrócić uwagę na zasady doboru wyłączników, które powinny być dostosowane do specyficznych potrzeb obwodu elektrycznego. W praktyce wykorzystywanie wyłączników o nieodpowiednich parametrach może prowadzić do ich nieprawidłowego działania, co z kolei zwiększa ryzyko uszkodzenia podłączonych urządzeń oraz może stwarzać zagrożenie pożarowe. Wszelkie decyzje w tym zakresie powinny być podejmowane na podstawie dokładnej analizy parametrów technicznych oraz zgodności z normami, np. normami IEC 60947 dotyczącymi wyłączników.

Pytanie 16

Jaki wyłącznik nadmiarowo-prądowy najlepiej zastosować do zabezpieczenia instalacji elektrycznej z przewidywanym prądem zwarciowym Iz = 150 A?

A. C20
B. B25
C. D10
D. C16
Wybrałeś odpowiedź B25 i to jest całkiem dobra decyzja. Wyłącznik nadmiarowo-prądowy typu B o prądzie znamionowym 25 A sprawdzi się w instalacji, gdzie prąd zwarciowy wynosi 150 A. Z tego co wiem, te wyłączniki są zazwyczaj stosowane w obwodach, gdzie prąd rozruchowy nie jest za duży, jak na przykład w oświetleniu lub gniazdkach. Kiedy mamy do czynienia z większym prądem zwarciowym, musimy dobrze dobrać wyłącznik, tak żeby nie doszło do uszkodzeń instalacji ani do przegrzewania się przewodów. W praktyce wydaje mi się, że wyłącznik B25 będzie odpowiedni i da dobrą ochronę. Warto pamiętać przy projektowaniu elektryki, żeby dobrze policzyć przewidywany prąd zwarciowy i wybrać właściwe wyłączniki, bo to naprawdę ma znaczenie. Zgadzam się, że również trzeba przestrzegać lokalnych przepisów budowlanych oraz elektrycznych, żeby zapewnić bezpieczeństwo.

Pytanie 17

Jakie urządzenia elektryczne są częścią instalacji przyłączeniowej obiektu budowlanego?

A. Zabezpieczenia przedlicznikowe oraz licznik energii elektrycznej
B. Wyłącznik różnicowoprądowy oraz ograniczniki przepięć
C. Transformator słupowy z rozłącznikiem
D. Zabezpieczenia nadprądowe poszczególnych obwodów
Zabezpieczenia przedlicznikowe i licznik energii to naprawdę ważne elementy, które wchodzą w skład przyłącza budynku. Te zabezpieczenia, jak wyłączniki nadprądowe i różnicowoprądowe, mają za zadanie chronić zarówno instalację, jak i nas samych przed przeciążeniem czy porażeniem prądem. Licznik energii z kolei pozwala nam śledzić, ile energii zużywamy, co jest potrzebne przy rozliczeniach z dostawcą prądu. Jeśli dobrze dobierzemy te zabezpieczenia, to zgodnie z normami PN-IEC 60364, będziemy w lepszej sytuacji. W razie awarii, zabezpieczenia powinny odciąć zasilanie, co chroni sprzęt i nas, ludzi, w budynku. Wszystko sprowadza się do tego, żeby dobrze zamontować i dobrać te elementy, bo to klucz do bezpieczeństwa i sprawności energetycznej budynku. Dlatego ważne, żeby wartości prądowe były dopasowane tak, by instalacja działała optymalnie i uniknęła nagłych przerw w dostawie energii.

Pytanie 18

Kontrolę przeciwpożarową wyłącznika prądu powinno się przeprowadzać w terminach określonych przez producenta, jednak nie rzadziej niż raz na

A. pięć lat
B. dwa lata
C. rok
D. trzy lata
Regularne przeglądy przeciwpożarowe wyłączników prądu są kluczowe dla zapewnienia bezpieczeństwa instalacji elektrycznych. Zgodnie z przepisami i zaleceniami producentów, przegląd powinien być przeprowadzany nie rzadziej niż raz do roku, co pozwala na wykrycie i naprawę ewentualnych usterek, które mogą prowadzić do poważnych zagrożeń. Przykładowo, niewłaściwe działanie wyłącznika może skutkować brakiem ochrony przed przeciążeniem lub zwarciem, co w skrajnych przypadkach prowadzi do pożaru. Warto również pamiętać, że w obiektach o wysokim ryzyku pożarowym, takich jak zakłady przemysłowe czy magazyny, częstotliwość przeglądów może być jeszcze wyższa, aby zapewnić maksymalne bezpieczeństwo. Współczesne normy i standardy branżowe, takie jak norma PN-EN 61439, podkreślają znaczenie regularnych inspekcji i konserwacji urządzeń elektrycznych w kontekście ochrony przeciwpożarowej. Praktyka ta nie tylko chroni mienie, ale również życie ludzi, co czyni ją niezbędnym elementem zarządzania bezpieczeństwem w każdym przedsiębiorstwie.

Pytanie 19

Jakie narzędzie powinno być wykorzystane do wykonania kilku połączeń w nowej instalacji elektrycznej na listwach zaciskowych śrubowych?

A. Klucza nasadowego
B. Wkrętarki akumulatorowej z odpowiednim bitem
C. Wiertarki udarowej z wiertłem widiowym
D. Klucza imbusowego
Użycie klucza imbusowego w kontekście wykonywania połączeń w listwach zaciskowych śrubowych jest niewłaściwe, ponieważ narzędzie to jest przeznaczone głównie do luzowania i dokręcania śrub z gniazdem sześciokątnym. W przypadku listw zaciskowych, które zazwyczaj wymagają bardziej elastycznego podejścia do różnych typów śrub, klucz imbusowy nie zapewnia optymalnej efektywności ani szybkości. Wkrętarka akumulatorowa z dopasowanym bitem jest narzędziem, które pozwala na szybką wymianę bitów w zależności od wymagań konkretnego zadania. Z kolei wiertarka udarowa z wiertłem widiowym jest przeznaczona do wiercenia otworów, a nie do dokręcania śrub, co czyni jej użycie w tym kontekście niepraktycznym. Klucz nasadowy, mimo że może być używany do różnych zastosowań, w przypadku listw zaciskowych również nie oferuje takiej uniwersalności i efektywności jak wkrętarka akumulatorowa. Typowym błędem myślowym jest założenie, że każde narzędzie do dokręcania jest odpowiednie do wszystkich zastosowań. W rzeczywistości, wybór narzędzia powinien być uzależniony od specyfiki zadania oraz wymagań dotyczących precyzji, szybkości i bezpieczeństwa pracy. Właściwe narzędzie przyczynia się nie tylko do efektywności, ale również do jakości wykonania instalacji elektrycznej, co jest kluczowe dla jej długotrwałego funkcjonowania.

Pytanie 20

Aby prawidłowo wykonać otwór w twardym betonie pod gniazdo sieciowe, konieczne jest użycie wiertarki oraz

A. otwornicy z nasypem wolframowym
B. młotka z przecinakiem
C. otwornicy z segmentami diamentowymi
D. wyrzynarki do głębokich cięć
Otwornice z diamentowymi segmentami to naprawdę najlepsze narzędzie, jeśli chodzi o wiercenie w twardym betonie. Dzięki swojej konstrukcji świetnie radzą sobie z usuwaniem materiału w bardzo precyzyjny sposób. Diamentowe segmenty są super twarde i odporne na ścieranie, co czyni je idealnym wyborem, zwłaszcza w trudnych warunkach. Na przykład, gdy instalujesz gniazda sieciowe w betonowych murach, to otwornica diamentowa daje czyste krawędzie, co wygląda lepiej i bardziej profesjonalnie. Z mojej perspektywy, korzystanie z takich narzędzi pomaga uniknąć uszkodzenia otaczających materiałów i naprawdę przyspiesza cały proces pracy. I fajnie, że otwornice są w różnych rozmiarach, więc można dobrać coś odpowiedniego do konkretnego projektu.

Pytanie 21

Jakie oznaczenia oraz jaka wartość minimalnego prądu znamionowego powinna mieć wkładka topikowa, służąca do ochrony przewodów przed skutkami zwarć i przeciążeń w obwodzie jednofazowego elektrycznego bojlera o danych znamionowych: PN = 3 kW, UN = 230 V?

A. aM 20 A
B. gB 20 A
C. aR 16 A
D. gG 16 A
Wybór wkładki topikowej gG 16 A jest poprawny, ponieważ wkładki te są przeznaczone do ochrony obwodów przed przeciążeniem oraz zwarciem. W przypadku bojlera elektrycznego o mocy znamionowej 3 kW i napięciu 230 V, obliczamy maksymalny prąd znamionowy przy użyciu wzoru I = P / U, co daje I = 3000 W / 230 V ≈ 13 A. Wkładka gG 16 A zapewnia odpowiednią ochronę, gdyż jej wartość prądu znamionowego jest większa niż obliczona wartość prądu roboczego, co oznacza, że nie będzie zbyt szybko przerywała pracy urządzenia podczas normalnego użytkowania. Dodatkowo, wkładki gG charakteryzują się dobrą zdolnością do łapania zwarć, co jest kluczowe w przypadku bojlerów, które mogą doświadczać nagłych skoków prądu. Zastosowanie odpowiedniej wkładki topikowej jest ważne dla zapewnienia bezpieczeństwa instalacji oraz długowieczności urządzeń. W normach IEC 60269 podano, że wkładki gG są odpowiednie do ochrony przed przeciążeniami oraz zwarciami w obwodach instalacji elektrycznych, co czyni je dobrym wyborem w tym przypadku.

Pytanie 22

W jakim układzie sieciowym punkt neutralny transformatora zasilającego sieć nie jest metalicznie połączony z ziemią?

A. IT
B. TT
C. TN-C
D. TN-S
Układy TN-C, TN-S oraz TT różnią się od systemu IT pod względem połączenia punktu neutralnego z ziemią oraz sposobu uziemienia. W systemie TN-C punkt neutralny jest połączony z ziemią, co oznacza, że w przypadku uszkodzenia izolacji, prąd może przepływać do ziemi, co stwarza ryzyko porażenia prądem elektrycznym. System ten, mimo że dobrze sprawdza się w standardowych zastosowaniach, nie jest zalecany w obiektach o wysokim ryzyku, ponieważ awaria może prowadzić do poważnych konsekwencji. Z kolei w układzie TN-S występuje oddzielne uziemienie dla przewodu ochronnego i neutralnego, co poprawia bezpieczeństwo, ale nadal zakłada połączenie z ziemią. W przypadku systemu TT, gdzie również punkt neutralny jest uziemiony, występuje możliwość wystąpienia prądów upływowych, które mogą prowadzić do porażenia. Typowe błędy w rozumieniu tych układów to mylenie izolacji z bezpieczeństwem. W rzeczywistości, systemy TN i TT, mimo że stosowane są szeroko, nie oferują tego samego poziomu ochrony jak system IT, zwłaszcza w sytuacjach awaryjnych. Dlatego, chcąc zapewnić najwyższy poziom bezpieczeństwa, warto rozważyć zastosowanie układu IT w obiektach o krytycznym znaczeniu."

Pytanie 23

Jakie urządzenie, oprócz lutownicy, jest kluczowe podczas naprawy przeciętego przewodu LY poprzez połączenie lutowane?

A. Płaskoszczypce
B. Szczypce boczne
C. Nóż monterski
D. Zagniatarka
Nóż monterski jest kluczowym narzędziem przy naprawie przeciętego przewodu, gdyż umożliwia precyzyjne przygotowanie końcówek przewodów do lutowania. W praktyce, przed przystąpieniem do lutowania, należy odpowiednio odizolować końce przewodów, co wymaga użycia ostrego noża monterskiego. Dzięki odpowiedniej technice użycia noża, możemy uniknąć uszkodzenia żył przewodu oraz zapewnić ich czystą powierzchnię lutowniczą. Istotne jest, aby stosować nóż monterski zgodnie z zasadami BHP, co zapobiega urazom. Ponadto, zgodnie z normami branżowymi, każda naprawa powinna być przeprowadzana z użyciem narzędzi zapewniających dokładność oraz bezpieczeństwo. Dlatego nóż monterski powinien być zawsze w dobrym stanie, a jego ostrze powinno być regularnie wymieniane, aby zminimalizować ryzyko uszkodzenia przewodu. Stosowanie noża monterskiego w połączeniu z lutownicą jest zgodne z najlepszymi praktykami w branży elektrycznej oraz elektronicznej.

Pytanie 24

Wkładka topikowa bezpiecznika oznaczona symbolem gL służy do ochrony

A. przewodów przed przeciążeniami oraz zwarciami
B. urządzeń półprzewodnikowych przed zwarciami
C. silników przed przeciążeniami oraz zwarciami
D. urządzeń półprzewodnikowych przed przeciążeniami
Wkładka topikowa bezpiecznika oznaczona symbolem gL jest przeznaczona do zabezpieczania przewodów przed przeciążeniami i zwarciami. Oznaczenie gL wskazuje na to, że wkładki te są dostosowane do ochrony obwodów o charakterystyce A, co oznacza, że mogą one wyłączyć obwód w przypadku wystąpienia nadmiernego prądu, który może prowadzić do uszkodzenia instalacji elektrycznej. Przykładem zastosowania wkładek gL są instalacje oświetleniowe oraz obwody zasilające gniazdka, gdzie istnieje ryzyko przeciążenia spowodowanego podłączeniem wielu urządzeń. Takie bezpieczniki są zgodne z międzynarodowymi standardami IEC 60269, które określają wymagania dotyczące wkładek topikowych. Stosowanie wkładek gL w obwodach prądowych pozwala na skuteczną ochronę przed uszkodzeniami, co jest istotne zarówno z punktu widzenia bezpieczeństwa, jak i efektywności energetycznej instalacji.

Pytanie 25

Którą klasę ochronności posiada oprawa oświetleniowa oznaczona przedstawionym symbolem graficznym?

Ilustracja do pytania
A. II
B. III
C. I
D. 0
Oprawa oświetleniowa oznaczona symbolem graficznym, przedstawiającym dwa kwadraty, jeden wewnątrz drugiego, wskazuje na klasę ochronności II. Oznaczenie to jest kluczowe w kontekście bezpieczeństwa użytkowania urządzeń elektrycznych, ponieważ klasa ta zapewnia podwójną izolację, co znacznie zwiększa ochronę przed porażeniem prądem elektrycznym. W praktyce oznacza to, że urządzenie nie wymaga uziemienia, co ułatwia jego instalację w miejscach, gdzie zainstalowanie przewodu uziemiającego jest trudne lub niemożliwe. Zastosowanie opraw oświetleniowych klasy II jest powszechne w pomieszczeniach mieszkalnych, biurach oraz w miejscach o podwyższonej wilgotności, jak łazienki, gdzie ryzyko kontaktu z wodą jest wyższe. Warto pamiętać, że stosowanie urządzeń z odpowiednim oznaczeniem klas ochronności jest zgodne z normami bezpieczeństwa, takimi jak IEC 60598, co świadczy o odpowiedzialnym podejściu do instalacji elektrycznych.

Pytanie 26

Do czego przeznaczone są kleszcze przedstawione na ilustracji?

Ilustracja do pytania
A. Do montażu zacisków zakleszczających.
B. Do formowania oczek na końcach żył jednodrutowych.
C. Do zaciskania końcówek tulejkowych na żyłach wielodrutowych.
D. Do zaprasowywania końców przewodów w połączeniach wsuwanych.
Te kleszcze, co są na obrazku, to narzędzie do robienia oczek na końcach żyłek, które mają tylko jeden drut. Mają takie stożkowe szczęki, które fajnie pozwalają wyprofilować drut, żeby dobrze się łączył z innymi częściami instalacji elektrycznej. Można je zobaczyć w akcji tam, gdzie trzeba zrobić mocne i trwałe połączenia, co jest ważne zarówno w przemyśle, jak i w domach. Te oczka pomagają przyczepić przewody do zacisków, a to jest zgodne z normami, które mówią, jak to wszystko powinno być robione, żeby było bezpiecznie i trwale. Dobrze używać takich narzędzi, bo w przeciwnym razie można łatwo uszkodzić drut. Gdy dobrze uformujemy drut kleszczami, zmniejszamy ryzyko zwarć i innych problemów technicznych, co ma duże znaczenie, gdy pracuje się z elektryką.

Pytanie 27

Który z podanych łączników instalacyjnych dysponuje dwoma klawiszami i trzema zaciskami przyłączeniowymi?

A. Łącznik schodowy pojedynczy
B. Łącznik schodowy podwójny
C. Łącznik krzyżowy
D. Łącznik świecznikowy
Łącznik świecznikowy to element instalacji elektrycznej, który rzeczywiście ma dwa klawisze i trzy zaciski przyłączeniowe. Jest to kluczowy komponent w systemach oświetleniowych, który umożliwia włączenie i wyłączenie oświetlenia z jednego miejsca. Dzięki posiadaniu dwóch klawiszy, użytkownik może kontrolować dwa różne źródła światła z jednego łącznika, co jest szczególnie przydatne w pomieszczeniach, gdzie zastosowane są różne rodzaje oświetlenia. W praktyce, łącznik świecznikowy często stosuje się w salonach, gdzie można regulować intensywność światła przy użyciu dwóch różnych żarówek lub opraw. Dodatkowo, zgodnie z normami IEC, instalacje elektryczne powinny być projektowane w sposób umożliwiający ich późniejsze rozszerzanie lub modyfikacje. Użycie łącznika świecznikowego w połączeniu z innymi typami łączników, takimi jak schodowe czy krzyżowe, pozwala na stworzenie bardziej elastycznego systemu oświetleniowego, dostosowanego do indywidualnych potrzeb użytkowników.

Pytanie 28

Kontrola instalacji elektrycznych, które są narażone na szkodliwe działanie warunków atmosferycznych lub destrukcyjne oddziaływanie czynników występujących podczas eksploatacji budynku, powinna odbywać się nie rzadziej niż raz na

A. 4 lata
B. 2 lata
C. kwartał
D. rok
Przeprowadzanie kontroli instalacji elektrycznych narażonych na szkodliwe wpływy atmosferyczne co najmniej raz w roku jest zgodne z normami bezpieczeństwa oraz dobrymi praktykami w branży budowlanej. Regularne inspekcje pozwalają na wczesne wykrycie potencjalnych problemów, takich jak korozja czy uszkodzenia izolacji, co może znacząco obniżyć ryzyko awarii elektrycznych. Na przykład, w przypadku instalacji znajdujących się na zewnątrz budynków, narażonych na opady deszczu, śniegu czy zmiany temperatury, roczna kontrola pozwala na ocenę stanu technicznego wszystkich elementów. Dzięki temu możemy podjąć działania prewencyjne, takie jak wymiana uszkodzonych części czy poprawa izolacji, co przekłada się na bezpieczniejsze użytkowanie budynków. Dodatkowo, zgodnie z przepisami prawa budowlanego oraz normami PN-IEC 60364, regularne kontrole są niezbędne dla zapewnienia bezpieczeństwa użytkowników oraz zgodności z normami technicznymi.

Pytanie 29

W wyniku uszkodzenia mechanicznego obudowa gniazda wtyczkowego w łazience uległa zniszczeniu. Co w takiej sytuacji powinno się zrobić?

A. zdemontować gniazdo i zaślepić puszkę
B. zakleić gniazdo taśmą izolacyjną
C. wymienić gniazdo na nowe
D. uszczelnić pęknięcia za pomocą kleju do tworzywa
Wymiana gniazda wtyczkowego jest kluczowym krokiem w przypadku uszkodzenia obudowy, ponieważ gwarantuje bezpieczeństwo użytkowników i zapewnia prawidłowe funkcjonowanie instalacji elektrycznej. Uszkodzona obudowa może prowadzić do odsłonięcia przewodów elektrycznych, co zwiększa ryzyko porażenia prądem oraz zwarcia. Zgodnie z normami bezpieczeństwa elektrycznego, takimi jak PN-IEC 60364, każda uszkodzona komponenta powinna być wymieniana, aby zapobiec potencjalnym zagrożeniom. Przykładowo, w przypadku gniazd wtyczkowych umieszczonych w łazienkach, gdzie panuje wysoka wilgotność, niezbędne jest korzystanie z gniazd o podwyższonej odporności na wodę i pył, co podkreśla znaczenie stosowania komponentów spełniających odpowiednie normy. Regularne kontrole oraz wymiana uszkodzonych elementów to najlepsza praktyka, która zwiększa bezpieczeństwo i niezawodność domowej instalacji elektrycznej. Przykładem może być sytuacja, w której gniazdo w łazience zostało uszkodzone – jego wymiana powinna być dokonywana przez wykwalifikowanego elektryka, aby zminimalizować ryzyko błędów w montażu.

Pytanie 30

Podczas realizacji instalacji elektrycznej w obiektach przemysłowych z wydzielinami korozyjnymi powinno się zastosować sprzęt hermetyczny oraz wykorzystać przewody z żyłami

A. miedzianymi umieszczonymi pod tynkiem
B. aluminiowymi umieszczonymi pod tynkiem
C. miedzianymi umieszczonymi na tynku
D. aluminiowymi umieszczonymi na tynku
Odpowiedź miedzianymi ułożonymi na tynku jest właściwa, ponieważ stosowanie miedzi w instalacjach elektrycznych w pomieszczeniach przemysłowych z wyziewami żrącymi jest najczęściej zalecane. Miedź charakteryzuje się wysoką odpornością na korozję, co jest szczególnie istotne w środowiskach, gdzie mogą występować substancje chemiczne, które mogą negatywnie wpływać na materiały elektryczne. Ponadto, ułożenie przewodów na tynku ułatwia ich konserwację oraz wymianę, co jest kluczowe w przypadku uszkodzeń lub awarii. Standardy takie jak PN-IEC 60364 oraz dobre praktyki branżowe rekomendują tego typu rozwiązania, aby zapewnić bezpieczeństwo i niezawodność instalacji. Przykładowo, w zakładach przemysłowych, gdzie występują agresywne substancje chemiczne, zastosowanie miedzi i odpowiednich osprzętów szczelnych może znacząco zmniejszyć ryzyko awarii oraz zapewnić trwałość systemu. W praktyce, instalatorzy często wybierają przewody miedziane, gdyż zapewniają one nie tylko lepszą przewodność, ale także większą odporność na uszkodzenia mechaniczne oraz chemiczne.

Pytanie 31

Który z urządzeń umożliwia bezpośredni pomiar cos 9?

A. Fazomierz
B. Omomierz
C. Waromierz
D. Watomierz
Watomierz, omomierz i waromierz to przyrządy, które pełnią różne funkcje, ale nie są odpowiednie do bezpośredniego pomiaru cos φ. Watomierz mierzy moc elektryczną, co jest istotne w kontekście zużycia energii, ale nie informuje nas o kącie fazowym. Zrozumienie tego narzędzia jest kluczowe, jednak nie można go używać do oceny współczynnika mocy, ponieważ wymaga to pomiaru zarówno prądu, jak i napięcia, a także ich faz. Omomierz, z kolei, służy do pomiaru oporu, co w przypadku prądów zmiennych jest niewłaściwe, ponieważ nie uwzględnia on aspektu fazowego. Użycie omomierza w kontekście pomiaru cos φ może prowadzić do mylnych wniosków i błędów w ocenie stanu obwodu. Waromierz, który jest narzędziem do pomiaru energii w obwodach prądu zmiennego, także nie dostarcza informacji o fazie, co czyni go nieprzydatnym w tym kontekście. Wielu użytkowników może myśleć, że wystarcza pomiar mocy lub oporu, jednak te podejścia pomijają kluczowy aspekt, jakim jest kąt fazowy, co jest fundamentalne dla zrozumienia efektywności energetycznej. W praktyce, nieznajomość różnicy między tymi przyrządami a fazomierzem może prowadzić do poważnych problemów w diagnostyce i zarządzaniu systemami elektrycznymi.

Pytanie 32

Określ typ usterki, która blokuje załączenie prawidłowego wyłącznika różnicowoprądowego zainstalowanego w systemie elektrycznym?

A. Przerwa w przewodzie neutralnym
B. Uszkodzenie izolacji przewodu ochronnego
C. Zwarcie doziemne przewodu neutralnego
D. Przerwa w przewodzie ochronnym
Uszkodzenie izolacji przewodu ochronnego, przerwa w przewodzie neutralnym oraz przerwa w przewodzie ochronnym to zjawiska, które mogą wpływać na bezpieczeństwo instalacji elektrycznej, lecz nie są bezpośrednio związane z niemożnością załączenia wyłącznika różnicowoprądowego. Przede wszystkim, uszkodzenie izolacji przewodu ochronnego oznacza, że przewód ten może przewodzić prąd do uziemienia, co z kolei może prowadzić do niebezpiecznych sytuacji, ale nie uniemożliwia załączenia RCD. Podobnie, przerwa w przewodzie neutralnym może wpłynąć na stabilność pracy urządzeń, jednak RCD może funkcjonować, jeżeli prąd wpływający i wypływający są zgodne, nawet gdy przewód neutralny jest przerwany przy końcach obwodu. Przerwa w przewodzie ochronnym jest niebezpieczna i może być powodem zagrożenia, ale nie działa bezpośrednio na zasadzie RCD. Typowe błędy myślowe prowadzące do takich nieprawidłowych wniosków mogą obejmować mylenie funkcji przewodów neutralnych i ochronnych oraz niezrozumienie zasady działania wyłączników różnicowoprądowych. Wiedza na temat tych zjawisk jest kluczowa dla bezpiecznego projektowania i eksploatacji instalacji elektrycznych, a ich nieznajomość może prowadzić do poważnych konsekwencji w zakresie bezpieczeństwa użytkowników oraz całych systemów elektrycznych.

Pytanie 33

Jaki jest minimalny dopuszczalny przekrój przewodów miedzianych stosowanych w budynkach jako wewnętrzne linie zasilające (WLZ)?

A. 6 mm2
B. 10 mm2
C. 4 mm2
D. 16 mm2
Wybór nieodpowiedniego przekroju przewodów miedzianych w instalacjach elektrycznych może prowadzić do poważnych problemów technicznych i bezpieczeństwa. W przypadku, gdy ktoś wybiera przekrój 6 mm2, może nie spełniać wymagań dotyczących obciążeń prądowych w instalacjach zasilających, co naraża na ryzyko przegrzania przewodów. Przewody o mniejszym przekroju, takie jak 4 mm2, mogą być stosowane w niezbyt obciążonych obwodach, ale w kontekście wewnętrznych linii zasilających, ich zastosowanie może być nieadekwatne, szczególnie w przypadku obciążenia większego niż nominalne. Również przekrój 16 mm2, mimo że wyższy, nie jest wymagany w standardowych warunkach domowych, co prowadzi do nieuzasadnionych kosztów instalacyjnych. Takie podejście może wynikać z błędnego założenia, że większy przekrój zawsze owocuje większym bezpieczeństwem, podczas gdy kluczowe jest dobranie odpowiedniego przekroju do konkretnego zastosowania i wymagań technicznych. W praktyce, wdrożenie norm i standardów, takich jak PN-IEC 60364, jest kluczowe dla zapewnienia efektywności i bezpieczeństwa instalacji elektrycznych.

Pytanie 34

W jakiej odległości od siebie powinny być umieszczone miejsca montażu dwóch sufitowych lamp w pomieszczeniu o wymiarach 2 m × 4 m, aby uzyskać optymalną równomierność oświetlenia?

A. 1,5 m
B. 2,0 m
C. 1,0 m
D. 2,5 m
Odpowiedź 2,0 m jest prawidłowa, ponieważ w pomieszczeniu o wymiarach 2 m × 4 m, rozmieszczenie sufitowych opraw oświetleniowych w odległości 2,0 m od siebie zapewnia optymalną równomierność natężenia oświetlenia. Przyjmuje się, że dla pomieszczeń o takich wymiarach, każda lampa powinna pokrywać obszar, który nie jest większy niż 2 m, aby zminimalizować cienie i zapewnić jednolite oświetlenie. W praktyce, rozmieszczając oprawy w odległości 2,0 m, uzyskuje się efekt, w którym każdy punkt w pomieszczeniu jest równomiernie oświetlony, co jest szczególnie istotne w kontekście ergonomii i komfortu użytkowników. Dobre praktyki w projektowaniu oświetlenia wskazują, że zachowanie odległości 2,0 m między oprawami pozwala na zminimalizowanie zjawiska nadmiarowego oświetlenia w jednym miejscu, co mogłoby prowadzić do efektu olśnienia. Ponadto, właściwe rozmieszczenie opraw wpływa także na efektywność energetyczną całego systemu oświetleniowego.

Pytanie 35

Jakie materiały są wykorzystywane do izolacji żył przewodów elektrycznych?

A. Polwinit i mika
B. Silikon i guma
C. Mika i silikon
D. Polwinit i guma
Polwinit, czyli PVC, oraz guma to dwa naprawdę ważne materiały, które używa się do izolacji żył w przewodach elektrycznych. Dają one gwarancję, że wszystko będzie działać bezpiecznie i przez długi czas. Polwinit jest znany ze swojej odporności na różne chemikalia i wysokie temperatury, dlatego często znajdziesz go w kablach niskiego i średniego napięcia. Ma fajne właściwości mechaniczne i elektryczne, na przykład niską przewodność elektryczną, co czyni go super materiałem do izolacji. Guma natomiast jest elastyczna i świetnie sprawdza się tam, gdzie przewody muszą się poruszać lub być zginane. To ważne w sytuacjach, gdzie są narażone na wibracje. Normy IEC 60227 i IEC 60502 pokazują, jak ważne jest korzystanie z odpowiednich materiałów, żeby zapewnić bezpieczeństwo i niezawodność instalacji elektrycznych. Polwinitowe i gumowe izolacje są używane w wielu miejscach – od domów po przemysł, a nawet w motoryzacji. Dobrze wiedzieć, że odporność tych materiałów na różne czynniki może naprawdę wpłynąć na bezpieczeństwo całego systemu elektrycznego.

Pytanie 36

W celu sprawdzenia poprawności działania wyłączników różnicowoprądowych zmierzono ich różnicowe prądy zadziałania. Który z wyłączników nie spełnia warunku sprawności pod względem rzeczywistego prądu zadziałania (0,5 ÷ 1,0) IΔN?

Wyłącznik 1.
OznaczenieWynik pomiaru różnicowego prądu zadziałania
P302 25-10-AC8 mA
Wyłącznik 2.
OznaczenieWynik pomiaru różnicowego prądu zadziałania
P202 25-30-AC12 mA
Wyłącznik 3.
OznaczenieWynik pomiaru różnicowego prądu zadziałania
P304 40-30-AC25 mA
Wyłącznik 4.
OznaczenieWynik pomiaru różnicowego prądu zadziałania
P304 40-100-AC70 mA

A. Wyłącznik 1.
B. Wyłącznik 3.
C. Wyłącznik 2.
D. Wyłącznik 4.
Wyłącznik 2 jest właściwą odpowiedzią, ponieważ jego rzeczywisty prąd zadziałania wynosi 12 mA, co nie mieści się w wymaganym zakresie 15 mA - 30 mA dla sprawnych wyłączników różnicowoprądowych. W praktyce, wyłączniki te powinny działać w określonym zakresie różnicowych prądów zadziałania, aby skutecznie chronić przed porażeniem prądem elektrycznym. Zgodnie z normą PN-EN 61008, wyłączniki różnicowoprądowe powinny działać w określonym zakresie prądów, aby zapewnić nie tylko ochronę, ale także niezawodność działania. Utrzymanie tych parametrów jest kluczowe, ponieważ ich niewłaściwe działanie może prowadzić do zagrożeń, takich jak pożary czy niebezpieczeństwo porażenia prądem. W sytuacjach, gdy wyłącznik działa poza określonym zakresem, zaleca się jego wymianę lub dokładne sprawdzenie przez wykwalifikowanego technika. Właściwy dobór i regularna kontrola wyłączników różnicowoprądowych są kluczowe dla bezpieczeństwa instalacji elektrycznych oraz osób z nich korzystających.

Pytanie 37

Które z podanych narzędzi nie jest potrzebne do zamontowania listew elektroinstalacyjnych na ścianach z użyciem kołków rozporowych?

A. Młotek
B. Poziomnica
C. Piła do metalu
D. Ściągacz izolacji
Ściągacz izolacji to narzędzie, które głównie służy do ściągania izolacji z przewodów elektrycznych, ale do montażu listew elektroinstalacyjnych nie będzie potrzebny. Podczas montażu najważniejsze jest, żeby dobrze umiejscowić listwy na ścianie i upewnić się, że są równo przyczepione. Do tego wystarczą podstawowe narzędzia, jak poziomnica, młotek czy kołki rozporowe. ściągacz nie jest tu konieczny, bo nie pracujemy bezpośrednio z przewodami. Warto korzystać z odpowiednich narzędzi do danego zadania, bo to poprawia efektywność pracy i zmniejsza ryzyko uszkodzeń. Dlatego przy montażu listew najważniejsze są poziomica i młotek do wbijania kołków, żeby wszystko było stabilne i na poziomie.

Pytanie 38

Jakie czynności kontrolne nie są zaliczane do oględzin urządzeń napędowych podczas ich pracy?

A. Kontrola zabezpieczeń i stanu osłon części wirujących
B. Weryfikacja stanu przewodów ochronnych oraz ich połączeń
C. Ocena poziomu drgań oraz funkcjonowania układu chłodzenia
D. Sprawdzenie stanu łożysk i przeprowadzenie pomiarów elektrycznych
Odpowiedź "Sprawdzenie stanu łożysk i pomiary elektryczne" jest poprawna, ponieważ te czynności kontrolne są zazwyczaj przeprowadzane w trakcie przeglądów technicznych, a nie podczas bieżącej eksploatacji urządzeń napędowych. W czasie ruchu maszyny, kluczowe jest monitorowanie parametrów operacyjnych, takich jak poziom drgań, ponieważ mogą one wskazywać na potencjalne problemy z wydajnością lub uszkodzenia. Kontrola poziomu drgań i działania układu chłodzenia pozwala na szybką identyfikację nieprawidłowości, które mogą prowadzić do poważnych awarii. Ochrona przewodów i odpowiednie osłony części wirujących są również istotnymi aspektami bezpieczeństwa w czasie pracy urządzenia. Zgodnie z normami, takimi jak ISO 9001, monitoring w czasie rzeczywistym oraz regularne kontrole stanu technicznego są kluczowe dla zapewnienia efektywności i bezpieczeństwa operacji. Przykładem praktycznym może być zastosowanie systemów monitorowania drgań, które w czasie rzeczywistym informują operatorów o konieczności interwencji, co pozwala na minimalizację ryzyka awarii.

Pytanie 39

Który z podanych wyłączników różnicowoprądowych powinien być zastosowany jako ochrona przed porażeniem, przeciążeniem oraz zwarciem w obwodzie gniazd wtykowych instalacji jednofazowej 230 V/50 Hz?

A. P 312 B-16-30-AC
B. P 302 25-30-AC
C. P 304 25-30-AC
D. P 344 C-16-30-AC
Wybierając te wyłączniki różnicowoprądowe P 302 25-30-AC, P 304 25-30-AC i P 344 C-16-30-AC, to tak trochę się pogubiliśmy w ich funkcjach i zastosowaniu. Przykład? Wyłącznik P 302 25-30-AC niby ma ochronę różnicowoprądową, ale w rzeczywistości jest stworzony do innych zastosowań, co może spowodować, że nie zadziała w przypadku przeciążenia lub zwarcia w gniazdach. Podobnie P 304 25-30-AC, który też nie daje pełnej ochrony w standardowych warunkach, co może narazić nasze urządzenia na uszkodzenia i zwiększyć ryzyko porażenia. A P 344 C-16-30-AC, mimo że w niektórych sytuacjach się sprawdzi, nie ma wszystkich potrzebnych funkcji zabezpieczeń, więc nie jest najlepszym wyborem do gniazdek. Wybierając nieodpowiedni wyłącznik, stawiamy użytkowników w niebezpieczeństwie i ryzykujemy całą instalacją elektryczną. Dlatego warto zrozumieć co każdy wyłącznik oferuje i czy pasuje do naszych potrzeb, żeby zapewnić bezpieczeństwo i użytkownikom, i całej instalacji.

Pytanie 40

Jaka maksymalna wartość impedancji pętli zwarcia jest dopuszczalna w trójfazowym obwodzie elektrycznym o napięciu nominalnym 230/400 V, aby zapewnić skuteczną ochronę przed porażeniem w przypadku uszkodzenia izolacji, jeżeli wiadomo, że zasilanie tego obwodu ma odłączyć instalacyjny wyłącznik nadprądowy B20?

A. 3,8 Ω
B. 2,3 Ω
C. 4,0 Ω
D. 6,6 Ω
Odpowiedź 2,3 Ω jest prawidłowa, ponieważ w trójfazowym obwodzie elektrycznym o napięciu 230/400 V ochrona przeciwporażeniowa polega na szybkim wyłączeniu zasilania w przypadku uszkodzenia izolacji. Zgodnie z normą PN-EN 61140, maksymalna wartość impedancji pętli zwarcia, przy której może działać wyłącznik nadprądowy B20, wynosi 2,3 Ω. Wyłącznik B20 w typowych zastosowaniach ma czas zadziałania do 0,4 sekundy w przypadku zwarcia doziemnego, co oznacza, że impedancja pętli zwarcia nie powinna przekraczać tej wartości, aby zapewnić wystarczająco szybkie wyłączenie zasilania. W praktyce, aby system ochrony był skuteczny, wartość ta jest kluczowa, gdyż wpływa na bezpieczeństwo osób oraz urządzeń. Przykładowo, w instalacjach budowlanych i przemysłowych, pomiar impedancji pętli zwarcia powinien być regularnie wykonywany, aby upewnić się, że nie przekracza dopuszczalnych norm, co pomoże uniknąć niebezpiecznych sytuacji związanych z porażeniem prądem. Dodatkowo, przestrzeganie norm i wytycznych ochrony przeciwporażeniowej jest niezbędne do zapewnienia bezpieczeństwa użytkowników systemów elektrycznych.