Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 22 maja 2025 12:42
  • Data zakończenia: 22 maja 2025 13:05

Egzamin zdany!

Wynik: 20/40 punktów (50,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Aby uporządkować dane pliku na dysku twardym, zapisane w klastrach, które nie sąsiadują ze sobą, tak aby znajdowały się w sąsiadujących klastrach, należy przeprowadzić

A. program scandisk
B. oczyszczanie dysku
C. program chkdsk
D. defragmentację dysku
Program chkdsk jest narzędziem służącym do wykrywania i naprawy problemów z systemem plików na dysku twardym. Jego głównym zadaniem jest sprawdzenie integralności systemu plików, a także naprawa błędów logicznych, jednak nie zajmuje się reorganizacją fragmentów plików w sąsiadujących klastrach, co jest kluczowe dla poprawy wydajności. Z kolei scandisk, które było popularne w starszych wersjach systemu Windows, ma podobne funkcje jak chkdsk, ale także nie przeprowadza defragmentacji. Oczyszczanie dysku to proces, który polega na usuwaniu zbędnych plików i tymczasowych danych, aby zwolnić miejsce na dysku, ale także nie ma nic wspólnego z reorganizacją danych. Te podejścia mogą prowadzić do błędnego wniosku, że wystarczają do poprawienia wydajności systemu. Prawidłowe zrozumienie różnicy między tymi narzędziami a defragmentacją jest kluczowe dla skutecznego zarządzania danymi na dysku twardym. Niezrozumienie, jak działa fragmentacja i jakie są konsekwencje jej ignorowania, może prowadzić do spadku wydajności systemu, a w skrajnych przypadkach do problemów z dostępnością danych.

Pytanie 2

Aby naprawić zasilacz laptopa poprzez wymianę kondensatorów, jakie narzędzie powinno się wykorzystać?

A. tester płyt głównych
B. lutownicę z cyną i kalafonią
C. chwytak próżniowy
D. tester okablowania sieciowego
Aby wymienić kondensatory w zasilaczu laptopa, niezbędne jest posiadanie odpowiednich narzędzi, a lutownica z cyną i kalafonią stanowi kluczowy element tego procesu. Lutownica umożliwia precyzyjne łączenie elementów elektronicznych poprzez podgrzewanie ich końców i wprowadzenie stopionego cyny, co zapewnia stabilne połączenie. Kalafonia pełni rolę fluxu, który ułatwia lutowanie, poprawiając przyczepność cyny do elementów oraz zapobiegając utlenianiu styków. W praktyce, wymiana kondensatorów wymaga również zachowania ostrożności, aby nie uszkodzić innych komponentów na płytce PCB. Standardem w branży jest stosowanie lutownic o regulowanej temperaturze, co pozwala na dostosowanie ciepła do różnych elementów; zbyt wysoka temperatura może zaszkodzić zarówno kondensatorom, jak i ścieżkom na płytce. Warto również znać klasyfikację kondensatorów (np. elektrolityczne, ceramiczne) oraz ich parametry, takie jak pojemność i napięcie robocze, co jest niezbędne do prawidłowej wymiany. W związku z tym, świadome podejście do użycia lutownicy w tym kontekście jest kluczowe dla zapewnienia prawidłowego funkcjonowania urządzenia po naprawie.

Pytanie 3

W systemie Linux polecenie chmod służy do

A. przywracania poprawności systemu plików
B. pokazywania danych o ostatniej modyfikacji pliku
C. zmiany właściciela pliku
D. określenia praw dostępu do pliku
Polecenie chmod w systemie Linux jest kluczowym narzędziem służącym do zarządzania prawami dostępu do plików i katalogów. Umożliwia administratorom i użytkownikom systemu określenie, kto może odczytywać, zapisywać lub wykonywać dany plik. Prawa dostępu są reprezentowane przez trzy główne kategorie: właściciela pliku, grupy, do której należy plik, oraz pozostałych użytkowników. Przykładowo, komenda 'chmod 755 plik.txt' ustawia pełne prawa (czytanie, pisanie, wykonywanie) dla właściciela oraz prawa do czytania i wykonywania dla grupy i innych. Ważne jest, aby świadome zarządzanie prawami dostępu przyczyniło się do ochrony danych, a także do zapobiegania nieautoryzowanemu dostępowi do wrażliwych informacji. Dobrym nawykiem jest regularne audytowanie praw dostępu i dostosowywanie ich zgodnie z zasadą najmniejszych uprawnień, co jest praktyką rekomendowaną w bezpieczeństwie informatycznym.

Pytanie 4

Program "VirtualPC", dostępny do pobrania z witryny Microsoft, jest przeznaczony do korzystania:

A. z osobistego konta o pojemności 1 GB w serwerze wirtualnym Microsoft
B. z wirtualnych systemów operacyjnych na lokalnym dysku
C. z darmowej pomocy technicznej TechNet.Soft firmy Virtual Soft
D. z bezpłatnego konta o pojemności 100 MB w hostingu Microsoft
Wybór odpowiedzi odnoszącej się do bezpłatnego konta o pojemności 100 MB w ramach hostingu firmy Microsoft wprowadza w błąd, ponieważ VirtualPC nie jest usługą hostingową ani platformą do zarządzania pamięcią masową. Tego rodzaju usługi koncentrują się na przechowywaniu danych w chmurze, co jest zupełnie innym rodzajem technologii. Z kolei sugestia dotycząca pomocy technicznej TechNet.Soft firmy Virtual Soft opiera się na niewłaściwym założeniu, że VirtualPC oferuje wsparcie techniczne w formie pomocy online, co również nie jest związane z funkcjonalnością tego programu. VirtualPC nie jest platformą, która by bezpośrednio zapewniała wsparcie techniczne; zamiast tego, jego użytkownicy mogą korzystać z dokumentacji i zasobów online. W kontekście wspomnianej odpowiedzi dotyczącej konta osobistego o pojemności 1 GB w serwerze wirtualnym, należy zauważyć, że VirtualPC działa lokalnie, a nie w chmurze, co wyklucza korzystanie z takich zasobów. Typowe błędy w myśleniu prowadzące do takich wniosków to mylenie koncepcji wirtualizacji z przechowywaniem danych w chmurze czy usługami hostingowymi. W rzeczywistości, VirtualPC jest narzędziem do wirtualizacji, które umożliwia uruchamianie systemów operacyjnych jako dodatkowych instancji na jednym komputerze, co ma zupełnie inny cel i zastosowanie niż usługi chmurowe czy hostingowe.

Pytanie 5

W modelu RGB, kolor w systemie szesnastkowym przedstawia się w ten sposób: ABCDEF. Wartość natężenia koloru niebieskiego w tym zapisie odpowiada liczbie dziesiętnej

A. 239
B. 171
C. 186
D. 205
Odpowiedź 239 jest poprawna, ponieważ natężenie koloru niebieskiego w modelu RGB jest reprezentowane przez ostatnie dwa znaki zapisu szesnastkowego. W przypadku koloru ABCDEF, oznacza to, że wartości składowe są: A (czerwony) = 10, B (zielony) = 11, a F (niebieski) = 15. Szesnastkowe F to 15 w systemie dziesiętnym. Jednak w kontekście całego koloru, aby uzyskać wartość intensywności koloru niebieskiego, musimy zrozumieć, że 'EF' w zapisie hex oznacza 239 w systemie dziesiętnym, co możemy obliczyć jako 14 * 16^1 + 15 * 16^0 = 224 + 15 = 239. Zrozumienie konwersji z systemu szesnastkowego na dziesiętny jest kluczowe w pracy z kolorami w grafice komputerowej, programowaniu oraz projektowaniu stron internetowych. W praktyce, znajomość modelu RGB oraz umiejętność przeliczania wartości pozwala na precyzyjne dobieranie kolorów w różnych aplikacjach, co jest niezbędne dla uzyskania odpowiednich efektów wizualnych. Tego rodzaju umiejętności są istotne w branżach związanych z grafiką, web designem oraz tworzeniem aplikacji multimedialnych.

Pytanie 6

Jaką funkcję należy wybrać, aby utworzyć kopię zapasową rejestru systemowego w edytorze regedit?

A. Importuj
B. Kopiuj nazwę klucza
C. Załaduj sekcję rejestru
D. Eksportuj
Wybór opcji 'Eksportuj' jest poprawny, ponieważ ta funkcja umożliwia użytkownikom edytora rejestru Windows (regedit) wykonanie kopii zapasowej konkretnych kluczy rejestru lub całych gałęzi. Eksportując dane, tworzony jest plik z rozszerzeniem .reg, który zawiera wszystkie niezbędne informacje, aby w razie potrzeby przywrócić stan rejestru do wcześniejszego momentu. Praktyka ta jest standardem w zarządzaniu systemem, ponieważ umożliwia użytkownikom zabezpieczenie się przed potencjalnymi problemami, które mogą wystąpić po wprowadzeniu zmian w rejestrze. Na przykład, przed instalacją nowego oprogramowania, które może wprowadzić zmiany w rejestrze, warto wykonać jego eksport, aby móc szybko cofnąć te zmiany, jeśli zajdzie taka potrzeba. Eksportowanie rejestru jest również często stosowane w zadaniach administracyjnych, gdzie wymagane jest przeniesienie ustawień systemowych pomiędzy różnymi komputerami. To podejście jest zgodne z najlepszymi praktykami w zakresie zarządzania IT, gdzie regularne kopie zapasowe są kluczowe dla zapewnienia integralności systemu.

Pytanie 7

Na płycie głównej z gniazdem pokazanym na fotografii możliwe jest zainstalowanie procesora

Ilustracja do pytania
A. Intel Xeon E3-1240V5, 3.9GHz, s-1151
B. AMD FX-6300, s-AM3+, 3.5GHz, 14MB
C. AMD Sempron 2800+, 1600 MHz, s-754
D. Intel i9-7940X, s-2066 3.10GHz 19.25MB
Gniazdo AM3+ na płycie głównej jest zgodne z procesorami AMD, takimi jak AMD FX-6300. Gniazdo AM3+ jest ulepszoną wersją gniazda AM3, oferującą lepsze wsparcie dla procesorów z większą liczbą rdzeni i wyższymi częstotliwościami taktowania. Procesory FX są znane ze swojej wielowątkowości, co czyni je atrakcyjnymi dla użytkowników, którzy korzystają z aplikacji wymagających dużej mocy obliczeniowej, takich jak renderowanie grafiki 3D czy edycja wideo. Instalacja zgodnego procesora w odpowiednim gnieździe jest kluczowa dla stabilności i wydajności systemu. Wybierając odpowiedni procesor, użytkownik może skorzystać z możliwości overclockingu, co jest popularne w przypadku serii FX. Zastosowanie procesora w odpowiednim gnieździe zgodnym z jego specyfikacją techniczną zapewnia optymalne działanie systemu oraz długowieczność komponentów, co jest zgodne z dobrymi praktykami branżowymi. Zapewnia to także łatwiejsze aktualizacje i modernizacje, co jest istotnym aspektem planowania zasobów IT.

Pytanie 8

Standardowo, w systemie Linux, twardy dysk w standardzie SATA jest oznaczany jako

A. ida
B. fda
C. ide
D. sda
Wybór odpowiedzi takich jak 'ide', 'fda' czy 'ida' wskazuje na pewne nieporozumienia dotyczące terminologii używanej w systemach operacyjnych Linux. Oznaczenie 'ide' odnosi się do starszego standardu interfejsu dyskowego, znanego jako Integrated Drive Electronics, który był powszechnie używany przed wprowadzeniem interfejsów SATA. Chociaż niektóre systemy mogą wciąż wspierać IDE, nie jest to standardowe oznaczenie dla nowoczesnych twardych dysków. Z kolei 'fda' oraz 'ida' to oznaczenia, które nie są używane w kontekście dysków w systemie Linux i mogą prowadzić do dezorientacji, ponieważ nie odnoszą się do żadnych powszechnie stosowanych standardów dyskowych. Błędem jest myślenie, że takie oznaczenia mają zastosowanie w przypadku dysków twardych, co może prowadzić do nieporozumień podczas konfigurowania systemów operacyjnych, partycjonowania dysków czy przy zarządzaniu pamięcią masową. Kluczowe jest, aby zrozumieć, że używanie właściwych terminów i oznaczeń jest niezbędne do efektywnego zarządzania systemami i unikania błędów w administracji IT.

Pytanie 9

Który protokół z warstwy aplikacji reguluje przesyłanie wiadomości e-mail?

A. HTTP (Hypertext Transfer Protocol)
B. FTP (File Transfer Protocol)
C. SMTP (Simple Mail Transfer Protocol)
D. DNS (Domain Name System)
Wybór protokołów takich jak FTP, DNS czy HTTP do definiowania wysyłania poczty elektronicznej wskazuje na nieporozumienie dotyczące ról, jakie pełnią te technologie w architekturze internetowej. FTP, czyli File Transfer Protocol, jest protokołem używanym do przesyłania plików między komputerami w sieci. Jego zastosowanie ogranicza się do transferu danych, a nie komunikacji e-mailowej, co czyni go nieodpowiednim wyborem w kontekście wysyłania wiadomości elektronicznych. DNS, z kolei, to system nazw domenowych, który przekształca nazwy domen na adresy IP, ułatwiając lokalizację serwerów w Internecie. Choć kluczowy dla funkcjonowania Internetu, DNS nie ma nic wspólnego z protokołami odpowiedzialnymi za przesyłanie treści e-mailowych. HTTP, czyli Hypertext Transfer Protocol, jest protokołem warstwy aplikacji, który umożliwia przesyłanie dokumentów hipertekstowych, przede wszystkim w kontekście przeglądania stron internetowych. Nie jest on używany do komunikacji e-mailowej, co czyni go również nieodpowiednim wyborem w tej kwestii. Typowe błędy myślowe, które prowadzą do takich nieprawidłowych wniosków, to mylenie funkcji protokołów i niezrozumienie specyfiki działania sieci. Właściwe rozróżnienie pomiędzy protokołami transportującymi różne typy danych jest kluczowe dla zrozumienia architektury komunikacji w Internecie.

Pytanie 10

Jakiego typu macierz RAID nie zapewnia odporności na awarie żadnego z dysków tworzących jej strukturę?

A. RAID 6
B. RAID 0
C. RAID 4
D. RAID 2
RAID 0 to macierz dyskowa, która wykorzystuje technikę striping, co oznacza, że dane są dzielone na fragmenty i rozdzielane pomiędzy dwa lub więcej dysków. Główną zaletą takiego podejścia jest znaczne zwiększenie prędkości odczytu i zapisu danych, ponieważ operacje mogą być prowadzone równolegle na wszystkich dyskach. Jednakże, RAID 0 nie oferuje żadnej redundancji, co oznacza, że w przypadku awarii jednego z dysków, wszystkie dane przechowywane w macierzy zostaną utracone. Dlatego RAID 0 jest najczęściej stosowany w środowiskach, gdzie priorytetem jest wydajność, na przykład w edytorach wideo, grach komputerowych lub serwerach plików, gdzie szybkość dostępu do danych jest kluczowa, a bezpieczeństwo danych nie jest krytyczne. Przy implementacji RAID 0 należy uwzględnić regularne tworzenie kopii zapasowych oraz inne środki ochrony danych, aby zminimalizować ryzyko utraty informacji.

Pytanie 11

Która kopia w procesie archiwizacji plików pozostawia oznaczenie archiwizacji?

A. Całościowa
B. Różnicowa
C. Przyrostowa
D. Normalna
Kopia całościowa to sposób na archiwizację, który zapisuje wszystko w systemie, niezależnie od tego, czy coś było zmieniane od ostatniego backupu. Choć taka metoda wydaje się najbezpieczniejsza, to jednak nie jest ona najlepsza pod względem wykorzystania przestrzeni na dysku i czasu potrzebnego na robić ją. Jak się robi za dużo kopii całościowych, to potem można mieć sporo problemów z zarządzaniem i przechowywaniem tych wszystkich danych. Często ludzie używają terminu kopia normalna zamiennie z kopią całościową, co powoduje zamieszanie. W rzeczywistości kopia normalna to nie jest dobry termin w kontekście archiwizacji, bo nie odnosi się do konkretnej metody, ale bardziej ogólnej koncepcji robienia backupów. Kopia przyrostowa to coś innego, bo zapisuje tylko te pliki, które były zmieniane od ostatniego backupu, co sprawia, że ta metoda wydaje się lepsza od pełnej, ale nie dodaje znaczników archiwizacji dla plików z wcześniejszych backupów. Więc często ludzie myślą, że wszystkie metody działają tak samo, a to nieprawda; każda z nich ma swoje własne zastosowanie i ograniczenia, które trzeba przemyśleć, wybierając, jak zabezpieczyć dane.

Pytanie 12

Mechanizm, który pozwala na podłączenie urządzeń peryferyjnych do systemu komputerowego, w którym każde urządzenie jest identyfikowane przez przypisany mu numer, to

A. Plug and Play
B. Hot Swap
C. CrossFire
D. BootLoader
Wybór odpowiedzi CrossFire jest błędny, ponieważ odnosi się do technologii firmy AMD, która pozwala na łączenie kilku kart graficznych w celu zwiększenia wydajności. To rozwiązanie jest zatem związane z wydajnością grafiki i nie ma zastosowania do identyfikacji i konfiguracji urządzeń peryferyjnych. Z kolei Hot Swap dotyczy możliwości wymiany komponentów systemu, takich jak dyski twarde, bez potrzeby wyłączania zasilania. Choć to podejście zwiększa wygodę operacyjną w kontekście serwerów czy urządzeń sieciowych, nie jest ono związane z automatycznym rozpoznawaniem urządzeń. BootLoader z kolei jest programem uruchamiającym system operacyjny na komputerze, a jego funkcja nie ma nic wspólnego z podłączaniem urządzeń peryferyjnych. Typowe błędy myślowe prowadzące do takich niepoprawnych wyborów to mylenie różnych mechanizmów i ich funkcji. Warto zauważyć, że prawidłowe rozpoznanie urządzeń poprzez mechanizm Plug and Play oszczędza czas użytkowników, eliminując konieczność ręcznego instalowania sterowników, co jest kluczowe w szybko zmieniającym się świecie technologii. Zrozumienie różnicy między tymi terminami jest istotne dla każdego, kto chce efektywnie zarządzać sprzętem komputerowym.

Pytanie 13

Do efektywnego zrealizowania macierzy RAID 1 wymagane jest minimum

A. 4 dysków
B. 3 dysków
C. 5 dysków
D. 2 dysków
RAID 1, czyli mirroring, potrzebuje co najmniej dwóch dysków. W tym układzie wszystkie dane są kopiowane na oba dyski, co daje nam naprawdę dobry poziom bezpieczeństwa i dostępności. Jak jeden z dysków padnie, to system dalej działa dzięki temu, co jest na drugim. To dlatego RAID 1 jest często wybierany tam, gdzie bezpieczeństwo danych jest mega ważne, na przykład w serwerach plików czy bazach danych. Co ciekawe, RAID 1 ma też lepsze czasy odczytu, bo możesz zczytywać dane z dwóch dysków jednocześnie. Z mojego doświadczenia wynika, że korzystanie z RAID 1 to bardzo dobra praktyka, gdy chcemy mieć pewność, że nasze dane są w bezpiecznych rękach.

Pytanie 14

Aby osiągnąć optymalną prędkość przesyłu danych, gdy domowy ruter działa w paśmie 5 GHz, do laptopa należy zainstalować kartę sieciową bezprzewodową obsługującą standard

A. 802.11n
B. 802.11a
C. 802.11b
D. 802.11g
Odpowiedzi takie jak 802.11b, 802.11g i 802.11a są nieodpowiednie w kontekście uzyskiwania maksymalnej prędkości przepływu danych w sieci bezprzewodowej działającej na paśmie 5 GHz. Standard 802.11b, działający na paśmie 2,4 GHz, oferuje maksymalną prędkość przesyłu danych do 11 Mbps, co jest znacznie niższe od możliwości nowszych standardów. Wybór 802.11g, który również operuje w paśmie 2,4 GHz, pozwala na osiągnięcie prędkości do 54 Mbps, lecz nadal nie dorównuje wydajności 802.11n. Z kolei standard 802.11a, działający w paśmie 5 GHz, mimo że oferuje wyższe prędkości do 54 Mbps, nie obsługuje technologii MIMO, co ogranicza jego wydajność w porównaniu do 802.11n. Typowym błędem myślowym jest mylenie wyższej częstotliwości z wyższą przepustowością, co prowadzi do wniosku, że 802.11a jest lepszym wyborem bez uwzględnienia technologii MIMO. W praktyce, 802.11n, działając zarówno w paśmie 2,4 GHz, jak i 5 GHz, zapewnia lepszą elastyczność i wydajność, co czyni go najlepszym rozwiązaniem dla nowoczesnych zastosowań sieciowych.

Pytanie 15

Wynikiem przeprowadzenia polecenia arp -a 192.168.1.1 w systemie MS Windows jest pokazanie

A. sprawdzenia połączenia z komputerem o wskazanym IP
B. listy bieżących połączeń sieciowych
C. ustawień protokołu TCP/IP interfejsu sieciowego
D. adresu MAC urządzenia o określonym IP
Wybór odpowiedzi, które nie odnoszą się do adresu fizycznego urządzenia, wskazuje na nieporozumienie dotyczące funkcji i działania protokołu ARP. Ustawienia TCP/IP interfejsu sieciowego to zestaw konfiguracyjnych parametrów, takich jak adres IP, maska podsieci i brama domyślna, które definiują, jak urządzenie łączy się z siecią. To nie jest to, co zwraca polecenie arp -a, ponieważ to polecenie nie modyfikuje ani nie wyświetla tych ustawień. Z drugiej strony, lista aktywnych połączeń sieciowych zazwyczaj pochodzi z innych poleceń, takich jak netstat, które pokazują aktualnie otwarte połączenia i porty. Natomiast kontrola połączenia z komputerem o podanym IP to bardziej funkcjonalność polecenia ping, które sprawdza dostępność danego hosta w sieci. ARP działa na poziomie łącza danych w modelu OSI, co oznacza, że jego głównym celem jest rozwiązywanie adresów, a nie monitorowanie połączeń czy wyświetlanie ustawień. Typowym błędem jest mylenie różnych instrukcji sieciowych i ich funkcji, co może prowadzić do błędnych wniosków o tym, co dana komenda rzeczywiście wykonuje. Zrozumienie różnic między tymi narzędziami jest kluczowe dla efektywnego zarządzania siecią.

Pytanie 16

Który z portów na zaprezentowanej płycie głównej umożliwia podłączenie zewnętrznego dysku przez interfejs e-SATA?

Ilustracja do pytania
A. 4
B. 1
C. 3
D. 2
Port numer 2 to e-SATA, czyli ten typ złącza, który pozwala na szybkie przesyłanie danych. W praktyce działa to tak, że podłączasz do niego zewnętrzne dyski twarde i masz możliwość przenoszenia dużych ilości info z naprawdę niezłą prędkością, sięgającą nawet 6 Gb/s. To czyni go całkiem konkurencyjnym wobec USB 3.0 i Thunderbolt. Z mojego doświadczenia wynika, że e-SATA jest świetny, gdy potrzebujesz szybko przesłać dane bez zbędnych opóźnień. Fajnie, że nie ma problemów z zakłóceniami elektromagnetycznymi, bo złącze jest dość solidnie zrobione. Jednak trzeba pamiętać, że e-SATA nie zapewnia zasilania przez kabel, dlatego zewnętrzne urządzenia często potrzebują swojego osobnego źródła zasilania. Generalnie, jest to technologia, która sprawdza się w pracy z dużymi zbiorem danych, takimi jak edycja wideo czy duże bazy danych.

Pytanie 17

Sygnatura (ciąg bitów) 55AA (w systemie szesnastkowym) kończy tablicę partycji. Jaka jest odpowiadająca jej wartość w systemie binarnym?

A. 101010110101010
B. 1,0100101101001E+015
C. 101101001011010
D. 1,0101010010101E+015
Odpowiedź 101010110101010 jest jak najbardziej trafna, bo odpowiada szesnastkowej wartości 55AA w binarnym zapisie. Wiesz, każda cyfra szesnastkowa to cztery bity w systemie binarnym. Jak to przeliczyć? Po prostu zamieniamy każdą z cyfr szesnastkowych: 5 to w systemie binarnym 0101, a A, czyli 10, to 1010. Z tego wynika, że 55AA to 0101 0101 1010 1010, a po pozbyciu się tych początkowych zer zostaje 101010110101010. Wiedza o tym, jak działają te systemy, jest bardzo ważna w informatyce, szczególnie jak się zajmujesz programowaniem na niskim poziomie czy analizą systemów operacyjnych, gdzie często trzeba pracować z danymi w formacie szesnastkowym. Dobrze umieć te konwersje, bo naprawdę przyspiesza to analizę pamięci i struktur danych.

Pytanie 18

Ustal rozmiar klastra na podstawie zamieszczonego fragmentu komunikatu systemu WINDOWS, który pojawia się po zakończeniu działania programu format a:

1 457 664 bajtów całkowitego miejsca na dysku.
1 457 664 bajtów dostępnych na dysku.

      512 bajtów w każdej jednostce alokacji.
    2 847 jednostek alokacji dostępnych na dysku.

       12 bitów w każdym wpisie tabeli FAT.

A. 0,5 KB
B. 1 457 664 bajtów
C. 12 bitów
D. 512 KB
Pierwsza odpowiedź mówi o całkowitym miejscu na dysku, a nie o rozmiarze klastra. 1 457 664 bajtów to suma przestrzeni, którą można wykorzystać na dysku. Druga odpowiedź 512 KB to kompletny strzał w dziesiątkę, bo sugeruje, że klaster jest wielki jak kilkaset kilobajtów. W rzeczywistości w FAT mamy do czynienia z kilkoma setkami bajtów. Większe klastry znacznie podniosłyby minimalny rozmiar pliku, co mogłoby prowadzić do sporych strat przestrzeni, zwłaszcza przy malutkich plikach. Odpowiedź numer trzy odnosi się do bitów w tabeli FAT, a te 12 bitów to wartość dla FAT12, więc nie ma to związku z rozmiarem klastrów. Często myli się klastery z innymi jednostkami alokacji czy indeksacji, co prowadzi do błędów w zrozumieniu efektywności i organizacji danych na dysku. Ważne jest, żeby odróżniać fizyczne i logiczne jednostki pamięci w systemach plików, bo to pomaga zrozumieć, jak działa system operacyjny i zarządzanie pamięcią masową.

Pytanie 19

Hosty A i B nie mają możliwości komunikacji z hostem C. Natomiast komunikacja między hostami A i B przebiega poprawnie. Jakie może być źródło problemu w komunikacji pomiędzy hostami A i C oraz B i C?

Ilustracja do pytania
A. Adresy IP pochodzą z różnych podsieci
B. Adres IP hosta C jest adresem broadcast
C. Switch, do którego są podłączone hosty, nie działa
D. Host C ma nieprawidłowo skonfigurowaną bramę domyślną
Host C ma źle ustawioną bramę domyślną to nieprawidłowe podejście ponieważ nawet jeśli brama domyślna byłaby źle skonfigurowana problem komunikacyjny dotyczyłby tylko wychodzącego ruchu z hosta C. Hosty A i B nadal nie mogłyby inicjować komunikacji z hostem C z powodu różnych podsieci. Adres IP hosta C jest adresem rozgłoszeniowym to błędne założenie ponieważ adres IP 192.168.31.137 nie jest adresem rozgłoszeniowym dla jakiejkolwiek standardowej podsieci. Adres rozgłoszeniowy dla sieci 192.168.31.0/24 to 192.168.31.255. Takie nieporozumienie często pochodzi z braku zrozumienia funkcji i struktury adresów rozgłoszeniowych. Switch do którego są podłączone hosty jest wyłączony to niewłaściwy wniosek ponieważ w przypadku wyłączenia switcha żadna komunikacja między hostami nie byłaby możliwa nawet między hostami A i B które obecnie komunikują się prawidłowo. Pomysł ten może wynikać z mylnego wyobrażenia o roli switcha w sieci lokalnej. Switch jest podstawowym urządzeniem sieciowym które umożliwia fizyczne połączenie urządzeń ale nie rozwiązuje problemów związanych z niepoprawną przyporządkowaniem adresów IP i podsieci co jest rzeczywistą przyczyną problemu w tym scenariuszu.

Pytanie 20

W sieciach bezprzewodowych Ad-Hoc (Independent Basic Service Set) wykorzystywana jest fizyczna struktura

A. pierścienia
B. siatki
C. gwiazdy
D. magistrali
W analizie sieci bezprzewodowych Ad-Hoc, ważne jest zrozumienie, jak różne topologie wpływają na działanie sieci. Topologia pierścienia, choć interesująca w kontekście tradycyjnych sieci przewodowych, nie jest efektywna w przypadku sieci bezprzewodowych Ad-Hoc. W topologii pierścienia każde urządzenie jest połączone z dwoma sąsiadami, co w sytuacjach zaników sygnału lub awarii jednego z węzłów, prowadzi do problemów z komunikacją w całej sieci. Podobnie, topologia magistrali, gdzie wszystkie urządzenia są podłączone do jednego kabla, nie jest odpowiednia dla sieci Ad-Hoc. Tego rodzaju architektura nie wspiera elastyczności i mobilności, które są kluczowe dla takich rozwiązań. Topologia gwiazdy, z kolei, wymaga centralnego punktu dostępowego, co stoi w sprzeczności z ideą Ad-Hoc, która opiera się na bezpośredniej komunikacji między urządzeniami. Użytkownicy mogą mylić dostępność w takich sieciach z ich strukturą, co prowadzi do błędnych wniosków. Kluczowym błędem jest założenie, że tradycyjne modele topologii mogą być bezpośrednio stosowane w dynamicznych sieciach bezprzewodowych, co prowadzi do nieefektywności w projektowaniu i implementacji systemów sieciowych.

Pytanie 21

Serwis serwerowy, który pozwala na udostępnianie usług drukowania w systemie Linux oraz plików dla stacji roboczych Windows, to

A. Vsftpd
B. CUPS
C. Samba
D. Postfix
Samba to otwarte oprogramowanie, które implementuje protokoły SMB/CIFS, umożliwiając stacjom roboczym z systemem Windows dostęp do plików i drukarek z serwerów działających na systemach Unix i Linux. Dzięki Samba użytkownicy Windows mogą korzystać z zasobów udostępnionych na serwerach Linux, co czyni ją niezbędnym narzędziem w mieszanych środowiskach sieciowych. W praktyce, Samba pozwala na tworzenie wspólnych folderów, które mogą być łatwo przeglądane i edytowane przez użytkowników Windows, co znacząco ułatwia współpracę w zespołach. Dodatkowo, Samba obsługuje autoryzację użytkowników i umożliwia zarządzanie dostępem do zasobów, co jest kluczowe w kontekście bezpieczeństwa danych. Wykorzystywanie Samby w środowisku produkcyjnym jest zgodne z najlepszymi praktykami branżowymi, ponieważ wspiera interoperacyjność pomiędzy różnymi systemami operacyjnymi oraz zwiększa elastyczność infrastruktury IT. Warto również zauważyć, że Samba jest często używana w większych organizacjach, gdzie integracja systemów jest kluczowa dla efektywnego zarządzania danymi i zasobami.

Pytanie 22

Liczby zapisane w systemie binarnym jako 10101010 oraz w systemie heksadecymalnym jako 2D odpowiadają następującym wartościom:

A. żadna z powyższych odpowiedzi nie jest prawidłowa
B. 196 i 16
C. 170 i 65
D. 128 i 45
Jeśli wybrałeś jedną z pierwszych trzech odpowiedzi, to niestety coś poszło nie tak. Obliczenia konwersji między systemami liczbowymi były tu błędne. Wydaje mi się, że chodzi o to, że mylisz wartości binarne i heksadecymalne z tym, co one naprawdę oznaczają w systemie dziesiętnym. Zapis binarny 10101010 to nie 65, 128 ani 196, tylko 170. Co do heksadecymalnego 2D, to daje 45, a nie 16. Wiesz, często można popełnić ten klasyczny błąd, koncentrując się na pojedynczych cyfrach, a zapominając o ich pozycji. Kluczowe w systemach liczbowych jest to, jak są interpretowane. Warto zwrócić uwagę na zasady konwersji i jak je stosować w praktyce, bo to naprawdę ważne, by nie popełniać takich błędów w informatyce, bo mogą mieć poważne konsekwencje.

Pytanie 23

Na ilustracji procesor jest oznaczony liczbą

Ilustracja do pytania
A. 3
B. 2
C. 8
D. 5
Procesor, oznaczony na rysunku numerem 3, jest centralnym układem scalonym komputera odpowiadającym za wykonywanie instrukcji programowych. Procesory są kluczowym składnikiem jednostki centralnej (CPU), które przetwarzają dane i komunikują się z innymi elementami systemu komputerowego. Ich kluczową cechą jest zdolność do realizacji złożonych operacji logicznych oraz arytmetycznych w krótkim czasie. W praktyce procesory znajdują zastosowanie nie tylko w komputerach osobistych, ale także w urządzeniach mobilnych, serwerach oraz systemach wbudowanych. Standardy przemysłowe, takie jak architektura x86 czy ARM, definiują zestaw instrukcji procesorów, co pozwala na kompatybilność oprogramowania z różnymi modelami sprzętu. Dobre praktyki obejmują chłodzenie procesora poprzez systemy wentylacyjne lub chłodzenia cieczą, co zwiększa wydajność i trwałość urządzeń. Warto również pamiętać o regularnej aktualizacji sterowników, co zapewnia optymalne działanie i bezpieczeństwo systemu.

Pytanie 24

Który z poniższych protokołów należy do warstwy aplikacji w modelu ISO/OSI?

A. TCP
B. FTP
C. ICMP
D. ARP
FTP, czyli File Transfer Protocol, jest protokołem warstwy aplikacji w modelu ISO/OSI. Oznacza to, że działa na najwyższej warstwie tego modelu, umożliwiając przesyłanie plików pomiędzy komputerami w sieci. Protokół ten jest szeroko stosowany w różnych zastosowaniach, takich jak przesyłanie dużych plików, zdalne zarządzanie serwerami czy aktualizacje aplikacji. FTP korzysta z mechanizmów uwierzytelniania, co pozwala na kontrolowanie dostępu do danych, a także umożliwia różne tryby transferu, takie jak ASCII czy Binary, co jest kluczowe dla zachowania integralności danych. Zgodnie z dobrymi praktykami branżowymi, FTP często jest zabezpieczane przy użyciu dodatkowych protokołów, takich jak FTPS (FTP Secure) lub SFTP (SSH File Transfer Protocol), aby zapewnić szyfrowanie transmisji i dodatkowe zabezpieczenia. Warto również zauważyć, że FTP jest jednym z najstarszych protokołów sieciowych, co świadczy o jego solidności i niezawodności w różnych środowiskach.

Pytanie 25

Adres komórki pamięci został podany w kodzie binarnym 1110001110010100. Jak zapisuje się ten adres w systemie szesnastkowym?

A. E394
B. 493
C. 7E+092
D. D281
Adres binarny 1110001110010100 można przekształcić na system szesnastkowy, grupując bity w zestawy po cztery, począwszy od prawej strony. W tym przypadku, zapisując adres w grupach otrzymujemy: 1110 0011 1001 0100. Każda z tych grup odpowiada jednemu cyfrom w systemie szesnastkowym: 1110 to E, 0011 to 3, 1001 to 9, a 0100 to 4. Dlatego adres w systemie szesnastkowym to E394. Użycie systemów liczbowych, w tym konwersji między binarnym i szesnastkowym, jest kluczowe w programowaniu i inżynierii komputerowej, gdzie adresy pamięci są często przedstawiane właśnie w tych formatach. Dobra praktyka w programowaniu polega na znajomości konwersji systemów liczbowych, co ułatwia zrozumienie działania pamięci i procesorów. Wiele języków programowania, takich jak C czy Python, udostępnia funkcje do konwersji między tymi systemami, co jest niezwykle użyteczne w codziennym programowaniu.

Pytanie 26

Jakie są skutki działania poniższego polecenia ```netsh advfirewall firewall add rule name="Open" dir=in action=deny protocol=TCP localport=53```?

A. Blokowanie działania usługi DNS opartej na protokole TCP
B. Wyłączenie reguły o nazwie Open w zaporze sieciowej
C. Otworzenie portu 53 dla protokołu TCP
D. Zaimportowanie ustawienia zapory sieciowej z katalogu in action
To polecenie `netsh advfirewall firewall add rule name="Open" dir=in action=deny protocol=TCP localport=53` naprawdę tworzy regułę w zaporze Windows, która blokuje ruch przychodzący na porcie 53 dla protokołu TCP. Ten port, jak pewnie wiesz, jest standardowo używany do rozwiązywania nazw domen przez DNS. Jak się blokuje ten port na TCP, to znaczy, że żadne zapytania DNS nie mogą być wysyłane ani odbierane przez komputer. To na pewno wpływa na to, jak nasz komputer komunikuje się z serwerami DNS. Kiedy administrator chce zwiększyć bezpieczeństwo sieci, to może chcieć ograniczyć dostęp do DNS z zewnątrz. Uważam, że używanie zapory ogniowej do kontrolowania ruchu jest bardzo ważne, bo to pomaga zabezpieczyć system przed nieautoryzowanym dostępem czy atakami, jak spoofing DNS. Z doświadczenia wiem, że zanim wprowadzimy takie zmiany, warto dobrze zrozumieć, jak to wpłynie na aplikacje korzystające z DNS, czyli na przykład przeglądarki internetowe czy inne usługi sieciowe.

Pytanie 27

Napięcie dostarczane przez płytę główną dla pamięci typu SDRAM DDR3 może wynosić

A. 3,3 V
B. 1,5 V
C. 1,2 V
D. 2,5 V
Zasilanie pamięci SDRAM DDR3 nie może wynosić 3,3 V, 1,2 V ani 2,5 V z uwagi na szereg podstawowych różnic w konstrukcji i działaniu tych technologii. Pamięci DDR3 zostały zaprojektowane z myślą o efektywności energetycznej, stąd napięcie zasilania zostało obniżone do 1,5 V, co jest istotnym krokiem w kierunku zmniejszenia zużycia energii przez komponenty komputerowe. Napięcie 3,3 V jest typowe dla starszych standardów, takich jak SDR SDRAM lub DDR SDRAM, które nie są już powszechnie stosowane w nowoczesnych systemach. Pamięci z wyższym napięciem mogą prowadzić do większego wydzielania ciepła i mniejszej efektywności energetycznej, co jest niepożądane w dzisiejszych aplikacjach. Z drugiej strony, wartość 1,2 V odnosi się do pamięci DDR4, która jest nowszym standardem i zapewnia jeszcze większą efektywność energetyczną oraz wyższe prędkości transferu danych. Podobnie, napięcie 2,5 V jest związane z technologią DDR2, która również jest już przestarzała. W związku z tym, błędne podejście do napięcia zasilania pamięci DDR3 może prowadzić do nieodpowiedniej konfiguracji systemów, co w konsekwencji może skutkować niestabilnością lub uszkodzeniem podzespołów. Ważne jest, aby dostosować wybór pamięci do specyfikacji producenta płyty głównej oraz systemu, co jest kluczowym elementem w zapewnieniu optymalnej wydajności i niezawodności całego systemu komputerowego.

Pytanie 28

W systemie Windows, po wydaniu komendy systeminfo, nie da się uzyskać danych o

A. zainstalowanych aktualizacjach
B. liczbie partycji podstawowych
C. ilości procesorów
D. podłączonych kartach sieciowych
Polecenie systeminfo w systemie Windows dostarcza wielu istotnych informacji o aktualnym systemie operacyjnym, takich jak zainstalowane poprawki, liczba procesorów czy zamontowane karty sieciowe. Jednak nie udostępnia informacji na temat liczby partycji podstawowych. W kontekście zarządzania dyskami, partycje są zarządzane przez narzędzia takie jak Disk Management czy polecenia PowerShell. Wiedza na temat partycji jest kluczowa przy konfiguracji dysków oraz podczas instalacji systemów operacyjnych, gdyż wpływa na efektywność zarządzania danymi i ich bezpieczeństwo. W praktyce, administratorzy systemów powinni korzystać z narzędzi do zarządzania dyskami, aby sprawdzić konfigurację partycji, a systeminfo powinno być używane do oceny ogólnego stanu systemu operacyjnego. Dzięki temu można lepiej zrozumieć, jakie zasoby są dostępne i jakie działania należy podjąć, by poprawić wydajność systemu.

Pytanie 29

Do jakich celów powinno się aktywować funkcję RMON (Remote Network Monitoring) w przełączniku?

A. Automatyczne rozpoznawanie rodzaju kabla podłączonego do portu
B. Obsługi zaawansowanych standardów monitorowania i raportowania
C. Automatyczne przydzielanie VLAN’ów oraz uczenie się
D. Ograniczenia w rozsyłaniu transmisji rozgłoszeniowych
Uaktywnienie funkcji RMON (Remote Network Monitoring) w przełączniku ma na celu wsparcie zaawansowanego monitorowania i raportowania ruchu sieciowego. RMON jest protokołem, który umożliwia zbieranie danych o stanie sieci w czasie rzeczywistym, co pozwala administratorom na dokładne analizowanie i diagnostykowanie potencjalnych problemów. Dzięki RMON, można skutecznie monitorować wydajność poszczególnych portów, analizować ruch w sieci oraz identyfikować źródła problemów, takie jak kolizje czy przeciążenia. Przykładowo, RMON może zbierać dane o czasie opóźnienia pakietów, ich utracie lub o rozkładzie protokołów w sieci. W praktyce, wdrożenie RMON w infrastrukturze sieciowej pozwala na proaktywne zarządzanie i optymalizację sieci, co jest zgodne z najlepszymi praktykami zarządzania infrastrukturą IT. RMON wspiera również standardy takie jak RFC 2819, które definiują protokół dla zbierania danych monitorujących w sieciach Ethernet.

Pytanie 30

Jakie rozszerzenia mają pliki instalacyjne systemu operacyjnego Linux?

A. tgz, dmg
B. ini, dll
C. rpm, deb
D. zip, exe
Wybór innych opcji jako odpowiedzi na to pytanie może prowadzić do zrozumienia błędnych koncepcji dotyczących zarządzania oprogramowaniem w systemach Linux. Rozszerzenia ini i dll są typowe dla systemu Windows, gdzie pliki ini są używane do przechowywania konfiguracji aplikacji, a pliki dll (dynamic link library) zawierają funkcje, które mogą być współdzielone przez różne aplikacje. Ich obecność w kontekście Linuxa jest myląca, ponieważ nie są one stosowane do instalacji oprogramowania w tym systemie. Odpowiedzi zip i exe także wprowadzają w błąd; format zip to kompresja plików, a exe to format pliku wykonywalnego w Windows, który nie jest kompatybilny z systemami Linux. Odpowiedź tgz, dmg również nie jest właściwa; tgz to skompresowany archiwum (tar.gz) używane w Linuxie, ale nie jest to pakiet instalacyjny, a dmg to format obrazu dysku specyficzny dla macOS. Rozumienie tych różnic jest kluczowe, gdyż nieprawidłowe podejście do instalacji oprogramowania może prowadzić do problemów z kompatybilnością i bezpieczeństwem systemu. W praktyce, administratorzy systemów muszą być świadomi tych formatów, aby efektywnie zarządzać oprogramowaniem i unikać typowych pułapek związanych z nieodpowiednim doborem narzędzi.

Pytanie 31

Element trwale zamontowany, w którym znajduje się zakończenie okablowania strukturalnego poziomego dla abonenta, to

A. gniazdo teleinformatyczne
B. punkt konsolidacyjny
C. punkt rozdzielczy
D. gniazdo energetyczne
Gniazdo teleinformatyczne jest kluczowym elementem infrastruktury okablowania strukturalnego, które służy jako punkt dostępu dla użytkowników końcowych do sieci telekomunikacyjnych i informatycznych. Zakończenie okablowania strukturalnego poziomego odbywa się właśnie w tym gnieździe, co umożliwia podłączenie urządzeń takich jak komputery, telefony IP czy drukarki do sieci. Zgodnie z normami ISO/IEC 11801 oraz ANSI/TIA-568, gniazda teleinformatyczne powinny być instalowane w strategicznych lokalizacjach, aby zapewnić optymalną wydajność sieci oraz minimalizować straty sygnału. Przykładem zastosowania gniazd teleinformatycznych są biura, gdzie pozwalają one na elastyczne podłączanie stanowisk pracy do lokalnej sieci oraz internetu. Dodatkowo, gniazda te są często wyposażone w różnorodne złącza, co pozwala na obsługę różnych typów kabli i protokołów transmisyjnych, co jest zgodne z najlepszymi praktykami projektowania sieci. Właściwe umiejscowienie i typ gniazd teleinformatycznych znacząco wpływa na komfort pracy użytkowników oraz efektywność zarządzania infrastrukturą IT.

Pytanie 32

Aby odzyskać dane z dysku, który został sformatowany, warto użyć programu typu

A. sniffer
B. p2p
C. recovery
D. IRC
Odpowiedź "recovery" jest poprawna, ponieważ programy typu recovery (odzyskiwania danych) są specjalnie zaprojektowane do przywracania utraconych lub usuniętych plików z dysków twardych, które zostały sformatowane lub usunięte. Proces formatowania dysku nie usuwa fizycznie danych, lecz jedynie oznacza obszary dysku jako dostępne do zapisu. Programy do odzyskiwania danych potrafią skanować dysk w poszukiwaniu pozostałości plików oraz ich struktur, co umożliwia ich przywrócenie. Przykładem popularnych narzędzi są Recuva, EaseUS Data Recovery Wizard oraz TestDisk, które są stosowane w praktyce zarówno przez specjalistów IT, jak i użytkowników indywidualnych. W branży informatycznej standardem jest również wykonywanie regularnych kopii zapasowych, co może znacząco ułatwić proces odzyskiwania danych. W sytuacji, gdy dane zostały utracone, zaleca się nie zapisywać nowych informacji na danym dysku, aby zwiększyć szanse na odzyskanie danych.

Pytanie 33

Zgodnie z normą PN-EN 50174, maksymalna długość kabla poziomego kategorii 6 pomiędzy punktem abonenckim a punktem dystrybucji w panelu krosowym wynosi

A. 110 m
B. 150 m
C. 90 m
D. 100 m
Odpowiedzi 100 m, 110 m oraz 150 m są niepoprawne z kilku kluczowych powodów. Wybór długości 100 m może wydawać się logiczny, ponieważ często jest to długość używana w aplikacjach sieciowych, jednak nie uwzględnia ona specyficznych wymagań dla kabli kategorii 6, które do przesyłania danych wymagają ściśle określonego limitu długości dla optymalnej wydajności. Przesymulowanie długości kabla w warunkach rzeczywistych pokazuje, że przekroczenie 90 m skutkuje wzrostem opóźnień i spadkiem wydajności, co jest nie do zaakceptowania w środowiskach o wysokich wymaganiach dotyczących przepustowości. Wybór długości 110 m oraz 150 m jeszcze bardziej narusza zasady określone w normie. Tego rodzaju długości mogą być stosowane w specyficznych aplikacjach, ale nie w kontekście standardowej instalacji kabelowej dla systemów LAN. Dodatkowo, w praktyce inżynieryjnej błędne podejście do długości kabli poziomych może prowadzić do poważnych problemów z niezawodnością sieci, w tym zwiększonej liczby błędów przesyłania danych oraz problemami z obsługą klienta. Zrozumienie i przestrzeganie norm takich jak PN-EN 50174 jest kluczowe dla projektantów i instalatorów systemów telekomunikacyjnych, aby zapewnić ich wydajność oraz zgodność z najlepszymi praktykami branżowymi.

Pytanie 34

Na ilustracji pokazano komponent, który stanowi część

Ilustracja do pytania
A. drukarki igłowej
B. napędu CD-ROM
C. plotera
D. HDD
Element przedstawiony na rysunku to typowa część składana HDD, czyli dysku twardego. Dyski twarde wykorzystują złożone mechanizmy do przechowywania i odczytywania informacji, które są zapisywane na obracających się talerzach magnetycznych. Prezentowany element najprawdopodobniej jest częścią mechanizmu napędowego, który odpowiada za precyzyjne obracanie talerzy. Obrót ten jest kluczowy dla prawidłowego działania dysku, ponieważ głowice odczytu i zapisu muszą mieć dostęp do odpowiednich sektorów na talerzach. W nowoczesnych dyskach HDD stosuje się również technologie poprawiające precyzję i szybkość odczytu danych, takie jak systemy servo. Te mechanizmy pozwalają na dokładne pozycjonowanie głowic, co jest niezbędne dla optymalnej wydajności dysku. W przemyśle standardem jest również stosowanie technologii SMART do monitorowania stanu dysków twardych, co pozwala na wczesne wykrywanie potencjalnych awarii i przedłużenie żywotności urządzenia. HDD to wciąż powszechnie stosowane rozwiązanie w wielu systemach komputerowych, gdzie niezawodność i pojemność są kluczowe, mimo że w ostatnich latach rośnie popularność szybszych dysków SSD.

Pytanie 35

Która z poniższych liczb w systemie dziesiętnym poprawnie przedstawia liczbę 101111112?

A. 19310
B. 19110
C. 38210
D. 38110
Odpowiedzi 19310, 38110 i 38210 są błędne, ponieważ wynikają z nieprawidłowych konwersji lub błędnych założeń przy przeliczaniu liczby z systemu binarnego na dziesiętny. Aby lepiej zrozumieć, dlaczego te odpowiedzi są nieprawidłowe, warto przyjrzeć się, w jaki sposób dokonuje się konwersji. Często zdarza się, że osoby próbujące przeliczyć liczby z systemu binarnego na dziesiętny popełniają błędy w obliczeniach, na przykład poprzez pomijanie wartości jednej z cyfr lub mylne sumowanie potęg liczby 2. W przypadku 101111112, jeśli ktoś błędnie zinterpretuje liczby, może dodać niepoprawne potęgi, co prowadzi do uzyskania wyników, które nie odzwierciedlają prawidłowej wartości dziesiętnej. Podobne błędy mogą wystąpić, gdy nie uwzględnia się zer w odpowiednich miejscach, co jest kluczowe w systemie pozycyjnym, jakim jest system binarny. Istotne jest, aby na każdym etapie obliczeń upewnić się, że każda cyfra jest mnożona przez odpowiednią potęgę liczby 2. Zrozumienie tej podstawowej zasady jest kluczowe w informatyce oraz matematyce, a znajomość poprawnych metod konwersji jest niezbędna dla każdej osoby zajmującej się programowaniem czy analizą danych. Ponadto, błędne odpowiedzi mogą również wynikać z nieprawidłowego wprowadzenia danych, co pokazuje, jak ważne jest dokładne sprawdzanie każdej liczby w procesie obliczeniowym.

Pytanie 36

Aby sprawdzić dostępną przestrzeń na dysku twardym w systemie Linux, można wykorzystać polecenie

A. cd
B. tr
C. ln
D. df
W przypadku polecenia 'tr', jego główną funkcją jest tłumaczenie lub zamiana znaków w strumieniach tekstowych. To narzędzie nie ma związku z zarządzaniem przestrzenią dyskową, co czyni je niewłaściwym wyborem. Użytkownicy mogą mylnie sądzić, że 'tr' może dostarczać informacji o plikach, jednak jego zastosowanie ogranicza się do manipulacji danymi tekstowymi. Przechodząc do polecenia 'cd', jego funkcja polega na zmianie katalogów roboczych w systemie plików. Chociaż 'cd' jest istotne w nawigacji po systemie plików, nie dostarcza żadnych informacji dotyczących wykorzystania przestrzeni dyskowej. Mistyfikacja związana z tym poleceniem może wynikać z mylnego założenia, że zmiana katalogów wiąże się z zarządzaniem dyskiem. Wreszcie, polecenie 'ln' służy do tworzenia linków symbolicznych lub twardych do plików, co również nie ma nic wspólnego z monitorowaniem przestrzeni dyskowej. Nieprawidłowe zrozumienie funkcji tych narzędzi może prowadzić do frustracji, gdy użytkownicy poszukują odpowiednich poleceń do zarządzania dyskiem. Kluczowe jest, aby użytkownicy rozumieli, jakie polecenia są przeznaczone do jakich zadań, aby unikać pomyłek i efektywnie korzystać z narzędzi dostępnych w systemie Linux.

Pytanie 37

Jakie urządzenie powinno być użyte do podłączenia żył kablowych skrętki do gniazda Ethernet?

A. Wciskacz LSA
B. Zaciskarkę RJ-11
C. Zaciskarkę RJ-45
D. Zaciskarkę BNC
Wybór zaciskarki BNC, RJ-45 lub RJ-11 w kontekście podłączenia żył kablowych skrętki do gniazda Ethernet jest nieodpowiedni z kilku powodów. Zaciskarka BNC jest przeznaczona do pracy z kablami koncentrycznymi, które stosuje się głównie w systemach telewizyjnych i wideo, a nie w standardowych instalacjach sieci Ethernet. Dobór tego narzędzia do podłączenia skrętki prowadzi do nieprawidłowych połączeń i potencjalnych problemów z jakością sygnału. Zaciskarka RJ-45, pomimo że wydaje się być odpowiednia, jest używana do tworzenia kabli RJ-45, które już są zakończone przewodami, a nie do bezpośredniego podłączania typowych żył skrętki do gniazda. Właściwe przygotowanie kabli do podłączenia wymaga użycia wciskacza LSA, który zapewnia odpowiednie ciśnienie i kontakt między żyłami kabla a stykami gniazda. Zaciskarka RJ-11 jest narzędziem przeznaczonym do telefonii, umożliwiającym podłączenie przewodów do gniazd telefonicznych, co jest również nietrafione w kontekście sieci Ethernet. Decydując się na niewłaściwe narzędzie, możemy doprowadzić do zwiększonego poziomu błędów transmisji, zakłóceń sygnału oraz wpłynąć na ogólną wydajność sieci. Warto zatem korzystać z narzędzi dostosowanych do specyfikacji technicznych i standardów branżowych, aby zapewnić właściwe funkcjonowanie infrastruktury sieciowej.

Pytanie 38

Połączenia typu point-to-point, realizowane za pośrednictwem publicznej infrastruktury telekomunikacyjnej, oznacza się skrótem

A. VPN
B. PAN
C. WLAN
D. VLAN
VLAN, WLAN oraz PAN to terminy, które odnoszą się do różnych typów sieci, jednak żaden z nich nie opisuje technologii, która umożliwia bezpieczne połączenia przez publiczną infrastrukturę telekomunikacyjną. VLAN (Virtual Local Area Network) to metoda segmentacji sieci lokalnej, która pozwala na tworzenie wielu logicznych sieci w ramach jednego fizycznego medium. VLAN-y są często używane w dużych organizacjach do zwiększenia wydajności i bezpieczeństwa, umożliwiając separację ruchu sieciowego. WLAN (Wireless Local Area Network) odnosi się do sieci lokalnych opartych na technologii bezprzewodowej, co umożliwia urządzeniom mobilnym łączenie się z internetem bez użycia kabli. Z kolei PAN (Personal Area Network) to sieć o bardzo małym zasięgu, używana do komunikacji między urządzeniami osobistymi, takimi jak telefony czy laptopy, zazwyczaj za pośrednictwem technologii Bluetooth. Skupiając się na tych terminach, można zauważyć, że koncentrują się one na różnych aspektach lokalej komunikacji, zamiast na tworzeniu bezpiecznych połączeń przez publiczną infrastrukturę. Zrozumienie tych różnic jest kluczowe, aby unikać pomyłek w kontekście zastosowań technologii sieciowych oraz ich bezpieczeństwa.

Pytanie 39

Na podstawie danych zawartych w tabeli dotyczącej specyfikacji płyty głównej, wskaż maksymalną liczbę kart rozszerzeń, które można zainstalować w magistrali Peripheral Component Interconnect.

A. 5
B. 3
C. 2
D. 1
Wybór liczby 1, 2, 3 lub 4 jako maksymalnej liczby kart rozszerzeń do magistrali PCI jest błędny z kilku powodów. Przede wszystkim, prezentowana specyfikacja płyty głównej wyraźnie wskazuje na to, że dostępnych jest 5 slotów PCI, co oznacza, że te odpowiedzi nie uwzględniają pełnego potencjału płyty. W praktyce, mylenie liczby slotów z ich funkcjonalnością może prowadzić do nieporozumień w zakresie możliwości rozbudowy systemu. Typowym błędem jest także założenie, że nie wszystkie sloty są dostępne lub że niektóre z nich mogą być zablokowane z powodu innych komponentów. Takie myślenie jest niepoprawne, ponieważ użytkownicy mają możliwość instalacji różnych kart rozszerzeń w każdym z dostępnych slotów, o ile nie kolidują one ze sobą pod względem fizycznym i nie wymuszają ograniczeń zasilania. Warto również zauważyć, że wiele nowoczesnych płyt głównych, które mogą być kompatybilne ze starszymi standardami, wciąż oferuje pełną funkcjonalność slotów PCI, co stanowi dużą zaletę dla użytkowników zamierzających korzystać z starszych komponentów. Aby skutecznie wykorzystać możliwości swojego systemu, użytkownik powinien dokładnie analizować specyfikacje sprzętowe i znać różnice między różnymi rodzajami slotów oraz ich zastosowaniami w praktyce.

Pytanie 40

Aby połączyć projektor multimedialny z komputerem, złącze, którego NIEDOZWOLONO użyć to

A. HDMI
B. D-SUB
C. USB
D. SATA
Złącze SATA (Serial ATA) jest standardem zasilania i przesyłania danych, które jest przede wszystkim używane w dyskach twardych i napędach SSD. Nie służy do przesyłania sygnału wideo, co czyni je niewłaściwym wyborem do podłączenia projektora multimedialnego. Standardy HDMI, USB oraz D-SUB są powszechnie wykorzystywane do przesyłania obrazu i dźwięku. HDMI (High-Definition Multimedia Interface) jest najbardziej popularnym złączem, które obsługuje wysoką jakość obrazu i dźwięku w jednym kablu. USB (Universal Serial Bus) może być także używane w przypadku nowoczesnych projektorów, które potrafią odbierać dane wideo z urządzeń mobilnych. D-SUB, czyli VGA (Video Graphics Array), to starszy standard, który wciąż znajduje zastosowanie w niektórych urządzeniach, szczególnie w starszych projektorach. Wybór odpowiedniego złącza do projektora zależy od specyfikacji urządzenia oraz wymagań dotyczących jakości sygnału. Zrozumienie różnic między tymi złączami jest kluczowe dla prawidłowego połączenia sprzętu i uzyskania optymalnych wyników wizualnych.