Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 2 maja 2025 14:28
  • Data zakończenia: 2 maja 2025 14:36

Egzamin zdany!

Wynik: 22/40 punktów (55,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Który z wymienionych elementów należy do dodatkowej ochrony przed porażeniem elektrycznym?

A. Bardzo niskie napięcie ze źródła bezpiecznego
B. Uniedostępnianie (umieszczenie poza zasięgiem ręki)
C. Dodatkowe miejscowe wyrównawcze połączenia ochronne
D. Samoczynne wyłączenie zasilania
Uniedostępnianie, czyli umieszczenie urządzeń elektrycznych poza zasięgiem ręki, jest jedną z metod ochrony, jednak nie stanowi uzupełniającej ochrony przeciwporażeniowej. W rzeczywistości, polega ono na fizycznym oddzieleniu użytkownika od potencjalnych zagrożeń, co może w pewnych sytuacjach zwiększać bezpieczeństwo, ale nie eliminuje ryzyka całkowicie. Ponadto, taka metoda nie jest skuteczna w przypadku sytuacji awaryjnych, gdzie dostęp do urządzeń elektrycznych jest niezbędny do ich wyłączenia. Samoczynne wyłączenie zasilania to kolejna strategia, która ma na celu zminimalizowanie skutków porażenia prądem, ale jej skuteczność jest uzależniona od wykrycia awarii, co nie zawsze jest gwarantowane. Bardzo niskie napięcie ze źródła bezpiecznego również jest metodą ochrony, lecz nie jest to metoda uzupełniająca, a podstawowa koncepcja, która sama w sobie nie wystarcza do zapewnienia pełnej ochrony. Dobre praktyki w zakresie ochrony przeciwporażeniowej wymagają zastosowania złożonych systemów zabezpieczeń, w tym połączeń wyrównawczych, co pokazuje, że ignorowanie tych podstawowych zasad może prowadzić do błędnych wniosków i zwiększonego ryzyka w sytuacjach awaryjnych.

Pytanie 2

Jakie narzędzia powinny być zastosowane przy trasowaniu instalacji elektrycznej w ścianach w pomieszczeniach mieszkalnych?

A. Zestaw wkrętaków, kleszcze monterskie, sznurek traserski, młotek
B. Ołówek, poziomnica, miarka taśmowa, sznurek traserski
C. Ołówek, miarka taśmowa, kleszcze monterskie, młotek
D. Poziomnica, kleszcze monterskie, zestaw wkrętaków, młotek
Wybór odpowiedzi "Ołówek, poziomnica, przymiar taśmowy, sznurek traserski" jest właściwy, ponieważ te narzędzia są kluczowe dla precyzyjnego trasowania instalacji elektrycznej podtynkowej w pomieszczeniach mieszkalnych. Ołówek służy do nanoszenia punktów oraz linii na ścianach, co ułatwia późniejsze wiercenie i układanie kabli. Poziomnica jest niezastąpiona przy sprawdzaniu poziomu instalacji, co jest niezbędne dla zachowania estetyki i funkcjonalności. Przymiar taśmowy pozwala na dokładne mierzenie odległości, co jest kluczowe dla precyzyjnego układania kabli, gniazdek oraz przełączników. Sznurek traserski umożliwia szybkie i łatwe zaznaczanie prostych linii na dużych powierzchniach, co znacznie przyspiesza proces trasowania. Te narzędzia są zgodne z najlepszymi praktykami branżowymi oraz standardami bezpieczeństwa, co czyni je niezbędnymi w procesie przygotowawczym przed wykonaniem instalacji elektrycznej.

Pytanie 3

Aby zmierzyć wartości elektryczne o stałym przebiegu, należy zastosować miernik o budowie

A. magnetoelektrycznym
B. ferrodynamicznym
C. elektromagnetycznym
D. elektrodynamicznym
Pomiar wielkości elektrycznych o przebiegu stałym wymaga zastosowania odpowiednich technologii pomiarowych, a wybór niewłaściwego ustroju może prowadzić do błędnych wyników. Ustrój ferrodynamiczny, choć użyteczny w pomiarach prądu zmiennego, opiera się na zasadzie siły elektromotorycznej wywołanej przez zmienne pole magnetyczne. W przypadku prądu stałego brak zmienności pola sprawia, że wynik pomiaru byłby nieprecyzyjny. Ustrój elektromagnetyczny również nie jest właściwy, ponieważ jego działanie bazuje na indukcji elektromagnetycznej, a więc również najlepiej sprawdza się w pomiarach prądu zmiennego. Z kolei ustrój elektrodynamiczny, który wykorzystuje zasadę działania siły działającej na przewodnik w polu magnetycznym, także nie jest dostosowany do pomiarów prądu stałego, co może prowadzić do nieprawidłowych odczytów. Wybór niewłaściwego ustroju pomiarowego może być wynikiem błędnego zrozumienia zasad działania różnych technologii pomiarowych, co jest typowym błędem wśród osób, które nie mają wystarczającej wiedzy na temat specyfiki pomiarów elektrycznych. Dlatego kluczowe jest zrozumienie różnic w konstrukcji i zasadzie działania różnych ustrojów pomiarowych oraz ich właściwego zastosowania w praktyce inżynierskiej.

Pytanie 4

Jaką z wymienionych czynności kontrolnych należy przeprowadzić po zainstalowaniu trójfazowego silnika elektrycznego?

A. Mierzenie prędkości obrotowej
B. Mierzenie temperatury stojana
C. Sprawdzenie kierunku obrotów wału silnika
D. Weryfikacja symetrii napięcia zasilającego
Sprawdzenie kierunku obrotów wału silnika elektrycznego jest kluczowym krokiem po jego montażu, ponieważ niewłaściwy kierunek obrotów może prowadzić do uszkodzenia silnika oraz urządzeń, z którymi jest połączony. W praktyce, wiele aplikacji wymaga, aby silnik obracał się w określonym kierunku, co jest szczególnie ważne w systemach napędowych, takich jak pompy, wentylatory czy maszyny robocze. Warto również pamiętać, że w przypadku silników trójfazowych zmiana kierunku obrotów jest możliwa poprzez zamianę miejscami dwóch dowolnych przewodów zasilających. Zgodnie z normami branżowymi, przed uruchomieniem silnika należy zawsze sprawdzić jego kierunek obrotów, aby zagwarantować prawidłowe działanie i uniknąć potencjalnych awarii. Dodatkowo, sprawdzenie kierunku obrotów może być dokumentowane w protokole uruchomieniowym, co jest zgodne z najlepszymi praktykami w zakresie zarządzania jakością oraz bezpieczeństwem w pracy. Warto także wspomnieć, że w przypadku silników używanych w automatyce przemysłowej, kierunek obrotów jest często monitowany przez systemy kontrolne, które mogą automatycznie reagować na nieprawidłowości.

Pytanie 5

Który łącznik elektryczny ma dwa przyciski oraz trzy terminale?

A. Krzyżowy
B. Świecznikowy
C. Schodowy
D. Dwubiegunowy
Świecznikowy łącznik instalacyjny jest odpowiednim rozwiązaniem w sytuacjach, gdy chcemy sterować jednym źródłem światła z dwóch miejsc, co jest typowe w korytarzach, schodach czy dużych pomieszczeniach. Posiada on dwa klawisze i trzy zaciski elektryczne, co pozwala na realizację funkcji przełączania obwodu. Dzięki zastosowaniu tego typu łącznika, użytkownik ma możliwość włączania i wyłączania oświetlenia z dwóch różnych lokalizacji, co znacząco zwiększa komfort użytkowania. W praktyce, łącznik świecznikowy jest często wykorzystywany w instalacjach domowych, w których architektura wnętrza wymaga takiej funkcjonalności. Dobrą praktyką jest stosowanie łączników zgodnych z normami elektrycznymi, co zwiększa bezpieczeństwo i niezawodność instalacji. Warto również zauważyć, że w przypadku modernizacji instalacji elektrycznej, wybór łącznika świecznikowego może być kluczowy dla poprawy ergonomii użytkowania oświetlenia.

Pytanie 6

Jakie pomiary są wykonywane przy sprawdzaniu wyłącznika różnicowoprądowego?

A. napięcia sieciowego oraz prądu różnicowego
B. napięcia sieciowego oraz prądu obciążenia
C. prądu różnicowego oraz czasu jego działania
D. prądu obciążenia oraz czasu jego działania
Sprawdzanie wyłącznika różnicowoprądowego to naprawdę ważna sprawa, bo chodzi tu o nasze bezpieczeństwo. Mierzymy prąd różnicowy i czas, w jakim wyłącznik zadziała, bo to zapewnia, że wszystko działa jak należy w instalacjach elektrycznych. Prąd różnicowy to różnica pomiędzy prądem, który idzie do urządzenia, a tym, który wraca. W normalnych warunkach ta różnica powinna być mała. RCD działa w ten sposób, że jeśli ta różnica przekroczy pewien próg, najczęściej 30 mA dla ochrony osób, to odcina zasilanie. Regularne testy wyłączników pozwalają upewnić się, że są w porządku i że nas chronią przed porażeniem prądem. Moim zdaniem, dobrze jest testować to przynajmniej raz w roku, aby mieć pewność, że ochrona działa jak należy. Do testów można użyć specjalnych urządzeń, które naśladują prąd różnicowy i pokazują, w jakim czasie wyłącznik się włączy. Jest to naprawdę istotne, żeby się tym zajmować.

Pytanie 7

W jakim układzie sieciowym znajduje się bezpiecznik iskiernikowy podłączony pomiędzy punkt neutralny strony wtórnej transformatora, który zasila ten układ, a uziom roboczy?

A. TN-C
B. IT
C. TN-S
D. TT
Odpowiedź 'IT' jest prawidłowa, ponieważ w układzie IT, system neutralny nie jest bezpośrednio uziemiony, co oznacza, że wszystkie części przewodzące, z wyjątkiem punktu neutralnego, są uziemione. Bezpiecznik iskiernikowy, który jest włączony między punkt neutralny transformatora a uziom roboczy, działa jako mechanizm zabezpieczający przed niebezpiecznymi przepięciami i wyładowaniami elektrycznymi. W praktyce, układ IT jest często stosowany w obiektach, gdzie ciągłość zasilania jest kluczowa, takich jak szpitale czy centra danych. Zgodnie z normą IEC 60364, zaleca się stosowanie tego typu systemów w celu minimalizacji ryzyka porażenia prądem elektrycznym, co czyni je bardziej bezpiecznymi w porównaniu do układów z uziemionym punktem neutralnym. Dodatkowo, zastosowanie bezpiecznika iskiernikowego w tym kontekście zapewnia ochronę przed przepięciami, co może być kluczowe dla bezpieczeństwa sprzętu oraz ludzi.

Pytanie 8

Który element stosowany do sterowania w domowej instalacji elektrycznej przedstawiono na rysunku?

Ilustracja do pytania
A. Przekaźnik priorytetowy.
B. Sterownik rolet.
C. Regulator oświetlenia.
D. Przekaźnik bistabilny.
Przekaźnik priorytetowy, który został przedstawiony na rysunku, jest kluczowym elementem w nowoczesnych systemach automatyki budynkowej. Oznaczenie "PR-612" jednoznacznie wskazuje na ten typ urządzenia, które jest zaprojektowane do zarządzania priorytetami w zasilaniu różnych obwodów elektrycznych. W praktyce przekaźniki priorytetowe są wykorzystywane w sytuacjach, gdzie istnieje potrzeba zarządzania zasilaniem w sposób inteligentny, na przykład w przypadku awarii zasilania lub w celu oszczędności energii. Działają one na zasadzie automatycznego przełączania źródła zasilania na urządzenia o wyższym priorytecie, co zapewnia ciągłość pracy najważniejszych systemów w budynku. Zastosowanie przekaźników priorytetowych jest zgodne z normami EN 61000-3-2 dotyczącymi ograniczeń emisji harmonicznych dla urządzeń elektrycznych oraz IEC 61131-2, która reguluje normy dla urządzeń automatyki. Dzięki zastosowaniu tych elementów, można tworzyć bardziej efektywne i bezpieczne systemy zarządzania energią w budynkach.

Pytanie 9

Jak powinno się przeprowadzać zalecane przez producenta okresowe testy działania wyłącznika różnicowoprądowego?

A. Mierząc czas reakcji przy wymuszeniu prądu upływu wynoszącego IΔn
B. Wykonując kontrolne doziemienie
C. Określając minimalny prąd upływu, który powoduje zadziałanie wyłącznika
D. Naciskając przycisk "TEST"
Naciskanie przycisku 'TEST' na wyłączniku różnicowoprądowym (RCD) jest zalecaną metodą przeprowadzania okresowego sprawdzenia jego działania. To działanie symuluje sytuację, w której dochodzi do prądu upływu, co powinno spowodować natychmiastowe zadziałanie urządzenia. Dzięki temu można zweryfikować, czy wyłącznik działa prawidłowo i czy jest w stanie skutecznie chronić przed porażeniem prądem elektrycznym. Warto podkreślić, że producenci urządzeń elektrycznych oraz normy takie jak PN-EN 61008-1 zalecają regularne testowanie RCD co najmniej raz w miesiącu. Przykład praktycznego zastosowania to wykonanie testu przed rozpoczęciem sezonu letniego, kiedy to wiele osób korzysta z urządzeń elektrycznych na świeżym powietrzu, co zwiększa ryzyko wystąpienia porażenia prądem. Regularne testowanie wyłączników różnicowoprądowych nie tylko zapewnia bezpieczeństwo, ale również może zaoszczędzić koszty związane z naprawami czy stratami energoelektrycznymi wynikającymi z niewłaściwego działania instalacji elektrycznej.

Pytanie 10

Wyznacz znamionowy współczynnik mocy dla silnika trójfazowego z następującymi danymi: PN = 2,2 kW (moc mechaniczna), UN = 400 V, IN = 4,6 A, ηN = 0,84?

A. 0,57
B. 0,82
C. 0,69
D. 0,99
Błędy w obliczeniach mogą wynikać z niepoprawnego stosowania wzorów i braku zrozumienia, jak działa współczynnik mocy. Często, przy liczeniu, zapominamy o poprawnym uwzględnieniu obydwu rodzajów mocy: czynnej i reaktywnej. Niektórzy mogą też pomieszać jednostki, obliczając moc w kW zamiast w VA, co wprowadza zamieszanie. Innym częstym problemem bywa przeliczenie napięcia z fazowego na liniowe lub odwrotnie – to łatwy sposób na zrobienie błędu w końcowym wyniku. Z moim doświadczeniem, kluczem do sukcesu jest pełne zrozumienie, jak obliczać ten współczynnik. To nie tylko pozwala ocenić efektywność urządzeń elektrycznych, ale też jest zgodne z różnymi normami dotyczącymi efektywności energetycznej. Z perspektywy ekonomicznej i ekologicznej, lepszy współczynnik mocy dla silników trójfazowych jest naprawdę ważny, bo zmniejsza obciążenie systemu i emisję zanieczyszczeń.

Pytanie 11

W jakich okolicznościach instalacja elektryczna nie wymaga konserwacji ani naprawy?

A. Gdy stan techniczny instalacji jest niedostateczny lub wartości jej parametrów są poza zakresem określonym w instrukcji eksploatacji
B. Kiedy zostanie zauważone uszkodzenie instalacji elektrycznej
C. Kiedy prowadzone są prace konserwacyjne w obiekcie, na przykład malowanie ścian
D. Gdy użytkowanie instalacji stwarza zagrożenie dla bezpieczeństwa personelu lub otoczenia
Odpowiedź wskazująca, że instalacja elektryczna nie musi być poddawana konserwacji w przypadku przeprowadzania prac konserwacyjnych, takich jak malowanie ścian, jest prawidłowa, ponieważ w tym kontekście nie zachodzi ryzyko uszkodzenia instalacji ani zagrożenie dla bezpieczeństwa. W rzeczywistości, prace konserwacyjne są często planowane i wykonywane w sposób, który minimalizuje ryzyko dla istniejącej instalacji. Przykładowo, przed rozpoczęciem malowania należy zabezpieczyć gniazdka elektryczne i kable, co pozwala na bezpieczne i zgodne z normami ISO i PN wykonywanie takich prac. Dobrą praktyką jest również przeprowadzenie przeglądu stanu instalacji przed rozpoczęciem jakichkolwiek działań konserwacyjnych, aby upewnić się, że nie ma ukrytych usterek, które mogłyby wpłynąć na bezpieczeństwo. Ostatecznie, przestrzeganie regularnych harmonogramów konserwacji i inspekcji jest kluczowe dla utrzymania bezpieczeństwa oraz wydajności instalacji elektrycznych.

Pytanie 12

Którego z wymienionych urządzeń pomiarowych powinno się użyć do przeprowadzenia pomiarów rezystancji izolacji w domowej instalacji elektrycznej?

A. Omomierza szeregowego
B. Amperomierza cęgowego
C. Megaomomierza induktorowego
D. Mostka prądu zmiennego
Megaomomierz induktorowy to naprawdę fajne urządzenie do pomiaru rezystancji izolacji w instalacjach elektrycznych. Głównie pomaga ocenić, w jakim stanie jest izolacja przewodów, co jest bardzo ważne dla bezpieczeństwa i dobrej pracy instalacji. W przeciwieństwie do zwykłych omomierzy, które działają na niskich wartościach, megaomomierz potrafi wygenerować wysokie napięcie, na przykład od 250 do 1000V. Dzięki temu da się zauważyć różne problemy z izolacją, takie jak uszkodzenia czy nieszczelności. Z mojego doświadczenia wynika, że regularne pomiary są kluczowe, zwłaszcza w domach. Są normy, jak PN-IEC 60364, które mówią, że trzeba to robić przynajmniej co pięć lat, a w niektórych miejscach nawet częściej. Dzięki tym pomiarom można zapobiec poważnym awariom i zagrożeniom pożarowym związanym z uszkodzoną izolacją.

Pytanie 13

W wyniku uszkodzenia mechanicznego obudowa gniazda wtyczkowego w łazience uległa zniszczeniu. Co w takiej sytuacji powinno się zrobić?

A. zdemontować gniazdo i zaślepić puszkę
B. zakleić gniazdo taśmą izolacyjną
C. wymienić gniazdo na nowe
D. uszczelnić pęknięcia za pomocą kleju do tworzywa
Uszczelnianie pęknięć klejem do tworzywa czy sklejanie gniazda taśmą izolacyjną to podejścia, które mogą wydawać się tymczasowymi rozwiązaniami, lecz w rzeczywistości wprowadzają poważne ryzyko. Klejenie uszkodzonych elementów nie zapewnia odpowiedniej izolacji elektrycznej ani wytrzymałości mechanicznej, co może prowadzić do dalszych uszkodzeń i zagrażać bezpieczeństwu użytkowników. W kontekście instalacji elektrycznych, każda naprawa powinna być przeprowadzana z zachowaniem norm bezpieczeństwa, a nie prowizorycznymi metodami. Taśma izolacyjna, chociaż użyteczna w wielu sytuacjach, nie jest przeznaczona do naprawy uszkodzeń strukturalnych gniazda, a jej zastosowanie w tym przypadku może prowadzić do przegrzania przewodów, co zwiększa ryzyko pożaru. Kluczowe jest zrozumienie, że gniazda powinny być wolne od wszelkich uszkodzeń, szczególnie w środowisku o podwyższonej wilgotności, jakim jest łazienka. Wymontowanie gniazda i zaślepienie puszki również nie jest trwałym rozwiązaniem, a jedynie eliminacją problemu, co może prowadzić do sytuacji, w której w przyszłości użytkownik po prostu nie będzie miał dostępu do energii elektrycznej w danym miejscu. W przypadku uszkodzenia, najlepiej jest skonsultować się z profesjonalnym elektrykiem, który oceni sytuację i zainstaluje nowe gniazdo zgodnie z obowiązującymi normami, zapewniając tym samym bezpieczeństwo i funkcjonalność instalacji.

Pytanie 14

Który z łączników elektrycznych stosowanych do zarządzania oświetleniem w instalacjach budowlanych dysponuje czterema oddzielnymi zaciskami przyłączeniowymi oraz jednym klawiszem do sterowania?

A. Schodowy
B. Jednobiegunowy
C. Krzyżowy
D. Świecznikowy
Odpowiedzi schodowy, jednobiegunowy i świecznikowy to różne rodzaje łączników, a każdy z nich ma swoje konkretne zastosowanie. Łącznik schodowy, który często widzimy przy schodach, działa tylko z dwóch punktów i ma tylko dwa zaciski. To oznacza, że nie nadaje się do bardziej rozbudowanych układów, gdzie musimy sterować światłem z kilku miejsc. Z kolei jednobiegunowy łącznik jest jeszcze bardziej ograniczony, bo działa tylko w jednym miejscu. A łącznik świecznikowy, jak sama nazwa wskazuje, jest do obsługi jednego obwodu, więc też nie spełnia wymagań do sterowania z wielu lokalizacji. Takie myślenie, że każdy łącznik sprawdzi się wszędzie, to błąd, bo wymogi instalacyjne bywają różne. Dlatego warto wybierać łączniki zgodnie z ich przeznaczeniem oraz zasadami budowlanymi, żeby wszystko działało sprawnie i bezpiecznie, co jest ważne dla komfortu użytkowania.

Pytanie 15

Kontrolując warunek automatycznego wyłączenia zasilania jako element ochrony przed porażeniem w systemach TN-S, realizowanego przez nadprądowy wyłącznik instalacyjny, oprócz pomiaru impedancji pętli zwarcia konieczne jest określenie dla zastosowanego wyłącznika

A. wartości prądu wyłączającego
B. progu zadziałania wyzwalacza przeciążeniowego
C. czasu działania wyzwalacza zwarciowego
D. maksymalnej wielkości prądu zwarciowego
Analizując inne dostępne odpowiedzi, dostrzegamy pewne nieprawidłowości w podejściu do tematu sprawdzania warunków samoczynnego wyłączenia zasilania. Maksymalna wartość prądu zwarciowego jest istotnym parametrem, lecz nie jest bezpośrednio związana z prawidłowym funkcjonowaniem wyłącznika w kontekście ochrony przeciwporażeniowej. O ile znajomość wartości zwarciowych jest przydatna w doborze wyłącznika, sama maksymalna wartość nie określa, czy dany wyłącznik zadziała w odpowiednim czasie. Próg zadziałania wyzwalacza przeciążeniowego również nie ma zastosowania w przypadku wyłącznika, którego główną funkcją jest ochrona przed zwarciem, a nie przeciążeniem. W kontekście warunków samoczynnego wyłączenia zasilania kluczowym parametrem pozostaje wartość prądu wyłączającego, który musi być niższy niż wartość prądu zwarciowego, aby zrealizować efektywne odcięcie zasilania. Ostatnia z propozycji, dotycząca czasu zadziałania wyzwalacza zwarciowego, również nie odnosi się bezpośrednio do wymaganego pomiaru. Choć czas reakcji wyzwalacza jest istotny dla bezpieczeństwa, to jednak w kontekście samoczynnego wyłączenia zasilania bardziej kluczowe jest przynajmniej zrozumienie i pomiar wartości prądu wyłączającego, aby zapewnić odpowiednią reakcję w przypadku awarii. Ignorowanie tych zasad i niezrozumienie funkcji poszczególnych parametrów może prowadzić do błędów w doborze urządzenia ochronnego oraz, co gorsza, do sytuacji narażających użytkowników na ryzyko porażenia elektrycznego.

Pytanie 16

Który z rodzajów kabli ma zewnętrzną osłonę wykonaną z polwinitu?

A. XzTKMXpw
B. LgY
C. YADY
D. DYt
Wybór innych typów przewodów, takich jak LgY, DYt czy XzTKMXpw, jest wynikiem niepełnego zrozumienia materiałów izolacyjnych i ich właściwości. Przewód LgY wyposażony jest zazwyczaj w powłokę z tworzywa sztucznego, ale nie jest to polwinit, co ogranicza jego zastosowanie w środowisku narażonym na działanie wysokich temperatur oraz agresywnych substancji chemicznych. Z kolei przewody DYt, które są stosowane w aplikacjach sygnalizacyjnych, również nie mają powłoki z polwinitu, co czyni je mniej odpowiednimi do zastosowań, gdzie wymagana jest duża odporność na czynniki zewnętrzne. Przewód XzTKMXpw jest natomiast typem, który może być używany w specyficznych warunkach, ale brak dokładnych informacji o jego zastosowaniach oraz materiałach izolacyjnych sprawia, że nie można go uznać za praktyczny wybór w kontekście powłoki z polwinitu. Wybór niewłaściwego typu przewodu wynika często z braku wiedzy na temat standardów branżowych oraz właściwych praktyk dotyczących instalacji elektrycznych, co może prowadzić do poważnych konsekwencji w zakresie bezpieczeństwa i efektywności energetycznej. Właściwy dobór przewodów jest kluczowy dla zapewnienia nieprzerwanego działania systemów elektrycznych oraz ochrony przed potencjalnymi awariami.

Pytanie 17

Przedstawiony na rysunku zrzut ekranu miernika zawiera między innymi wyświetlaną w trakcie pomiaru wartość

Ilustracja do pytania
A. znamionowego prądu instalacji.
B. prądu zadziałania zabezpieczenia.
C. spodziewanego prądu zwarcia.
D. maksymalnego prądu obciążenia.
Dobra robota z odpowiedzią "spodziewany prąd zwarcia"! Na zrzucie ekranu widzimy, że wartość "Ik=17,79A" to rzeczywiście prąd zwarcia. To jest bardzo ważne w kontekście bezpieczeństwa instalacji elektrycznych, bo to pozwala określić, jakie mogą wystąpić przeciążenia w razie zwarcia. Moim zdaniem, znajomość tego prądu jest kluczowa, aby prawidłowo dobrać zabezpieczenia, takie jak wyłączniki nadprądowe czy różnicowoprądowe. Wiesz, zgodnie z normą PN-EN 60947-2, projektanci muszą brać pod uwagę, żeby zabezpieczenia były odpowiednio dobrane do spodziewanych wartości prądów zwarciowych. To pomaga uniknąć uszkodzeń instalacji i chroni przed porażeniem prądem. Wiedza o prądzie zwarcia przyda się też przy pomiarach impedancji pętli zwarcia, co z kolei pozwala ocenić, jak skuteczne są te zabezpieczenia. Zredukowanie wartości prądu zwarcia to dobry pomysł, dlatego ważne jest, by projektować instalacje z odpowiednimi parametrami. To zwiększa bezpieczeństwo i trwałość całej instalacji.

Pytanie 18

Przedstawiona na ilustracji wstawka kalibrowa bezpiecznika przeznaczona jest do instalacji o napięciu znamionowym

Ilustracja do pytania
A. nie wyższym niż 500 V i wkładek topikowych o prądzie znamionowym nie przekraczającym 63 A
B. nie wyższym niż 500 V i wkładek topikowych o prądzie znamionowym co najmniej 63 A
C. co najmniej 500 V i wkładek topikowych o prądzie znamionowym nie przekraczającym 63 A
D. co najmniej 500 V i wkładek topikowych o prądzie znamionowym co najmniej 63 A
Wybrana odpowiedź jest poprawna, ponieważ na ilustracji przedstawiona jest wstawka kalibrowa bezpiecznika z oznaczeniami "63 A" oraz "500 V". Te oznaczenia wskazują, że wstawka jest przeznaczona do instalacji, w których napięcie znamionowe nie może przekraczać 500 V oraz dla wkładek topikowych o prądzie znamionowym nie przekraczającym 63 A. W praktyce, zastosowanie odpowiednich bezpieczników jest kluczowe dla zapewnienia bezpieczeństwa w systemach elektroenergetycznych oraz ochrony przed przeciążeniem i zwarciem. Standardy takie jak PN-EN 60269, które dotyczą bezpieczników, określają wymagania dotyczące ich instalacji oraz właściwości, co pozwala na ich prawidłowe zastosowanie w różnych warunkach. W przypadku stosowania wyższych napięć lub większych prądów, konieczne jest stosowanie innych typów wkładek, co zwiększa ryzyko uszkodzeń i zagrożeń. Dlatego tak ważne jest, aby podczas wyboru zabezpieczeń kierować się wskazaniami producentów oraz normami branżowymi.

Pytanie 19

W jaki sposób realizowana jest ochrona przed porażeniem elektrycznym poprzez dotyk pośredni w oprawie oświetleniowej drugiej klasy ochronności działającej w sieci TN-S?

A. Użycie napięcia zasilania o zmniejszonej wartości
B. Połączenie obudowy z przewodem ochronnym sieci
C. Zastosowanie podwójnej warstwy izolacji
D. Zasilanie z transformatora izolacyjnego
Zastosowanie podwójnej warstwy izolacji jest kluczowym elementem ochrony przeciwporażeniowej w oprawach oświetleniowych klasy II, które nie wymagają przewodu ochronnego. W tego typu rozwiązaniach, sprzęt jest projektowany w taki sposób, aby minimalizować ryzyko porażenia prądem elektrycznym, poprzez wprowadzenie dodatkowej warstwy izolacyjnej, która skutecznie odseparowuje części przewodzące od części, które mogą być dotykane przez użytkowników. Przykładem może być wykorzystanie materiałów izolacyjnych o wysokiej wytrzymałości, które są odporne na działanie wysokiej temperatury oraz wilgoci, co jest istotne w kontekście opraw oświetleniowych stosowanych w różnych warunkach atmosferycznych. W praktyce, urządzenia spełniające normy IEC 61140 oraz IEC 60598-1, których celem jest zapewnienie bezpieczeństwa użytkowników, korzystają z tej technologii, a jej zastosowanie jest powszechnie zalecane w branży elektrycznej, co przekłada się na redukcję ryzyka wypadków związanych z porażeniem prądem.

Pytanie 20

W zakres inspekcji instalacji elektrycznej nie wchodzi

A. pomiar rezystancji uziemienia
B. weryfikacja poprawności oznaczeń przewodów neutralnych oraz ochronnych
C. ocena dostępu do urządzeń, co umożliwia ich wygodną obsługę oraz eksploatację
D. sprawdzenie oznaczeń obwodów i urządzeń zabezpieczających
Pomiar rezystancji uziemienia to kluczowy element zapewnienia bezpieczeństwa i prawidłowego funkcjonowania instalacji elektrycznych. Uziemienie ma na celu odprowadzenie nadmiaru prądu do ziemi, co chroni przed porażeniem elektrycznym i uszkodzeniem urządzeń. Przykładowo, w instalacjach przemysłowych, gdzie stosowane są maszyny o wysokich mocach, pomiar rezystancji uziemienia jest niezbędny do zapewnienia, że układ uziemiający jest skuteczny. Zgodnie z normą PN-EN 61557-4, rezystancja uziemienia powinna być mniejsza niż 10 Ω, co zapewnia odpowiednią ochronę przed skutkami udarów elektrycznych. Regularne pomiary rezystancji uziemienia pozwalają na wczesne wykrywanie problemów, takich jak korozja elementów uziemiających, co może prowadzić do ich degradacji. W praktyce, takie pomiary powinny być przeprowadzane co najmniej raz w roku lub częściej w przypadku instalacji narażonych na zmienne warunki atmosferyczne. Właściwe utrzymanie systemu uziemiającego jest nie tylko wymogiem prawnym, ale także kluczowym elementem ochrony osób i mienia.

Pytanie 21

W jaki sposób powinno się przeprowadzać zalecane przez producenta regularne testy działania wyłącznika różnicowoprądowego?

A. Obserwując reakcję załączonego wyłącznika na odłączenie przewodu ochronnego w rozdzielnicy
B. Naciskając przycisk TEST na wyłączonym wyłączniku
C. Naciskając przycisk TEST na załączonym wyłączniku
D. Obserwując reakcję wyłączonego wyłącznika na zwarcie przewodów czynnych w obwodzie wyjściowym
Naciskanie przycisku TEST na wyłączniku wyłączonym jest niewłaściwe, ponieważ nie spowoduje ono żadnej reakcji ze strony urządzenia. Wyłącznik różnicowoprądowy działa na zasadzie monitorowania różnicy prądów wpływających i wypływających z obwodu. Jeśli wyłącznik jest wyłączony, nie ma aktywnego obwodu, w którym mogłoby dojść do wykrycia różnicy prądów. Takie podejście prowadzi do błędnych wniosków, że urządzenie jest sprawne, podczas gdy w rzeczywistości nie zostało poddane żadnemu testowi. Obserwacja reakcji wyłącznika na odłączenie przewodu ochronnego lub zwarcie przewodów czynnych to również nieprawidłowe metody sprawdzania. Te działania mogą prowadzić do niebezpiecznych sytuacji, takich jak uszkodzenie urządzenia czy nawet porażenie prądem. Użytkownicy często mylą te metody, myśląc, że wystarczy jedynie obserwacja, aby potwierdzić sprawność wyłącznika. Rzeczywistość jest taka, że wyłącznik RCD musi być testowany w warunkach jego normalnej pracy, co oznacza, że powinien być włączony, aby móc skutecznie zareagować na symulację wycieku prądu. Ignorowanie tej zasady może prowadzić do poważnych konsekwencji w sytuacjach awaryjnych.

Pytanie 22

Jaką wartość bezwzględną ma błąd pomiaru natężenia prądu, jeżeli multimetr pokazał wynik 35,00 mA, a producent określił dokładność urządzenia dla używanego zakresu pomiarowego jako ±(1 % +2) cyfry?

A. ±0,37 mA
B. ±0,02 mA
C. ±0,35 mA
D. ±2,35 mA
W przypadku obliczania błędu pomiarowego, niektóre osoby mogą błędnie interpretować podaną dokładność miernika. Zwykle błąd pomiarowy składa się z dwóch komponentów: błędu procentowego oraz wartości stałej. W opisywanym przypadku, dokładność miernika wynosi ±(1 % +2), co oznacza, że należy to wyraźnie zrozumieć, jako wpływ zarówno względny, jak i bezwzględny na dokładność pomiaru. Wybór wartości ±0,35 mA jako błędu pomiarowego może sugerować, że osoba skupia się wyłącznie na składniku procentowym, ignorując istotny dodatek 2 mA. Takie podejście prowadzi do zaniżenia rzeczywistego błędu, co może skutkować niepoprawnymi wnioskami w analizach eksperymentalnych. Inna niepoprawna odpowiedź, która sugeruje ±2,35 mA, wynika z nieprawidłowego zrozumienia granic błędu pomiarowego; wartość ta jest zbyt wysoka w odniesieniu do rzeczywistych pomiarów, ponieważ przy podanych wartościach, jak 35 mA, błąd powinien być znacznie mniejszy. Osoby myślące, że błąd pomiarowy może być tak duży, mogą nie zrozumieć zasadniczej różnicy pomiędzy błędem całkowitym a rzeczywistym błędem odczytu. W kontekście praktycznym, takie błędne interpretacje mogą prowadzić do efektywnych strat w projektach inżynieryjnych, gdzie dokładność pomiarów jest kluczowa dla bezpieczeństwa i efektywności urządzeń. Warto zaznaczyć, że każdy pomiar powinien być analizowany zarówno pod kątem błędów systematycznych, jak i losowych, co jeszcze bardziej podkreśla znaczenie dokładności w kontekście zastosowań przemysłowych.

Pytanie 23

W przypadku układu elektrycznego, w którym z jednego punktu zasilane są przynajmniej dwie wewnętrzne linie zasilające, konieczne jest zastosowanie

A. rozdzielnicę główną
B. instalacje odbiorcze
C. złącze
D. przyłącze
Przyłącze, choć często mylone z złączem, pełni inną funkcję w systemie elektroenergetycznym. Przyłącze odnosi się do punktu, w którym instalacja elektryczna łączy się z siecią energetyczną. Jest to miejsce, gdzie energia elektryczna dostarczana jest do budynku, a nie element, który zarządza rozdzieleniem energii na kilka obwodów. W konsekwencji, przyłącze nie spełnia roli rozdzielnika dla linii wewnętrznych. Rozdzielnica główna, z kolei, jest odpowiedzialna za dystrybucję energii elektrycznej do różnych obwodów w instalacji, ale nie jest bezpośrednio przeznaczona do łączenia wielu linii zasilających w jednym punkcie, jak ma to miejsce w przypadku złącza. Instalacje odbiorcze również nie są właściwą odpowiedzią, gdyż odnosi się to do urządzeń, które pobierają energię elektryczną z sieci, takich jak oświetlenie czy urządzenia domowe. Błędne zrozumienie funkcji tych elementów może prowadzić do nieefektywnych lub niebezpiecznych rozwiązań w instalacji, dlatego istotne jest zrozumienie różnicy między złączem a innymi komponentami systemu elektroenergetycznego. Właściwe rozpoznanie funkcji złącz i innych elementów jest kluczowe dla bezpieczeństwa oraz efektywności każdej instalacji elektrycznej.

Pytanie 24

Jak długo maksymalnie może trwać samoczynne wyłączenie zasilania w obwodzie odbiorczym z napięciem przemiennym 230 V i prądem obciążenia do 32 A, w sieci TN, spełniający wymagania dotyczące ochrony przed dotykiem pośrednim?

A. 1 sekundę
B. 0,2 sekundy
C. 0,4 sekundy
D. 5 sekund
Maksymalny czas samoczynnego wyłączenia zasilania w obwodzie odbiorczym o napięciu 230 V i prądzie obciążenia do 32 A w sieci TN wynoszący 0,4 sekundy jest zgodny z normami obowiązującymi w dziedzinie bezpieczeństwa elektrycznego, takimi jak norma PN-EN 61140. Czas ten określa, jak szybko system ochronny powinien zareagować w przypadku wystąpienia zwarcia lub awarii, aby zminimalizować ryzyko porażenia prądem. W praktyce oznacza to, że urządzenia zabezpieczające, takie jak wyłączniki różnicowoprądowe, muszą być zdolne do zadziałania w tym krótkim czasie. Takie szybkie reakcje są kluczowe w warunkach użytkowania, zwłaszcza w środowisku domowym i komercyjnym, gdzie obecność ludzi jest stała. Przykładem zastosowania tej zasady mogą być obwody zasilające w łazienkach oraz innych pomieszczeniach narażonych na kontakt z wodą, gdzie ryzyko porażenia prądem jest znacznie wyższe. Odpowiednie zabezpieczenia w postaci wyłączników, które działają w ciągu 0,4 sekundy, mogą uratować życie, eliminując zasilanie w przypadku niebezpiecznych sytuacji.

Pytanie 25

Przed dokonaniem pomiaru rezystancji izolacji w instalacji elektrycznej najpierw należy odciąć napięcie zasilające, a potem

A. usunąć z opraw źródła światła, wyłączyć odbiorniki jednofazowe z gniazd wtyczkowych, odłączyć silniki trójfazowe
B. zamontować do opraw źródła światła, włączyć odbiorniki jednofazowe do gniazd wtyczkowych, włączyć silniki trójfazowe
C. usunąć z opraw źródła światła, włączyć odbiorniki jednofazowe do gniazd wtyczkowych, odłączyć silniki trójfazowe
D. zamontować do opraw źródła światła, wyłączyć odbiorniki jednofazowe z gniazd wtyczkowych, włączyć silniki trójfazowe
To, co napisałeś, jest trochę nie tak. Wybór złej sekwencji działań przed pomiarem rezystancji izolacji może prowadzić do różnych kłopotów, zarówno z bezpieczeństwem, jak i z jakością wyników. Na przykład, jeśli nie wymontujesz źródeł światła i nie wyłączysz jednofazowych odbiorników, to narażasz się na ryzyko porażenia prądem. Włączenie ich przed testem może dać złe wyniki i stwarza niebezpieczeństwo dla osoby przeprowadzającej pomiar. To jest sprzeczne z zasadą, że trzeba upewnić się, że wszystko jest odcięte od prądu. Dobrze jest pamiętać, że podłączanie urządzeń bez wcześniejszego ich rozłączenia może wprowadzić niechciane napięcia do obwodu, co grozi uszkodzeniem sprzętu pomiarowego i może wprowadzić zamieszanie w diagnozowaniu stanu izolacji. Często takie pomyłki wynikają z braku wiedzy o odpowiednich zasadach bezpieczeństwa oraz testów elektrycznych, co może prowadzić do błędów w pomiarach, a nawet do zagrożenia dla zdrowia i życia. Dlatego ważne jest, żeby zawsze trzymać się ustalonych norm i dobrych praktyk przed przystąpieniem do jakichkolwiek prac związanych z instalacją elektryczną.

Pytanie 26

Aby zweryfikować ciągłość przewodów w kablu YDY 4x2,5 mm2, jaki sprzęt należy zastosować?

A. wskaźnika kolejności faz
B. omomierza
C. miernika izolacji
D. mostka LC
Wybór wskaźnika kolejności faz do sprawdzania ciągłości żył w przewodzie YDY 4x2,5 mm2 wskazuje na pewne nieporozumienie dotyczące przeznaczenia tego urządzenia. Wskaźniki kolejności faz służą do identyfikacji i potwierdzania poprawnego ustawienia faz w układzie trójfazowym. Ich główną funkcją jest ocena kolejności przychodzących faz w instalacji, a nie mierzenie oporu elektrycznego czy ciągłości przewodów. Dlatego stosowanie ich w kontekście sprawdzania ciągłości żył może prowadzić do błędnych wniosków. Mostek LC, który jest używany do pomiarów impedancji w obwodach, również nie jest odpowiednim narzędziem w tej sytuacji, ponieważ tak samo jak wskaźnik kolejności faz, nie jest przystosowany do pomiaru oporu w przewodach. Miernik izolacji, z kolei, ma swoje zastosowanie w testach odporności izolacji przewodów, ale nie służy do bezpośredniego pomiaru ciągłości żył. Zastosowanie niewłaściwych narzędzi do specyficznych zadań technicznych może prowadzić do zaniedbań w ocenie stanu instalacji, co z kolei stwarza ryzyko bezpieczeństwa. Zrozumienie funkcji i ograniczeń różnych narzędzi pomiarowych jest kluczowe w pracy elektryka, aby unikać błędów, które mogą mieć poważne konsekwencje.

Pytanie 27

Które z parametrów są podane na przedstawionym urządzeniu?

Ilustracja do pytania
A. Napięcie znamionowe i prąd zadziałania.
B. Napięcie probiercze i prąd znamionowy.
C. Napięcie probiercze i prąd zadziałania.
D. Napięcie znamionowe i prąd znamionowy.
Na tym urządzeniu widzimy oznaczenia "230V AC" i "16A 250VAC cosφ=1", co jasno pokazuje jakich mamy do czynienia z parametrami. Napięcie 230V oznacza, że jest ono przystosowane do standardowego zasilania w Europie. Z kolei prąd 16A przy 250V AC pokazuje maksymalny prąd, który urządzenie może bezpiecznie obsłużyć. Zrozumienie tych wartości jest mega ważne, żeby zapewnić bezpieczeństwo i efektywność w pracy urządzeń elektrycznych. W praktyce znajomość tych danych pozwala nam na dobór odpowiednich zabezpieczeń, jak na przykład wyłączniki nadprądowe dopasowane do tych wartości. Dodatkowo, wiedza o współczynniku mocy (cosφ=1) mówi nam, że urządzenie działa w idealnych warunkach, bez strat energii. Spełnianie norm takich jak IEC 60364 jest kluczowe, bo zwiększa bezpieczeństwo i niezawodność instalacji elektrycznych.

Pytanie 28

Przedstawiony na rysunku przyrząd służy do

Ilustracja do pytania
A. sprawdzania ciągłości połączeń w instalacji.
B. pomiaru parametrów oświetlenia.
C. lokalizacji przewodów w instalacji elektrycznej.
D. bezdotykowego pomiaru rezystancji przewodów.
Przedstawiony przyrząd to detektor przewodów elektrycznych, który jest istotnym narzędziem w branży elektrycznej. Jego głównym celem jest lokalizacja przewodów w instalacjach elektrycznych, co stanowi kluczowy etap w różnych pracach remontowych i instalacyjnych. Dzięki precyzyjnym funkcjom detekcji, możliwe jest zlokalizowanie przewodów schowanych w ścianach, co pozwala uniknąć ich uszkodzenia podczas wiercenia czy innych prac budowlanych. Zastosowanie tego urządzenia jest zgodne z najlepszymi praktykami w zakresie bezpieczeństwa i efektywności pracy, ponieważ minimalizuje ryzyko uszkodzenia instalacji oraz potencjalnych zagrożeń związanych z porażeniem prądem. Warto dodać, że tego typu detektory mogą również pomóc w identyfikacji źle wykonanych instalacji elektrycznych, co może być kluczowe dla zapewnienia bezpieczeństwa użytkowników. Oprócz tego, dobrze jest znać zasady i normy dotyczące instalacji elektrycznych, takie jak PN-IEC 60364, które podkreślają znaczenie lokalizacji przewodów w zapewnieniu skutecznych i bezpiecznych prac budowlanych.

Pytanie 29

Które aparaty oznaczono na schemacie cyframi 1 i 2?

Ilustracja do pytania
A. 1 – wyłącznik nadprądowy; 2 – odłącznik instalacyjny.
B. 1 – wyłącznik nadprądowy; 2 – wyłącznik nadprądowy.
C. 1 – wyłącznik różnicowoprądowy; 2 – wyłącznik nadprądowy.
D. 1 – wyłącznik różnicowoprądowy; 2 – odłącznik instalacyjny.
Wybrana odpowiedź jest poprawna, ponieważ aparaty oznaczone na schemacie cyframi 1 i 2 to wyłącznik różnicowoprądowy oraz wyłącznik nadprądowy. Wyłącznik różnicowoprądowy, oznaczony cyfrą 1, jest systemem zabezpieczającym przed porażeniem prądem elektrycznym poprzez odłączenie obwodu w przypadku wykrycia różnicy prądów między przewodami fazowymi a neutralnymi. Jego charakterystyczne cechy to przycisk testowy oraz oznaczenia N i PE, które wskazują na jego połączenia z przewodami neutralnym i ochronnym. Wyłącznik nadprądowy, oznaczony cyfrą 2, służy do ochrony obwodów przed przeciążeniem oraz zwarciami, automatycznie odłączając zasilanie w takich sytuacjach. W praktyce, stosowanie tych urządzeń jest kluczowe dla zapewnienia bezpieczeństwa instalacji elektrycznych w budynkach mieszkalnych i przemysłowych. Zgodnie z normą PN-EN 61008, wyłączniki różnicowoprądowe powinny być stosowane w miejscach szczególnie narażonych na porażenie prądem, co czyni je niezbędnym elementem w każdej nowoczesnej instalacji.

Pytanie 30

Który z podanych materiałów najlepiej przewodzi strumień magnetyczny?

A. Aluminium
B. Miedź
C. Brąz
D. Stal
Stal jest najlepszym przewodnikiem strumienia magnetycznego spośród wymienionych materiałów, ponieważ ma znacznie wyższą permeabilność w porównaniu do innych wymienionych metali. Permeabilność odnosi się do zdolności materiału do przewodzenia pola magnetycznego, co czyni stal idealnym materiałem do zastosowań w elektrotechnice, takich jak rdzenie transformatorów czy elektromagnesy. W konstrukcjach takich jak silniki elektryczne czy generatory, stal jest powszechnie stosowana ze względu na swoją zdolność do zwiększania efektywności działania poprzez skoncentrowanie strumienia magnetycznego. W praktyce, użycie stali w takich aplikacjach pozwala na mniejsze straty energii oraz poprawia wydajność urządzeń. Warto również zaznaczyć, że stal można łatwo poddawać obróbce, co umożliwia produkcję różnych kształtów rdzeni, co jest istotne w projektowaniu urządzeń elektronicznych. Zgodność z normami, takimi jak IEC, w zakresie materiałów magnetycznych, podkreśla znaczenie stali w branży elektrotechnicznej, gdzie standardy jakości i wydajności są kluczowe.

Pytanie 31

Podczas inspekcji świeżo zrealizowanej instalacji elektrycznej nie ma potrzeby weryfikacji

A. wyboru zabezpieczeń oraz urządzeń
B. wyboru i oznakowania przewodów
C. wartości natężenia oświetlenia na stanowiskach pracy
D. rozmieszczenia tablic informacyjnych i ostrzegawczych
Podczas inspekcji nowo wykonanej instalacji elektrycznej, sprawdzenie rozmieszczenia tablic ostrzegawczych i informacyjnych, doboru zabezpieczeń i aparatury oraz doboru i oznaczenia przewodów jest kluczowe. Te elementy są fundamentalne dla zapewnienia bezpieczeństwa użytkowników oraz prawidłowego funkcjonowania instalacji. Tablice ostrzegawcze i informacyjne stanowią istotny element systemu bezpieczeństwa, informując pracowników o potencjalnych zagrożeniach. Odpowiedni dobór zabezpieczeń, takich jak wyłączniki nadprądowe czy różnicowoprądowe, ma na celu ochronę przed skutkami zwarć oraz przeciążeń, co jest wymagane przez normy elektryczne, jak PN-IEC 60364. Oznaczenie przewodów pozwala uniknąć pomyłek w podłączeniach, co może prowadzić do poważnych awarii lub zagrożeń. Istotne jest zrozumienie, że każde z tych działań jest ściśle związane z bezpieczeństwem i funkcjonalnością instalacji. Wiele osób może nie doceniać roli tych detali, skupiając się jedynie na wydajności energetycznej czy estetyce, co może prowadzić do krytycznych błędów w ocenie gotowości instalacji do eksploatacji. W rzeczywistości, zaniedbanie któregokolwiek z wymienionych aspektów może skutkować poważnymi konsekwencjami zarówno w kontekście bezpieczeństwa, jak i przepisów prawa budowlanego oraz norm branżowych.

Pytanie 32

W prawidłowo działającej instalacji elektrycznej w kuchni wymieniono uszkodzone gniazdo wtykowe. Po uruchomieniu odbiornika zadziałał wyłącznik różnicowoprądowy. Jaki błąd wystąpił przy montażu gniazda?

A. Nie podłączono przewodu neutralnego
B. Nie podłączono przewodu ochronnego
C. Zamieniono zacisk przewodu ochronnego z neutralnym
D. Zamieniono zacisk przewodu fazowego z neutralnym
Brak podłączenia przewodu ochronnego jest jednym z najczęstszych błędów montażowych w instalacjach elektrycznych, jednak jego skutki mogą być nieco mniej dramatyczne niż zamiana przewodów. Przewód ochronny odgrywa kluczową rolę w bezpieczeństwie użytkowników, zapewniając ochronę przed porażeniem prądem elektrycznym. W przypadku jego nieobecności, nawet przy poprawnym podłączeniu przewodów fazowego i neutralnego, użytkownik może być narażony na niebezpieczeństwo w sytuacji awaryjnej. Mylne przekonanie o tym, że nie jest konieczne podłączenie przewodu ochronnego w gniazdach elektrycznych, prowadzi do sytuacji, w której urządzenia elektryczne mogą działać, ale nie są bezpieczne. Zamiana zacisku przewodu fazowego z neutralnym jest kolejnym nieprawidłowym podejściem, które nie tylko może skutkować uszkodzeniem sprzętu, ale również stwarza poważne zagrożenie dla użytkowników. W takich sytuacjach, gdy faza jest zamieniana z neutralnym, nieprawidłowe napięcie może pojawić się na gniazdach, co jest niebezpieczne dla podłączonych urządzeń. Warto również zauważyć, że niepodłączenie przewodu neutralnego w systemach jednofazowych może spowodować, że urządzenia nie będą działały poprawnie, ale niekoniecznie będą zagrażały bezpieczeństwu. Każdy z tych błędów jest wynikiem nierozumienia podstawowych zasad działania instalacji elektrycznych oraz zaniedbania norm bezpieczeństwa, co może prowadzić do poważnych konsekwencji zarówno dla użytkowników, jak i dla samej instalacji.

Pytanie 33

W systemie sieciowym typu TT wyłączenie zasilania przeprowadzane jest przy pomocy urządzenia ochronnego różnicowoprądowego. Aby ochrona była skuteczna, konieczne jest spełnienie następującej zależności

A. RA ∙ IΔn ≤ UL
B. RA ∙ IΔn < UL
C. RA ∙ IΔn ≥ UL
D. RA ∙ IΔn > UL
Każda z pozostałych odpowiedzi opiera się na błędnych założeniach dotyczących działania urządzeń ochronnych oraz zasadności stosowania zależności związanych z bezpieczeństwem elektrycznym. Odpowiedzi sugerujące, że RA ∙ IΔn > UL, RA ∙ IΔn < UL czy RA ∙ IΔn ≥ UL są nieprawidłowe, ponieważ nie uwzględniają kluczowego aspektu, jakim jest ochrona przed porażeniem elektrycznym. W przypadku, gdyby stosunek RA ∙ IΔn był większy niż UL, oznaczałoby to, że nie możemy zagwarantować, iż prąd różnicowy wywołany przez uszkodzenie izolacji w sieci nie przekroczy wartości niebezpiecznej dla osoby dotykającej urządzenia elektrycznego. Taka sytuacja prowadzi do dużego ryzyka porażenia prądem, co jest sprzeczne z podstawowymi zasadami ochrony przeciwporażeniowej. Z kolei odpowiedź sugerująca, że RA ∙ IΔn powinno być większe lub równe UL, może prowadzić do sytuacji, w której ochrona nie zadziała w odpowiednim momencie, co z kolei może skutkować uszkodzeniem urządzeń elektrycznych oraz poważnymi obrażeniami ludzi. W kontekście dobrych praktyk w instalacjach elektrycznych, zgodnych z normami, kluczowe jest zapewnienie, że wszystkie urządzenia ochronne są odpowiednio dobrane, a ich parametry muszą być zgodne z wymaganiami dotyczącymi uziemienia i bezpieczeństwa elektrycznego. Przykłady błędnych przekonań obejmują nadmierne zaufanie do technologii bez zrozumienia ich działania oraz ignorowanie istotnych norm, które regulują bezpieczeństwo instalacji elektrycznych.

Pytanie 34

Która zależność musi być spełniona podczas wymiany uszkodzonych przewodów instalacji elektrycznej i ewentualnej zmiany ich zabezpieczeń nadprądowych?

Iz – prąd obciążalności długotrwałej przewodu
Ib – prąd znamionowy zabezpieczenia przeciążeniowego
IB – prąd wynikający z przewidywanej mocy przesyłanej przewodem

A. IB ≤ IN ≤ IZ
B. IN ≤ IB ≤ IZ
C. IB ≤ IZ ≤ IN
D. IZ ≤ IN ≤ IB
Wybór odpowiedzi, która nie spełnia relacji IB ≤ IN ≤ IZ, prowadzi do nieprawidłowego rozumienia zasad projektowania instalacji elektrycznych. Niektóre z niepoprawnych odpowiedzi sugerują, że prąd obciążenia może być większy od prądu znamionowego zabezpieczenia, co jest fundamentalnym błędem. Taki błąd może prowadzić do sytuacji, w której zabezpieczenie nie zadziała w odpowiednim momencie, co z kolei skutkuje przegrzaniem przewodów i ich uszkodzeniem. Istotne jest, aby pamiętać, że prąd znamionowy zabezpieczenia powinien być zawsze dostosowany do przewidywanego obciążenia; w przeciwnym razie może dojść do ryzyka awarii. Ponadto, nieodpowiednie przypisanie wartości prądu obciążenia w stosunku do obciążalności przewodów prowadzi do nieefektywnego działania całej instalacji. Zgodnie z normami, przed przystąpieniem do wymiany przewodów lub zmiany zabezpieczeń, należy dokładnie obliczyć zarówno IB, jak i IZ oraz zrozumieć, jak te wartości wpływają na dobór IN. Ignorowanie tych zasad może prowadzić do kosztownych błędów w instalacji elektrycznej, które mogą zagrażać bezpieczeństwu użytkowników i mienia.

Pytanie 35

Jakie narzędzia są konieczne do wytyczenia trasy instalacji przewodów elektrycznych montowanych na powierzchni?

A. Ołówek traserski, przymiar kreskowy, rysik
B. Kątownik, młotek, punktak
C. Ołówek traserski, poziomnica, przymiar taśmowy
D. Kątownik, ołówek traserski, sznurek traserski
Ołówek traserski, poziomnica i przymiar taśmowy to świetny wybór! Te narzędzia naprawdę są niezbędne, gdy chodzi o trasowanie drogi do układania przewodów natynkowych. Ołówek traserski pozwala na dokładne oznaczanie punktów i linii, co jest podstawą do dalszej roboty. Poziomnica zaś to must-have, żeby upewnić się, że wszystko jest równo i w odpowiednich nachyleniach. To ważne, bo estetyka i funkcjonalność idą w parze. Przymiar taśmowy z kolei umożliwia precyzyjne mierzenie, co też jest kluczowe, żeby dobrze rozmieścić przewody na ścianach. W branży mamy różne standardy, jak normy PN-IEC, które podkreślają, jak ważna jest dokładność i planowanie przy instalacjach elektrycznych. Używanie właściwych narzędzi zwiększa wydajność, a także zmniejsza ryzyko błędów, które mogą skończyć się problemami, jak zwarcia czy uszkodzenia sprzętu. Na przykład, korzystając z poziomnicy przy układaniu przewodów, mamy pewność, że będą one prosto, co będzie miało znaczenie przy montażu osprzętu elektrycznego.

Pytanie 36

Ile pomiarów izolacyjnej rezystancji należy przeprowadzić, aby zidentyfikować uszkodzenie w przewodzie YDY3x 6 450/700 V?

A. 3
B. 6
C. 12
D. 9
Odpowiedzi sugerujące większą liczbę pomiarów, takie jak 6, 9 czy 12, wynikają z powszechnych nieporozumień na temat metodologii przeprowadzania pomiarów rezystancji izolacji przewodów. W praktyce, zbyt wiele pomiarów może prowadzić do komplikacji w interpretacji wyników. Zgodnie z wytycznymi, kluczowe jest, aby pomiary były skoncentrowane i dotyczyły najważniejszych punktów w systemie. Często błędne podejście do tematu polega na mylnym założeniu, że im więcej pomiarów zostanie wykonanych, tym bardziej dokładne będą wyniki. Rzeczywistość jest jednak taka, że nadmiar pomiarów może wprowadzać w błąd, a wyniki mogą się nie zgadzać z rzeczywistym stanem izolacji. Prawidłowe podejście polega na dobraniu odpowiednich miejsc pomiarowych oraz ich liczby, co z kolei powinno opierać się na charakterystyce instalacji oraz bieżących wymaganiach normatywnych. Warto również zwrócić uwagę na to, że wykonanie niewłaściwej liczby pomiarów może prowadzić do pominięcia krytycznych miejsc, gdzie uszkodzenia izolacji mogą występować, co w konsekwencji zagraża bezpieczeństwu użytkowników i prawidłowemu działaniu instalacji elektrycznej.

Pytanie 37

Pomiar impedancji pętli zwarciowych wykonuje się w przypadku

A. aktywnie działającej sieci, co nie uwzględnia impedancji transformatorów zasilających
B. wyłączonej sieci, co uwzględnia impedancje transformatorów zasilających
C. aktywnie działającej sieci, co uwzględnia impedancje transformatorów zasilających
D. wyłączonej sieci, co nie uwzględnia impedancji transformatorów zasilających
Pomiar impedancji pętli zwarciowej przy załączonej sieci jest kluczowy dla oceny bezpieczeństwa systemów elektroenergetycznych. W takiej konfiguracji, wszystkie elementy systemu, w tym transformatory, przewody oraz urządzenia zabezpieczające, działają w rzeczywistych warunkach operacyjnych. Uwzględnienie impedancji transformatorów zasilających jest istotne, ponieważ ich właściwości mogą znacząco wpływać na wartość impedancji pętli zwarciowej. W praktyce, taka analiza pozwala na poprawne zaprojektowanie zabezpieczeń przeciwprądowych, co jest kluczowe dla szybkiej reakcji systemu na awarie. Dobre praktyki, takie jak stosowanie norm IEC 60909, podkreślają znaczenie pomiaru impedancji w warunkach załączonych, co prowadzi do bardziej rzetelnych wyników i lepszej ochrony instalacji. Ostatecznie, znajomość rzeczywistych warunków pracy systemu przekłada się na większe bezpieczeństwo oraz niezawodność instalacji elektrycznych.

Pytanie 38

Przy jakiej wartości prądu różnicowego zmiennego sinusoidalnie nie powinien zadziałać sprawny wyłącznik różnicowoprądowy typu AC o prądzie IΔN = 30 mA?

A. IΔ = 40 mA
B. IΔ = 30 mA
C. IΔ = 20 mA
D. IΔ = 10 mA
Odpowiedź IΔ = 10 mA jest poprawna, ponieważ sprawny wyłącznik różnicowoprądowy typu AC o prądzie IΔN = 30 mA nie powinien zadziałać przy prądzie różnicowym mniejszym od jego nominalnej wartości. Wartości prądu różnicowego, które są poniżej tego poziomu, nie powinny aktywować mechanizmu wyłączającego. Na przykład, jeżeli w instalacji elektrycznej wystąpi niewielki prąd upływowy spowodowany np. wilgocią lub wadliwym urządzeniem, to przy prądzie 10 mA wyłącznik nie zareaguje, co oznacza, że urządzenie może dalej działać. Wyłączniki różnicowoprądowe są kluczowym elementem w systemach zabezpieczeń, a zgodnie z normami IEC 61008-1, powinny być stosowane w instalacjach, aby zapewnić bezpieczeństwo użytkowników przed porażeniem prądem elektrycznym. Odpowiednia konfiguracja takich wyłączników jest istotna w kontekście ochrony zdrowia i życia, a ich prawidłowe działanie powinno być regularnie kontrolowane.

Pytanie 39

Która z podanych awarii urządzenia II klasy ochronności stanowi ryzyko porażenia prądem?

A. Zniszczenie przewodu ochronnego PE
B. Przerwanie uzwojeń silnika umieszczonego w urządzeniu
C. Uszkodzenie izolacji przewodu zasilającego urządzenie
D. Zwarcie bezpiecznika wewnętrznego urządzenia
Przepalenie bezpiecznika wewnątrz urządzenia oraz przerwa w uzwojeniach silnika, mimo że mogą prowadzić do problemów z działaniem urządzenia, nie stwarzają bezpośredniego zagrożenia porażenia prądem, ponieważ bezpiecznik jest elementem zabezpieczającym, który po wykryciu nadmiernego prądu automatycznie przerywa obwód. Z kolei przerwa w uzwojeniach silnika powoduje, że silnik przestaje działać, a nie występuje niebezpieczne napięcie na jego obudowie. Uszkodzenie przewodu ochronnego PE, chociaż stanowi istotny problem, w kontekście urządzenia II klasy ochronności nie powinno prowadzić do bezpośredniego zagrożenia, ponieważ urządzenia te są zaprojektowane tak, aby w przypadku awarii nie występowało niebezpieczne napięcie na obudowie. Kluczowym błędem myślowym jest niewłaściwe zrozumienie działania systemów ochrony. W urządzeniach II klasy ochronności, stosowanie podwójnej izolacji w celu zapobiegania porażeniom elektrycznym, sprawia, że nawet w przypadku uszkodzenia elementów wewnętrznych, nie powinno dojść do wystawienia na działanie niebezpiecznego napięcia. Zrozumienie zasad działania zabezpieczeń oraz klasyfikacji urządzeń elektrycznych jest kluczowe dla zapewnienia właściwego bezpieczeństwa w użytkowaniu sprzętu elektrycznego.

Pytanie 40

Który element stosowany w instalacjach sterowania oświetleniem przedstawiono na ilustracji?

Ilustracja do pytania
A. Przekaźnik bistabilny.
B. Ściemniacz oświetlenia.
C. Automat zmierzchowy.
D. Czujnik ruchu.
Automat zmierzchowy to urządzenie, które automatycznie zarządza oświetleniem, dostosowując je do zmieniających się warunków świetlnych w otoczeniu. Na ilustracji przedstawiono model AZH-S, który jest typowym przykładem automatu zmierzchowego. Działa on na zasadzie pomiaru natężenia światła, co pozwala na włączenie oświetlenia po zachodzie słońca, a wyłączenie go w ciągu dnia. To rozwiązanie jest szczególnie przydatne w miejscach, gdzie oświetlenie jest potrzebne tylko w nocy, takich jak ogrody, podjazdy czy parkingi. Dzięki zastosowaniu automatu zmierzchowego można znacząco zmniejszyć zużycie energii, co jest zgodne z zasadami zrównoważonego rozwoju i oszczędności energii. W praktyce, urządzenia te są łatwe do zainstalowania i oferują wiele możliwości konfiguracji, co pozwala na ich dostosowanie do indywidualnych potrzeb użytkowników. Warto również zaznaczyć, że automaty zmierzchowe są zgodne z normami EN 60598-2-1, które dotyczą bezpieczeństwa i wydajności oświetlenia.